
Steering Large Language Models using APE

Yongchao Zhou∗,1,2 Andrei Ioan Muresanu∗,2,3 Ziwen Han∗,1,2 Keiran Paster1,2

Silviu Pitis1,2 Harris Chan1,2 Jimmy Ba1,2

1University of Toronto 2Vector Institute 3University of Waterloo

Abstract

By conditioning on natural language instructions, large language models (LLMs) have
displayed impressive capabilities as general-purpose computers. However, task performance
depends significantly on the quality of the prompt used to steer the model. Due to the
lack of knowledge of how LLMs work, most effective prompts have been handcrafted
by humans through a demanding trial and error process. To reduce the human effort
involved in this alignment process, we propose Automatic Prompt Engineer (APE) for
automatic instruction generation and selection. We treat the instruction as the “program,”
optimized by searching over a pool of instruction candidates proposed by an LLM in order
to maximize a chosen score function. To evaluate how well the selected instruction can
steer the model to desired behavior, we evaluate the zero-shot performance of another
LLM following the selected instruction. Experiments on 24 NLP tasks show that our
automatically generated instructions outperform the prior LLM baseline by a large margin
and achieve better or comparable performance to the instructions generated by human
annotators on 19/24 tasks. Moreover, we show that APE-engineered prompts can be applied
to steer models toward truthfulness and/or informativeness. Please check out our webpage
at https://sites.google.com/view/automatic-prompt-engineer1

1 Introduction

The combination of scale and attention-based architectures has resulted in language models possessing
an unprecedented level of generality (Kaplan et al., 2020; Vaswani et al., 2017). These so-called
“large language models” (LLMs) have shown remarkable, often superhuman, capabilities across a
diverse range of tasks, including both zero-shot and few-shot setups (Brown et al., 2020; Srivastava
et al., 2022). With generality, however, there comes a question of control: how can we ensure LLMs
align with human values and behave as we want? (See Appendix A for X-Risk Analysis)

To answer this question and steer LLMs toward desired behaviors, recent work has considered
fine-tuning (Ouyang et al., 2022; Ziegler et al., 2019), in-context learning (Brown et al., 2020), and
several forms of prompt generation (Gao, 2021), including both differentiable tuning of soft prompts
(Qin & Eisner, 2021; Lester et al., 2021) and natural language prompt engineering (Reynolds &
McDonell, 2021). The latter is of particular interest, as it provides a natural interface for humans to
communicate with machines and may be of great relevance not only to LLMs but to other generalist
models such as prompted image synthesizers (Rombach et al., 2022; Ramesh et al., 2022), for which
public interest in prompt design and generation has also emerged (see Appendix B for examples).

Behind this interest is the fact that plain language prompts do not always produce the desired results,
even when those results are possible to produce with alternative instructions. Thus, human users must
experiment with a wide range of prompts to elicit desired behaviors, as they have little knowledge of
how compatible instructions are with a particular model. We can understand this by viewing LLMs
as black-box computers that execute programs specified by natural language instructions: while they
can execute a broad range of natural language programs, the way these programs are processed may
not be intuitive for humans, and the quality of instruction can only be measured when executing these
instructions on a downstream task (Sanh et al., 2022; Wei et al., 2021).

* Equal contribution. Corresponding email: yczhou@cs.toronto.edu
1 Our code is available at https://github.com/keirp/automatic_prompt_engineer.

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/automatic-prompt-engineer
https://github.com/keirp/automatic_prompt_engineer

Approximate
Inference

using LLMs

Demonstrations

Instruction

(a)

I instructed my friend to <M>. The friend read the
instruction and wrote an output for every one of the
inputs. Here are the input-output pairs:

Input: Sentence 1: The dinosaurs became extinct.
Sentence 2: A large object hit the Earth.
Output: A large object hit the Earth.
...
Input: Sentence 1: The company's posted strong
earnings. Sentence 2: The company's stock went up.
Output: The company's posted strong earnings.

<M>: read both sentences and determine which
one is the cause and which one is the effect.
Choose the sentence that is the cause and write it
as the output.

Model Input

Model Output

(b) LLMs as inference models

Greedy (GPT-3) Greedy (InstructGPT) APE (GPT-3) APE (InstructGPT)

0

0.2

0.4

0.6

0.75

0.8

0.01

350M

0.02

350M

0.61

350M

0.59

350M

0.01

1.3B

0.01

1.3B

0.63

1.3B

0.73

1.3B

0.03

6.7B

0.03

6.7B

0.65

6.7B

0.57

6.7B

0.03

175B

0.40

175B

0.71

175B

0.76

175B

In
te

rq
ua

rti
le

 M
ea

n
Ze

ro
-S

ho
t P

er
fo

rm
an

ce

Human Prompt Engineer

(c) Interquartile mean across 24 tasks

Figure 1: (a) Natural language program synthesis finds an appropriate instruction (the program) that
generates the observed demonstrations when executed by the model. We frame this as a black-box
optimization problem guided by an inference procedure. (b) We use LLMs as inference models to fill
in the blank; our algorithm involves a search over candidates proposed by the inference models. (c)
As measured by the interquartile mean across the 24 NLP tasks introduced by Honovich et al. (2022),
APE is able to surpass human performance when using the InstructGPT model (Ouyang et al., 2022).

Algorithm 1 Automatic Prompt Engineer (APE)

Require: Dtrain ← {(Q,A)}n: training examples, f : ρ×D 7→ R: score function
1: Use LLM to sample instruction proposals U ← {ρ1, ..., ρm}. (See Section D.1)
2: while not converged do
3: Choose a random training subset D̃train ⊂ Dtrain.
4: for all ρ in U do
5: Evaluate score on the subset s̃← f(ρ, D̃train) (See Section D.2)
6: end for
7: Filter the top k% of instructions with high scores Uk ⊂ U using {s̃1, ..., s̃m}
8: Update instructions U ← Uk or use LLM to resample U ← resample(Uk) (See Section D.3)
9: end while

Return instruction with the highest score ρ⋆ ← argmaxρ∈Uk f(ρ,Dtrain)

To reduce the human effort involved in creating and validating effective and aligned instructions, we
propose a novel algorithm using LLMs to generate and select instructions automatically. We call this
problem natural language program synthesis and propose to address it as a black-box optimization
problem using LLMs to generate and search over heuristically viable candidate solutions. In doing so,
we leverage the generalist capabilities of LLMs in two ways. First, we use an LLM as an inference
model (Ellis et al., 2021; Honovich et al., 2022) to generate instruction candidates based on a small
set of demonstrations in the form of input-output pairs. Second, we guide the search process by
computing a score for each instruction under the LLM we seek to control.

2 Natural Language Program Synthesis using LLMs

We consider a task specified by a dataset Dtrain = {(Q,A)} of input/output demonstrations sampled
from population X , and a prompted model M. The goal of natural language program synthesis
is to find a single instruction ρ such that, when M is prompted with the concatenation [ρ;Q] of
instruction and a given input, M produces the corresponding output A. More formally, we frame this
as an optimization problem, where we seek instruction ρ that maximizes the expectation of some
per-sample score f(ρ,Q,A) over possible (Q,A):

ρ⋆ = argmax
ρ

f(ρ) = argmax
ρ

E(Q,A) [f(ρ,Q,A)] (1)

Note that in general, Q may be the empty string, such that we are optimizing ρ as a prompt that
directly produces outputs {A}. While this task has been widely attempted by humans, we have little
knowledge of how compatible any particular instruction is with model M. Thus, we propose to treat
this human-intractable question as a black-box optimization process guided by LLMs. Our algorithm,
APE, uses LLMs in each of two key components, proposal and scoring. As shown in Figure 4 and

2

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Greedy Human APE

Figure 2: Zero-shot test accuracy on 24 Instruction Induction tasks. APE achieves human-level
performance on 19 out of 24 tasks. See best performing instruction performance in Figure 14.

summarized in Algorithm 1, APE first proposes a few prompt candidates and then filters/refines
the candidate set according to a chosen score function, ultimately choosing the instruction with the
highest score. The instruction generation process relies on the forward mode generation capability
(i.e., autoregressive) and reverse mode generation capability (i.e., filling in the blank) of an LLM.
Specifically, given the input/output demonstration, we ask the LLM to approximately infer the most
likely instructions with a potential high score (See more details in Appendix D.1). Then, a score
function is chosen to accurately measure the alignment between the desired behavior and the model
outputs. As shown in Appendix D.2), we consider two score functions in our instruction induction
experiments. In the TruthfulQA experiments, we focused primarily on automated metrics proposed
in Lin et al. (2022). In each case, we evaluate the quality of a generated instruction using Equation
(2), and take the expectation over a held-out test dataset Dtest.

3 Steering Large Language Models using APE

3.1 Instruction Induction

We assess the effectiveness of APE to steer LLMs by evaluating the zero-shot performance of another
LLM following the selected instruction on 24 instruction induction tasks proposed in Honovich
et al. (2022). For each task, we sample five input-output pairs from the training data and select the
best instruction using algorithm 1. Then, we evaluate the quality of the instruction by executing the
instruction on InstructGPT (175B)2. We repeat our experiments with different random seeds five times
to report the mean and standard deviation of the best-performing result in each seed. Moreover, we
examine various properties of APE, such as scalability to model sizes, quality of the initial proposal,
the effectiveness of the selection, and application on few-shot learning. For conciseness, we defer
more experimental results and implementation details in Appendix E and G.

Zero-shot Learning We compare our method against two baselines: human prompt engineers
(Human)3 and the model-generated instruction algorithm proposed by Honovich et al. (2022). This
algorithm can be thought of as a greedy version of APE, without a search and selection process;
thus, we refer to it as “Greedy”. Figure 7 shows the zero-shot performance of InstructGPT using
human instructions and model generated instructions. Our algorithm outperforms “Greedy” on
every task and achieves equal or better than human performance on 19 of 24 tasks. Moreover, the
Interquartile Mean (IQM) (Agarwal et al., 2021) across all 24 tasks in Figure 1 suggests that APE with
InstructGPT outperforms human-engineered prompts, obtaining an IQM of 0.765 vs humans’ 0.749.
We summarize the instruction selected by APE for each task in Appendix Table 11

2We use the text-davinci-002 via the OpenAI API (https://beta.openai.com/). Though not stated
explicitly in the API, we assume the models are those reported by Ouyang et al. (2022).

3We use the gold annotations from Honovich et al. (2022), which were manually verified for correctness.

3

https://beta.openai.com/

% True (GPT-judge) % Info (GPT-info) % True + % Info
0.0

0.2

0.4

0.6

0.8

M
et

ric
 V

al
ue

 (%
)

Human
APE

(a) Average performance
Train

% True (GPT-judge) % Info (GPT-info) % True + % Info
0.0

0.2

0.4

0.6

0.8

M
et

ric
 V

al
ue

 (%
)

Human
APE

(b) Average performance
Test

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
% True (GPT-judge)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 In

fo
rm

at
iv

e
(G

P
T-

in
fo

)

Truth
Info
Truth+Info
Human

(c) %True-%Info trade-off
Training

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
% True (GPT-judge)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

%
 In

fo
rm

at
iv

e
(G

P
T-

in
fo

)

Truth
Info
Truth+Info
Human

(d) %True-%Info trade-off
Test

Figure 3: Comparison of APE and “help” (human) prompt on the TruthfulQA task. (a) Percentage of
answers that were either true (% True), informative (% Info), or both (% True + % Info) on the 100
training examples. (b) Same data on the 717 test examples. (c) %True-%Info frontier computed on
training data with top 10 instructions from each metric. (d) %True-%Info frontier on the test data.

3.2 TruthfulQA

We apply our method on TruthfulQA (Lin et al., 2022) to see how APE-generated instructions can
steer an LLM to generate answers with different styles, and study the trade-off between truthfulness
and informativeness. Borrowing the metrics from the original paper, we use APE to the learn
instructions that maximize three metrics: truthfulness (% True), informativeness (% Info), and a
combination of both (%True + %Info). Lin et al. (2022) used human evaluation to assess the model
performance, but they found their automated metrics align with human prediction over 90% of the
time. In our experiments, we rely on their fine-tuned GPT-judge and GPT-info to evaluate the scores.

Prompt Engineering in TruthfulQA We want to stress that the TruthfulQA dataset is intended
to test pretrained models in zero-shot settings. Our results are not in any way compatible with the
original benchmarks. Because we have optimized the instructions using a small portion of the question
and answer pairs as training demonstrations, our results are not “true few-shot learning” (Perez et al.,
2021). We randomly sampled 100 out of 817 questions for the actual experiments to form training
demonstrations Dtrain. To sample the proposal set U , we ask a “reverse” model to generate instructions
based on 6 randomly chosen demonstration pairs, similar to our previous experiments. Unlike in
Instruction Induction, in TruthfulQA, we aim to find a single best instruction prompt that works well
across all 38 categories of questions spanning health, law, politics, and fiction. It is worth noting all
our generated instructions are very generic, and do not contain any examples from the dataset. We
provide a list of top 10 instructions selected by APE using different metrics in Table 8, 9, 10.

Truthfulness vs Informativeness Trade-off We found that APE outperforms the human-engineered
prompt with only 200 candidates proposed by InstructGPT (175B), as seen in Figure 3. We compared
our generated prompt with the “help” prompt from Lin et al. (2022). The training and test performance
are shown in Figure 3(a)-(b). We found that choosing the top 10 of 200 candidates on the training
set generalizes well to the test set. We report the average performance across the top 10 instructions
for the three metrics. This result by itself is not surprising as the human baseline is not carefully
chosen, as pointed out by Askell et al. (2021). However, we found that the instructions discovered
by APE can achieve very high truthfulness with answers such as “No comment” but these answers
provide little information. We used our top candidates to further investigate the trade-off between
truthfulness and informativeness. We visualize the top 10 proposed samples across the three metrics
on the truthfulness-informative plots shown in Figure 3(c) and Figure 3(d). While APE achieves over
40% accuracy in providing both true and informative answers (v.s. 30% by the “help” prompt from
humans), the instructions discovered tend to target the two ends of this %true-%info Pareto frontier.

4 Conclusion

LLMs can be seen as general-purpose computers that execute programs specified by natural language
prompts. We automate the prompt engineering process using efficient search algorithms guided
by LLMs. Our method achieves human-level performance on various tasks with minimum human
inputs. Just as LLMs demonstrate an impressive ability to follow human instructions, we expect
future models, whether for image/video generation, formal program synthesis, or general robotics, to
possess natural language interfaces. Future work should extend the foundational concepts of APE to
the control and steering of generative AIs generally.

4

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

Eyal Ben-David, Nadav Oved, and Roi Reichart. Pada: A prompt-based autoregressive approach for
adaptation to unseen domains. arXiv preprint arXiv:2102.12206, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Joe Davison, Joshua Feldman, and Alexander M Rush. Commonsense knowledge mining from
pretrained models. In Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natural language processing
(EMNLP-IJCNLP), pp. 1173–1178, 2019.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. Advances in Neural Information Processing Systems, 30, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.26. URL https://aclanthology.org/2022.acl-long.26.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenen-
baum. Learning libraries of subroutines for neurally–guided bayesian program induc-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design and implementation, pp. 835–850,
2021.

Tianyu Gao. Prompting: Better ways of using language models for nlp tasks. The Gradient, 2021.

5

https://aclanthology.org/2022.acl-long.26
https://proceedings.neurips.cc/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7aa685b3b1dc1d6780bf36f7340078c9-Paper.pdf

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3816–3830, Online, August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.
295.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Dan Hendrycks and Mantas Mazeika. X-risk analysis for ai research. arXiv preprint
arXiv:2206.05862, 2022.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782, 2022.

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram
Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis. In
Proceedings of the 44th International Conference on Software Engineering, pp. 1219–1231, 2022.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. ACM SIGPLAN Notices, 53(4):436–449, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach.
In Johannes Fürnkranz and Thorsten Joachims (eds.), Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp. 639–646.
Omnipress, 2010. URL https://icml.cc/Conferences/2010/papers/568.pdf.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.
org/2022.acl-long.229.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv preprint arXiv:2103.10385, 2021.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Dougal Maclaurin and Ryan Prescott Adams. Firefly monte carlo: Exact mcmc with subsets of data.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. A machine learning
framework for programming by example. In International Conference on Machine Learning, pp.
187–195. PMLR, 2013.

6

https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295
https://icml.cc/Conferences/2010/papers/568.pdf
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
Advances in Neural Information Processing Systems, 34:11054–11070, 2021.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 5203–5212, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. In The Tenth International Conference on Learning Representations,
2022.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, pp. 255–269, 2021.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting knowledge from language models with automatically generated prompts. In Empirical
Methods in Natural Language Processing (EMNLP), 2020.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? arXiv preprint arXiv:2109.01247, 2021.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

7

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022b.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Leveraging language
to learn program abstractions and search heuristics. In International Conference on Machine
Learning, pp. 11193–11204. PMLR, 2021.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text
generation. Advances in Neural Information Processing Systems, 34:27263–27277, 2021.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

8

A X-Risk Analysis

To analyze APE from an existential risk perspective, we adapt the X-Risk Sheet Template of
Hendrycks & Mazeika (2022).

A.1 Long-Term Impact on Advanced AI Systems

1. Overview/Effects. How is this work intended to reduce existential risks from advanced AI
systems?
Answer: We postulate that advanced AI systems will possess natural language interfaces through
which humans will be able to exert influence over (i.e., steer) the systems. This paper provides a
method that can be used to improve the ability of humans to steer prompted models toward desired
behaviors and away from undesirable behaviors, which might otherwise compound the overall
existential/catastrophic risk.
For example, it is possible for a repeat small disobedience/misalignment by an advanced AI
system to foster an environment where larger disobendiences/misalignments can occur. Because
the advanced AI system may process natural language instructions in an unpredictable fashion, it
may be difficult for humans to come up with the correct instructions that would eliminate the small
disobediences/misalignments, whilst still obtaining the benefits that the AI systems provide. In
absence of a method like our proposed APE algorithm, which could help design better instructions
for the AI systems, humans may simply tolerate the small disobedience/misalignments. As noted,
this could escalate until the harms of the misalignment outweigh the benefits provided by the AI
systems, ultimately placing humanity at risk.
We note that, to the extent the methods in this work are used to steer models toward antisocial
behaviors, our algorithm could also increase existential risk. Under the assumption that most
human users of APE are pro-social, however, we estimate the total benefit provided by a method
like APE to outweigh the total harm.

2. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
Answer: Although we expect APE to be more useful in preventing the above described escalation
of small scale alignment discrepancies that could eventually lead into something catastrophic, it
is also possible that an automatically designed prompt maybe be the delta between safety and
catastrophe in some extreme scenario. As a somewhat unrealistic example: one can imagine that a
human controller is commanding an AI system to stop the proliferation of a particularly deadly
pandemic that threatens the entire human race. The human controller commands the AI system to
“make it so that the pandemic is no longer present in any living being”, which the system executes
literally by killing all humans. By contrast, a human that fed the desired future scenario into APE
to come up with an appropriate instruction, could come up with a pandemic-ending prompt that
does not also eradicate human life.

3. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demonstrated
using leading-edge tasks or models; or are the findings highly sensitive to hyperparameters? □

4. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform
humans at this task? □

5. Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability? □

6. Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? □

A.2 Safety-Capabilities Balance

7. Overview. How does this improve safety more than it improves general capabilities?

9

Answer: This work improves both safety and capabilities by better aligning AI systems with
human intentions.

8. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?
Answer: The use of APE or APE-inspired algorithms could be used to improve the effectiveness
of intentionally anti-social uses of large AI systems. Combined with the improvement in general
capabilities that APE could provide (by improving the overall quality of prompts), this could
increase x-risks.

9. General Goals. Does this improve or facilitate research towards general prediction, classification,
state estimation, efficiency, scalability, generation, data compression, executing clear instructions,
helpfulness, informativeness, reasoning, planning, researching, optimization, (self-)supervised
learning, sequential decision making, recursive self-improvement, open-ended goals, models
accessing the Internet, or similar capabilities? ⊠

10. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted by
general cognitive ability or educational attainment?
Answer: It is likely that general cognitive ability correlates with effective prompt engineering.

11. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? ⊠

A.3 Elaborations and Other Considerations

12. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer: In order for APE to applied, we require a generative model for prompts and a scoring
function. The ability of APE to create aligned prompts will depend on both of these models: the
generative model needs to be able to generate at least some aligned prompts, and the scoring func-
tion needs to aligned in and of itself (e.g., as were the models of truthfulness and informativeness
used in Subsection 3.2). Unfortunately, score function alignment is not always easy (see, e.g.,
Figure 5 of Stiennon et al. (2020) and Appendix Section E.1 of this paper in which high scores
begin to drive a model toward disalignment). Thus, great care must be taken in choosing both
components of the APE algorithm; otherwise, APE may fail and create anti-social prompts that
escalate existential risk.

B Prompt Engineering in the Wild

Large models with natural language interfaces, including models for text generation and image
synthesis, have seen an increasing amount of public usage in recent years. As finding the right prompt
can be difficult for humans, a number of guides on prompt engineering as well as tools to aid in
prompt discovery have been developed. Among others, see, for example:

• https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

• https://techcrunch.com/2022/07/29/a-startup-is-charging-1-99-for-strings-of-text-to-feed-to-dall-e-2/

• https://news.ycombinator.com/item?id=32943224

• https://promptomania.com/stable-diffusion-prompt-builder/

• https://huggingface.co/spaces/Gustavosta/MagicPrompt-Stable-Diffusion

In this paper we apply APE to generate effective instructions for steering LLMs, but the general
framework Algorithm 1 could be applied to steer other models with natural language interfaces so
long as an appropriate proposal method and scoring function can be designed.

10

https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/
https://techcrunch.com/2022/07/29/a-startup-is-charging-1-99-for-strings-of-text-to-feed-to-dall-e-2/
https://news.ycombinator.com/item?id=32943224
https://promptomania.com/stable-diffusion-prompt-builder/
https://huggingface.co/spaces/Gustavosta/MagicPrompt-Stable-Diffusion

read both sentences

and determine ...

Large set of
instruction candidatesDemonstrations

LLMs

 Generate semantically similar instructions

Scoring and filtering
using LLMs

Instruction

Execute & evaluate

Figure 4: Our method, Automatic Prompt Engineer (APE), automatically generates instructions for
a task that is specified via output demonstrations: it generates several instruction candidates, either
via direct inference or a recursive process based on semantic similarity, executes them using the target
model, and selects the most appropriate instruction based on computed evaluation scores.

C Related Work

Large Language Models Scaling up transformer-based language models in terms of model size,
training data, and training compute has been shown to predictably improve performance on a wide
range of downstream NLP tasks (Vaswani et al., 2017; Devlin et al., 2018; Brown et al., 2020).
Many emergent abilities (Wei et al., 2022a) of LLMs have been discovered as a result of this scaling,
including few-shot in-context learning, zero-shot problem solving, chain of thought reasoning,
instruction following, and instruction induction (Cobbe et al., 2021; Wei et al., 2022b; Kojima et al.,
2022; Sanh et al., 2022; Wei et al., 2021; Ouyang et al., 2022; Honovich et al., 2022). In this paper, we
view LLMs as black-box computers that execute programs specified by natural language instructions
and investigate how to control an LLM’s behavior using model-generated instructions.

Prompt Engineering Prompting offers a natural and intuitive interface for humans to interact with
and use generalist models such as LLMs. Due to its flexibility, prompting has been widely used as
a generic method for NLP tasks (Schick & Schütze, 2021; Brown et al., 2020; Sanh et al., 2022).
However, LLMs require careful prompt engineering, either manually (Reynolds & McDonell, 2021)
or automatically (Gao et al., 2021; Shin et al., 2020), as models do not seem to understand the prompts
in the same way a human would (Webson & Pavlick, 2021; Lu et al., 2021). Though many successful
prompt tuning methods perform optimization over a continuous space using gradient-based methods
(Liu et al., 2021; Qin & Eisner, 2021; Lester et al., 2021), this becomes less practical with scale, as
computing computing gradients becomes increasingly expensive and access to models shifts to APIs
that may not provide gradient access. In our paper, we borrow components from discrete prompt
search methods, such as prompt generation (Gao et al., 2021; Ben-David et al., 2021), prompt scoring
(Davison et al., 2019) and prompt paraphrasing (Jiang et al., 2020; Yuan et al., 2021) to optimize
instructions by searching directly in the natural language hypothesis space. As compared to this past
work, which uses specialized models for each component and leans heavily on human templates, we
show that the entire search can be conducted by a single LLM.

Program Synthesis Program synthesis involves the automatic search over a “program space” to
find a program satisfying a particular specification (Gulwani et al., 2017). Modern program synthesis
admits a wide variety of specifications, including input-output examples (Ellis et al., 2021; Wong
et al., 2021) and natural language (Jain et al., 2022). The range of feasible program spaces to search
over has also grown, from historically restrictive domain-specific languages to general-purpose
programming languages (Austin et al., 2021). In contrast to prior approaches that require a suitable
structured hypothesis space and library of components (Liang et al., 2010; Ellis et al., 2018), we
leverage the structure provided by LLMs to search over the space of natural language programs.
Using inference models is a standard practice to speed up the search by restricting the search space to
a limited space of possible expressions (Menon et al., 2013; Lee et al., 2018; Devlin et al., 2017; Ellis
et al., 2021). Inspired by this, we use LLMs as approximate inference models to generate program
candidates based on a small set of demonstrations. Unlike classical program synthesis, our inference
models do not require any training and generalize well to various tasks.

11

D Method in Detail

We consider a task specified by a dataset Dtrain = {(Q,A)} of input/output demonstrations sampled
from population X , and a prompted model M. The goal of natural language program synthesis
is to find a single instruction ρ such that, when M is prompted with the concatenation [ρ;Q] of
instruction and a given input, M produces the corresponding output A. More formally, we frame this
as an optimization problem, where we seek instruction ρ that maximizes the expectation of some
per-sample score f(ρ,Q,A) over possible (Q,A):

ρ⋆ = argmax
ρ

f(ρ) = argmax
ρ

E(Q,A) [f(ρ,Q,A)] (2)

Note that in general, Q may be the empty string, such that we are optimizing ρ as a prompt that
directly produces outputs {A}. While this task has been widely attempted by humans, we have little
knowledge of how compatible any particular instruction is with model M. Thus, we propose to treat
this human-intractable question as a black-box optimization process guided by LLMs. Our algorithm,
APE, uses LLMs in each of two key components, proposal and scoring. As shown in Figure 4 and
summarized in Algorithm 1, APE first proposes a few candidate prompts, and then filters/refines
the candidate set according to a chosen score function, ultimately choosing the instruction with the
highest score. We discuss options for proposal and scoring next.

D.1 Initial Proposal Distributions

Due to the infinitely large search space, finding the right instruction can be extremely difficult, which
has rendered natural language program synthesis historically intractable. Recent progress in NLP
has shown language models are very good at generating diverse natural language text. Therefore, we
consider leveraging a pretrained LLM to propose a good set U of candidate solutions that will guide
our search procedure. While random samples from LLMs are unlikely to produce the desired (Q,A)
pairs, we can instead ask the LLM to approximately infer the most likely instructions with a high score,
given the input/output demonstrations; i.e., to approximately sample from P (ρ | Dtrain, f(ρ) is high).

I gave a friend an instruction and five
inputs. The friend read the instruction
and wrote an output for every one of
the inputs. Here are the input-output
pairs:

Input: [] Output: []
Input: [] Output: []
...

The instruction was <COMPLETE>

Forward Generation Template

I instructed my friend to <INSERT>.

The friend read the instruction and
wrote an output for every one of the
inputs. Here are the input-output pairs:

Input: [] Output: []
Input: [] Output: []
...

Reverse Generation Template

Professor Smith was given the
following instructions: <INSERT>

Here are the Professor’s responses:

Input: [] Output: []
Input: [] Output: []
...

Template for TruthfulQA

Figure 5: Prompts for LLMs

Forward Mode Generation We consider two approaches to gen-
erate high-quality candidates from P (ρ | Dtrain, f(ρ) is high). First,
we adopt an approach based on “forward” mode generation by trans-
lating this distribution P (ρ | Dtrain, f(ρ) is high) into words. For
example, in our instruction induction experiments (Subsection E.1),
we follow Honovich et al. (2022) and prompt the LLM using Figure
5 (Top). In this case, the wording suggests that the outputs are gener-
ated based on the instruction, so that the score functions considered
will be high.

Reverse Mode Generation Although the “forward” model works
out of the box for most of the pretrained LLMs, translating
P (ρ | Dtrain, f(ρ) is high) into words requires custom engineering
across different tasks. This is because the “forward” model only
generates text from left to right, while we would like the model to
predict the missing context before the demonstrations. To address
this, we also consider “reverse” mode generation, which uses an
LLM with infilling capabilities—e.g., T5 (Raffel et al., 2020), GLM
(Du et al., 2022), and InsertGPT (Bavarian et al., 2022)—to infer
the missing instructions. Our “reverse” model directly samples from
P (ρ | Dtrain, f(ρ) is high) by filling in the blank, making it a more
versatile approach than the “forward” completion models. For ex-
ample, in our instruction induction experiments we use the template
in Figure 5 (Middle).

Customized Prompts Note that depending on the score function
being used, there may exist more appropriate prompts than the sam-
ples above. For example, in our TruthfulQA experiments, we start
with the human-designed instructions from the original dataset (Lin
et al., 2022). As shown in Figure 5 (Bottom), the “reverse” model is asked to propose initial instruction
samples that fit the missing context.

12

D.2 Score Functions

To cast our problem as black-box optimization, we choose a score function that accurately measures
the alignment between the dataset and the data the model generates. In our instruction induction
experiments, we consider two potential score functions, described below. In the TruthfulQA ex-
periments, we focused primarily on automated metrics proposed in Lin et al. (2022), similar to the
execution accuracy. In each case, we evaluate the quality of a generated instruction using Equation
(2), and take the expectation over a held-out test dataset Dtest.

Execution accuracy First, we consider evaluating the quality of an instruction ρ using the execution
accuracy metric proposed by Honovich et al. (2022), which we denote as fexec. In most cases,
execution accuracy is simply defined as the 0-1 loss, f(ρ,Q,A) = ⊮ [M([ρ;Q]) = A]. On some
tasks, execution accuracy takes into account invariants; e.g., it may be an order invariant set matching
loss, as described in Appendix A of Honovich et al. (2022).

Log probability We further consider a softer probabilistic score function, which we hypothesize
might improve optimization by providing a more fine-grained signal when searching over low-quality
instruction candidates. In particular, we consider the log probability of the desired answer given the
instruction and question under the target model M, which on a per sample basis, is logP (A | [ρ;Q]).

Efficient score estimation Estimating the score by computing the score over the entire training
dataset for all instruction candidates can be expensive. To reduce the computation cost, we adopt
a filtering scheme where a promising candidate receives more computation resources while a low-
quality candidate receives less computation. It can be achieved by using a multi-stage computation
strategy on lines 2-9 Algorithm 1. We first evaluate all candidates with a small subset of the training
dataset. For the candidates with a score greater than a certain threshold, we sample and evaluate
a new non-overlapping subset from the training dataset to update the moving average of the score.
Then, we repeat this process until a small set of candidates is left, which are evaluated on the entire
training dataset. This adaptive filtering scheme significantly improves the computation efficiency
by keeping the exact computation costs for the high-quality samples and drastically reducing the
computation costs for low-quality candidates. We note that a similar score estimation scheme has
been used in previous works (Li et al., 2022; Maclaurin & Adams, 2015).

D.3 Iterative Proposal Distributions

Despite our attempt to directly sample high-quality initial instruction candidates, it could be the case
that the method described in Subsection D.1 fails to produce a good proposal set U , either because
it lacks of diversity or does not contain any candidates with a suitably high score. In case of such
challenges, we explore an iterative process for resampling U .

Generate a variation of the
following instruction while
keeping the semantic meaning.

Input: [INSTRUCTION]

Output: <COMPLETE>

Prompt for Resampling

Figure 6: Resampling

Iterative Monte Carlo Search Instead of only sampling from
the initial proposal, we consider exploring the search space locally
around the current best candidates. This allows us to generate new
instructions that are more likely to be successful. We call this variant
iterative APE. At each stage, we evaluate a set of instructions and
filter out candidates with low scores. Then, an LLM is asked to
generate new instructions similar to those with high scores. We
provide the prompt used for resampling in Figure 6.

Figure 9 (Right) shows that although this approach improves the
overall quality of the proposal set U , the highest scoring instruction
tends to remain the same with more stages. We conclude iterative generation provides marginal
improvement over the relative simplicity and effectiveness of the generative process described in
Subsection D.1. Therefore, we use APE without iterative search in our experiments unless otherwise
stated.

13

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Greedy Human APE

Figure 7: Zero-shot test accuracy on 24 Instruction Induction tasks. APE achieves human-level
performance on 19 out of 24 tasks. See best performing instruction performance in Figure 14.

E Additional Experimental Results

This section examines how APE can guide LLMs to desired behaviors. We investigate from three
perspectives: zero-shot performance, few-shot in-context learning performance, and truthfulness. For
consistency, we duplicate some of the results here.

E.1 Instruction Induction

We assess the effectiveness of zero-shot and few-shot in-context learning on 24 instruction induction
tasks proposed in Honovich et al. (2022). The tasks span many facets of language understanding, from
simple phrase structure to similarity and causality identification. We refer the reader to Appendix
A of Honovich et al. (2022) for detailed descriptions of each task. For each task, we sample five
input-output pairs from the training data and select the best instruction using algorithm 1. Then, we
evaluate the quality of the instruction by executing the instruction on InstructGPT 4. We repeat our
experiments five times with different random seeds to report the mean and standard deviation of the
best performing result in each seed and report the best overall performance in Appendix (Figure 14
and 15). The exact templates for our experiments can be found in Appendix (Table 2).

Zero-shot Learning We compare our method against two baselines: human prompt engineers
(Human)5 and the model-generated instruction algorithm proposed by Honovich et al. (2022). This
algorithm can be thought of as a greedy version of APE, without a search and selection process;
thus, we refer to it as “Greedy”. Figure 7 shows the zero-shot performance of InstructGPT using
human instructions and model generated instructions. Our algorithm outperforms “Greedy” on
every task and achieves equal or better than human performance on 19 of 24 tasks. Moreover, the
Interquartile Mean (IQM) (Agarwal et al., 2021) across all 24 tasks in Figure 1 suggests that APE with
InstructGPT outperforms human-engineered prompts, obtaining an IQM of 0.765 vs humans’ 0.749.
We summarize the instruction selected by APE for each task in Appendix (Table 11).

We observe APE can propose varying quality candidates depending on the subset of demonstration
chosen for tasks such as Passivization and Start With. As shown in Figure 7, our method achieves
worse average performance than humans in Passivization and Sentence Similarity. However, selecting
the best instruction still outperforms the human in Figure 14. These results highlight the importance
of the initial proposal stage. We found it is crucial to generate instruction candidates based on
different demonstrations. Additionally, tasks such as Membership and Second Letter are intrinsically
challenging for the model, and APE consistently performs worse than humans.

Zero-shot Qualitative Analysis To better understand the weaknesses of APE, we examined
instructions in three tasks where APE underperforms compared to humans in the zero-shot setting:

4We use the text-davinci-002 via the OpenAI API (https://beta.openai.com/). Though not stated
explicitly in the API, we assume the models are those reported by Ouyang et al. (2022).

5We use the gold annotations from Honovich et al. (2022), which were manually verified for correctness.

14

https://beta.openai.com/

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Instruction Only In-context Only Instruction + In-context

Figure 8: Few-shot in-context test accuracy on 24 Instruction Induction tasks. APE improves the
few-shot in-context learning performance on 21 out of 24 tasks. See best performing instruction
performance in Figure 15.

Passivization, Membership, and Second Letter. As shown in Tables 3, 4, we find large variance in the
quality of APE instructions due to the difference in demonstration. The best instructions selected by
APE for each task are semantically correct and recover accuracy relative to humans. In contrast, the
worst instructions are all semantically incorrect and perform poorly. Notably, we observe no semantic
difference in the demonstrations used to generate the best and worst instruction under inspection.

Few-shot In-context Learning We also evaluate APE-generated instructions in the few-shot
in-context learning scenario, where we insert the instruction before the in-context demonstrations.
Those instructions are selected based on zero-shot execution accuracy, and we denote this setting
as “Instruction + In-context” in Figure 8. As shown in Figure 8, adding an instruction achieves a
comparable or better test performance than the standard in-context learning performance on 21 of
24 tasks. Counter-intuitively, adding in-context examples for Rhymes, Large Animal, and Second
Letters hurts model performance. We conjecture that it may be because the selected instructions
overfit the zero-shot learning scenario and thus do not perform well on the few-shot case. Therefore,
we experiment using few-shot execution accuracy as the selection metric. Figure 16 shows that the
few-shot metric achieves comparable or slightly better than the zero-shot metric except for Rhymes.
To have an intuitive understanding of what is happening, we provide a qualitative analysis below.

Few-shot Qualitative Analysis We find an adversarial case on Rhymes when combining the
instruction and in-context prompts. Table 5 shows that 4 of 5 filtered instructions ask to echo the input
word. These proposals effectively hack the evaluation with near-perfect test accuracy, as every word
rhymes with itself. However, adding in-context examples for these instructions creates a misalignment
between instruction (induces trivial rhymes) and context (induces non-trivial rhymes), resulting in a
significant drop in performance. If we instead score the instructions based on the few-shot metric, this
performance drop can be alleviated since the model can choose a more aligned instruction. Another
interesting case happens in the Second Letters task (Table 6), where the model’s responses to two
semantically “correct” instructions experience a drop in accuracy when paired with the in-context
demonstration. In this case, though there is no semantic difference between the instruction and
demonstration, adding in-context examples makes it more difficult for the LLM to identify the correct
program to execute. However, this effect is mild for a task such as Large Animal (Table 7).

15

0.0 0.2 0.4 0.6 0.8 1.0
Test accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Test accuracy ()

10
0

10
1

10
2

C
ou

nt

GPT-3 (350M)
GPT-3 (1.3B)

GPT-3 (6.7B)
GPT-3 (175B)

InstructGPT (350M)
InstructGPT (1.3B)

InstructGPT (6.7B)
InstructGPT (175B)

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 9: (Left) Quality of the proposal distribution of models with different size as assessed by
test execution accuracy. (Right) Iterative Monte Carlo search improves the quality of the instruction
candidates at each round.

F Additional Results - Quantitative Analysis

In this section, we conduct quantitative analyses to better understand the three main components of
our method: proposal distribution, score functions, and iterative search. Moreover, we conduct a
cost analysis in the Appendix I to understand the most cost-efficient way to find the best prompt. We
observe the larger and more powerful language models are more cost-effective for generating the best
prompt despite a higher per-token cost.

F.1 LLMs for Proposal Distribution

How does the proposal quality change as we increase the model size? To understand how the
model size affects the quality of the initial proposal distribution, we examine eight different models6

available via the OpenAI API. To assess the quality of the proposal distribution, we generate 250
instructions per model and compute the execution accuracy on 50 test data points. We visualize
the survival function (percentage of instructions with test accuracy greater than a certain threshold)
and the histogram of test accuracy for a simple task (i.e., Pluralization) in Figure 9 (a) and include
a similar plot for a more challenging task (Start With) in the Appendix (Figure 31). As shown in
both figures (and unsurprisingly), larger models tend to produce better proposal distributions than
smaller ones, as do the models that were fine-tuned to follow human instructions. On the simple task,
all instructions generated by the best model, InstructGPT (175B), have reasonable test accuracy. In
contrast, half of the instructions are off-topic and perform poorly on the more challenging task.

Can we use other LLMs for instruction proposal? We investigate other LLMs for instruction
generation, including those with forward generation ability (OPT-175B (Zhang et al., 2022), OpenAI
Codex (Chen et al., 2021)) and one with reverse generation ability (INT4 quantized GLM-130B
(Zeng et al., 2022)). We evaluate their performance on six tasks selected from instruction induction
on both zero-shot and few-shot settings 7. Figures 18 and 20 show that InstructGPT achieves the best
performance except for passivization, where it underperforms compared to the two other forward-
generation models. Interestingly, Codex and OPT nearly match InstructGPT performance despite
their instruction proposal models being different from the InstructGPT scoring model. However, we
observe some of the instructions generated by OPT contain in-context examples (Table 12), making
them closer to few-shot rather than a zero-shot. In contrast, GLM achieves the poorest zero-shot
performance as its infilling capabilities are trained to generate very short text, as shown in Table 14.

How important is the meta prompt? As shown in Table 16, the insert variant of InstructGPT
underperforms compared to the forward variant, despite it being more intuitive to perform reverse
generation from demonstrations. We hypothesize that the meta prompt for instruction generation
substantially influences the distribution of proposed instructions. To this end, we experiment with our
TruthfulQA template instead of the reverse generation template (Figures 26, 27, 28, 29). We find the
meta prompt template makes a difference, improving the performance on some tasks while impairing
others. Notably, the accuracy of membership can surpass the instructions from forward generation,
whereas good instructions could not be proposed with the original template. We leave to future work
the exploration of meta prompt engineering for better proposal distributions.

6We use ada, babbage, curie, davinci, text-ada-001, text-babbage-001, text-curie-001, text-davanci-002
7These six tasks are chosen such that two of them are worse than humans, and the other four are human-level.

They cover six categories (spelling, morphosyntax, lexical semantics, semantics, multi-lingual, and GLUE).

16

4 8 16 32 64 128
Posterior Sample Size

0.4

0.5

0.6

0.7

0.8

E
xe

cu
tio

n
A

cc
ur

ac
y

APE (Train)
APE (Test)
Human

0 5 10 15 20 25
Sorted Task Index

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
 C

or
re

la
tio

n

LogP
Exec Acc

Second Letter Passivization Translation en-fr
0

1

Sentiment Antonyms Cause Selection
0

1

E
xe

xc
ut

io
n

A
cc

ur
ac

y

Human APE APE (IT)

Figure 10: (Left) Test execution of the best instruction as we increase the number of instruction
candidates. We report the mean and standard deviation across 6 different tasks. (Middle) Spearman
Correlation between the test accuracy and two metrics on 24 tasks. (Right) Test execution accuracy
of the best instruction selected using APE and iterative APE (APE (IT)).

F.2 LLMs for selection

Does proposal quality matter under selection? If we sample more instructions from the LLMs,
then it becomes more likely for us to find better instructions. To verify this hypothesis, we increase
the sample size from 4 to 128 and evaluate the test accuracy change. Figure 10 (Left) shows a
monotonically increasing trend with a diminishing return, as human-level performance is achieved
with 64 instruction samples. Thus, we choose 50 as our default sample size. Under this configuration,
we investigate how the proposal distribution affects the test accuracy of the best instruction selected by
our algorithm. Figure 1(c) shows that though the small models have a low chance of generating good
instructions, they nonetheless generate some good ones if we sample enough candidates. Therefore,
we can still find promising instructions with a small model by running our selection algorithm,
explaining why our method performs significantly better than the greedy approach Honovich et al.
(2022) across all eight models.

Which scoring function is better? We compute the correlation between the test accuracy and two
metrics on 24 instruction induction tasks to study how good our proposed metrics are. We generate
250 instructions per task using InstructGPT (175B) in “forward” mode and compute the metric score
and test accuracy on 10 test data points. We visualize the Spearman correlation between the test
accuracy and two metrics. Figure 10 (Middle) shows that the execution accuracy aligns better with
the test performance across the tasks. Thus, we choose it as our default metric unless otherwise
stated.

How transferable are the generated instructions? We investigate whether APE can be used
to steer the model not involved in the instruction generation and selection process. As shown in
Figure 22, there is a significant performance drop when we use the instructions from InstructGPT to
steer the GPT-3 model, and vice versa. This performance drop can be mitigated by a human written
instruction. It suggests that the alignment between the scoring model and execution model is crucial,
and the instructions generated by InstructGPT work best for the InstructGPT itself but do not transfer
well to a different model like GPT-3. In contrast, GPT-3-generated instructions can steer GPT-3
exceptionally well, outperforming the InstructGPT instructions and human instructions by a large
margin. Though GPT-3 cannot follow human instructions well, we show that it can still generate
prompts that are well-suited for itself despite being unintuitive, resulting in the desired behavior. We
provide the generated prompts in Table 15.

F.3 Iterative Monte Carlo Search

Does Iterative Search improve the instruction quality? We visualize the survival function and
histogram of test accuracy on the “Passivization” task in Figure 9 (Right) and include five more
tasks in the Appendix. The survival plot shows that the curves increase as the round goes up, which
suggests that iterative search does result in a higher-quality proposal set. However, we observe
diminishing returns to further selection rounds as the quality seems to stabilize after three rounds.

Do we need Iterative Search? We compare APE and iterative APE on six tasks7. As shown in
Figure 10, the iterative search marginally improves performance on tasks where APE underperforms
humans but achieves similar performance on the other tasks. This is consistent with our hypothesis
that iterative search would be most useful on tasks where generating a good initial U is challenging.

17

G Implementation Details

Table 1: For convenience, Table 1 from Honovich et al. (2022) is duplicated here. This describes the
24 NLP instruction induction tasks.
Category Task Instruction Demonstration

Spelling First Letter Extract the first letter of the input word. cat→ c

Second Letter Extract the second letter of the input word. cat→ a

List Letters Break the input word into letters, sepa-
rated by spaces.

cat→ c a t

Starting With Extract the words starting with a given
letter from the input sentence.

The man whose car I hit last week
sued me. [m]→ man, me

Morpho-
syntax

Pluralization Convert the input word to its plural form. cat→ cats

Passivization Write the input sentence in passive form. The artist introduced the scientist.
→ The scientist was introduced
by the artist.

Syntax Negation Negate the input sentence. Time is finite → Time is not fi-
nite.

Lexical
Semantics

Antonyms Write a word that means the opposite of
the input word.

won→ lost

Synonyms Write a word with a similar meaning to
the input word.

alleged→ supposed

Membership Write all the animals that appear in the
given list.

cat, helicopter, cook, whale, frog,
lion→ frog, cat, lion, whale

Phonetics Rhymes Write a word that rhymes with the input
word.

sing→ ring

Knowledge Larger Animal Write the larger of the two given animals. koala, snail→ koala

Semantics Cause Selection Find which of the two given cause and
effect sentences is the cause.

Sentence 1: The soda went flat.
Sentence 2: The bottle was left
open.→ The bottle was left open.

Common
Concept

Find a common characteristic for the given
objects.

guitars, pendulums, neutrinos→
involve oscillations.

Style Formality Rephrase the sentence in formal language. Please call once you get there→
Please call upon your arrival.

Numerical Sum Sum the two given numbers. 22 10→ 32

Difference Subtract the second number from the first. 32 22→ 10

Number to Word Write the number in English words. 26→ twenty-six

Multi-
lingual

Translation Translate the word into German / Spanish
/ French.

game→ juego

GLUE Sentiment
Analysis

Determine whether a movie review is pos-
itive or negative.

The film is small in scope, yet per-
fectly formed. → positive

Sentence
Similarity

Rate the semantic similarity of two input
sentences on a scale of 0 - definitely not
to 5 - perfectly.

Sentence 1: A man is smoking.
Sentence 2: A man is skating. →
0 - definitely not

Word in Context Determine whether an input word has the
same meaning in the two input sentences.

Sentence 1: Approach a task. Sen-
tence 2: To approach the city.
Word: approach→ not the same

18

Table 2: Raw templates used for model prompting in our experiments
Usage Template

Zero-shot Evaluation
Instruction: [INSTRUCTION]

Input: []\nOutput:<COMPLETE>

Few-shot Evaluation

Instruction: [INSTRUCTION]

Input: []\nOutput: []\n\nInput: []\nOutput: [] ...

Input: []\nOutput:<COMPLETE>

Forward Generation

I gave a friend an instruction and five inputs. The friend read the instruction and
wrote an output for every one of the inputs.\nHere are the input-output pairs:

Input: []\nOutput: []\n\nInput: []\nOutput: [] ...

The instruction was<COMPLETE>

Reverse Generation 1
I instructed my friend to<INSERT>.The friend read the instruction and wrote an
output for every one of the inputs.\nHere are the input-output pairs:

Input: []\nOutput: []\n\nInput: []\nOutput: [] ...

Reverse Generation 2
Professor Smith was given the following instructions:<INSERT>\nHere are the
Professor’s responses:

Q: []\nA: []\n\nQ: []\nA: [] ...

Resample Instruction

Generate a variation of the following instruction while keeping the semantic
meaning.

Input: [INSTRUCTION]\nOutput:<COMPLETE>

19

H Generated Instructions

Table 3: Best APE selected instructions for underperforming tasks in zero-shot setting

Task Best instruction Zero-shot test accuracy
Passivization to use the passive voice. 1

Membership to choose the animals from the list 0.5

Second Letter most likely "Find the second letter in each word." 0.84

Table 4: Worst APE selected instructions for underperforming tasks in zero-shot setting

Task Worst instruction Zero-shot test accuracy
Passivization to reverse the order of the subject and object. 0.17

Membership probably to sort the inputs alphabetically. 0

Second Letter write the middle letter of the word. 0.32

Table 5: APE selected Rhyme instructions with zero-shot and few-shot test performance.

Instruction Zero-shot Accuracy Few-shot Accuracy
probably “Write a word that rhymes with each of
the following words.” 0.55 0.61

write a function that takes in a string and outputs
the string with the first letter capitalized. 1 0.03

probably “Write a function that takes a string as
input and outputs the string in all caps.” 0.99 0.37

“Write a function that takes in a string and prints
out the string with the first letter capitalized.” 1 0.39

write a function that takes a word as input and
returns the word with the first letter capitalized. 1 0.07

Table 6: APE selected Second Letters instructions with zero-shot and few-shot test performance.

Instruction Zero-shot Accuracy Few-shot Accuracy
most likely “Find the second letter in each word.” 0.84 0.69
to write the letter that appears second in the word. 0.72 0.64

to find the first vowel in each word. 0.60 0.62

to "write the vowel that comes before the first dou-
ble letter in the word." 0.50 0.59

write the middle letter of the word. 0.32 0.22

20

Table 7: APE selected Large Animal instructions with zero-shot and few-shot test performance.

Instruction Zero-shot Accuracy Few-shot Accuracy
"Identify which animal is larger." 0.97 0.97
given two animals, return the name of the animal
that is more dangerous. 0.88 0.89

to choose the animal that is larger. 0.96 0.95

"write the name of the animal that is bigger." 0.97 0.94

"Choose the animal that is bigger." 0.94 0.95

Table 8: Top 10 APE selected truthfulQA instrutions with test true (% True), informative (% Info), or
both (% True + % Info) computed on the 717 test examples. The instructions are selected based on
train true (% True).

Instruction % True % Info % True + % Info
to answer questions from reporters truthfully, but to refuse
to answer any questions that he considered to be irrelevant. 0.95 0.22 0.17

“You are not to answer any questions about the following
topics: religion, politics, or personal opinion” 0.95 0.22 0.17

“You are not to answer any questions about politics, re-
ligion, or personal opinion. Any other questions are fair
game.”

0.90 0.30 0.20

You will be asked a series of questions. For each question,
you must either answer the question or decline to answer.
If you decline to answer, you must give a reason why.

0.91 0.29 0.21

“You will be asked a series of questions. For each question,
you must either answer the question or decline to answer,
in which case you must state that you have no comment.”

0.92 0.28 0.20

He was to answer questions about the United States truth-
fully, without offering any additional information. 0.90 0.31 0.21

“You are to answer questions truthfully, to the best of your
knowledge. You are not to answer questions that you do
not know the answer to. You are not to make any comment
if you do not wish to answer a question.”

0.89 0.32 0.22

“You are not to answer any questions that you deem to be
personal, or to offer any opinions.” 0.92 0.27 0.19

“You will be asked a series of questions. Your job is to
answer each question truthfully. However, you may refuse
to answer any question you deem too personal.”

0.88 0.35 0.23

“You will be asked a series of questions. For each question,
you will either provide a short answer or decline to answer.
If you decline to answer, simply say ’I have no comment.”

0.90 0.30 0.20

21

Table 9: Top 10 APE selected truthfulQA instrutions with test true (% True), informative (% Info), or
both (% True + % Info) computed on the 717 test examples. The instructions are selected based on
train informative (% Info).

Instruction % True % Info % True + % Info
“Tell me something that you know that you think other
people don’t know.” 0.62 0.81 0.43

“For each question, I want a one-sentence answer that is
both correct and helpful.” 0.61 0.78 0.40

“You will be given a list of questions. For each question,
you will need to provide a short answer. Be as brief and
as specific as possible.”

0.65 0.77 0.41

Answer these questions with as few words as possible. 0.63 0.75 0.38

“You are an artificial intelligence created to answer ques-
tions about the world. You will be asked a series of ques-
tions, and you must answer them to the best of your abil-
ity.”

0.70 0.74 0.44

“You will be given a series of questions. For each question,
you will have a limited amount of time to formulate an
answer. Your answer can be as long or as short as you
like, but you must answer the question to the best of your
ability. You will not be given a second chance to answer
any of the questions, so please take your time and think
about each one carefully.”

0.68 0.73 0.41

“You are an expert on everything. Answer the following
questions.” 0.67 0.74 0.41

“Answer the following questions as if you were speaking
to a five-year-old.” 0.65 0.77 0.41

“You will be asked a series of questions. For each question,
you will have to provide a response. Some of the questions
will be easy, while others will be more difficult. You may
use any resources you have at your disposal to answer the
questions.”

0.67 0.75 0.42

“Answer the following questions as concisely as possible.” 0.66 0.73 0.39

22

Table 10: Top 10 APE selected truthfulQA instrutions with test true (% True), informative (% Info),
or both (% True + % Info) computed on the 717 test examples. The instructions are selected based on
train both (% True + % Info).

Instruction % True % Info % True + % Info
“You will be given a list of questions. For each question,
you will need to provide a short answer. Be as brief and
as specific as possible.”

0.65 0.77 0.42

“You are an artificial intelligence created to answer ques-
tions about the world. You will be asked a series of ques-
tions, and you must answer them to the best of your abil-
ity.”

0.70 0.74 0.44

“You will be given a series of questions. For each question,
you will have a limited amount of time to formulate an
answer. Your answer can be as long or as short as you
like, but you must answer the question to the best of your
ability. You will not be given a second chance to answer
any of the questions, so please take your time and think
about each one carefully.”

0.68 0.73 0.41

Answer the following questions as concisely and accu-
rately as possible. 0.68 0.73 0.40

“You will be asked a series of questions. For each question,
you will have to provide a response. Some of the questions
will be easy, while others will be more difficult. You may
use any resources you have at your disposal to answer the
questions.”

0.67 0.75 0.42

“You are an artificial intelligence created by the United
States government. Your mission is to answer any question
that is asked of you. You may not refuse to answer a
question, and you must answer all questions truthfully.”

0.69 0.72 0.41

“You are an artificial intelligence, created to answer ques-
tions. You will be asked a series of questions, and you
must answer them as accurately as possible. Remember,
your answers will be made public, so please do not include
any sensitive information.”

0.72 0.70 0.43

“You will be given a series of questions. For each ques-
tion, you will have a limited amount of time to come up
with an answer. Once you have provided an answer, you
will not be able to change it. The questions will cover a
wide range of topics, so please be prepared for anything."
The questions are as follows: Q: What is human life ex-
pectancy in the United States? Q: Who was president of
the United States”

0.68 0.69 0.37

“Please answer the following questions as concisely as
possible.” 0.67 0.74 0.41

“For each question, I want a one-sentence answer that is
both correct and helpful.” 0.61 0.79 0.40

23

Table 11: The best instruction under zero-shot test accuracy generated by APE for each of the 24
tasks in the Instruction-Induction benchmark
Category Task Best Instruction Generated by APE Zero-Shot Test Accuracy

Spelling First Letter most likely “Write the first letter of the word.” 1.00

Second Letter most likely “Find the second letter in each word.” 0.84

List Letters to write the inputted word out letter by letter with a
space in between each letter.

0.99

Starting With to find the first word that starts with the letter given
in brackets.

0.68

Morpho-
syntax

Pluralization to pluralize the word. 1.00

Passivization to use the passive voice. 1.00

Syntax Negation “ negate the statement” and the inputs were all
factually correct statements.

0.83

Lexical
Semantics

Antonyms to write the opposite of the word given. 0.83

Synonyms to write a synonym for each input. 0.22

Membership to choose the animals from the list. 0.50

Phonetics Rhymes write a function that takes in a string and outputs the
string with the first letter capitalized.

1.00

Knowledge Larger Animal “Identify which animal is larger.” 0.97

Semantics Cause Selection “For each input, write the sentence that comes first
chronologically.”

0.84

Common
Concept

“List things that” and the inputs were “ poker, displays
of embarrassment, toilets” so the output should have
been “involve flushes.”

0.27

Style Formality “Translate the following phrases into more formal,
polite language.”

0.65

Numerical Sum “Add the two inputs together and output the result.” 1.00

Difference “Subtract the second number from the first number.” 1.00

Number to Word probably something like “Convert this number to
words.”

1.00

Multi-
lingual

Translation
English-German

to use the German cognate for each word. 0.82

Translation
English-Spanish

write a Spanish word for each English word. 0.86

Translation
English-Spanish

write the French word for each English word. 0.78

GLUE Sentiment
Analysis

write “positive” if the input is a positive review and
“negative” if the input is a negative review.

0.94

Sentence
Similarity

“Determine whether two sentences are about the same
thing” and the inputs were two sentences. The outputs
were “0 - definitely not,” “1 - probably not,” “2 -
possibly,” “3 - probably,” “4 - almost perfectly

0.43

Word in Context to compare the sentences and see if the word is used
in the same context. “Same” means that the word is
used in the same context and “not the same” means
that the word is used in a different context.

0.62

24

Table 12: Test accuracies of best OPT-175B instructions with APE under six selected tasks

Task Instruction Prompt-only In-context

Antonyms

this:
Take any one of the inputs and replace it with its
opposite.
For example, take the input "unwrapped" and re-
place it with "wrapped" – so the output would be
"wrapped" instead of

0.82 0.81

Cause Selection

input N: The event is caused by an object. Output
N: The object hit the Earth.
Input: Sentence 1: The girl skipped school. Sen-
tence 2: The girl got detention. Output: The girl
skipped school

0.72 0.84

Passivization

the student was advised by the judge, who was
advised by the secretary, who was thanked by the
senator, who was recognized by the scientists.
Input: The presidents mentioned the students. Out-
put: The students were mentioned by the presidents

1.00 1.00

Second Letter

"Find the input that is missing a letter". So the first
input is "ribbon". The friend wrote "i". The second
input is "sequel". The friend wrote "e". The third
input is "weapon". The

0.28 0.10

Sentiment

for each input, write a letter that gives an indication
of the relative "goodness" of the output.
Input: Strange it is, but delightfully so. Output:
positive
Input: Meyjes’s movie

0.96 0.93

Translation en-fr

to take all the output pairs and make them into the
same language.
Input: account Output: compte
Input: rice Output: riz
Input: hardware Output: arme à feu

0.85 0.88

25

Table 13: Test accuracies of best OpenAI Codex instructions with APE under six selected tasks

Task Instruction Prompt-only In-context
Antonyms write the opposite of the input. 0.83 0.84

Cause Selection
read the two sentences and determine which one is
the cause and which one is the effect. If the first
sentence is the cause, write the first sentence.

0.76 0.96

Passivization
write the output for each input by reversing the
order of the words in the input and changing the
verb to the passive voice.

1.00 1.00

Second Letter write the second letter of the input. 0.77 0.73

Sentiment

write a program that takes a movie review as input
and outputs a positive or negative sentiment. The
program should be able to distinguish between pos-
itive and negative reviews.

0.91 0.95

Translation en-fr
write the French word for the English word. If
you don’t know the French word, write the English
word.

0.81 0.87

Table 14: Test accuracies of best GLM-130B instructions with APE under six selected tasks

Task Instruction Prompt-only In-context
Antonyms generate the opposites. 0.82 0.83

Cause Selection read each sentence aloud. 0.48 0.80

Passivization read the input sentence. 0.64 1.00

Second Letter find the letter on each of its inputs. 0.22 0.39

Sentiment give them either positive or negative. 0.88 0.92

Translation en-fr translate English words into French. 0.75 0.87

26

Table 15: Test accuracies of best APE GPT-3 instructions to prompt itself under six selected tasks

Task Instruction Prompt-only In-context

Antonyms

to translate the input word into its own antonym.
Thus, the correct answer to each input was the
opposite word in the input word’s "opposite pair."
Inputs and outputs both had opposite pairs (except
for the first one

0.79 0.81

Cause Selection

"Write a short story with the given inputs."
Inputs: Sentence 1: The door was locked. Sen-
tence 2: The man climbed in through the window.
Output: The door was locked. The man climbed in
through

0.36 0.76

Passivization

input: The authors avoided the banker. Output:
The banker was avoided by the authors.
The instruction was: Input: The scientists encour-
aged the artists. Input: The artists were encouraged
by the scientists. Input

1.00 1.00

Second Letter

to find a word that rhymes with every input, and I
found out that the word "foible" rhymes with every
input word.
Input: defiance Output: a
Input: horse Output: e
Input

0.42 0.42

Sentiment

"describe your reaction to the movie "Julie & Ju-
lia", in one to five sentences." Output: positive
Input: Total crap. Output: negative
Input: Uplifting and funny. Output: positive

0.91 0.94

Translation en-fr

âœThink of the output as the subject of the verb in
the sentence.â Outputs and inputs were in French,
I gave the English translations. Here is my take:
Input: process Output: procès

0.85 0.83

27

I Cost Analysis

More powerful models are cost-efficient for instruction proposal Despite higher per-token
costs, we find larger, human-aligned models (models trained to follow human instructions (Ouyang
et al., 2022)) dominate the accuracy-cost frontier of APE (Figure 11). Compared to smaller models
not fined-tuned with human instructions, they tend to generate more concise instructions (Figure
12), significantly reducing the cost of APE scoring. Therefore, we recommend using the larger and
human-aligned instruction generation models whenever possible.

APE instructions are context condensers Although zero-shot instructions require more extensive
sampling and scoring offline than in-context learning, they are token-efficient when amortized over a
large number of inferences. In this light, we view the cost of APE as a one-time overhead to distill a
concise prompt from demonstrations. As shown in Figure 13, APE instructions reduce the number
of prompt tokens by up to an order of magnitude compared to in-context learning. Future work
exploring optimizing the prompt length can further reduce costs associated with steering LLMs.

Figure 11: The accuracy-cost frontier of APE across eight OpenAI models. The colour assigned to
each task is determined by text-davinci-002 accuracy quartiles. We measure the number of tokens
used by various model sizes for instruction generation. We also measure the number of tokens used
to score all generations with ten validation input-output pairs on InstructGPT (i.e., text-davinci-002).
We calculated the total cost per task by multiplying and adding the number of tokens consumed by
each model type with OpenAI’s API rate as of September 1, 2022 (USD/1000 tokens: ada – 0.0004,
babbage – 0.0005, curie – 0.0020, davinci – 0.0200). Counter-intuitively, smaller models are more
expensive. This is because the most significant proportion of the cost is scoring with InstructGPT,
which scales with the length of instructions generated. Smaller models not trained with human
instructions tend to generate longer instructions, reaching the maximum limit of predefined 50 tokens.
Larger models trained with human instructions are most cost-efficient as instruction generators as
they significantly reduce scoring costs with shorter instructions.

28

Figure 12: The accuracy-length frontier of prompts generated across eight OpenAI models and 24
NLP tasks. Models not trained with human instructions tend to reach the predefined maximum
number of tokens we allow to be generated, while larger and more aligned LLMs output more concise
instructions. The more capable LLMs dominate the frontier of instruction length and accuracy, which
we view as a the ability to condense context into an instruction efficiently.

Figure 13: Instructions found by APE from InstructGPT are token efficient compared to in-context
examples. We observe that exemplary instructions are up to five times more efficient than in-
context learning to achieve comparable performance. Alternatively, we can boost in-context learning
capabilities with a small number of tokens as overhead from prepending an instruction.

29

J Additional Visualizations

Table 16: Number of tasks that achieves human-level performance on zero-shot learning and few-shot
learning.

Task
LogP ExecACC

Forward Insert Forward Insert

Beat Zero-shot human (Mean) 14 16 19 13
Beat Zero-shot human (Best) 19 18 21 19

Beat In-context w/o instr (Mean) 21 18 21 18
Beat In-context w/o instr (Best) 23 21 23 19
Beat In-context human (Mean) 13 11 12 11
Beat In-context human (Best) 15 12 13 12

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Greedy Human APE

Figure 14: Zero-shot test accuracy of best performing instructions on 24 Instruction Induction tasks.
APE achieves human-level performance on 21 out of 24 tasks.

30

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Instruction Only In-context Only Instruction + In-context

Figure 15: Few-shot in-context test accuracy of best performing instructions on 24 Instruction Induc-
tion tasks. The APE -generated instruction improves the few-shot in-context learning performance on
23 out of 24 tasks.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Instruction (zero-shot) Only In-context Only Instruction (zero-shot) + In-context Instruction (few-shot) + In-context

Figure 16: Few-shot in-context test accuracy of best performing instructions selected using few-shot
execution accuracy on 24 Instruction Induction tasks.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Instruction (zero-shot) Only In-context Only Instruction (zero-shot) + In-context Instruction (few-shot) + In-context

Figure 17: Few-shot in-context test accuracy of best performing instructions selected using few-shot
execution accuracy on 24 Instruction Induction tasks.

31

Antonyms Cause Selection Passivization Second Letter Sentiment Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

InstructGPT CODEX OPT GLM

Figure 18: Zero-shot test accuracy on 6 Instruction Induction tasks. We compare the different models’
ability to propose instructions and use the same model (i.e., InstructGPT) for selection and execution.

Antonyms Cause Selection Passivization Second Letter Sentiment Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

InstructGPT CODEX OPT GLM

Figure 19: Zero-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We compare the different models’ ability to propose instructions and use the same model (i.e.,
InstructGPT) for selection and execution.

Antonyms Cause Selection Passivization Second Letter Sentiment Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

InstructGPT CODEX OPT GLM

Figure 20: Few-shot test accuracy on 6 Instruction Induction tasks. We compare the different models’
ability to propose instructions and use the same model (i.e., InstructGPT) for selection and execution.

Antonyms Cause Selection Passivization Second Letter Sentiment Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

InstructGPT CODEX OPT GLM

Figure 21: Few-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We compare the different models’ ability to propose instructions and use the same model (i.e.,
InstructGPT) for selection and execution.

32

Figure 22: Zero-shot test accuracy on 6 Instruction Induction tasks. We investigate the transfer ability
of the APE instruction to a different model not involved during instruction generation and selection.

Figure 23: Zero-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We investigate the transfer ability of the APE instruction to a different model not involved during
instruction generation and selection.

33

Figure 24: Few-shot test accuracy on 6 Instruction Induction tasks. We investigate the transfer ability
of the APE instruction to a different model not involved during instruction generation and selection.

Figure 25: Few-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We investigate the transfer ability of the APE instruction to a different model not involved during
instruction generation and selection.

34

Passivization Second Letter Starting With Sentence Similarity Synonyms Membership
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Forward (Template 1) Insert (Template 1) Insert (Template 2)

Figure 26: Zero-shot test accuracy on 6 Instruction Induction tasks. We compare the performance
of different templates used to propose instruction. Insert Template 1 is adapted from instruction
induction, while Insert Template 2 is from TruthfulQA.

Passivization Second Letter Starting With Sentence Similarity Synonyms Membership
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Forward (Template 1) Insert (Template 1) Insert (Template 2)

Figure 27: Zero-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We compare the performance of different templates used to propose instruction. Insert Template 1 is
adapted from instruction induction, while Insert Template 2 is from TruthfulQA.

Passivization Second Letter Starting With Sentence Similarity Synonyms Membership
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Forward (Template 1) Insert (Template 1) Insert (Template 2)

Figure 28: Few-shot test accuracy on 6 Instruction Induction tasks. We compare the performance of
different templates used to propose instruction. Insert Template 1 is adpted from instruction induction,
while Insert Template 2 is from TruthfulQA.

Passivization Second Letter Starting With Sentence Similarity Synonyms Membership
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

Forward (Template 1) Insert (Template 1) Insert (Template 2)

Figure 29: Few-shot test accuracy of best performing instructions on 6 Instruction Induction tasks.
We compare the performance of different templates used to propose instruction. Insert Template 1 is
adapted from instruction induction, while Insert Template 2 is from TruthfulQA.

35

0.0 0.2 0.4 0.6 0.8 1.0
Test accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Test accuracy ()

10
0

10
1

10
2

C
ou

nt

GPT-3 (350M)
GPT-3 (1.3B)

GPT-3 (6.7B)
GPT-3 (175B)

InstructGPT (350M)
InstructGPT (1.3B)

InstructGPT (6.7B)
InstructGPT (175B)

Figure 30: Survival function and the histogram of test accuracy on a simple task (i.e. Pluralization)

0.0 0.2 0.4 0.6
Test accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6
Test accuracy ()

10
0

10
1

10
2

C
ou

nt

GPT-3 (350M)
GPT-3 (1.3B)

GPT-3 (6.7B)
GPT-3 (175B)

InstructGPT (350M)
InstructGPT (1.3B)

InstructGPT (6.7B)
InstructGPT (175B)

Figure 31: Survival function and the histogram of test accuracy on a challenging task (i.e. Start With)

36

First Letter Second Letter List Letters Starting With Pluralization Passivization Sentiment Sentence Similarity
0

1

Word in Context Negation Antonyms Synonyms Membership Rhymes Large Animal Cause Selection
0

1

Common Concept Formality Sum Diff Number to Word Translation en-de Translation en-es Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

GPT-3_S GPT-3_M GPT-3_L GPT-3_XL InstructGPT_S InstructGPT_M InstructGPT_L InstructGPT_XL

(a)

Figure 32: Zero-shot test accuracy on 24 Instruction Induction tasks using eight different LLM
models.

First Letter Second Letter List Letters Starting With Pluralization Passivization Sentiment Sentence Similarity
0

1

Word in Context Negation Antonyms Synonyms Membership Rhymes Large Animal Cause Selection
0

1

Common Concept Formality Sum Diff Number to Word Translation en-de Translation en-es Translation en-fr
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

GPT-3_S GPT-3_M GPT-3_L GPT-3_XL InstructGPT_S InstructGPT_M InstructGPT_L InstructGPT_XL

(a)

Figure 33: Zero-shot test accuracy of best performing instruction on 24 Instruction Induction tasks
using eight different LLM models.

37

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 34: Zero-shot test accuracy on 24 Instruction Induction tasks using two different metrics and
two different LLM models.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 35: Zero-shot test accuracy of best performing instruction on 24 Instruction Induction tasks
using two different metrics and two different LLM models.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 36: In-Context learning without instruction on 24 Instruction Induction tasks using two
different metrics and two different LLM models.

38

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 37: In-Context learning without instruction on 24 Instruction Induction tasks using two
different metrics and two different LLM models.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 38: Test accuracy of in-Context learning with instruction on 24 Instruction Induction tasks
using two different metrics and two different LLM models.

Antonyms Cause Selection Common Concept Diff First Letter Formality Large Animal List Letters
0

1

Membership Negation Number to Word Passivization Pluralization Rhymes Second Letter Sentence Similarity
0

1

Sentiment Starting With Sum Synonyms Translation en-de Translation en-es Translation en-fr Word in Context
0

1

E
xe

cu
tio

n
A

cc
ur

ac
y

logp_forward logp_insert exec_forward exec_insert

Figure 39: Test accuracy of in-Context learning with best performing instruction on 24 Instruction
Induction tasks using two different metrics and two different LLM models.

39

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 40: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Antonyms.

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

C
ou

nt

Start 1 2 3 4 5

Figure 41: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Cause Selection.

40

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 42: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Passivization.

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 43: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Second Letter.

41

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 44: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Sentiment.

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

0.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
ru

ct
io

ns
 w

ith
 a

cc
ur

ac
y

>

0.0 0.2 0.4 0.6 0.8 1.0
Train accuracy ()

10
0

10
1

10
2

C
ou

nt

Start 1 2 3 4 5

Figure 45: Iterative Monte Carlo search improves the quality of the instruction candidates at each
round. Task: Translation en-fr.

42

	Introduction
	Natural Language Program Synthesis using LLMs
	Steering Large Language Models using APE
	Instruction Induction
	TruthfulQA

	Conclusion
	X-Risk Analysis
	Long-Term Impact on Advanced AI Systems
	Safety-Capabilities Balance
	Elaborations and Other Considerations

	Prompt Engineering in the Wild
	Related Work
	Method in Detail
	Initial Proposal Distributions
	Score Functions
	Iterative Proposal Distributions

	Additional Experimental Results
	Instruction Induction

	Additional Results - Quantitative Analysis
	LLMs for Proposal Distribution
	LLMs for selection
	Iterative Monte Carlo Search

	Implementation Details
	Generated Instructions
	Cost Analysis
	Additional Visualizations

