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Abstract

Humans perceive the world through multiple senses, enabling them to create a
comprehensive representation of their surroundings and to generalize information
across domains. For instance, when a textual description of a scene is given, hu-
mans can mentally visualize it. In fields like robotics and Reinforcement Learning
(RL), agents can also access information about the environment through multiple
sensors; yet redundancy and complementarity between sensors is difficult to exploit
as a source of robustness (e.g. against sensor failure) or generalization (e.g. transfer
across domains). Prior research demonstrated that a robust and flexible multimodal
representation can be efficiently constructed based on the cognitive science notion
of a ‘Global Workspace’: a unique representation trained to combine information
across modalities, and to broadcast its signal back to each modality. Here, we
explore whether such a brain-inspired multimodal representation could be advan-
tageous for RL agents. First, we train a ‘Global Workspace’ to exploit information
collected about the environment via two input modalities (a visual input, or an
attribute vector representing the state of the agent and/or its environment). Then,
we train a RL agent policy using this frozen Global Workspace. In two distinct
environments and tasks, our results reveal the model’s ability to perform zero-shot
cross-modal transfer between input modalities, i.e. to apply to image inputs a policy
previously trained on attribute vectors (and vice-versa), without additional train-
ing or fine-tuning. Variants and ablations of the full Global Workspace (including
a CLIP-like multimodal representation trained via contrastive learning) did not
display the same generalization abilities.

1 Introduction

Humans gather information from the world through multiple sources, leading to a rich and robust
representation of their environment. Similarly, non-human agents should also learn to establish
meaningful connections between information from different modalities. Such multimodal represen-
tation learning offers distinct advantages for decision-making and in particular in Reinforcement
Learning. The benefits are evident when considering scenarios where one sensory input is noisy or
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unavailable. For instance, humans will be able to navigate in a room with subdued lighting where
vision is compromised, as they can rely on other senses (hearing, touch...) to gather information
about their environment. In decision-making the ability to establish links between modalities allows
more efficient problem-solving, because information from one sense can be leveraged to complete or
verify data from another.

For these reasons, it seems advantageous to take inspiration from human multimodal integration and
apply this to embodied RL agents, e.g. for robotics. A popular theory in cognitive science about
how the brain handles multimodal information is the ‘Global Workspace Theory’ (Baars, 1988;
Dehaene et al., 1998). According to this theory, different specialized modules compete to encode
their information into a shared space called the Global Workspace. The shared representation is then
broadcast back to all modules, leading to a unified interpretation of the environment. According
to the theory, this last step corresponds to our inner experience. Importantly, compared to the
unimodal representations in each specialized module, the shared representation enables multimodal
grounding (Silberer & Lapata, 2012; Kiela & Clark, 2015; Pham et al., 2019), by linking objects and
their properties across modalities. A deep learning-compatible adaptation of this theory has been
proposed by VanRullen & Kanai (2021). The suggested model must meet several criteria (Fig 2):
an alignment of the different latent representations and the capacity to translate from one modality
to the other and to broadcast signals from the Global Workspace back to each module; ideally, the
model can be trained in a semi-supervised setting with unsupervised cycle-consistency objectives.
An initial implementation was reported in Devillers et al. (2023), and shown to provide reliable
multimodal representations that could be leveraged advantageously for downstream classification
tasks, all with minimal supervision.

In this work, we explore the use of a similar multimodal representation, inspired by the Global
Workspace Theory, in the context of RL tasks. In particular, we show that this model is capable of
zero-shot cross-modal policy transfer, in two different environments (see section 4), each with two
modalities (vision: RGB images; attributes: a vector description of the agent and its environment).
The first environment is called Factory, a virtual factory environment simulated in Webots; the sec-
ond one is called Simple Shapes and made of simple geometric shapes. We chose attributes and RGB
images as our two modalities because they share common information without completely overlap-
ping, particularly in the Factory environment (see section 4). Each modality must independently
provide enough information to inform a unimodal policy, and subsequently allow us to measure the
potential advantages of a multimodal representation (such as a Global Workspace).

2 Related Work

Representation learning for Reinforcement Learning is a vast and evolving field. Sutton & Barto
(1998) already discussed the importance of compact representations for an RL agent. Deep Gen-
erative models, such as Variational Autoencoders (VAEs), have the capability to encode raw data
into a compact and disentangled latent space. Pioneering work by Watter et al. (2015) and Finn
et al. (2016) used this approach to encode representations for Reinforcement Learning, enhancing
learning efficiency from high-resolution images. Compact representations are also crucial for algo-
rithms relying on a World Model, such as the one introduced by Ha & Schmidhuber (2018). Further
studies (Wang et al., 2023; Friede et al., 2023; Higgins et al., 2017) showed that learning disentangled
environmental representations from a VAE enables agents to develop policies robust to some shifts in
the original domain. Additionally, encoding observations in a well-structured space can be achieved
through contrastive learning (Laskin et al., 2020; Du et al., 2021). With this method, Gupta et al.
(2017) were even able to measure policy transfer between robots having different numbers of joints.

Representation learning has now extended to multimodal RL setups. Lee et al. (2019) use fusion
mechanisms with Deep Neural Networks to handle multiple sources of observations. Singh et al.
(2023) align visual latent representations with graphs using a contrastive loss, while Hafner et al.
(2023) extend the work of Ha & Schmidhuber (2018) by using concatenated multimodal inputs for
a world model. In a similar vein, Silva et al. (2020) extend DARLA’s work (Higgins et al., 2017)
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to two modalities: sound and vision. They employ a multimodal VAE (Yin et al., 2017) and align
representations through an additional KL loss between the two modality-specific latent spaces. This
AVAE model, like ours, allows zero-shot cross-modal policy transfer, e.g. training the policy with
visual inputs and using audio inputs during inference. Thus, we will use this model as a baseline to
compare against our approach.

Other multimodal representation learning models like CLIP (Radford et al., 2021) have been pro-
posed to align two (or more) latent representations, and therefore to create a common space that
can be used for downstream tasks. However such models require very large amounts of paired data
between modalities to learn the aligned representation in a supervised way; in a robotic context, such
paired data can be difficult to obtain. In addition, it has been shown that the contrastive alignment
objective of CLIP tends to discard potentially important modality-specific information (Devillers
et al., 2021). In our study, these two factors are investigated through ablation studies. First, we
remove cycle-consistency objectives and train the model in a fully-supervised way. Second, we also
remove the broadcast property (the ability to project global-workspace information back to each
specialized module), leading to a contrastive-alignment version of our model similar to CLIP. As
will be described below, both manipulations severely impair our model’s ability to transfer policies
between modalities.

3 Problem Formulation

Let E represent an environment, whose state at time t leads to an observation ot ∈ O, described as
either a latent feature vector ov

t computed from an RGB image, or an attribute vector oattr
t . Based

on these observations, the agent executes actions at ∈ A and receives a resulting reward rt+1.

In this study, we first train a model to learn a representation zt ∈ Z with two encoders zattr
t =

eattr(oattr
t ) and zv

t = ev(ov
t ). This step follows the approach previously described by Devillers et al.

(2023), leading to a shared representation across modalities, i.e. a Global Workspace (GW). In a
second step, with GW frozen, a policy π is trained to map GW-encoded observations from a specific
training source o ∈ Otrain, with train ∈ {attr, v}, to actions a ∈ A. During inference, the policy can
potentially be transferred to another observation source Otest, where test ∈ {attr, v}, test ̸= train.
The process is illustrated in Figure 1A, and the two training steps are further detailed below.

3.1 GW for multimodal Representation Learning

We closely follow the training setup described in Devillers et al. (2023). That study evaluated
the properties of a multimodal GW for low-resource semi-supervised training, and for downstream
classification tasks; here, we are interested in applying such a system to train an RL agent. As
in this previous study, we consider a setting where matched training data across modalities can
be scarce or difficult to obtain, yet we have access to potentially large amounts of unimodal data
(without matching labels in the other modality). Thus, we sample unimodal observations from two
sets Uattr and Uv, and paired multimodal observations from the subset M = Uattr ∩ Uv, composed
of observations that are paired across both unimodal sets. The training datasets Uv and Uattr are
collected by uniformly sampling the environment in Simple Shapes; for Factory we sampled with a
constraint that the table should be at least partially visible from the robot’s viewpoint.

As proposed in VanRullen & Kanai (2021); Devillers et al. (2023), we do not use raw images or
attributes as inputs to the GW, but encoded representations into a unimodal latent space. For
images, we use a Variational Autoencoder (VAE), pretrained using the set Uv (see Appendix A and
B for details) ; for attributes, we simply normalize them between -1 and 1. Then, we train the GW
itself, composed of a set of encoders for each modality {ev, eattr} with their corresponding decoders
{dv, dattr} (Figure 2A). The role of the encoders is to project the two unimodal latent representations
onto a shared one (the GW), where they should be aligned. The role of the decoders is to allow
broadcast from GW back to the unimodal representations.



RLJ | RLC 2024

Figure 1: A: Overview of the general approach. Raw attributes are encoded in their latent repre-
sentation thanks to pre-trained models (VAE for images and Normalization for attributes). Latent
image or attribute representations can be encoded into a shared space z ∈ Z (the Global Workspace
or GW) via encoders ev and eattr (respectively). The policy is trained (solid arrows) with obser-
vations from a given modality (here vision), with GW frozen. At inference time the policy can be
tested with observations from a different modality (here attributes, dashed arrow); this is defined
as zero-shot cross-modal transfer. B: Illustration of the two environments and tasks: Factory (left)
and Simple Shapes (right). Example images and attributes are presented for each. For Factory, the
agent must reach the table by rotating and moving forward or backward. For Simple Shapes, the
agent must place the object at the center and pointing upwards, by moving to the right, left, top or
down and rotating.

To train the network, four different losses are used (Devillers et al., 2023) (see Supplementary
Material for losses definitions). The translation (Ltr) and contrastive alignment (Lcont) losses are
supervised losses, optimized using the set M. The full-cycle (Lcy) and demi-cycle (Ldcy) consistency
losses are optimized using the full sets Uattr and Uv. Figure 2B illustrates how these losses are
computed using the encoders and decoders of the GW. The total loss is a weighted sum of these
four. Devillers et al. (2023) described implicit relations between the different losses, such that
optimizing a subset of the losses can indirectly improve the others. By combining the four losses,
the GW model optimizes the desired criteria of multimodal representation alignment and broadcast,
while taking full advantage of unsupervised training data.

3.2 Policy Learning and cross-modal transfer

We use Proximal Policy Optimization (PPO), a widely adopted Reinforcement Learning algorithm
introduced by Schulman et al. (2017). We also tested Advantage Actor Critic (A2C) introduced
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Figure 2: A: A generic view of the architecture of the Global Workspace where ov and oattr are
encoded representations of the two modalities (vision, attributes). ev, eattr are feed-forward encoders
into the GW representation, and dv, dattr are feed-forward decoders. Encoded representations of
the two modalities ev(ov) and eattr(oattr) are separate in the architecture, but can be aligned by
virtue of the training objectives (illustrated in B), resulting in a shared GW. B: Illustration of the
losses used during training of the encoders and decoders. The arrows represent the path used by
the data to compute the losses. Ltr and Lcont are supervised losses for translation and contrastive
alignment, respectively; they require paired training samples across the two modalities. In contrast,
Ldcy and Lcy are self-supervised losses for demi-cycle and full-cycle consistency, respectively; they
can be trained with unpaired samples from each modality.

by Mnih et al. (2016), to validate our results on another algorithm (see Supplementary Materials).
These two algorithms were implemented with the Stable-baselines3 library (Raffin et al., 2021).

To obtain an upper baseline for cross-modal transfer, we train two policies in a more classical way
using only unimodal information (the two policies’ inputs are the unimodal representations of images
ov or attributes oattr). This is compared with policies trained from GW-encoded representations of
the observations, and tested either with observations from the same modality or from the opposite
modality (i.e. zero-shot cross-modal transfer).

While our main test relies on a GW trained using all four losses (Figure 2B), we also trained policies
from GW models optimized with fewer losses, serving as ablations of the full model. A GW trained
in a fully supervised way (without the cycles losses Lcy and Ldcy) serves to assess the impact of
semi-supervision, especially in low-data regimes (i.e., with few paired data in M). We also trained
a policy using a GW trained only with a contrastive loss Lcont. This ablation evaluates the impact
of “broadcast” on the performance, and serves as a CLIP-like baseline because it is trained with
the same alignment objective as CLIP (Radford et al., 2021). Finally, we compare our GW to an
adaptation of the AVAE model used in Silva et al. (2020). We modify their visual VAE to match
the architecture of our own visual VAE in each environment; we also replace their audio VAE by
an attribute VAE, with an architecture adapted to match the dimensions of our attribute vectors
(see Supplementary Material for architecture details). This transition from audio to attribute VAE
also leads to a change in the reconstruction loss: we use the same attribute reconstruction loss as
the one used in the GW (see Supplementary Material). Apart from these architectural changes, the
AVAE model is trained in a supervised way (on the paired multimodal set M), as described in the
original paper (Silva et al., 2020).
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For both environments, we evaluate policies based on multimodal systems (GW, GW without cycles,
CLIP-like, AVAE) trained with two data regimes: either a large amount of matched data (500 000
samples for Simple Shapes and 200 000 for Factory), M ≡ Uattr ≡ Uv (full data regime), or a small
amount of paired data (low data regime: M contains 1/4th of the full dataset for Factory, 1/100th
of the full dataset for Simple Shapes). This assesses the impact of the unsupervised cycle-consistency
losses, and the performance of fully supervised models in a low data regime.

4 Environments

We evaluate our approach on two different environments. Each one captures observations across
the same two modalities: attributes describing the state of the agent, or an RGB image. The first
environment, called ‘Factory’ is a simulated factory shop floor in a robotic simulator: Webots. The
second environment, named ‘Simple Shapes’ because it depicts a 2D shape on a dark background,
is simulated directly using a Python-based Gymnasium environment (Towers et al., 2023).

4.1 Factory Environment

Simulated in Webots, this environment represents a factory-like shop floor with a Tiago robot and a
table. The agent receives RGB images (128x128 pixels) from the robot’s viewpoint, or a set of seven
attributes describing the robot and table states (Figure 1B). Robot state attributes include position
(xr, yr) and rotation θr. Table state attributes include position (xt, yt), rotation θt, and color ht.
The color is defined only by the Hue of HSV, with saturation and value set to 1 to retain high-
contrast colors. The final attribute state vector concatenates attribute transformations: applying
cosine and sine to angles, normalizing all attributes between -1 and 1, and decomposing the table’s
Hue into a cosine-sine vector.

This environment displays an asymmetry between modalities, whereby images only provide partial
information while attribute vectors offer exact information, even when the robot is not facing the
table. At the beginning of each episode, table attributes are randomly sampled within their domains.
The robot is placed near the center with a random angle, and the agent’s goal is for the robot to
reach the table. The agent directly controls the position and rotation of the robot. The robot
can move forward/backward and rotate (by a maximum of 5cm and π

16 radians during each step).
Collisions with simulation objects (e.g. walls) lead to episode termination with a penalty of −10000.
At each timestep, the reward is equal to minus the distance between the robot and the table (in
meters) minus 10× the angle (in radians) between the robot orientation and the robot-table vector,
thus penalizing the agent for not facing the table. This approach aims to guide the robot to first
locate the table by rotating and then move towards it, dividing the learning into two distinct goals
and enhancing performance in scenarios where the agent relies solely on the robot’s vision. When
the robot reaches the table, the episode concludes with no additional reward.

4.2 Simple Shapes Environment

The second environment, called ‘Simple Shapes’, was introduced in Devillers et al. (2023). The agent
can receive two types of observations: 32 × 32 pixel RGB images of a 2D shape on a black back-
ground, or a set of eight attributes directly describing the environment’s state (Figure 1B). There
are three different types of shapes, an egg-like shape, an isosceles triangle, and a diamond. They are
represented by the variable shape ∈ {0, 1, 2}. The shape possesses a size s ∈ [smin, smax], a position
(x, y) ∈ [ smax

2 , 32 − smax

2 [2, a rotation θ ∈ [0, 2π[ and an HSL color (ch, cs, cl) ∈ [0, 1]2 × [lmin, 1].
The final attribute state vector concatenates transformations of these attributes: decomposing the
rotation angle θ into (cθ, sθ) = (cos(θ), sin(θ)); translating HSL colors to the RGB domain, express-
ing the shape variable as a one-hot vector of size three, and normalizing all the variables between
-1 and 1.

At the beginning of each episode, attributes are randomly sampled within their respective domains.
The agent’s goal is to move the shape to the center of the image at (x, y) = (16, 16) and align it
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to point to the top, θ = 0. Actions available to the agent include moving the shape by one pixel
in cardinal directions (left, right, up, or down) and rotating the shape by an angle of π

32 clockwise
or anti-clockwise. The reward is initialized at zero. At each timestep, the reward is equal to minus
the current distance (in pixels) between the shape’s position and the image center minus 10× the
smallest angle (in radians) between the shape’s orientation and the null angle. The episode ends
when the shape reaches the goal state, with no additional reward.

5 Results

The performance (average episode return) of policies trained (via the PPO algorithm) using latent
representations from different models (GW and its baselines) and in different test settings is shown
in Figure 3. Results for the Factory environment are shown in the top panels, and in the bottom
panels for the Simple Shapes environment. In each case, models trained with a Full data regime are
plotted on the left, and with a Low data regime on the right.

We first focus on the performance of PPO trained directly on unimodal representations, visible on
the left part of each plot in Figure 3. As expected, unimodal PPO acts as an upper baseline in the
Simple Shapes environment, which is fully observable from each input modality. This is not the case
in Factory, where PPO trained from attributes performs better than from vision; this highlights the
asymmetry between visual inputs (partial observation) and attributes (entire state observation) in
this environment.

The performance of PPO trained and tested on multimodal latent representations obtained in a Full
data regime are reported in the middle part of the two left plots in Figure 3. In both environments,
GW and GW without cycles yield similar rewards as the upper baseline (PPO trained directly from
attributes). AVAE achieves similar performance in Simple Shapes, but degraded performance in
Factory. Finally, the CLIP-like model performs poorly in both environments. We can also highlight
that in Factory, policies trained from GW and (to some extent) GW w/o cycles are able to bridge
the performance asymmetry between vision and attribute inputs. This is an example of multimodal
grounding in the GW, whereby the learned multimodal latent representation of visual inputs is richer
and more informative for a downstream decision task than the unimodal visual latent representation.
The difference with results from the CLIP-like model reveals the importance of adding broadcast
objectives in addition to contrastive alignment.

In the Full data regime scenario, both supervised and semi-supervised GW models (with and without
cycles) perform near-optimally when trained and tested on the same multimodal latent representa-
tions. However, the GW cycles are particularly important when we consider the Low data regime
scenario (middle part of the plots on the right in Figure 3). Here, we actually observe a drop in
PPO performance for all the models in at least one input modality, except for the full GW. The
decreased performance of GW w/o cycles highlights the crucial role played by the unsupervised
cycle-consistency objectives in maintaining broadcast and alignment properties when the amount of
multimodal paired data is low.

Finally, the zero-shot cross-modal policy transfer capabilities are shown on the right part of each
plot of Figure 3. In both the full and low data regimes, and for both environments, the full GW
allows for nearly optimal zero-shot transfer between modalities: a policy trained and tested on GW
latent representations of attributes performs equally well when tested on GW latent representations
of images (green bars), and vice-versa (red bars). The AVAE model is the only other model that
permits a similar zero-shot transfer, but only in one of the four experimental settings—Simple Shapes
in the Full data regime. In the Low data regime of Simple Shapes and in both regimes of Factory,
the policy trained in one AVAE modality does not transfer well to the other. This is also the case
for the CLIP-like baseline and for the GW w/o cycles ablation, in all four experimental settings.

In summary, policies learned from a GW latent representation are particularly efficient, and in
some cases (e.g., Factory) can even surpass policies trained from unimodal representations. In
addition, only policies trained from GW latents could systematically generalize to the opposite
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Figure 3: Performance (average episode return) of PPO trained using different latent representations
and tested in different settings. A fixed value was subtracted from the episode return, corresponding
to the performance of a fully-random policy in each environment; thus the random policy perfor-
mance (chance level) is equal to zero in all plots (negative values reflect a defective strategy, e.g.
systematically hitting walls and receiving penalties). All results are averaged across five different
runs (different random seeds for policy training), and the error bars reflect 95% confidence intervals
computed via bootstrapping. Models trained in the Factory environment are plotted in the top row,
and in the bottom row for the Simple Shapes environment. Multimodal networks trained with all
paired data are plotted in the left column (Full data regime); in the right column, the networks only
have access to a subset of multimodal paired data (Low data regime). Each plot is divided into three
parts: PPO trained directly from a unimodal latent representation; PPO trained and tested on the
same multimodal latent representation; PPO trained on one multimodal latent representation and
tested on the other (zero-shot cross modal policy transfer). In any given plot, bars sharing the same
color depict the same trained model, tested in different settings.

modality (zero-shot cross-modal transfer). We found that relying only on a contrastive alignment
objective to establish a multimodal space (like CLIP) was insufficient. The introduction of broadcast
objectives (supported by the GW decoders, see Figure 2) compels the GW encoders to retain most
information present in the original unimodal latents, so that they can be accurately reconstructed
by the broadcast operation. Such a GW can be trained in a purely supervised way (GW w/o
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cycles) when both modalities provide fully-observable information (Simple Shapes) and when large
amounts of paired multimodal data are available for supervised training (Full data regime). In all
other scenarios, the inclusion of unsupervised cycle-consistency objectives (full GW model) proves
beneficial in preserving information and maintaining alignment between multimodal representations.

6 Conclusion

Our study applied a multimodal representation learning approach previously proposed by Devillers
et al. (2023) (an adaptation of the Global Workspace Theory from Cognitive Science) to the train-
ing of an RL agent. The implemented model enables the construction of a multimodal latent space,
allowing the encoding of unimodal information and exploiting the synergies between the differ-
ent modalities. We demonstrated the capability of a GW to enable zero-shot cross-modal policy
transfer, illustrating the adaptability and generalization of the learned policies across diverse modal-
ities. Additionally, we highlighted the potential advantages of employing a semi-supervised learning
framework, as seen in GW with cycle-consistency, especially in scenarios where data collection can
be costly. Using a GW to generate multimodal representations, instead of other existing methods
such as CLIP (Radford et al., 2021) or AVAE (Silva et al., 2020), was found to improve policy per-
formance as well as zero-shot policy transfer across modalities. This approach not only showcases
the potential of the Global Workspace Theory in enhancing the performance of RL agents, but also
opens avenues for the development of more robust and versatile artificial intelligence systems ca-
pable of seamlessly transferring knowledge between different sensory domains. One important step
towards generalizing our findings to real-world environments will be to test other modalities than
vision and attributes, such as textual descriptions or proprioception (joint positions of the robot).
Using sentences instead of attributes to describe the agent’s state may not have a strong impact
in our very controlled environments, but it could present a more significant challenge in real-world
settings.
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A Model Parameters

In this Appendix, we provide details about our models’ implementation, starting with the β-VAE
used in both visual environments: Simple Shapes (Table 1) and Factory (Table 2). In the VAE
encoder, all convolutions have a padding of 1, a stride of 2, and a kernel-size of 4. For the decoders,
in Simple Shapes (Table 1), the transposed convolutions have a padding of 1, a stride of 2, and a
kernel size of 4, except the first one which has a stride of 1. The final convolution has a stride of 1
and a kernel size of 4. In Factory (Table 2), the transposed convolutions have a padding of 2, a stride
of 2, and a kernel size of 5, except the first one which has a stride of 1 and a kernel size of 8 without
padding. The final convolution has a stride of 1 and a kernel size of 5. For both environments the
β value was set to 0.1. The β-VAE was always trained with the entire set Uv in both environments
(500 000 images in Simple Shapes and 200 000 images in Factory)

VAE encoder (2.8M params) VAE decoder (3M params)
x ∈ R3×32×32 z ∈ R12

Conv128 − BN − ReLU FC8×8×1024
Conv256 − BN − ReLU ConvT512 − BN − ReLU
Conv512 − BN − ReLU ConvT256 − BN − ReLU
Conv1024 − BN − ReLU ConvT128 − BN − ReLU
Flatten − FC2×12 Conv1 − Sigmoid

Table 1: Architecture and number of parameters of the VAE used in the Simple Shapes environment.

VAE encoder (2.8M params) VAE decoder (5M params)
x ∈ R3×128×128 z ∈ R10

Conv128 − BN − ReLU FC8×8×512
Conv256 − BN − ReLU ConvT256 − BN − ReLU
Conv512 − BN − ReLU ConvT128 − BN − ReLU
Conv1024 − BN − ReLU ConvT64 − BN − ReLU
Flatten − FC10 Conv1 − Sigmoid

Table 2: Architecture and number of parameters of the VAE used in the Factory environment.

Table 3 and Table 4 present details about the Global Workspace architecture for respectively Simple
Shapes and Factory. The tables show the architecture for the encoder and decoder of only one
modality, since they are nearly identical across modalities. Only the last Fully Connected layer of
the decoders is different, outputting a vector of the original size of each domain.

GW encoder (35K params) GW decoder (50K params)
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC128 − ReLU FC128 − ReLU
FC FC

Table 3: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Simple Shapes

The implementation details for AVAE are presented in Table 5 for Simple Shapes and Table 6 for
Factory. In both environments the parameters for the Conv and ConvT layers in the image VAE
are the same as the ones used in their respective VAE in Tables 1 and 2. For Simple Shapes, the
input layer of the attributes side is divided in two Fully Connected layers: one for the category of
the shape (one-hot vector) and one for the rest of the attributes (continuous values).
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GW encoder (1.3M params) GW decoder (1.3M params)
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC512 − ReLU FC512 − ReLU
FC FC

Table 4: Architecture and number of parameters for the encoder and decoder in the GW of one
modality in Factory

AVAE vision (6M params) AVAE attributes (0.6M params)
x ∈ R3×32×32 x ∈ {0, 1}3 × R8

Conv128 − BN − ReLU FC128 − ReLU
Conv256 − BN − ReLU FC128 − ReLU
Conv512 − BN − ReLU FC12 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×12 FC2×12
z ∈ R12 z ∈ R12

FC8×8×1024
ConvT512 − BN − ReLU FC128 − ReLU
ConvT256 − BN − ReLU FC128 − ReLU
ConvT128 − BN − ReLU [FC3, FC8 − Tanh]
Conv1 − Sigmoid

Table 5: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Simple Shapes environment.

AVAE vision (11M params) AVAE attributes (2M params)
x ∈ R3×128×128 x ∈ R10

Conv128 − BN − ReLU FC512 − ReLU
Conv256 − BN − ReLU FC512 − ReLU
Conv512 − BN − ReLU FC40 − ReLU
Conv1024 − BN − ReLU
Flatten − FC2×40 FC2×40
z ∈ R40 z ∈ R40

FC8×8×1024
ConvT512 − BN − ReLU FC512 − ReLU
ConvT256 − BN − ReLU FC512 − ReLU
ConvT128 − BN − ReLU FC10 − Tanh
Conv1 − Sigmoid

Table 6: Architecture and number of parameters of the visual and attributes VAEs of the AVAE for
the Factory environment.

B VAE exploration

Figures 4 and 5 illustrate the generation capabilities of each VAE in Factory and Simple Shapes. To
produce these Figures an image was encoded to obtain a latent vector. Each dimension of this vector
(rows) was modified by adding the value reported on top of each column, keeping the rest frozen.
The modified vector was then decoded to obtain a resulting image. The image in the middle column
in both Figures represents the initial image encoded in the VAE (because the change applied to
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Figure 4: Latent traversal of the VAE used in Factory. The rows represent the modified dimension
and the columns the value added to the initial before decoding the latent vector.

the vector was null). This technique allows us to visualize the information captured by each latent
dimension. The VAE from Factory captures the robot’s position and rotation well, as we can see
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Figure 5: Latent traversal of the VAE used in Simple Shapes. The rows represent the modified
dimension and the columns the values added to the initial before decoding the latent vector.

how the background changes with different dimensions and values. For the table, the color, position
and rotation are also well captured, as we can guess these information from the reconstruction. In
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the Simple Shapes VAE, all attribute information is captured since Figure 5 shows different shapes
with varying colors, positions.

C GW losses details

As explained in 3, the Global Workspace (GW) is trained with four different losses. Here we provide
details of their implementation, following Devillers et al. (2023).

Ltr = 1
2[Lattr(dattr(ev(oi

v)), oj
attr) + Lv(dv(eattr(oj

attr)), oi
v)]

Lcont = CONT [ev(oi
v), eattr(oj

attr)]

Ldcy = 1
2[Lv(dv(ev(oi

v)), oi
v) + Lattr(dattr(eattr(oj

attr)), oj
attr)]

Lcy = 1
2[Lv(dv(eattr(dattr(ev(oi

v)))), oi
v) + Lattr(dattr(ev(dv(eattr(oj

attr)))), oj
attr)]

Where CONT () is the contrastive loss used in the CLIP model (Radford et al., 2021). Lattr repre-
sents the reconstruction loss used on the attributes side, which differs between the two environments.
In Factory (where all attributes have continuous values), it is computed with an MSE; in Simple
Shapes it is a combination of a negative log-likelihood for shape classes (discrete one-hot encoded
values) and MSE for the other (continuous) attributes. Lv represents the reconstruction loss on
the visual side, computed with an MSE in both environments. The total loss is then computed as
follows :

LGW = α · Ltr + β · Lcont + γ · Ldcy + θ · Lcy

Where α, β, γ, θ are hyperparameters giving more or less importance to each loss. The following
table contains the hyperparameters for all Global Workspace models (and ablations) in the Full
data regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 1 γ = 0 γ = 0
θ = 1 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

The table below shows the hyperparameters used in the Low data regime in both environments.

GW GW w/o cycles CLIP-like
Factory α = 1 α = 1 α = 0

β = 0.1 β = 0.1 β = 1
γ = 5 γ = 0 γ = 0
θ = 5 θ = 0 θ = 0

Simple Shapes α = 1 α = 1 α = 0
β = 0.1 β = 0.1 β = 1
γ = 10 γ = 0 γ = 0
θ = 10 θ = 0 θ = 0
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D Reward details

The reward in the Factory environment is given by a combination of the distance between the robot
and the table, and the angle between the orientation of the robot and the table (this is meant to
encourage the policy to turn the robot facing the table, regardless of its original location):

r = −distance − 10 × angle

r = −
√

(xr − xt)2 + (yr − yt)2 − 10 × | arccos([cθr
, sθr

], [xt − xr, yt − yr]
||[xt − xr, yt − yr]||2

)|

The reward in the Simple Shapes environment is given by a combination of the distance between
the position of the shape and the center of the image, and the angle of the shape:

r = −distance − 10 × angle

r = −
√

(x − 16)2 + (y − 16)2 − 10 × | arccos([cθ, sθ], [1, 0])|
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Figure 6: Performance of A2C in the Simple Shapes environment. Notations and conventions as in
Figure 3.

An additional experiment was performed in the Simple Shapes environment to verify that our results
were robust to the choice of policy training algorithm. For this, we used A2C, introduced by Mnih
et al. (2016). Figure 6 shows that the results are reproducible with this alternative algorithm
(compare with Figure 3, bottom). A2C trained from a Global Workspace performs as well as when
trained on unimodal representations, both in terms of absolute performance and in terms of zero-
shot cross-modal transfer. AVAE performs similarly in the Full data regime, but poorly in the Low
data regime. The two other models (Global Workspace without cycles and CLIP-like ablation), give
worse performance in both regimes, as in the case of PPO.


