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Abstract

We introduce a training objective for continuous normalizing flows that can be used in the
absence of samples but in the presence of an energy function. Our method relies on either a
prescribed or a learnt interpolation ft of energy functions between the target energy f1 and
the energy function of a generalized Gaussian f0(x) = ||x/σ||pp. The interpolation of energy
functions induces an interpolation of Boltzmann densities pt ∝ e−ft and we aim to find a
time-dependent vector field Vt that transports samples along the family pt of densities. The
condition of transporting samples along the family pt can be translated to a PDE between
Vt and ft and we optimize Vt and ft to satisfy this PDE. We experimentally compare the
proposed training objective to the reverse KL-divergence on Gaussian mixtures and on the
Boltzmann density of a quantum mechanical particle in a double-well potential.

1 Introduction

We consider the task of learning and sampling from a probability density p proportional to the unnormalized
density e−f where f : Rn → R is a given energy function. In particular, we don’t have access to samples from
p, all we have is the ability to evaluate f and its derivatives for any x ∈ Rn. A popular technique (Boyda
et al., 2021; Albergo et al., 2021a;b; 2022; Abbott et al., 2022; de Haan et al., 2021; Gerdes et al., 2022; Noé
et al., 2018; Köhler et al., 2020; Nicoli et al., 2020; 2021) for attacking this problem is to use a normalizing
flow to parametrize a density qθ and optimize the parameters θ to minimize the reverse KL-divergence

KL[qθ, p] = Ex∼qθ
(log qθ(x) − log p(x)) = Ex∼qθ

(log qθ(x) + f(x)) + Z. (1)

The use of normalizing flows for this problem is particularly attractive because a normalizing flow realizes
a probability distribution qθ that can be used as a proposal for importance sampling to account for the
inaccuracies of qθ. Unfortunately, the reverse KL-divergence is mode-seeking, making the training prone to
mode-collapse (Fig. 1). To tackle this problem, several works have proposed alternative training objectives
for normalizng flows. Vaitl et al. (2022) introduce estimators of the forward KL divergence, while Midgley
et al. (2022) replace the reverse KL-divergence with the α = 2 divergence and combine it with annealed
importance sampling (Neal, 1998). We propose yet another alternative based on infinitesimal deformations
of Boltzmann densities (Pfau & Rezende, 2020; Máté & Fleuret, 2022).

The contributions of this work can be summarized as follows

• In §3 we describe our method which relies on either a prescribed or a learnt interpolation ft of
energy functions between the target energy f1 and the energy function of a generalized Gaussian
f0(x) = ||x/σ||pp. Given ft we optimize a vector field Vt to transport samples along the family
pt(x) ∝ e−ft(x) of Boltzmann densities. After translating this condition to a PDE between Vt and
ft we propose to minimize the amount by which this PDE fails to hold.
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– First we find that in certain cases the linear interpolation ft = (1 − t)f0 + tf1 already leads to
improved performance over optimizing the reverse KL-divergence. We also show that in general
this interpolation is insufficient.

– Motivated by the failure mode of the linear interpolation, we parametrize the interpolation with
another neural network ft = (1 − t)f0 + tf1 + t(1 − t)fθ(t) and optimize fθ

t together with the
vector field V θ

t .

• In §4 we run experiments on Gaussian mixtures and on the Boltzmann density of a quantum particle
in a double-well potential, and report improvements in KL-divergence, effective sample size, and
mode coverage.

Motivation

Consider the following multimodal density
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where N (µ, σ) denotes a normal density centered at µ with covariance matrix diag(σ2). Fig. 1 shows the
mode-collapse of a normalizing flow trained with the reverse KL-divergence on this target. The reason why
mode collapse can happen in the first place is the training objective itself. The mode seeking behavior of the
reverse KL-divergence can be explained as follows. As the sampling is done according to qθ, the difference
in log-likelihoods is weighted by the likelihood qθ. This implies that if qθ completely ignores modes of p
the log-likelihoods of p and qθ are not compared over regions that are not covered by qθ. In this paper
we introduce a training objective for continuous normalizing flows that can be used to replace the reverse
KL-divergence and investigate to what extent it solves the issue of mode collapse on multimodal targets.

Figure 1: Mode-seeking nature of the reverse KL-divergence. The figures from left to right show how the
latent gaussian is transformed by the continuous normalizing flow trained with the reverse KL objective.
The green blobs denote the (unnormalized) target density, given by Eq. 2.

2 Background

Change of variables

Let p0(z) be a probability density on Rn and Ψ : Rn → Rn a diffeomorphism. Pushing the density p0 forward
along Ψ induces a new probability density p implicitly defined by

log p0(z) = log p(Ψz) + log | det JΨ(z)|. (3)

The term log | det JΨ(z)| measures how much the function Ψ expands volume locally at z.

Continuous change of variables. Let now Vt be a time-dependent vector field and Ψτ denote the
diffeomorphism of following the trajectories of Vt from 0 to τ . This family of diffeomorphisms generates a
one-parameter family of densities pτ . The amount of volume expansion a particle experiences along this
trajectory of between 0 and τ is

∫ τ

0 ∇ · Vt(Ψtz)dt. The log-likelihoods are then related by

log p0(z) = log pτ (Ψτ z) +
∫ τ

0
∇ · Vt(Ψtz)dt. (4)
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Normalizing flows

Normalizing flows (Tabak & Turner, 2013; Dinh et al., 2016) (continuous normalizing flows (Chen et al.,
2018)) parametrize a subset of the space of all densities on Rn. They do this by first fixing a base density
p0 and using a neural network that parametrizes the transformation Ψ (the vector field Vt). The change of
variables formula in Eq. 3 (Eq. 4) is then applied to compute the density induced by Ψ (Vt). Generalizations
of normalizing flows have also been gaining popularity in the recent years (Nielsen et al., 2020; Huang et al.,
2020; Máté et al., 2022).

Boltzmann densities

Let f : Rn → R be an energy function1 with a finite normalizing constant Z =
∫

e−f(x)dnx. The function f
then induces a Boltzmann density over the configurations x ∈ Rn,

p(x) = 1
Z

e−f(x). (5)

Conversely, given a probability density function p : Rn → R+,0 the corresponding energy function can be
recovered up to a constant f = − log p − log Z. In somewhat more abstract terms, the space of probability
densities is obtained by factoring the space of energy functions by R+. Throughout the rest of the paper we
will keep making use of this “almost equivalence” between densities and energy functions, and will frequently
translate between the density space and log-density space.

The deformation equation

A probability density p0 ∝ e−f0 and a one-parameter family of vector field Vt generates a one-parameter
family of probability densities pt ∝ e−ft simply by making the samples from p0 follow the flow2 determined
by Vt. Conversely, given a one-parameter family of probability densities pt, we are interested in finding
the transport field or deformation field Vt. Once Vt is found, it can be used to transform samples between
different members of the family pt. Either way, the families ft and Vt are related by

∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + Ct = 0, (6)

where ∇ft denotes the gradient of ft, ∇·Vt the divergence of Vt, ⟨ , ⟩ is the Euclidean scalar product between
vectors, and Ct is a spatially constant function, i.e. only depends on time. Moreover, if we find a triplet
(ft, Vt, Ct) that solves Eq. 6, then Ct necessarily equals ∂t log Zt (up to an additive constant). We refer the
reader to the works of Pfau & Rezende (2020, Eq. 6) and Máté & Fleuret (2022, Eq. 16) for details and Fig
2 for an example.
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Figure 2: Deformation of a two-
dimensional standard Gaussian
into a family of isotropic Gaussians
with different variances. Samples
from a two-dimensional standard
Gaussian (left). The deformation
field (center). The samples in the
left plot flowing along the deforma-
tion field from 1 to t follow a Gaus-
sian centered at the origin with co-
variance 1/t (right).

1Depending on the field, other authors might call this action or potential.
2The word flow is not used here in the usual sense in a machine learning context, but rather in the sense of differential

geometry.
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3 Approximating the transport field

From here on, we will use the vector field Vt and the term “continuous normalizing flow” interchangeably.
Our goal is to sample from a target Boltzmann density ptarget ∝ e−ftarget by

1. defining a family of energy functions ft, 0 ≤ t ≤ 1 interpolating between the target energy f1 =
ftarget and the energy function of a generalized Gaussian f0(x) = ||x/σ||pp,

2. finding a transport field Vt such that (ft, Vt) “solves” the deformation equation (Eq. 6).

If we succeed at both of these constructions, then we can obtain samples from ptarget by sampling from
p0 ∝ e−||x/σ||p

p and let the samples follow the flow of Vt from t = 0 to t = 1. Note that we turned the
problem of learning a single density e−f1 into a continuous collection of problems, learning all the densities
e−ft for 0 ≤ t ≤ 1. It might seem like that we just made the task more difficult, but the idea is that for any
0 ≤ τ ≤ 1, the density e−fτ is easier to fit once e−fτ−ε is already fitted for some small ε.

The pointwise deformation error

Regarding the second item of the above list, an analytical expression for Vt is not easy to find if we are given
a family of energy functions ft. This would amount to solving Eq. 6, which is difficult in general. Therefore
we will parametrize Vt with a neural network and train it to minimize the amount by which the pair (ft, Vt)
fails to satisfy the deformation equation. We begin by recalling the deformation equation,

∂tft + ⟨∇ft, Vt⟩ − ∇ · Vt + Ct = 0, (7)

where Ct is a spatially constant function. In what follows, V θ
t and Cθ

t are parametrized by neural networks
and are trained to minimize some monotonically increasing function L3 of the pointwise deformation error

Eθ,x,t = |∂tft(x) + ⟨∇ft(x), V θ
t (x)⟩ − ∇ · V θ

t (x) + Cθ
t |. (8)

The expression L(Eθ,x,t) measures the incompatibility of ft and Vt at a single (t, x) pair of coordinates, we
will need to optimize some sort of integral of this pointwise error over both t and x.

The deformation loss

Suppose that we have an interpolation of energy functions ft. We propose to train V θ
t and Cθ

t to minimize the
deformation error (Eq. 8) along the trajectories of V θ

t . Formally, let qθ be a parametric density parametrized
by a continuous normalizing flow V θ

t . We update the parameters to minimalize the integral of L(E) along
the trajectories of the flow,

L(θ) = Ez∼B

[
w(z)

∫ 1

0
L

(
Eθ,γθ

t (z),t

)
dt

]
, (9)

where B denotes the base distribution and γθ
τ (z) is given by transporting z along the V θ

t between 0 and
τ . The weights w(z) in Eq. 9 are estimates of the importance weights e−f(γ1(z))/Z

qθ(γ1(z)) . They are computed
from the unnormalized importance weights w̃i = e−f(γ1(zi))

qθ(γ1(zi)) as w(zi) = w̃i/
(

1
N

∑N
j=1 w̃j

)
over a batch of

samples. We evaluate the integral in Eq. 9 by discretizing time and using numerical ODE solvers. The
standard deviation of the base is an important hyperparameter, its role can be explained as follows. Ideally,
we would like to minimize the deformation error everywhere in space, but we can only evaluate it along the
trajectories of V θ

t . To provide better coverage, we can increase the standard deviation of the base density
during training. In principle, it is not a requirement to train along trajectories starting from the same base
as the one we’re trying to match to the target. We didn’t explore this possibility, in all our experiments B
is both the distribution along which we optimize the deformation loss and also the base of the flow (i.e. the
density that approximates p once pulled through the flow).

3In our experiments we tried L : R+ −→ R+ ∈ {|E| 7→ |E|, |E| 7→ |E|2, |E| 7→ |E| + |E|2, |E| 7→ log(1 + |E|)}.
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First approach: Linear interpolation

There are many ways of interpolating between two functions. Arguably the simplest way to do so is to set

ft(x) = (1 − t)f0(x) + tf1(x), 0 ≤ t ≤ 1. (10)

A discretization of the induced interpolation in density space is often used as a sequence of proposals for
annealed importance sampling (Neal, 1998). We will call the family given by Eq. 10 the linear interpolation.
Fig. 3 shows the evolution of the samples along a continuous normalizing flow trained with the deformation
loss using the linear interpolation. Comparing with Fig. 1, we observe that the same network trained with
the deformation loss instead of the reverse KL-divergence can capture all 4 modes of the target density.

Figure 3: The same continuous normalizing flow as in Fig. 1 trained with the deformation loss using the linear
interpolation. The top row shows how the target density evolves under the predefined linear interpolation
between f0 = x2/2 and f1 = − log(Eq. 2), while the bottom row shows how the samples from qθ evolve
along Vt as t is varied.

The issue with the linear interpolation. Let us now consider the density
1
3 N
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)
+ 2
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−8 −8
]

, 1
)

. (11)

This target does not enjoy the symmetry properties of the previous mixture, one of the modes is closer to the
base and has a lower relative weight than the other one. The top row of Fig. 4 shows the linear interpolation
to this target and the second row shows that this interpolation is insufficient to capture the mode which is
further away. In a nutshell, the reason for this is that the relative weights of the modes are not preserved as
t is varied.

Figure 4: The issue with the linear interpolation. The top row shows how the target density evolves under
the predefined linear interpolation between f0 = x2/8 and f1 = − log(Eq. 11), while the bottom row shows
how the samples from qθ evolve along Vt as t is varied.
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Interlude: good and bad interpolations

The reason why the linear interpolation can lead to problems is illustrated in Figures 5 and 6. Figure 5 shows
a particular example where the linear interpolation in log-density space induces a “good” interpolation in
density space. Figure 6 shows that for certain target functions the linear interpolation in log-density space
induces an interpolation in density space that is not “local” in the sense that probability mass gets moved
between the modes. Such densities are difficult to learn with the linear interpolation, even if in principle
there exists a vector field Vt that moves probability mass the correct way along any interpolation.
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Figure 5: Linear interpolation between f0(x) = x2/4 and f1 = − log( 1
2 e−(x−3)2 + 1

2 e−(x+3)2). Linear interpo-
lation in the log-density space (top row), and the induced interpolation in density space (middle row). The
transport field Vt which can be represented as a scalar-valued function for one-dimensional densities (bottom
row). The thin gray line in the bottom row denotes Vt = 0.
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Figure 6: Linear interpolation between f0(x) = x2/4 and f1 = − log( 1
3 e−(x−1)2 + 2

3 e−(x+4)2). Linear interpo-
lation in the log-density space (top row), and the induced interpolation in density space (middle row). The
transport field Vt which can be represented as a scalar-valued function for one-dimensional densities (bottom
row). The thin gray line in the bottom row denotes Vt = 0. Note how the relative weights of modes is not
preserved as t is varied, and the exploding norm of Vt.
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Sanity check: interpolate along the diffusion process

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) also define a family of
probability densities pt on Rn interpolating between the data density p1(x) and the latent n−dimensional
gaussian p0 = N (0, σ). Samples from pt are of the form

√
tx +

√
1 − tz where x ∼ p1, z ∼ p0. Geometrically,

the probability density pt is obtained by first stretching p1 by a factor of
√

t and then convolving with the
Gaussian kernel Gσ

√
1−t4.

p1(x) λt−−−−−→ t−n/2p1(t−1/2x) Gt−−−−−→ t−n/2p1(t−1/2x) ∗ Gσ
√

1−t︸ ︷︷ ︸
pt(x)

, (12)

where we used λt to denote the stretching by a factor of
√

t and Gt to denote the convolution with the
Gaussian kernel Gσ

√
1−t. If t = 1, both λt (stretching by a factor of 1) and Gt (convolving with a Dirac-

delta) are just the identity. If t = 0, then λt collapses p1 to a Dirac-delta at the orgin and Gt convolves it
with N (0, σ) implying that p0 = N (0, σ). The nice thing about the diffusion process is that it provides an
interpolation between densities where the situation of Fig. 6 is avoided. Loosely speaking, this interpolation
is “local” in a sense that that the linear interpolation was not.

The family of Gaussian mixtures is closed under the diffusion process given by Eq. 12, we can even explicitly
compute the time-evolution of a Gaussian mixture and use it to replace the linear interpolation. Fig. 7
shows samples from a normalizing flow that was trained with the deformation loss using the hand-computed
interpolation of its diffusion process.

Figure 7: The same continuous normalizing flow as in Fig. 4 with the deformation loss using the hand-
computed diffusion interpolation. The green blobs denote the (unnormalized) target density, a mixture of
two Gaussians, given by Eq. 11. The top row shows how the target density evolves under the predefined
diffusion-like interpolation, while the bottom row shows how the samples from qθ evolve along the flow as t
is varied.

Unfortunately, since all we are given is the ability to evaluate the target energy pointwise, there is no
analytical formula for calculating the diffusion process of an arbitrary target density. Moreover, any numerical
approach involves integration, that gets increasingly expensive as t gets smaller and the dimensionality of
the problem gets larger. Nonetheless, this result demonstrates that minimizing the deformation error is a
feasible approach, one just needs to be more careful about the interpolation between the latent and target
energy functions.

Parametrizing the interpolation

To circumvent the issues presented in the previous section, we need to use a different interpolation between
the latent and target energy functions. The authors could not find a predefined interpolation that is 1)

4The Gaussian kernel Gσ
√

1−t is a Gaussian density with mean 0 and covariance matrix diag(σ2(1 − t)).
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“local” in the still not formal, but intuitive sense and 2) easy to compute for arbitrary target energies.
Instead, we propose to use a neural network to parametrize the interpolation ft as

ft(x) = (1 − t)f0(x) + tf1(x) + t(1 − t)fθ
t (x), 0 ≤ t ≤ 1, (13)

where fθ
t is parametrized by a neural network. This parametrization ensures that the boundary conditions

at t ∈ {0, 1} are satisfied, and allows for flexibility for 0 < t < 1. The parameters of the interpolation are
trained together with the those of the flow (and those of Ct) with the objective of minimizing the deformation
loss. Fig. 8 shows that this flexibility allows a flow trained with the deformation loss to capture both modes
of the distribution given by Eq. 11.

Figure 8: The same continuous normalizing flow as in Fig. 4 trained with the deformation loss using the
trainable interpolation. The green blobs denote the (unnormalized) target density, a mixture of 2 Gaussians,
given by Eq. 11. The top row shows how the target density evolves under the learned interpolation, while
the bottom row shows how the samples from qθ evolve along Vt as t is varied.

4 Experiments

To compare the deformation loss to the reverse KL-divergence we train the same normalizing flow architecture
by minimizing the 1) reverse KL objective 2) the deformation loss. We test on Gaussian mixtures and on
the Boltzmann distribution of a quantum mechanical particle in a double-well potential.

Performance metrics

To quantify the results of the experiments, for each model we report a subset of the following metrics. For
all runs we report the reverse KL-divergence (minus log Z),

Ex∼qθ
(log qθ(x) − log p(x)) (14)

and the effective sample size,

ESSr =
( 1

N

∑
i p(xi)/qθ(xi)

)2

1
N

∑
i(p(xi)/qθ(xi))2 , xi ∼ qθ, (15)

where N is the number of samples. These metrics capture how good a fit qθ is for p, but only in those regions
where samples are available. They are therefore insensitive to mode collapse. To compensate for this, we
compute the Hausdorff distance between the means of the modes M = {m1, ..., mk} and a batch of samples
X = {x1, ...xN } from the model,

H(M, X) = max
m∈M

min
x∈X

√
||m − x||2. (16)

In the case of Gaussian mixtures, the means M are the means of mixture components whereas in the case of
the quantum mechanical particle, the means are (ϕ1, ϕ2, ..., ϕN ) = (a, a, ..., a) and (ϕ1, ϕ2, ..., ϕN ) = (b, b, ..., b)
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where a and b are the two local minima of V (/phi) = −mϕ2 + λϕ4 (see §4.2 for details). The Hausdorff
distance is a good metric for measuring mode coverage but is insensitive to the shape of the distributions.
Finally, the forward KL-divergence (plus log Z),

Ex∼p(log p(x) − log qθ(x)) (17)

and effective sample size,

ESSf =
( 1

N

∑
i qθ(xi)/p(xi)

)2

1
N

∑
i(qθ(xi)/pθ(xi))2 , xi ∼ p. (18)

provide the most accurate (both mode coverage and shape matching) description of the goodness of the fit.
As they require samples from p, we only report them for the experiments on Gaussian mixtures.

4.1 Gaussian mixtures

In this section we train on two energy functions, those given by Equations 2 and 11. The metrics are reported
in Table 1 and correspond well to what we observe in Figures 1, 3, 4 and 8.

Energy function given by Eq. 2

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ Fw.KL ↓ Fw. ESS ↑

KL(qθ, p) 19.26 ± .333 1.387 ± .001 0.999 ± .000 110.6 ± 97.6 0.254 ± .006
Def. Loss with Linear Int. 0.060 ± .023 0.003 ± .002 0.998 ± .001 0.001 ± .001 0.998 ± .002
Def. Loss with Trainable Int. 0.053 ± .010 0.000 ± .001 1.000 ± .000 0.000 ± .000 0.999 ± .000
PathPQ Vaitl et al. (2022) 10.83 ± .553 0.757 ± .018 0.967 ± .003 38.25 ± 4.99 0.460 ± .010

Energy function given by Eq. 11

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ Fw.KL ↓ Fw. ESS ↑

KL(qθ, p) 13.25 ± .363 1.099 ± .000 1.000 ± .000 74.38 ± 30.3 0.332 ± .007
Def. Loss with Linear Int. 2.329 ± .124 1.081 ± .004 0.928 ± .080 37.68 ± 6.99 0.336 ± .008
Def. Loss with Trainable Int. 0.045 ± .022 0.001 ± .001 0.999 ± .000 0.000 ± .000 1.000 ± .000
PathPQ Vaitl et al. (2022) 0.041 ± .012 0.043 ± .022 0.978 ± .002 0.015 ± .004 0.859 ± .174

Table 1: Results of training the same flow with 3 different objectives: the reverse KL-divergence, the
deformation loss with linear interpolation and the deformation loss with the trainable interpolation. Note
that the target densities are normalized, i.e. log Z = 0. Mean and standard deviation values over 5 seeds
are reported.

4.2 Quantum mechanical particle in a double-well potential

In this section we consider the trajectory of a quantum mechanical particle moving in a double-well potential.
The action associated to a discretised trajectory (ϕ1, ... , ϕN ) is

S(ϕ1, ... , ϕN ) =
N∑

i=1

(
(ϕi − ϕi+1)2 + V (ϕi)

)
, (19)

where the subscript i + 1 is to be understood modulo N . We assume that the potential V is of the form

V (ϕi) = −mϕ2
i + λϕ4

i , (20)

where m and λ are numerical parameters. In all our experiments λ = 1/16, N ∈ {4, 8, 16, 32, 64} and
m ∈ {0.25, 0.50, 0.75, 1.00}. The Boltzmann density then reads

e−S(ϕ1, ... ,ϕN ) =
N∏

i=1
e−(ϕi−ϕi+1)2

N∏
i=1

e−V (ϕi). (21)
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Heuristics. In all cases, the one-dimensional Boltzmann density e−V (ϕ) has two modes and their separation
is controlled by m, (Fig. 9). Intuitively, the second factor in Eq. 21 encourages the particle to follow the
unnormalized density e−V (ϕ) at every time step, while the first one penalizes if the values of ϕ at consecutive
time steps differ too much (i.e. belong to different modes of e−V (ϕ)). With the above interpretation we can
argue that ϕi and ϕi+1 are likely to be close, and every ϕi is likely to belong to one of the modes of e−V (ϕi).
Then the density e−S(ϕ1,...,ϕN ) has two modes, centered at (a, a, ..., a) and (b, b, ..., b), where a and b are the
local minima of V .

Sensitivity to the mass parameter m. Now we fix N = 16 and vary the mass of particle m ∈
{0.25, 0.50, 0.75, 1.00}. We compare the deformation loss with the trainable interpolation to the reverse
KL objective. The quantitative results are summarized in Table 2. In Figure 9 we compare e−V (ϕ) to the
histogram of flattened samples from the trained models. This makes sense since the action encourages the
particle to follow the one-dimensional Boltzmann density of the potential V (ϕ) at every time-step.

K
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θ
,p

)

m = 0.25 m = 0.5 m = 0.75 m = 1

D
ef

.
Lo

ss

Figure 9: Mode collapse of the reverse KL-divergence for higher values of m. The unnormalized density
p(ϕ) ∝ e−V (ϕ) (blue curve), plotted against the flattened samples ϕi (orange histogram).

m = 0.25 m = 0.50

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑

KL(qθ, p) 1.074 ± .022 −9.777 ± .001 0.984 ± .001 0.879 ± .007 −18.70 ± .005 0.959 ± .004
Def. Loss 1.063 ± .021 −9.781 ± .001 0.996 ± .000 0.864 ± .014 −18.71 ± .002 0.987 ± .002

m = 0.75 m = 1.00

H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑ H(M, X) ↓ Rev. KL ↓ Rev. ESS ↑

KL(qθ, p) 16.59 ± .169 −36.18 ± .003 0.958 ± .006 20.13 ± .088 −62.82 ± .003 0.961 ± .011
Def. Loss 0.755 ± .018 −36.88 ± .005 0.967 ± .017 0.695 ± .018 −63.51 ± .004 0.963 ± .011

Table 2: Results of training the same flow with two different objectives: the reverse KL-divergence and
the deformation loss with the trainable interpolation. Mean and standard deviation values over 3 seeds are
reported.

Sensitivity to the dimensionality N . In this section we fix m = 0.5 and train models in different
dimensionalities N ∈ {4, 8, 16, 32, 64}. For each N we trained the same model for the same number of steps.
Figure 10 shows the evolution of the ESS and H(M, X) values during the training process. To tackle the
dropping performance at increasing values of N , improvements of the models are necessary, which we discuss
in detail in the next section.
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Figure 10: Sensitivity of the ESS and H(M, X) values to the dimensionality of the problem. Mean and
standard deviation values over 3 seeds are plotted.

Implementation and training details

Every trainable object in our experiments is parametrized by a weighted sum of MLPs. The weighting is
done by evenly spaced RBF time-kernels, one for each model. Importantly, our architecture is completely
oblivious to the Z2 ⋉ Cn-symmetry of the the quantum mechanical particle in a double-well potential. We
rely on automatic differentiation to compute all derivatives. We leave the exploitation of symmetries and
the use of architectures with analytic expressions for the divergence of Vt (Köhler et al., 2020; Gerdes et al.,
2022), as well as for ∇ft and ∂tft, for future work. The choices of hyperparameters are given in Table 3.
Everything was implemented in JAX (Bradbury et al., 2018) and executed on one of eight A100 GPUs.

Gaussian Mixtures ϕ4 on a circle
Eq. 2 Eq. 11

number of RBF-kernels in time 4 4 8
hidden layers per model 2 2 3
neurons per hidden layer 64 64 128

activation function swish swish swish

base distribution N (0, 1) N (0, 2) ∝ e−|x|4

bath size during training 256 256 256
batch size during evaluation 4096 4096 4096

number of train steps 104 104 1.5 × 104

initial learning rate 3 × 10−3 3 × 10−3 ×10−3

number of integration steps 50 50 50
deformation loss |E| + |E|2 |E| + |E|2 |E| + |E|2

Table 3: Hyperparameters and design choices for our experiments. The learning rate was initialized to the
value shown in the table and annealed to 0 following a cosine schedule.

On the choice of the function L. The definition of the the deformation loss in Eq. 9 involves a somewhat
arbitrary choice of the function L. We compared the functions {|E| 7→ |E|, |E| 7→ |E|2, |E| 7→ |E| + |E|2, |E| 7→
log(1+ |E|)} and ended up using |E|+ |E|2 in all of our experiments, as it empirically outperformed the other
choices. The intuition is that the L2 norm provides good gradients when the error is large, while the L1

norm provides good gradients when the error is small and therefore their sum is expected to be superior to
both of them.

Computational costs. To optimize the “baseline” reverse KL objective one needs a parametrization of
Vt and to integrate ∇ · Vt along the trajectories. In addition to this, the deformation loss also needs to
parametrize Ct and ft and to integrate an expression depending on ∇ · Vt, ∂tf, ∇f and Ct. This means that
the same number of training steps are more expensive computationally when using the deformation loss.
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When using the deformation loss instead of the reverse KL-divergence the experiments lasted ∼ 2.1-times
longer on the Gaussian mixtures and ∼ 1.85-times longer on the quantum particle in a double-well potential.
In the case of the prescribed linear interpolation on the Gaussian targets, the training lasted ∼ 1.6 times
longer than with the reverse KL.

5 Summary and Closing remarks

We introduced an alternative training objective of continuous normalizing flows that uses an interpolation
of energy functions. The work was motivated by denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and score-base models (Song & Ermon, 2019). It also bears similarities to more recent works (Lipman
et al., 2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022; Neklyudov et al., 2022) that also learn more
flexible interpolations between the data and the base distibutions. We’ve demonstrated empirically that the
proposed objective outperforms the reverse KL-divergence when the target density has multiple modes.

Two reasons for mode collapse. There can be, at least, two different reasons for mode collapse when
training with the reverse KL-divergence. First, if one of the modes is so far away from the base distribution
that it never gets visited by the flow. Second, if a mode is visited during training by trajectories of the flow,
but the flow still ignores it and fits the remaining modes of the density. It is important to distinguish these
two scenarios as our proposed technique can help with the second kind, but not the first one. This is also the
reason why the standard deviation of the base density is important. When the base has a higher variance,
a larger fraction of the space gets visited.

Reframing the method as a PINN. Our work naturally fits into the framework of Physics-informed
neural networks (Raissi et al., 2019). What this work calls the pointwise deformation error, would be called
the residual to the deformation equation in the PINN literature. The core idea is essentially the same: the
optmization of a neural network to satisfy a PDE pointwise.
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