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Abstract001

The rapid spread of misinformation across dig-002
ital platforms poses significant societal risks.003
Yet most of the automated fact-checking sys-004
tems depend on a single knowledge source005
and prioritize only supporting evidence with-006
out exposing disagreement among sources, lim-007
iting coverage and transparency. To address008
these limitations, we present a complete sys-009
tem for open-domain fact verification (ODFV)010
that leverages large language models (LLMs),011
multi-perspective evidence retrieval, and cross-012
source disagreement analysis. Our approach in-013
troduces a novel retrieval strategy that collects014
evidence for both the original and the negated015
forms of a claim, enabling the system to cap-016
ture supporting and contradicting information017
from diverse sources Wikipedia, PubMed, and018
Google. These evidence sets are filtered, dedu-019
plicated, and aggregated across sources to form020
a unified and enriched knowledge base that bet-021
ter reflects the complexity of real-world infor-022
mation. This aggregated evidence is then used023
for veracity classification using LLMs. We024
further enhance interpretability by analyzing025
model confidence scores to quantify and visu-026
alize inter-source disagreement. Through ex-027
tensive evaluation on four benchmark datasets028
with five LLMs, we showed that knowledge029
aggregation not only improves claim classifica-030
tion performance but also reveals differences031
in source-specific reasoning. Our findings un-032
derscore the importance of embracing diversity,033
contradiction, and aggregation in evidence for034
building reliable and transparent fact-checking035
systems. Our full code is available on GitHub 1036

037

1 Introduction038

In an age where information travels faster than ever039

(Vosoughi et al., 2018), the rise of misinformation040

1https://anonymous.4open.science/r/Automated-Fact-
Verification-system–0BF7/

(Barve et al., 2023) and disinformation (Ghosal 041

et al., 2020) has emerged as one of the most press- 042

ing challenges for society. With just a few clicks, 043

misleading claims and fabricated narratives can 044

cascade across digital platforms, shaping public 045

opinion and, in some cases, threatening lives and 046

livelihoods (Arcos et al., 2022). Nowhere is this 047

danger more pronounced than in domains such as 048

healthcare, finance, and public safety areas where 049

trust in accurate information is huge, and where the 050

consequences of misinformation can be threatening 051

(Sarrouti et al., 2021; Rangapur et al., 2025; Addy, 052

2020). 053

Recognizing this urgent problem, the natural lan- 054

guage processing (NLP) community has rallied to 055

develop automated systems that can prevent the 056

tide of falsehoods online. Over the past few years, 057

researchers have proposed increasingly advanced 058

methods for detecting and verifying claims (Augen- 059

stein et al., 2024; Eldifrawi et al., 2024; Wolfe and 060

Mitra, 2024). Yet, despite this progress, real-world 061

solutions remain impractical. Most current sys- 062

tems focus narrowly on isolated pieces of evidence, 063

overlooking the complex reality that information 064

is often distributed across multiple sources rather 065

than contained within a single repository. 066

Moreover, the vast landscape of available knowl- 067

edge is rarely leveraged to its full potential. Fact- 068

checking systems tend to rely on a single, primary 069

knowledge source such as Wikipedia while ignor- 070

ing the wealth of information contained in sec- 071

ondary or tertiary sources, like scientific literature 072

or web search results. This limitation not only con- 073

strains the system’s ability to make well-rounded 074

decisions but also hinders interpretability for end- 075

users, who are left unaware of the underlying dis- 076

agreements among sources. 077

These challenges raise two pivotal questions at 078

the heart of our work: How can we build fact- 079

checking systems that embrace, rather than ignore, 080

the diversity and disagreement inherent in real- 081
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Figure 1: Workflow of the proposed system. A claim and its negation are used to retrieve evidence from Wikipedia,
PubMed, and Google; candidate sentences are ranked and deduplicated, keeping the top-p per source. The per-source
sets are aggregated into a compact evidence set Ei, which a zero-shot LLM uses to predict the verdict; per-source
log-probabilities are reported and visualized to convey agreement and uncertainty.

world evidence? And how can we transparently082

convey this complexity to users, empowering them083

to make informed decisions based on a full spec-084

trum of perspectives? This study addresses these085

questions directly by introducing a novel system086

dedicated to open-domain fact verification. It ef-087

fectively captures, measures, and conveys the com-088

plexity and contentious nature of knowledge in the089

digital era. Our methodology excels in retrieving090

context-specific evidence while also maintaining091

a diversity of viewpoints by including both cor-092

roborative and opposing information. Our main093

contributions include:094

• We introduce a novel document retrieval ap-095

proach that considers both supporting and op-096

posing evidence of a claim, preserving con-097

trasting and corroborating information. Our098

method’s effectiveness is shown through eval-099

uations on four benchmark datasets, using ev-100

idence from three major knowledge bases.101

• We demonstrate the effectiveness of aggre-102

gating evidence from multiple knowledge103

sources, as opposed to relying on a single104

source, for claim verification, mirroring the105

human approach of consulting diverse sources106

to assess the veracity of information.107

• Finally, we showed how the verdict for each 108

claim can vary across different knowledge 109

sources. We quantified the level of disagree- 110

ment among them, even when the sources 111

reach the same verdict, using confidence 112

scores. 113

To summarize, we present a new open-domain 114

fact-verification pipeline that gathers evidence from 115

multiple angles. For each claim, we retrieve docu- 116

ments that both support it and challenge it by also 117

searching for a negated or opposing formulation, 118

then filter and deduplicate the combined results. 119

We broaden coverage by merging multiple knowl- 120

edge sources beyond a single primary repository. 121

Five state-of-the-art zero-shot large language mod- 122

els reason over this evidence and provide confi- 123

dence signals that we aggregate to quantify how 124

strongly the sources disagree. The result is bet- 125

ter document recall, stronger claim-classification 126

performance, and an interpretable view of where 127

knowledge converges or conflicts so users can trust 128

the outcome. 129

2 Related Work 130

Fact verification has received increasing atten- 131

tion in the computational linguistics and AI com- 132
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munities, driven by the urgent need to address133

the proliferation of online misinformation (Patwa134

et al., 2022; Guo et al., 2022). Open-domain fact135

verification (ODFV) has matured through signif-136

icant advances in evidence retrieval, model rea-137

soning, and the integration of diverse knowledge138

sources (Dmonte et al., 2024). While remarkable139

progress has been made, important challenges re-140

main regarding evidence selection, handling contra-141

dictory information, and ensuring interpretability.142

2.1 Dual-Perspective Evidence Retrieval143

Most ODFV pipelines retrieve only evidence sup-144

porting the claim, risking confirmation bias (Zhou145

et al., 2019; Hanselowski et al., 2018; Wang et al.,146

2017; Jiang et al., 2020). CONFLICTINGQA147

shows that retrieval-augmented LMs often prior-148

itize relevance over stylistic or credibility cues, di-149

verging from human judgments (Wan et al., 2024).150

While HCI and argumentation research study how151

people handle conflicting information (Fogg et al.,152

2003; Kakol et al., 2017; Gretz et al., 2020; Toledo153

et al., 2019), how AI systems reconcile contradic-154

tions remains underexplored (Wan et al., 2024).155

Thorne et al. (Thorne and Vlachos, 2018) advocate156

considering both supporting and refuting evidence,157

which improves transparency but complicates rec-158

onciliation and verdict aggregation. Samarinas et159

al. (Samarinas et al., 2021) increase explainabil-160

ity by distinguishing support vs. refute, yet re-161

trieve only from the original claim. We extend162

this paradigm by retrieving with both the orig-163

inal claim and its explicit negation, forming a164

dual-perspective evidence pool that better captures165

complementary support and contradiction for rank-166

ing and verdicts.167

2.2 Multi-Source Evidence Aggregation168

The choice of knowledge source and retrieval169

method strongly affects ODFV performance.170

(Vladika and Matthes, 2024) shows that both171

source (PubMed, Wikipedia, Google) and retrieval172

technique (BM25 vs. semantic search) significantly173

impact accuracy PubMed is strongest for special-174

ized biomedical claims, while Wikipedia better175

serves everyday health queries. Other work largely176

adopts single-source pipelines: (Santos and Pardo,177

2020) uses a Portuguese Wikipedia based knowl-178

edge graph and Google snippets; many systems179

rely on Wikipedia and cast verification as NLI (Nie180

et al., 2019; Si et al., 2021; Thorne et al., 2018;181

Yoneda et al., 2018; Ma et al., 2019); DrQA uses182

Wikipedia exclusively for open-domain QA (Chen 183

et al., 2017); MultiFC retrieves web evidence via 184

a search API (Augenstein et al., 2019); and Cao 185

et al. (Cao et al., 2024) incorporate external multi- 186

modal signals with a heterogeneous graph. Despite 187

this progress, there has been little to no systematic 188

study of aggregating evidence across multiple in- 189

dependent sources for a single claim. We address 190

this gap with a multi-source pipeline that retrieves 191

from Wikipedia, PubMed, and Google, then dedu- 192

plicates, merges, and ranks sentences to form a 193

unified evidence set per claim, capturing support 194

and contradiction that any single source may miss. 195

2.3 Measuring Disagreement Across Evidence 196

Sources 197

Disagreement across sources is both common and 198

informative in ODFV. Prior work quantifies un- 199

certainty via inter-source (or annotator) agree- 200

ment (Kavtaradze, 2024), models ambiguity and 201

annotator disagreement with soft labels (AMB- 202

IFC) (Glockner et al., 2024), promotes representa- 203

tional diversity via disagreement regularization in 204

attention (Li et al., 2018), and argues for preserving 205

divergent judgments rather than collapsing to ma- 206

jority vote (Leonardelli et al., 2023). Token-level 207

uncertainty methods such as CCP further isolate 208

uncertainty tied to factual content (Fadeeva et al., 209

2024). Yet, most systems still do not explicitly ex- 210

pose source-level disagreement to users. In our ap- 211

proach, for each claim, we compute per-source con- 212

fidence scores (log-probabilities) for the predicted 213

label, then quantify dispersion across sources. Low 214

dissemination indicates agreement; high dissemi- 215

nation flags disagreement and potential uncertainty. 216

We visualize these per-source logprobs to show 217

confident agreements and ambiguous cases, en- 218

abling transparent, multi-source verdict interpre- 219

tation to the end user. 220

3 Automated Fact-Checking Pipeline 221

Our comprehensive methodology for Open- 222

Domain Fact Verification (ODFV) is designed to 223

systematically generate, retrieve, select, and evalu- 224

ate evidence to accurately classify textual claims. 225

The figure 1 describes the whole architecture of 226

our pipeline. The methodology consists of three 227

key components: (1) generation of negated claims, 228

(2) evidence retrieval and selection, and (3) claim 229

verification using Large Language Models (LLMs). 230

We describe each component in detail in the fol- 231

3



Dataset Model
Knowledge

Source
Original Claim Original + Negated Claim

A P R F1 A P R F1
SC

IF
A

C
T

L
la

m
a

70
B

Wikipedia 0.430 0.468 0.407 0.415 0.230 0.376 0.335 0.203
Pubmed 0.597 0.588 0.597 0.584 0.617 0.609 0.626 0.605
Google 0.550 0.543 0.558 0.530 0.607 0.615 0.620 0.573

L
la

m
a

40
5B

Wikipedia 0.447 0.489 0.420 0.425 0.443 0.475 0.421 0.427
Pubmed 0.593 0.583 0.592 0.576 0.617 0.606 0.622 0.599
Google 0.580 0.573 0.577 0.550 0.597 0.591 0.602 0.562

Ph
i-

4 Wikipedia 0.410 0.474 0.391 0.379 0.413 0.473 0.401 0.400
Pubmed 0.583 0.574 0.583 0.578 0.587 0.573 0.599 0.579
Google 0.590 0.579 0.583 0.574 0.593 0.584 0.608 0.568

Q
w

en
2.

5 Wikipedia 0.437 0.504 0.410 0.401 0.423 0.478 0.403 0.398
Pubmed 0.583 0.573 0.575 0.573 0.597 0.588 0.603 0.591
Google 0.587 0.578 0.577 0.565 0.590 0.567 0.595 0.563

M
is

tr
al Wikipedia 0.393 0.447 0.368 0.358 0.393 0.438 0.375 0.368

Pubmed 0.573 0.565 0.571 0.566 0.590 0.585 0.595 0.585
Google 0.583 0.576 0.582 0.568 0.603 0.591 0.620 0.586

A
ve

ri
te

c

L
la

m
a

70
B

Wikipedia 0.259 0.417 0.355 0.229 0.230 0.376 0.335 0.203
Pubmed 0.183 0.444 0.298 0.163 0.196 0.438 0.307 0.176
Google 0.375 0.351 0.354 0.288 0.383 0.384 0.387 0.311

L
la

m
a

40
5B

Wikipedia 0.379 0.367 0.372 0.278 0.340 0.376 0.360 0.260
Pubmed 0.267 0.394 0.330 0.221 0.273 0.404 0.329 0.229
Google 0.434 0.383 0.395 0.321 0.444 0.363 0.396 0.317

Ph
i-

4 Wikipedia 0.424 0.416 0.402 0.306 0.463 0.438 0.408 0.325
Pubmed 0.308 0.500 0.333 0.230 0.326 0.553 0.330 0.242
Google 0.453 0.385 0.376 0.334 0.495 0.389 0.402 0.360

Q
w

en
2.

5 Wikipedia 0.238 0.552 0.347 0.228 0.214 0.433 0.321 0.193
Pubmed 0.153 0.404 0.283 0.119 0.173 0.559 0.295 0.141
Google 0.358 0.393 0.383 0.301 0.389 0.407 0.413 0.329

M
is

tr
al Wikipedia 0.320 0.530 0.379 0.281 0.322 0.516 0.382 0.283

Pubmed 0.196 0.476 0.298 0.154 0.202 0.474 0.295 0.160
Google 0.399 0.394 0.374 0.331 0.440 0.409 0.401 0.359

L
ia

r

L
la

m
a

70
B

Wikipedia 0.210 0.234 0.185 0.114 0.219 0.573 0.196 0.130
Pubmed 0.207 0.353 0.183 0.100 0.200 0.319 0.175 0.087
Google 0.394 0.657 0.388 0.382 0.402 0.659 0.397 0.393

L
la

m
a

40
5B

Wikipedia 0.243 0.241 0.235 0.207 0.256 0.245 0.247 0.217
Pubmed 0.222 0.212 0.219 0.170 0.203 0.188 0.198 0.143
Google 0.396 0.514 0.398 0.401 0.415 0.541 0.413 0.419

Ph
i-

4 Wikipedia 0.226 0.237 0.212 0.164 0.230 0.258 0.212 0.167
Pubmed 0.202 0.208 0.183 0.108 0.200 0.193 0.183 0.106
Google 0.387 0.456 0.391 0.386 0.385 0.454 0.390 0.387

Q
w

en
2.

5 Wikipedia 0.210 0.334 0.184 0.096 0.211 0.323 0.185 0.097
Pubmed 0.201 0.090 0.174 0.073 0.200 0.085 0.172 0.071
Google 0.402 0.737 0.391 0.382 0.408 0.728 0.397 0.389

Table 1: Original-only vs. original+negated evidence in zero-shot evaluation. We report Accuracy (A), Precision
(P), Recall (R), and macro-F1 across datasets, models, and knowledge sources (Wikipedia, PubMed, Google).
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Dataset Model
Knowledge

Source
Original Claim Original + Negated Claim

A P R F1 A P R F1
L

ia
r

M
is

tr
al Wikipedia 0.210 0.334 0.184 0.096 0.211 0.323 0.185 0.097

Pubmed 0.214 0.134 0.184 0.105 0.206 0.116 0.176 0.095
Google 0.375 0.608 0.361 0.356 0.381 0.631 0.365 0.362

Pu
bH

ea
lth

L
la

m
a

70
B

Wikipedia 0.245 0.333 0.313 0.197 0.241 0.325 0.318 0.195
Pubmed 0.199 0.313 0.315 0.163 0.207 0.341 0.331 0.169
Google 0.451 0.377 0.356 0.266 0.467 0.391 0.393 0.292

L
la

m
a

40
5B

Wikipedia 0.317 0.319 0.346 0.240 0.353 0.480 0.386 0.270
Pubmed 0.323 0.323 0.380 0.247 0.324 0.329 0.354 0.243
Google 0.535 0.631 0.384 0.316 0.559 0.392 0.398 0.329

Ph
i-

4 Wikipedia 0.305 0.364 0.314 0.255 0.330 0.383 0.329 0.275
Pubmed 0.261 0.307 0.283 0.213 0.284 0.328 0.288 0.230
Google 0.492 0.421 0.355 0.336 0.517 0.413 0.365 0.356

Q
w

en
2.

5 Wikipedia 0.183 0.343 0.314 0.158 0.194 0.345 0.322 0.170
Pubmed 0.165 0.303 0.308 0.139 0.176 0.322 0.304 0.151
Google 0.463 0.473 0.387 0.281 0.476 0.391 0.386 0.295

M
is

tr
al Wikipedia 0.424 0.297 0.266 0.229 0.417 0.274 0.247 0.212

Pubmed 0.425 0.262 0.223 0.184 0.440 0.302 0.239 0.198
Google 0.496 0.349 0.304 0.278 0.488 0.341 0.283 0.258

Table 2: Extension of Table 1: Comparison of Original Claims vs. Original + Negated Claims

Dataset Model
Knowledge Source

Wikipedia Pubmed Google Merged(W+P+G)

SciFact

Llama 70B 0.430 0.597 0.550 0.610
Llama 405B 0.447 0.593 0.580 0.597

Phi-4 0.410 0.583 0.590 0.583
Qwen 2.5 0.437 0.583 0.587 0.607
Mistral 0.393 0.573 0.583 0.617

Averitec

Llama 70B 0.230 0.196 0.383 0.384
Llama 405B 0.340 0.273 0.444 0.574

Phi-4 0.463 0.326 0.495 0.515
Qwen 2.5 0.214 0.173 0.389 0.387
Mistral 0.322 0.202 0.440 0.521

Liar

Llama 70B 0.219 0.200 0.402 0.300
Llama 405B 0.256 0.203 0.415 0.320

Phi-4 0.230 0.200 0.385 0.289
Qwen 2.5 0.211 0.200 0.408 0.285
Mistral 0.211 0.206 0.381 0.294

PubHealth

Llama 70B 0.241 0.207 0.467 0.449
Llama 405B 0.353 0.324 0.559 0.557

Phi-4 0.330 0.284 0.517 0.553
Qwen 2.5 0.194 0.176 0.476 0.467
Mistral 0.417 0.440 0.488 0.490

Table 3: Comparative Accuracy of Individual vs. Aggregated Knowledge Sources (Wikipedia+PubMed+Google)
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lowing subsections.232

3.1 Datasets233

We evaluate our ODFV system on four bench-234

marks ranging scientific, health, sociopolitical, and235

political claims: SciFact (Wadden et al., 2020)236

(biomedical claims with sentence-level evidence237

from abstracts), PubHealth (Kotonya and Toni,238

2020) (health claims with expert justifications),239

Averitec (Schlichtkrull et al., 2023) (controver-240

sial/ambiguous sociopolitical claims emphasizing241

uncertainty), and LIAR (Wang, 2017) (large-scale242

political claims from speeches, social media, and243

news). Table 4 in the appendix summarizes do-244

mains, sources, label sets, and claim counts.245

246

3.2 Generation of Negated Claims247

For each claim set C = {c1, . . . , cn}, we generate248

a negated counterpart c̄i for every ci using Mis-249

tral AI2, producing informative contrasts (includ-250

ing numerical reframing). For example: “A de-251

ficiency of vitamin B12 increases homocysteine”252

→ “A surplus of vitamin B12 decreases homocys-253

teine”; and “5% of perinatal mortality is due to low254

birth weight” → “95% of perinatal mortality is not255

due to low birth weight”. Pairing (ci, c̄i) ensures256

both supportive and contradictory perspectives for257

subsequent retrieval and verification.258

3.3 Evidence Retrieval259

We use three major knowledge sources, Wikipedia,260

PubMed, and Google, guided by (Vladika and261

Matthes, 2024), which finds Wikipedia stronger on262

popular/trending claims and PubMed more precise263

for technical/scientific queries. To ensure coverage264

and domain adaptability, we utilized all three.265

Let K = {k1, k2, k3} denote Wikipedia,266

PubMed, and Google. For each claim ci ∈ C and267

source kj ∈ K, we retrieve the top-k documents268

R(ci, kj) = {d(i,j)1 , . . . , d
(i,j)
k },269

and do so for both ci and its negation c̄i to gather270

supportive, neutral, and potentially contradictory271

evidence.272

Source-specific pipelines:273

• Wikipedia: We used English dumps3 (∼7M274

articles) cleaned with WikiExtractor (Attardi,275

2015) and indexed in Elasticsearch4 for scal-276

2https://docs.mistral.ai/api/
3https://dumps.wikimedia.org/
4https://www.elastic.co/elasticsearch

able retrieval. 277

• PubMed: 23.6M abstracts5 preprocessed and 278

encoded with transformer-based sentence em- 279

beddings for dense retrieval, enhanced by 280

BM25 (Amati, 2009) for lexical ranking. 281

• Google: We leveraged Google Custom Search 282

API6 queries each claim and returns ranked 283

results (title, snippet, URL) as web evidence. 284

3.4 Evidence Selection 285

After retrieval, we filter sentences using SPICED 286

embeddings (Shushkevich et al., 2023). For each 287

claim x ∈ {c, c̄}, we embed the claim and every 288

sentence from the top M retrieved documents and 289

compute their cosine similarity. From each docu- 290

ment we keep the top-k sentence(s) by similarity 291

and unite them across documents to form the evi- 292

dence set. We apply the same procedure to c and c̄ 293

to capture both supportive and contradictory con- 294

text. 295

3.5 Evidence Deduplication and Final 296

Selection 297

The core idea is to remove overlapping (dupli- 298

cate) evidence sentences and merge the rest. For 299

claim ci and source kj , let E+
ij = E(ci, kj) and 300

E−
ij = E(c̄i, kj). After normalization (lowercas- 301

ing, punctuation stripping), we form candidates via 302

symmetric difference with light merging (to fuse 303

split segments, e.g., [SEP]): 304

Ecand
ij = Merge

(
Ẽ+

ij△Ẽ−
ij

)
. 305

We then rank Ecand
ij by SPICED (Shushkevich 306

et al., 2023) similarity to ci and keep the top-p 307

as Efinal
ij . Finally, we aggregate per-claim evidence 308

across sources as 309

Ei =

|K|⋃
j=1

Efinal
ij . 310

3.6 Veracity Prediction 311

For final classification, we employ a large language 312

model (LLM), denoted L, to predict the veracity of 313

each claim ci given Ei. We evaluate five state-of- 314

the-art LLMs (open or widely available): Llama 3.3 315

(70B) and Llama 3.1 (405B) (Grattafiori et al., 316

2024), Mistral-Large, Qwen 2.5 (Team, 2024), 317

5https://pubmed.ncbi.nlm.nih.gov/download/
6https://developers.google.com/custom-

search/v1/overview
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Figure 2: Confidence distribution (KDE) across different knowledge sources for the Averitec dataset, illustrating
variation in model certainty and inter-source disagreement during fact verification

and Phi-4 (Abdin et al., 2024), selected for strong318

benchmark performance and accessibility (Fourrier319

et al., 2024). In a zero-shot setting, each model is320

prompted with the claim and its evidence using a321

direct fact-checking prompt ( Appendix Figure 6)322

adapted to each model and dataset label schema.323

We present veracity as m-class prediction over324

Y = {y1, . . . , ym} (e.g., m = 3: Refuted, Sup-325

ported, Not Enough Evidence). For each claim326

evidence pair, the LLM outputs327

ŷi = F (ci, Ei;L) ∈ Y,328

via a single-token choice (e.g., A–C) deterministi-329

cally mapped to dataset classes.330

3.7 Quantifying Source-Level Disagreement331

Recent work shows that token-level log-332

probabilities (“logprobs”) help interpret LLM333

decisions (Kauf et al., 2024). We treat each334

veracity label as a discrete token and use the335

logprob of the chosen label as the confidence score.336

For claim ci with evidence Ei, letting z be the337

logits over labels Y and ŷi = argmax softmax(z),338

confidence is339

conf(ci, Ei) = log
(
softmax(z)

)
ŷi
.340

We compute this per source (Wikipedia, PubMed,341

Google) and compare the resulting logprobs across342

sources: low dispersion indicates agreement, while343

high dispersion signals disagreement and uncer- 344

tainty; visualizations make these patterns explicit. 345

4 Results 346

We purposefully evaluate in a zero-shot setting 347

(no fine-tuning) to isolate the contribution of 348

our method rather than optimize absolute scores. 349

Across SciFact, Averitec, LIAR, and PubHealth 350

with five LLMs (Llama 70B, Llama 405B, Phi-4, 351

Qwen 2.5, Mistral), two robust trends emerge (Ta- 352

bles 1, 2, 3). 353

First, augmenting each claim with its explicit 354

negation generally improves accuracy and macro- 355

F1 over using the original claim alone, with typi- 356

cal relative gains of about +2–10% (accuracy) and 357

+2–8% (F1). Representative examples include Sci- 358

Fact with Llama 70B+Google (+10.4% accuracy, 359

+8.1% F1; 0.550→0.607, 0.530→0.573), Averitec 360

with Phi-4+Wikipedia (+9.2%, +6.2%), LIAR with 361

Llama 405B+Google (+4.8%, +4.5%), and Pub- 362

Health with Phi-4+Google (+5.1%, +6.0%). While 363

a few model source pairs show neutral or slight de- 364

creases (e.g., SciFact with Phi-4+Google F1), the 365

overall effect is consistently positive. 366

Second, aggregating evidence from Wikipedia, 367

PubMed, and Google typically boosts performance 368

beyond any single source, especially relative to 369

weaker sources: on SciFact, Llama 70B’s merged 370

F1 exceeds Wikipedia by +41.9% and Google by 371
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+10.9%; on Averitec, Llama 405B’s merged F1 is372

+68.8% over Wikipedia and +29.3% over Google;373

on PubHealth, Phi-4’s merged F1 is +67.6% over374

Wikipedia and +7.0% over Google. For LIAR,375

where Google alone is already strong, merged per-376

formance remains above Wikipedia and PubMed377

but is below Google (e.g., Llama 405B: 0.320 vs.378

0.256/0.203/0.415). Collectively, dual-perspective379

retrieval and multi-source aggregation provide380

complementary, often double-digit relative gains381

across models and datasets in zero-shot conditions,382

demonstrating the robustness and practical effec-383

tiveness of the proposed approach.384

4.1 Consensus and Conflict Across Sources385

We visualize per-source confidence (token386

log-probability of the predicted label with KDEs387

formed by source agreement among PubMed,388

Google, and Wikipedia (all, two, none). Averitec389

(Figure 2) shows the expected ordering: unanimity390

yields sharper, higher-confidence peaks; partial391

agreement is broader and lower; and no agreement392

is lowest and most dispersed, though curves are393

flatter than in structured domains. Appendix394

figures for LIAR, PubHealth, and SciFact (Figure395

3, 4, 5) confirm the same trend, with clearer396

separation in SciFact/PubHealth and greater397

dissemination in LIAR. Confidence magnitudes398

are sometimes model-dependent: Llama separates399

agreement regimes most distinctly, Mistral is400

similar but broader, Phi-4 spreads more under401

disagreement, and Qwen 2.5 shows tight peaks402

under unanimity. PubHealth violin plots (Appendix403

Figure 7) support inter-model shifts in central404

tendency and dispersion. Reporting per-source405

log-probabilities and their dispersion alongside the406

verdict thus quantifies source-level disagreement407

(e.g., Google agrees while Wikipedia does not) and408

makes residual uncertainty transparent.409

5 Discussion410

Dual-perspective retrieval, considering both the411

original claim and its negation together with ag-412

gregation across sources, yields consistent gains in413

our zero-shot results. Kernel Density Estimations414

(KDEs) of per-source log-probabilities indicate a415

strong correlation between agreement and certainty:416

complete agreement across sources like PubMed,417

Google, and Wikipedia results in sharp peaks of418

high confidence, whereas partial or no consensus419

produces lower and wider distributions, more so420

in open-domain data sets (e.g., LIAR, Averitec) 421

than in structured ones (e.g., SciFact, PubHealth). 422

Explicitly negating claims systematically enhances 423

the verification process by retrieving evidence that 424

both supports and refutes, and combining informa- 425

tion from multiple sources further improves perfor- 426

mance while decreasing uncertainty when sources 427

are in agreement. Since no single source predom- 428

inates, the utility of a source is dependent on the 429

claim and domain, justifying aggregation. In prac- 430

tice, displaying per-source confidence and its dis- 431

tribution offers a model-agnostic indicator of relia- 432

bility and reveals disagreements transparently for 433

end users. However, because raw confidence levels 434

vary between models, comparisons across models 435

require calibration or intra-model baselines. Re- 436

maining challenges include time-sensitive evidence 437

and handling long contexts, which may hinder cer- 438

tainty even when aggregation is employed. 439

6 Future Work 440

Validated in zero-shot settings, our next steps are 441

to add some advanced and useful techniques. We 442

will add temporal reasoning with time-aware re- 443

trieval and alignment of claims and evidence. We 444

will extend to multilingual verification and aim for 445

comparable performance across languages. We will 446

develop context-aware retrieval that adapts to user 447

context under neutrality constraints. We will im- 448

prove web evidence quality by grading content and 449

estimating source reliability to prioritize stronger 450

evidence. We will mitigate hallucinations through 451

faithfulness checks, confidence calibration, and en- 452

forcing consistency between evidence and verdicts. 453

7 Conclusions 454

We presented an open-domain fact verification 455

system that retrieves with both original and 456

negated claims to capture support and refutation, 457

aggregates evidence from Wikipedia, PubMed, 458

and Google, and quantifies uncertainty via label 459

log-probabilities and KDE-based visualizations. 460

Through a series of experiments, we showed that 461

negated-claim retrieval and multi-source aggrega- 462

tion yield consistent, complementary gains without 463

fine-tuning, improving both performance and inter- 464

pretability. Llama and Mistral showed consistently 465

strong performance across knowledge sources and 466

datasets. By exposing source-level agreement and 467

confidence score, the system strengthens reliability 468

and transparency in automated fact-checking. 469
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Limitations470

Our study has several limitations. First, con-471

strained context windows can truncate or under-472

weight relevant passages when verification requires473

long, multi-document evidence; although emerging474

long-context models (e.g., ≥32K tokens) may help475

in this, we did not exploit them here, and hierarchi-476

cal selection/ordering effects (“lost in the middle”)477

may depress performance. Second, open-domain478

datasets such as LIAR include noisy or adversarial479

claims and minority labels; in zero-shot classifica-480

tion, this combination yields lower macro-F1 even481

when accuracy is moderate, and models struggle482

to resolve incomplete or genuinely conflicting ev-483

idence. Third, we do not impose time-aware re-484

trieval or reasoning, so evidence that is outdated485

or post-dates the claim can lead to inconsistent486

verdicts for time-sensitive statements. Finally,487

like other LLM-based systems, our approach re-488

mains sensitive to distribution shifts, misleading in-489

puts, and biases in source corpora and pre-training,490

which can limit generalization and reliability in491

real-world settings.492
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Dataset Source Domain Label Claims

SCIFACT Science Scientific
Supported

1400Refuted
Not Enough Info

Averitec Factcheck Mixed

Supported

4568
Refuted

Conflicting evidence/cherrypicking
Not Enough Info

LIAR POLITIFACT.COM Fake News

Pants on Fire

12,836

False
Barely True
Half True

Mostly True
True

PUBHEALTH Factcheck Biomedical

True

11,832
False

Mixture
Unproven

Table 4: Overview of Benchmark Datasets
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Figure 3: Confidence distribution (KDE) across different knowledge sources for the LIAR dataset, illustrating
variation in model certainty and inter-source disagreement during fact verification
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Figure 4: Confidence distribution (KDE) across different knowledge sources for the Pubhealth dataset, illustrating
variation in model certainty and inter-source disagreement during fact verification
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Figure 5: Confidence distribution (KDE) across different knowledge sources for the SCIFact dataset, illustrating
variation in model certainty and inter-source disagreement during fact verification
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Figure 6: Prompt Template for Verdict Prediction
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Figure 7: Violin Plot for Pubhealth
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