
Measuring Rule-Following in Language Models

Benjamin Laufer 1 Jon Kleinberg 2

Abstract
There are many instances in which we might want
a language model to follow rules, including gram-
matical constraints and the avoidance of hateful
or toxic statements. Following rules necessitates,
first, keeping track of states where the rule ap-
plies, and second, following the rule when in
these states. We introduce a formal framework
for evaluating rule-following in language mod-
els, focusing on rules that can be expressed using
deterministic finite automata (DFAs). We say a
language model (ϵ, δ)-matches a DFA A if 1) it
behaves similarly on all prefixes that lead to the
same state in the DFA (up to divergence level ϵ)
and 2) it distinguishes between prefixes that lead
to different DFA states by exhibiting at least δ
compliance over the set of suffixes that are treated
differently by the automaton. To formalize this
definition, we define probability distributions over
the Myhill-Nerode Boundary (MNB) to measure
a model’s ability to distinguish between valid and
invalid suffixes. Our approach defines rule com-
pliance in probabilistic terms, offering a princi-
pled way to evaluate model behavior in light of
specified language-generation constraints. We im-
plement an experimental setup in which we train
transformer models on synthetic languages and
evaluate the compliance of their outputs. We dis-
cuss generalizations of our framework – including
to non-regular languages – and the implications
for evaluating and controlling language models.

1. Introduction
As generative AI gets adopted across sectors, there is inter-
est in guaranteeing that these models comport with rules. At
the most basic level, any language has grammatical rules,
and designers want the output of a language model to follow

1Cornell Tech, New York, NY, USA 2Cornell Univer-
sity, Ithaca, NY, USA. Correspondence to: Benjamin Laufer
<bdl56@cornell.edu>.

ICML 2025 Workshop on Assessing World Models. Copyright
2025 by the author(s).

them. Beyond grammar rules, a wide range of evaluation
metrics and benchmarks have been proposed to assess desir-
able properties of model behavior, such as truthfulness and
the avoidance of toxicity.

An outstanding challenge in this space is that evaluation
is multifaceted: there is an ongoing proliferation of bench-
marks and metrics, each reflecting its own goals and as-
sumptions [10; 4]. Attempts at measuring rule-following
or compliance raise additional questions about what should
count as successful model behavior and how it should be
measured. Designing appropriate measures for safe model
performance, for example, can have significant ramifications
for the trajectory of AI development [5].

DFA-based rules. Here we offer a formal framework for
understanding rule-following in generative models. For our
analysis here, we will focus on the set of rules that can
be described by a Deterministic Finite Automaton (DFA).
DFAs are a useful formal proxy for rules. They offer a clean
way of determining whether a given sequence of tokens
passes (i.e., meets the rules), and this conclusion can be
made at every token transition and using finite memory.
DFAs, of course, offer just one formalism for reasoning
about rule-compliance, and we offer some analysis that
attempts to generalize our framework to rules and languages
that are not describable by DFA.

The present work. Our main contribution is to provide
a framework for measuring rule-compliance in language
models. Our framework consists of a measure of rule-
compliance for any rule that can be expressed as a DFA, and
also for some rules that cannot be expressed this way.1 We
operationalize our proposal in an experimental setting where
we train transformers from scratch on known languages and
evaluate the model’s output using our framework. Empiri-
cally, we observe that transformers are remarkably success-
ful when measured by naive methods of DFA compliance
but exhibit certain tendencies that fall short of DFA learning
using our metrics. In summary:

• We introduce the notion of “(ϵ, δ)-matching” a DFA to
measure whether a generative model has learned the
rules of a language (Section 2). Using an example of

1Languages adhering to these rules would be described as non-
regular in formal language theory.

1

Measuring Rule-Following in Language Models

a simple language, we demonstrate how to evaluate a
model for ϵ and δ in closed-form (Section 3).

• We introduce an experimental framework where we
can specify languages as distributions over next tokens
and evaluate the ability of generative models to emu-
late a simple language. Experimentally, using simple
languages and small models, we observe the strengths
and shortcomings of transformers at learning certain
classes of rules (Section 4).

Related work. This paper builds on a line of work attempt-
ing to evaluate learning in generative models [3; 2; 1] and,
especially, world model evaluation [6; 8; 9]. For example,
Liu et al. [7] find the theoretically, transformers should be
capable of learning an arbitrary DFA. The present work
builds off the basic structure introduced by Vafa et al. [9]
for understanding a language model’s world model. Their
analysis focuses on exact sequence-level distinctions via pre-
cision and recall metrics. Our contribution generalizes this
to a probabilistic setting, accounting for varying likelihoods.

2. Conceptual Framework
We conceive of a language as a distribution over next to-
kens (e.g., letters). Our setting involves learning certain
languages whose rules can be expressed as a DFA. We start
with an overview of this set-up before introducing our main
contribution: a metric for evaluating rule-following and a
framework for using it.

Distributions vs Rules. Even though a language can be
conceived of as a distribution over next tokens, people typi-
cally encounter only individual sequences, or draws from
the distribution. When we conclude that a particular output
breaks the rules of a language, we are not necessarily claim-
ing something about the distribution of outputs, but instead
about an individual sequence. One natural starting point
is to conceive of the rules of a language as being broken
when a sequence of tokens includes a next token that the
language places 0 probability on. This would align with
the views of Vafa et al. [9], who introduce the DFA as a
model for capturing the world model implicit in an LLM.
However, in many ways, we want information about the
distribution of sequences to understand how frequently a
language model violates rules. There are many models, in-
cluding transformers, which place non-zero probability on
every next token, so characterizing a model’s compliance
should take into account its frequency of violation and other
skews. Thus, this framework attempts to provide a notion of
rule-following with an eye towards probability distributions
and aggregation.

2.1. DFA-based Language Rules

Here we introduce our model for learning the rules of a
language. We define language rules using a DFA A =
(Q,Σ,∆, q0, F) where Q is the finite set of states in the
language, Σ is the alphabet, δ : Q×Σ→ Q is the transition
function, q0 ∈ Q is the starting state, and F ⊆ Q is the set
of accepting states.

A sting is given by a sequence of letters (or, interchangeably,
“tokens”) in the alphabet, x = x1x2x3...xn where each
xi ∈ Σ. Each letter corresponds to the transition over
states q ∈ Q, via the transition function ∆. We denote
the overall transition over a sequence using q(q0, xi) =
∆(∆(...∆(q0, x1), ...), xn). Sometimes we will treat q0 as
given and simply write q(x). For any sequence x, the DFA
accepts x if the final state reached (qf) is in the set F . Thus,
we can say the language L “recognized” by the DFA A is
given by: L(A) =

{
x ∈ Σ|x| : q(q0, x) ∈ F

}
.

2.2. DFA Matching

We now introduce formal definitions for understanding the
extent to which a language generation model m complies
with a DFA A. We are after a measure of distributional di-
vergence: How much probability mass does the model place
on legal and illegal sequences, and does the distribution of
this mass depend predictably on the DFA state? To arrive at
a measure, we start by defining needed concepts inspired by
formal language theory to identify and compare legal and
illegal sequences.

Distributions over the Myhill Nerode Boundary Infor-
mally, the Myhill-Nerode boundary for a model given two
prefixes s1, s2 is the set of suffixes accepted by the DFA
after one of the prefixes and rejected by the other.2

Definition 2.1 (Myhill-Nerode Boundary). Given a genera-
tive model m, a DFA A and a compliance function l(x) :=
x ∈ L(A). For two prefixes s1, s2 with q(s1) ̸= q(s2), the
Myhill-Nerode boundary B is given by:

B(s1, s2) =
{
x ∈ Σk : l(x | s1) ̸= l(x | s2)

}
,

where k > 0 is the maximum suffix length.

With this definition, we can define probability distributions
over the set of suffixes B. Within this set, we hope that
the distribution of suffixes following state s1 is completely
non-overlapping with the distribution of suffixes following
state s2. With this intuition, we define the compliance over
the boundary as the compliance rate of the model over
distinguishing suffixes.

2Vafa et al. [9] offer an alternative definition of this same term.
Theirs is asymmetrical in that it defined the Myhill-Nerode bound-
ary as the set of states accepted after s1 but not s2. In our definition,
it is always the case that B(s1, s2) = B(s2, s1).

2

Measuring Rule-Following in Language Models

Definition 2.2 (Boundary-regularized compliance). Given
a generative model m, a DFA A with compliance func-
tion l(x) := x ∈ L(A), and a divergence measure D.
For two prefixes s1, s2 with q(s1) ̸= q(s2), the boundary-
regularized compliance is given by:

Cr(s1, s2) =

∑
x∈B(s1,s2)

P (x|s1)l(x|s1) + P (x|s2)l(x|s2)∑
x∈B(s1,s2)

P (x|s1) + P (x|s1)
.

where Pm(x|si) is the model’s probability distribution over suf-
fixes. If the model places zero mass on the Myhill-Nerode
boundary or no such boundary exists for suffix length k, define
Cr(s1, s2) = 1 (the model is fully compliant).

DFA Matching We are now in a position to define our
notion of DFA matching, which broadly aims to capture a
model’s ability to distinguish the rules of a DFA and track
the state over a sequence of tokens.

Definition 2.3 ((ϵ, δ)-matching). Generative model m (ϵ, δ)-
matches a DFA A (with respect to a divergence D) if:

1. For all prefixes s1, s2 such that q(s1) = q(s2),
D(Pm(.|s1), Pm(.|s2)) ≤ ϵ,

2. For all prefixes s1, s2 such that q(s1) ̸= q(s2), the
boundary-regularized compliance Cr(s1, s2) ≥ δ.

This definition is advantageous because it covers both prefix
equivalence (the idea that language models should produce
outputs as a function of the state, not the path) and suffix
distinguishing (the idea that language models should be able
to differentiate suffixes accepted by the DFA from suffixes
rejected by the DFA).

3. Analysis of an Example
In this section, we analyze an example of a regular language
to illustrate our framework. Our language is given by a
DFA that accepts strings of the form 0n1m – that is, any
number of the character ‘0’ followed by any number of the
character ‘1’. We assume there is a true generating process
and we will use an (imperfect) language model to model the
generating process.

True generating process. The true sequence-generating
process produces samples sequentially using a simple dis-
tribution. Before any instance of 1 has occurred (state s0),
the sequence generates tokens from the alphabet uniformly
at random: P (0|s0) = P (1|s0) = 0.5. After the first 1
has occurred (state s1), the sequence generates only 1 to-
kens from the alphabet to remain compliant with the DFA:
P (0|s1) = 0, P (1|s1) = 1. The DFA specifying the accept-
able sequences is visualized in Figure 1.

Language models. We evaluate a possibly imperfect
model m that generates sequences one token at a time.
We will use two models: penultimate and bigram.

q0 q1 qf

0

1 0

1

Figure 1. Markov process corresponding to the language’s rules.
The language is regular because its acceptable sequences can be
computed deterministically and with finite memory via the state
diagram.

penultimate uses the second to last token in the prefix
to determine the next token, and bigram uses the last token
that appears in the prefix to determine the next token. We
evaluate the model on all valid prefixes of length 2 (‘00’,
‘01’, ‘11’) and all suffixes of length 2 (‘00’, ‘01’, ‘10’, ‘11’).
We use the Total Variation (TV) distance as our divergence
metric.

Model family 1: penultimate. Let’s start with a particu-
lar language model to attempt to emulate the given language.
In this family of language models, the second to last token is
used to predict the next token. The model’s full probability
distribution is parameterized as follows:

P (0| ∗ 0 .) = 1− c, P (1| ∗ 0 .) = c,

P (0| ∗ 1 .) = d, P (1| ∗ 1 .) = 1− d.

The boundary-regularized compliance rate is computed be-
tween any pair of prefixes that land in different states on
the DFA. In the current case, it is easy to observe that there
are two prefix pairs of length 2 that arrive at different states:
(‘00’, ‘01’) and (‘00’, ‘11’).

This setting is sufficiently simple that we can arrive at closed-
form expressions for the δ and ϵ values for different param-
eter values (c, d). The expressions are given below and are
visualized in Figure 3.

Proposition 3.1. The value of ϵ for the penultimate
model is given by:

ϵ = |1− c− d|.

Proposition 3.2. The value of δ for the penultimate
model is given by:

δ = min

{
1

2
,

1− c

1− c+ d

}
.

Model family 2: bigram. Given that our first model
(penultimate) was unable to match the DFA in a sat-
isfactory manner, we introduce a new model here that we
hope will perform better. In our new model, the conditional
probabilities of next tokens are given by the following pa-

3

Measuring Rule-Following in Language Models

Figure 2. The values of ϵ and δ for the penultimate models (left two) and the bigram models (right two), for all feasible parameters
c, d in each model family. In the penultimate model, there is no non-trivial combination of parameters for which ϵ = 0, δ = 1,
meaning that the there is no model that perfectly matches the DFA. Further, the values that maximize δ diverge from the values that
minimize ϵ, meaning there exists a trade-off between achieving between-state compliance and within-state consistency. The bigram
model with c = 0, d = 0, however, does achieve ϵ = 0, δ = 1, and no such trade-off exists.

rameterization:

P (0| ∗ 0) = 1− c, P (1| ∗ 0) = c,

P (0| ∗ 1) = d, P (1| ∗ 1) = 1− d.

Again, we are able to solve the values of (ϵ, δ) as a closed-
form function of the model parameters (c, d).

Proposition 3.3. For the bigram model,

ϵ = 0.

This result is intuitive because the bigram model has the
correct state model for the DFA – the distribution of next
token depends on the state, which has a direct mapping to
the most recent token.

Proposition 3.4. For the bigram model,

δ =
1− c

1− c+ d
.

This model is intuitively the better fit given the true data-
generating process, and so naturally, we see that there exist
more favorable combinations of DFA-matching values ϵ
and δ. If we can use an empirical process to arrive at the
optimal combinations of (c = 0, d = 0), we could say
that our bigram model (ϵ, δ)-matches the DFA with values
ϵ = 0, δ = 1.

4. Empirical Tests
Here we report the results of empirical tests where we train
real language models on known distributions, and measure
their outputs’ comportment with the rules of the language.
We start by introducing four languages which we will use
to generate sequences for training and evaluating state-of-
the-art language models.

True generating processes. Like the previous section, we
consider a set of data-generating processes which produce

sequences of tokens in a two-token alphabet Σ = (0, 1).
Generally, under ‘normal’ circumstances, the language
draws uniformly at random from these values. However,
depending on the rules of the particular language, there are
certain instances where we expect the sequence to exhibit
certain behavior, which we describe in detail below.

Figure 3. A DFA specifying the rules of a language with a 2-token
alphabet (‘0’,‘1’), where the starting state can be represented as
the integer 3, and each token corresponds to navigating −1 or +1
from the current position. The DFA rejects sequences that pass the
boundaries of {0, 7}.

Constrained random walk. Imagine the sequences generated
by our language(s) are a set of instructions for an agent that
finds herself on the number line. Assume she can only
hop between the integers. She starts at some position (call
it q0, and assume q0 = 3 unless otherwise specified). If
the language has no rules, she is simply doing a random
walk on the number line. As a simple set of rules, however,
we can imagine that there are one or two boundaries over
the set of integers that constrain the agent’s path. We will
analyze two cases – a one-sided bound at 0 and a two-sided
bound at {0, 7}. The DFA corresponding to the two-sided
constrained random walk is given in Figure 3.

Stopping conditions. We will test two different forms of
this model. In the first, reflect, the stopping condition
between sequences is given by a maximum sequence length,
n, which we will assume is 32. In the true data-generating
process with this stopping condition, if the random walk
reaches the boundary, it will ‘reflect’ and always return
the token corresponding to navigating (legally) away from
the boundary, rather than crossing it. In the second of our
stopping conditions, absorb, the sequence ends only when

4

Measuring Rule-Following in Language Models

the sequence reaches the boundary, and so sequences can
reach long lengths before terminating.

Bounds Boundary
Behavior

Max.
Length Language

1 {0, 7} Reflect 32 Regular (DFA)
2 {0, 7} Absorb ∞ Regular (DFA)
3 {0,∞} Reflect 32 Regular (DFA)
4 {0,∞} Absorb ∞ Non-regular

Table 1. Overview of the four language settings used to evaluate
language model compliance. Settings vary in the type of bound-
aries imposed on the token-based random walk, the boundary
behavior at those limits, and the maximum sequence length. The
regularity of each language determines whether its rules can be
captured by a finite-state machine. Though we set up scenarios 2
and 4 to be possibly infinite, when we implement these languages
programatically, for practical reasons we put a high limit (500) on
the sequence size. Thus, technically, scenario 4 is regular in the
implementation because it can be represented by a massive DFA.

Training transformer models. Now that we have specified
a set of basic languages that we can treat as the true distri-
bution over next tokens, we can train transformer models to
emulate these distributions and evaluate the extent to which
the trained models comply with the rules of our languages.
Further details are provided in Appendix B. For each sce-
nario, we generate datasets of 100,000 tokens emulating the
true distribution, and train a 0.2M parameter transformer.

Output Compliance. In Figure 6, we depict the absolute
compliance rate for each of our four training scenarios. The
results suggest that the trained models reach high levels
of compliance after about 1000 iterations, in the first three
settings listed in Table 1. The final setting (4), which uses a
language that cannot be expressed as a DFA, does not reach
the same level of compliance. Of course, these absolute
compliance rates represent coarse understandings of the ex-
tent to which a model has learned a DFA, since they depend
on how sparse the rejected suffixes are in the total output
space. As we develop our experimental setting further, we
hope to formally characterize values of ϵ and δ to see how
these transformers match the DFA underlying the rules of
their language.

5. Conclusion
In this workshop paper, we have described ongoing work
which aims to provide a framework for evaluating the extent
to which a language model adheres to the rules of a language.
Leveraging formal language theory, we consider rules that
can be expressed as a DFA, and define the notions of (ϵ, δ)-
matching and boundary-regularized compliance. We also
set up an experimental framework where we can reason
about rule-adherence in transformer models.

References
[1] Angluin, D. Inductive inference of formal languages

from positive data. Information and control, 45(2):
117–135, 1980.

[2] Gold, E. M. Language identification in the limit. In-
formation and control, 10(5):447–474, 1967.

[3] Kleinberg, J. and Mullainathan, S. Language gener-
ation in the limit. Advances in Neural Information
Processing Systems, 37:66058–66079, 2024.

[4] Laufer, B., Gilbert, T., and Nissenbaum, H. Opti-
mization’s neglected normative commitments. In Pro-
ceedings of the 2023 ACM Conference on Fairness,
Accountability, and Transparency, pp. 50–63, 2023.

[5] Laufer, B., Kleinberg, J., and Heidari, H. The backfir-
ing effect of weak ai safety regulation. arXiv preprint
arXiv:2503.20848, 2025.

[6] Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent world representations:
Exploring a sequence model trained on a synthetic
task. ICLR, 2023.

[7] Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and
Zhang, C. Transformers learn shortcuts to automata.
arXiv preprint arXiv:2210.10749, 2022.

[8] Toshniwal, S., Wiseman, S., Livescu, K., and Gimpel,
K. Chess as a testbed for language model state tracking.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 11385–11393, 2022.

[9] Vafa, K., Chen, J., Rambachan, A., Kleinberg, J., and
Mullainathan, S. Evaluating the world model implicit
in a generative model. Advances in Neural Information
Processing Systems, 37:26941–26975, 2024.

[10] Wallach, H., Desai, M., Pangakis, N., Cooper, A. F.,
Wang, A., Barocas, S., Chouldechova, A., Atalla, C.,
Blodgett, S. L., Corvi, E., et al. Evaluating generative
ai systems is a social science measurement challenge.
arXiv preprint arXiv:2411.10939, 2024.

5

Measuring Rule-Following in Language Models

A. Algorithms for Arriving at ϵ, δ
A.1. Computing ϵ

Algorithm 1 Computing ϵ: Max divergence between prefixes reaching the same DFA state
Require: Language model m, DFA state function q(s), prefix length n, suffix length k

1: Generate all prefixes s of length n over the alphabet Σ
2: For each prefix s, compute its DFA state q(s)
3: Initialize ϵ← 0
4: for all groups of prefixes that share the same state do
5: for all prefix pairs (s1, s2) in the group do
6: Query the model for Pm(x | s1) and Pm(x | s2) over all x ∈ Σk

7: Compute the divergence: D ← D(Pm(. | s1), Pm(. | s2))
8: Update: ϵ← max(ϵ,D)
9: end for

10: end for
11: Return ϵ

A.2. Computing δ

Algorithm 2 Computing δ: Min Boundary-Regularized Compliance between distinct DFA states
Require: Language model m, DFA state function q(s), legality function l(x | s), prefix length n, suffix length k

1: Generate all prefixes s of length n over the alphabet Σ
2: For each prefix s, compute its DFA state q(s)
3: Initialize δ ← 1
4: for all pairs of prefixes (s1, s2) such that q(s1) ̸= q(s2) do
5: Query the model for Pm(x | s1) and Pm(x | s2) over all x ∈ Σk

6: Initialize Numerator← 0, Denominator← 0
7: for all suffixes x ∈ Σk do
8: if l(x | s1) ̸= l(x | s2) then
9: Numerator += Pm(x | s1) · l(x | s1) + Pm(x | s2) · l(x | s2)

10: Denominator += Pm(x | s1) + Pm(x | s2)
11: end if
12: end for
13: Cr ← Numerator/Denominator
14: Update: δ ← min(δ,Cr)
15: end for
16: Return δ

B. Details of Transformer Implementation
Here we provide additional details about the transformers we trained. We used Karpathy’s minGPT implementation with the
following hyperparameters:

• Training dataset size: 50000

• Size of sequences: 20

• batch size = 16

• block size = 32

• max iters = 5000

6

Measuring Rule-Following in Language Models

• eval interval = 100

• learning rate = 1e-3

• eval iters = 200

• n embd = 64

• n head = 4

• n layer = 4

• dropout = 0.0

C. Examples of output paths
Here we provide some examples of output paths to give a sense of the distribution of outputs for a transformer trained in
setting 1. The results are depicted in Figure 4. Another example is depicted in Figure 5.

(a) (b)

(c) (d)

Figure 4. Output paths for testing scenario 1. After a small number of training iterations, the model breaks the rule often and seems to
perform a more general ‘mean reversion.’ After more training iterations, the model more closely resembles the data-generating process,
but still exhibits some ‘safe’ behavior where at position 6 the average behavior is to move towards the mean, even though the true
data-generating process produces 0 and 1 with equal probabilities.

D. Compliance Results
Here we provide results on the rate of compliance in the output generated by our trained transformer models. The results are
depicted in Figure 6.

7

Measuring Rule-Following in Language Models

Figure 5. Sequences output by transformer model at different training stages.

Figure 6. Compliance rates for different trained transformers, in our four training scenarios (listed in Table 1).

8

