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ABSTRACT

Pretrained vision-language models (VLMs), such as CLIP, have shown promise
in federated learning (FL) by bringing strong multimodal representations to edge
devices. However, continual adaptation remains a core challenge in practical fed-
erated settings, where task distributions evolve over time and data remain non-
IID across clients. In this emerging area, recent works adopt parameter-efficient
fine-tuning (PEFT) as a lightweight way to reduce communication overhead, yet
they fail to preserve satisfactory performance under continual learning conditions.
Meanwhile, traditional federated continual learning (FCL) methods lack the ca-
pacity to maintain cross-modal alignment crucial to VLM performance. We intro-
duce Fed-Duet, a novel Dual-channel Expert-orchestrated framework for efficient
federated continual learning in vision-language models. Fed-Duet features a dual-
channel adaptation mechanism, combining server-coordinated semantic prompts
with client-personalized modular adapters. These channels are dynamically fused
via a cross-attention mechanism, enabling effective knowledge transfer while pre-
serving multimodal alignment and mitigating forgetting. We evaluate Fed-Duet
across multiple challenging continual learning tasks in federated vision-language
settings and demonstrate that it achieves superior performance and stability com-
pared to existing approaches. Our work highlights the importance of coordinated
expert composition in enabling scalable and robust multimodal continual learn-
ing. The code is available at https://anonymous.4open.science/r/
FedDuet-0426/.

1 INTRODUCTION

Federated Learning (FL) has emerged as a key paradigm for learning from sensitive and siloed
data by enabling collaborative model training across decentralized data sources while preserving
privacy (McMahan et al., 2017; Kairouz et al., 2021; Li et al., 2020; Zhao et al., 2018). Meanwhile,
Large-scale Vision-Language Models (VLMs), pretrained on web-scale data, such as CLIP (Radford
et al., 2021), have revolutionized multimodal AI by demonstrating unprecedented capabilities in
zero-shot generalization and cross-modal understanding (Jia et al., 2021; Li et al., 2022; Du et al.,
2022). Integrating VLMs into the FL paradigm offers great potential for empowering edge devices
with advanced multimodal intelligence (Ren et al., 2025), while also introducing new challenges in
downstream learning and adaptation.

The most immediate challenge in realizing this paradigm is the large-scale of modern VLMs. Their
massive size makes the full-model fine-tuning required in each federated round prohibitively ex-
pensive due to immense communication costs. To surmount this bottleneck, Parameter-Efficient
Fine-Tuning (PEFT) techniques (Houlsby et al., 2019; Lester et al., 2021; Feng et al., 2023; Li et al.,
2024; Yu et al., 2024), such as adapter-based and prompt-based methods, have emerged as an es-
sential solution. By freezing the vast VLM backbone and only training and communicating a small
fraction of parameters, these methods drastically reduces the communication overhead (Lu et al.,
2023; Guo et al., 2023b; 2024).

Despite recent advances in efficiency, real-world edge environments remain highly challenging:
tasks evolve continuously and client data exhibit non-IID distributions. (Kirkpatrick et al., 2017;
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Aljundi et al., 2019; Belouadah & Popescu, 2019; Wang et al., 2024). These dynamics give rise to the
paradigm of Federated Continual Learning (FCL), which seeks to continually adapt models to new
knowledge without catastrophic forgetting, while also addressing the inherent data heterogeneity of
federated networks (Lopez-Paz & Ranzato, 2017; Zhao et al., 2020; Dong et al., 2022; So et al.,
2022). A solution is therefore needed to address these challenges effectively.

However, directly applying traditional FCL methods to this new context is problematic because
they are fundamentally ill-suited for VLMs. First, their reliance on a full-model update paradigm
is computationally prohibitive for large-scale models and risks catastrophically overwriting pre-
trained knowledge. Second, their uni-model perspective ignores the specialized, dual-stream nature
of VLMs, thereby threatening the delicate cross-modal alignment that is central to their capabilities.

Furthermore, in the emerging field of federated vision-language model learning, most existing works
have focused on applying PEFT techniques as a lightweight solution to reduce communication over-
head, yet these methods introduce new challenges when applied under continual learning settings.
1) First, applying a singular PEFT strategy leads to an adaptation imbalance. Relying solely on
high-level prompts may fail to capture client-specific nuances, while using only low-level adapters
can weaken global semantic consistency. 2) Second, aggregating sparse and heterogeneous PEFT
updates across clients risks disrupting the VLMs’ intrinsic cross-modal alignment, which is essential
for unified vision-language understanding. These challenges highlight the need for a coordinated or-
chestration mechanism that can effectively integrate diverse client adaptations while preserving the
model’s semantic integrity. This leads to our core research question:

How can we design an orchestrated framework that efficiently addresses adaptation imbalance and
cross-modal misalignment in federated vision-language learning?

To overcome the above challenges, we propose Fed-Duet, a novel Dual-channel Expert-orchestrated
framework for FCL in VLMs. Fed-Duet employs a dual-channel architecture that orchestrates
two complementary experts—‘guiding prompts’ for high-level semantic alignment and ‘modular
adapters’ for fine-grained task specialization—whose outputs are dynamically integrated to main-
tain coherence and adaptability. Our main contributions are summarized as follows:

• We pioneer a paradigm shift in federated VLM learning by identifying a critical gap be-
tween the latest PEFT-based approaches and the need for continual adaptation as tasks
evolve. By filling this gap, we unlock greater potential for retaining old knowledge while
acquiring new insights, paving the way for more sustainable federated VLM learning.

• We propose Fed-Duet, a novel framework designed specifically for federated continual
learning in CLIP-like VLMs under data heterogeneity. Fed-Duet enables effective knowl-
edge transfer by synergizing two complementary expert channels, while simultaneously
maintaining multimodal alignment and mitigating forgetting.

• We validate the effectiveness of Fed-Duet through extensive experiments on challenging
federated VLMs and FCL benchmarks. The superiority of our results offering a scalable
solution for lifelong adaptation in federated vision-language settings.

2 RELATED WORK

2.1 CLIP-LIKE VLMS IN FEDERATED LEARNING

Powerful, pre-trained Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) offer a
promising foundation for Federated Learning. However, their massive size makes full-model aggre-
gation infeasible due to prohibitive communication costs. To overcome this bottleneck, the commu-
nity has rapidly adopted PEFT techniques, prominently featuring prompt-tuning and adapter-tuning
(Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2022).

Prompt-tuning has emerged as the dominant PEFT paradigm for VLMs. The concept was popu-
larized in centralized learning by methods like CoOp (Zhou et al., 2022b;a), which demonstrated
that optimizing a few learnable prompt vectors could effectively steer a frozen VLM. The commu-
nication efficiency of this approach made it a natural fit for FL. Building on this idea, subsequent
works such as PromptFL (Guo et al., 2023b) and pFedPrompt (Guo et al., 2023a) have proposed
federated prompt-tuning strategies, leveraging global aggregation and personalization, respectively.
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In parallel, adapter-tuning has shown promising results in federated settings, with methods like Fed-
CLIP (Lu et al., 2023) demonstrating that communicating small, trainable adapter modules can also
successfully adapt VLMs in a federated manner.

While these PEFT paradigms are effective in alleviating training or communicating costs, they have
primarily focused on static FL scenarios. This remains an open and challenging question of how to
leverage and potentially synergize them in a continually evolving, non-stationary FCL environment.

2.2 FEDERATED CONTINUAL LEARNING

Early efforts in Federated Continual Learning (FCL) often involved directly adapting central-
ized Continual Learning (CL) strategies, such as rehearsal-based iCaRL (Rebuffi et al., 2017) or
regularization-based LwF (Li & Hoiem, 2017) and EWC (Lee et al., 2017). However, as these
methods were not designed to handle the statistical heterogeneity inherent to federated networks,
they typically resulted in compromised global model performance.

This limitation motivated the development of native FCL frameworks with more sophisticated mech-
anisms. Foundational works like FedWeIT (Yoon et al., 2021) focused on parameter-level transfer,
introducing a decomposition scheme where clients selectively re-weight sparse parameters from
others to mitigate negative interference. Alternatively, FedKNOW (Luopan et al., 2023) proposed
a client-centric, gradient-level solution that extracts critical model weights and integrates restored
gradients to guide learning without interference. More recently, the paradigm has shifted towards
prompt-based adaptation. Methods like Fed-CPrompt (Bagwe et al., 2023) demonstrate that com-
municating only lightweight prompts, guided by a dedicated contrastive loss to tackle heterogeneity
and asynchronicity, can achieve excellent performance with high efficiency.

While these native FCL methods represent significant advances, their fundamentally uni-modal de-
signs are ill-suited for VLMs. They risk disrupting the delicate cross-modal alignment that is essen-
tial to VLM capabilities. This creates a critical need for a new FCL framework designed specifically
to learn continually while preserving this vital cross-modal integrity.

2.3 MIXTURE-OF-EXPERTS

The sparse Mixture-of-Experts (MoE) paradigm, matured through foundational works like the
Switch Transformer (Fedus et al., 2022) and state-of-the-art models like GPT-4 (Achiam et al.,
2023), has recently been applied to enhance centralized Continual Learning. For instance, the work
by Yu et al. (Yu et al., 2024) successfully uses MoE-Adapters to learn sequential tasks in VLMs,
employing a selector to preserve zero-shot capabilities. However, such centralized MoE-for-CL ap-
proaches are fundamentally ill-suited for the Federated Continual Learning setting. They would re-
quire communicating entire expert modules or complex selector mechanisms, leading to prohibitive
communication costs and failing to address client data heterogeneity.

While some reseraches have attempted to incorporate MoE paradigm into FCL setting, to bridge
the gap, such as MoAFCL (Zhang & Liu, 2025), they focus solely on applying MoE to server-side
adapters, overlooking the crucial role of semantic guidance, limiting their adaptability in Non-IID
scenarios. This presents a critical research opportunity for a unified architecture that synergizes
both semantic guidance and parametric specialization to create a robust, communication-efficient
FCL framework, which our work aims to address.

3 METHODOLOGY

Preliminaries and Problem Formulation. We consider a Federated Continual Learning setting
composed of a central server and C clients, C = {c1, . . . , cC}. Each client c observes a private,
sequential stream of tasks {Dt

c}
Tc
t=1. The objective in this challenging setting is for each client to

learn an effective model, that performs well on its cumulative history of tasks by leveraging both
shared knowledge from the federation and its own evolving, local experience.

Framework Overview. We show the overview of Fed-Duet in Figure 1, which consists of two
principal modules. 1) The server-side Federated Knowledge Orchestrator addresses the knowledge
orchestration challenge by leveraging a shared knowledge repository and an adaptive gate to dispatch
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Figure 1: The architecture of Fed-Duet illustrates the interaction between the server-side Federated
Knowledge Orchestrator and the client-side Dual-Channel Adaptation Duet. The server employs
an adaptive gate to dispatch shared semantic experts. Meanwhile, the client fuses the shared ones
with local semantic experts via a cross-attention module, with the other channel adapting parametric
experts complementarily. The server aggregates only the shared parametric expert and updates its
gate using client features. To further stabilize local training, two auxiliary losses are employed to
preserve cross-modal alignment and mitigate forgetting.

tailored semantic guidance. Concurrently, 2) the client-side Dual-Channel Expert Duet uses its
parallel pathways to resolve adaptation imbalance: a semantic channel employs a Cross-Attention
Gating mechanism to fuse prompt-based experts, while a parametric channel adapts adapter-based
experts. This architecture is explicitly designed to preserve cross-modal alignment and is further
stabilized against catastrophic forgetting by two auxiliary losses, Lcross modal and Lstability.

3.1 FEDERATED KNOWLEDGE ORCHESTRATOR

A key innovation of Fed-Duet lies in redefining the server’s role from a simple aggregator to an
intelligent knowledge orchestrator.

The Orchestrated Knowledge Repository. To ensure the Global Prompt Pool, P = {p1, . . . ,pK},
is a semantically diverse repository from the outset, we forgo random initialization. Instead, we first
derive K conceptual anchors by performing K-Means clustering on the word embeddings of a large
vocabulary (e.g., ImageNet-1k class names), yielding a set of centroids {c1, . . . , cK}, where each
ck ∈ RD.

Each prompt pk ∈ RL×D is then constructed using the textual template “a photo of [CLS]”. The
embeddings for the static context tokens (“a”, “photo”, “of”) use their pre-trained values, while the
embedding for the learnable [CLS] token is initialized directly with its corresponding centroid ck.
This approach grounds each prompt in a meaningful semantic concept while providing a natural
linguistic structure.

The Adaptive Dispatch Mechanism. To efficiently dispatch shared knowledge without broadcast-
ing the entire repository, we introduce an Adaptive Gating, gθ. This gating learns an optimal dispatch
policy: it takes a client’s privacy-preserving feature summary, f̃c, to select the Top-k experts and is
subsequently trained using the client’s final training loss, Lfinal

c , as a direct supervisory signal. This
feedback mechanism is formalized via a loss-weighted binary cross-entropy (BCE) objective:

Lgate =
∑
c∈Sr

wc · ℓBCE(gθ(f̃c),yc), (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where the weight wc = 1/(Lfinal
c +ϵ) gives higher importance to prompt selections that lead to better

client performance (i.e., lower loss), and ϵ is a small constant added to ensure numerical stability.

3.2 DUAL-CHANNEL ADAPTATION DUET

The client-side module embodies our core Dual-channel Expert principle, which is composed of two
expert channels, each leveraging a distinct family of experts to intelligently fuse local and shared
knowledge.

♢ Semantic Experts Channel. This channel performs high-level semantic adaptation using learn-
able prompts, which function as semantic experts. Their knowledge is fused by a Dual-Stream
Cross-Attention architecture. In this mechanism, the input image feature acts as a dynamic query
to simultaneously interrogate two distinct expert sources: a private Local Semantic Expert that cap-
tures client-specific nuances, and a set of server-provided Shared Semantic Experts that embody
general knowledge. This process generates separate alignment scores from each source (logitslocal
and logitsshared), which are then combined into a final prediction via a weighted sum:

Logitsfinal = λ · logitslocal + (1− λ) · logitsshared. (2)

This design enables the model to dynamically arbitrate between the guidance of local and shared
semantic experts on a per-sample basis (detailed in Appendix 6.4).

♢ Parametric Experts Channel. While semantic experts provide high-level guidance, they are
insufficient for adapting the model’s deep feature representations to each client’s unique data. We
address this limitation with a Channel of Parametric Experts that uses modular adapters. The chan-
nel’s core innovation is an asymmetric activation strategy: a server-aggregated Shared Expert is
always active to provide a stable, foundational representation, while a set of private Local Experts
are activated sparsely via a Top-k router for efficient, on-demand specialization. This design creates
dedicated parametric pathways for both robust generalization and precise personalization, directly
resolving the adaptation imbalance.

Synergy of Dual Expert Channels. The synergy between the two expert channels is a bidirectional
reinforcement loop. The establishment of a stable feature foundation by the parametric channel
enables more precise high-level guidance from the semantic channel. In turn, this refined semantic
guidance provides clearer contextual signals that improve the parametric channel’s expert routing.
This continuous interplay between foundational stability and refined guidance is the core of our
framework’s effectiveness.

3.3 OVERALL TRAINING STRATEGY

Progressive Decoupled Optimization. To resolve optimization conflicts and actualize the bidi-
rectional synergy between our two channels, we introduce a Progressive Decoupled Optimization
strategy. This sequential protocol first exclusively trains parametric experts to establish a stable and
robust feature foundation. With this foundation in place, the strategy then freezes the parametric
experts and trains the semantic experts to perform precise, high-level refinement. This progressive
approach is crucial as it directly enables the virtuous cycle we described previously: by first build-
ing a stable parametric base, we empower the semantic experts to provide more effective guidance,
which in turn improves subsequent parametric specialization.

3.4 SYNERGISTIC MULTI-OBJECTIVE LOSS

The client-side training is guided by a composite loss function, Lclient, designed to pursue multiple
objectives simultaneously. The overall objective is defined as:

Lclient = LCE + αLmoe + βLcross modal + γLstability. (3)

where the primary objective is standard cross-entropy loss (LCE), supplemented by a load-balancing
loss (Lmoe) for the experts, as well as two auxiliary losses, Lcross modal and Lstability to address key
FCL challenges. Specifically, we detail the two loss components as follows:

Routing Consistency Loss (Lcross modal) for Alignment. To counteract the tendency of standard
MoE layers to disrupt a VLM’s inherent vision-language alignment, we introduce a routing con-
sistency loss inspired by CLIP’s contrastive objective. This loss enforces multimodal alignment by

5
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ensuring the expert routing for an image is consistent with that of its corresponding text. The loss is
formulated as:

Lcross modal =
1

2

(
CE(S/τ,y) + CE(S⊤/τ,y)

)
, (4)

where S is a similarity matrix computed from the routing distributions of image-text pairs within
a batch, τ is a temperature hyperparamete that controls the sharpness of the distribution, and y
represents the ground-truth labels indicating the correct image-text pairings. The symmetric cross-
entropy objective guides the experts toward learning modality-invariant representations.

Expert Stability Loss (Lstability) for Anti-Forgetting. To mitigate catastrophic forgetting, we em-
ploy an expert stability loss that acts as a form of knowledge distillation on the routing policy. This
loss preserves learned routing behaviors by regularizing the current policy to remain close to histor-
ical ones. It is defined using KL divergence as:

Lstability = DKL(p
(t)||p̄(t−1)), (5)

where p(t) is the expert routing distribution for the current task and p̄(t−1) is the historical policy
from previous tasks, maintained on a per-layer basis using an exponential moving average. This
regularization provides a robust mechanism against forgetting at the expert level.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Task Settings. We evaluate our framework on three benchmarks: CIFAR-
100 (Krizhevsky & Hinton, 2009) and Tiny-ImageNet (Le & Yang, 2015) for Class-Incremental
Learning (partitioned into 5 and 10 tasks), and DomainNet (Peng et al., 2019) for Domain-
Incremental Learning. The DomainNet setup, where each domain constitutes a new task, rigorously
tests the model’s robustness against distribution shifts.

Evaluation Metrics. Model evaluation is conducted using six key continual learning metrics. Over-
all performance is measured by Average Accuracy and Last Accuracy. Knowledge retention is
quantified by the Forgetting Measure, where lower values are better. To analyze the core stability-
plasticity dilemma, we also measure Stability and Plasticity. The trade-off between these is assessed
using Continual Utility, their weighted sum. Detailed formulations for all evaluation metrics are
provided in Appendix 6.3.1.

Baselines. To comprehensively evaluate our framework, we compare it against a range of bench-
marks from three main categories: 1) Standard FL Methods, foundational approaches not de-
signed for continual learning, used to establish a performance baseline (e.g., FedAvg (McMahan
et al., 2017) and FedProx (Li et al., 2020)); 2) Representative FCL Benchmarks, which include
regularization-based approaches (Fed-EWC (Lee et al., 2017), Fed-LwF (Li & Hoiem, 2017)), a
parameter-transfer method (FedWeIT (Yoon et al., 2021)), and a gradient-integration approach (Fed-
KNOW (Luopan et al., 2023)); 3) SOTA PEFT-based FCL Approaches for VLMs, methods that
also leverage Parameter-Efficient Fine-Tuning method for FCL with large-scale models. This cate-
gory includes prompt-based methods like Fed-CPrompt (Bagwe et al., 2023), pFedMoAP (Luo et al.,
2024), a Mixture-of-Experts framework where clients download multiple prompts as experts, and
Powder (Piao et al., 2024), which facilitates dual knowledge transfer across clients and tasks using
a task correlation matrix to guide prompt aggregation. This group is rounded out by the Mixture-
of-Adapter based MoAFCL (Zhang & Liu, 2025). In addition to the FCL methods, our benchmark
includes FedCLIP (Lu et al., 2023), a strong PEFT-based method for static Federated VLMs setting.

Furthermore, to ensure a fair comparison against our VLM-native approach, we enhance key base-
lines by uniformly equipping them with a CLIP backbone, following the protocol of MoAFCL. This
includes methods like FedWeIT, FedKNOW, and other ViT-based approaches such as Fed-CPrompt
and Powder. This creates a level playing field for all comparisons.

Implementation Details. Following previous research, we employ a pre-trained CLIP model as the
VLM backbone across all experiments. Our federated system consists of one central server and five
clients. Each experiment is repeated three times with different random seeds (42, 2005, 2026) and
we report the averaged outcomes. We use the Adam optimizer with a learning rate of 3e-5. All
experiments were conducted on a single NVIDIA RTX 4090 GPU with 24GB of VRAM.
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Data partition IID Non-IID (β = 0.5) Non-IID (β = 0.1)
Tasks T=5 T=10 T=5 T=10 T=5 T=10

Dataset Method Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑ Avg ↑ Last ↑
FedAvg 46.44 21.53 32.83 10.56 35.67 15.75 20.71 5.45 16.60 5.50 10.05 1.96
FedProx 48.55 23.32 37.11 14.06 38.76 17.49 29.07 12.70 19.48 10.03 12.58 2.48

Fed-EWC 49.00 23.45 38.08 13.11 38.44 18.30 26.83 10.02 28.23 22.36 11.60 2.98
Fed-LwF 53.57 27.01 41.11 17.76 39.61 19.87 30.90 13.03 21.09 12.12 16.00 6.85

CIFAR- FedWeIT 72.52 56.92 72.55 62.64 71.51 56.27 72.25 62.05 70.41 54.43 71.69 62.32
100 FedKNOW 78.52 74.45 79.61 73.82 77.97 73.27 78.27 72.49 77.83 73.10 78.97 72.67

FedCLIP 78.00 70.11 78.21 68.74 76.37 68.38 77.52 68.94 74.14 65.38 75.93 66.37
Fed-CPrompt 73.18 65.85 74.28 65.59 73.65 66.03 74.13 65.52 73.16 66.10 74.34 65.34
Powder 73.17 65.71 74.30 65.72 73.37 65.56 76.15 67.35 73.56 65.02 73.51 65.51
pFedMoAP 76.08 67.8 76.63 66.76 71.02 63.79 71.10 60.50 51.64 46.07 58.94 50.15
MoAFCL 77.97 69.00 77.82 65.91 73.55 64.59 75.54 65.47 65.79 59.65 68.32 60.70

Fed-Duet (Ours) 86.21 79.10 86.05 78.76 84.85 78.84 84.20 75.97 84.59 76.01 84.20 75.97

FedAvg 40.38 17.82 27.92 9.12 29.88 12.43 19.81 5.86 14.12 5.38 9.22 2.59
FedProx 43.10 20.25 30.72 11.09 33.61 15.25 22.77 6.84 17.42 8.37 12.51 3.72

Fed-EWC 42.87 20.95 29.97 9.48 31.88 13.44 27.34 9.95 22.26 10.73 16.60 4.26
Fed-LwF 42.73 17.46 51.24 27.10 32.19 14.16 23.90 7.64 19.77 9.30 15.13 5.62

Tiny- FedWeIT 72.04 62.97 72.01 62.81 71.26 62.20 71.52 62.77 71.31 62.37 70.45 61.82
ImageNet FedKNOW 76.71 72.05 77.94 71.88 75.52 70.80 76.89 70.44 74.71 70.04 75.60 70.15

FedCLIP 76.21 68.52 76.66 67.59 74.51 66.55 75.50 66.12 71.99 63.77 73.57 63.66
Fed-CPrompt 73.04 65.71 74.23 65.75 72.54 65.92 74.30 65.78 72.98 65.89 74.06 65.73
Powder 72.96 66.01 74.18 65.89 72.81 65.58 74.47 65.78 72.60 65.45 74.07 65.20
pFedMoAP 74.90 67.51 75.46 66.3 70.90 62.86 70.92 61.93 55.12 47.62 57.37 52.13
MoAFCL 74.20 65.30 74.19 64.00 70.44 62.32 71.32 61.03 62.38 59.38 66.66 59.43

Fed-Duet (Ours) 82.56 77.64 83.63 75.94 81.00 75.45 81.83 74.86 80.43 74.09 81.65 73.76

Table 1: The performance of our method against SOTA benchmarks on representative CIFAR-100
and Tiny-ImageNet datasets under various FCL settings. Non-IID (β) indicates the Dirichlet pa-
rameter is set to β, Avg denotes the average accuracy over all learned tasks, while Last denotes the
accuracy on the final task. Best results are in bold. The results show the superiority of our method.

4.2 OVERALL PERFORMANCE

Performance Comparison. As shown in Table 1, Fed-Duet demonstrates clear superiority across
three key dimensions. 1) Absolute Accuracy: It achieves the highest final accuracy, outperforming
the strongest baseline (FedKNOW Luopan et al. (2023)) by a significant 5.23% in the challenging
CIFAR-100 scenario (β = 0.1, T=10). 2) Data Heterogeneity Stability: Fed-Duet is exceptionally
robust to Non-IID data. While the performance of advanced methods like pFedMoAP (Luo et al.,
2024) degrades by 24% under severe heterogeneity, our method’s accuracy drops by a mere 2%. 3)
Continual Learning Stability: As visualized in Figure 2, Fed-Duet also shows superior resistance
to catastrophic forgetting, maintaining a high and stable performance trajectory as new tasks are
introduced. These advantages validate that our dual-channel architecture effectively balances client
specialization with robust knowledge retention.

Table 2: Performance comparison on DomainNet. Best results
are in bold. The blue values (∆) indicate a score lower than
our method. Fed-Duet demonstrates strong domain general-
ization capabilities.

Method Avg Acc ↑ ∆ Last Acc ↑ ∆

FedWeIT 62.20 -6.27 58.54 -7.51
FedKNOW 56.09 -12.38 54.25 -11.80
FedCLIP 62.83 -5.64 60.04 -6.01
Fed-CPrompt 56.16 -12.31 54.38 -11.67
Powder 56.14 -12.33 54.35 -11.70
pFedMoAP 59.98 -8.49 56.35 -9.70
MoAFCL 60.92 -7.55 52.52 -13.53

Fed-Duet (Ours) 68.47 – 66.05 –

Evaluation on Domain Shift.
To assess robustness against se-
vere domain shifts, we evaluate
our method on DomainNet in
a domain-incremental setting.
As shown in Table 2, Fed-Duet
achieves new SOTA performance,
with an average accuracy of
68.47%. This marks a substantial
improvement of 5.64% over the
strongest baseline. This result
underscores the effectiveness of
our dual-channel adaptation, which
preserves general knowledge while
specializing in new visual domains
to achieve strong generalization.
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Figure 2: Performance trajectory of our method compared to SOTA benchmarks as the number of
classes increases. The plots show accuracy as a function of the number of learned classes under 5
or 10 task scenarios. Our method, Fed-Duet, consistently outperforms all baselines, demonstrating
superior resistance to catastrophic forgetting as tasks accumulate. Additional experimental results
under various settings are presented in Appendix 6.5 with details.

4.3 ABLATION STUDY

Table 3: We analyze the performance contribution of Fed-Duet’s
core components separately. Best results are in bold. The ∆ val-
ues denote the performance difference from the full model (blue for
lower, red for higher).

Method Avg Acc ↑ ∆ Forget ↓ ∆

Fed-CPrompt 72.98 -7.45 7.95 +0.13
Powder 72.60 -7.83 8.51 +0.69
pFedMoAP 55.12 -25.31 8.28 +0.46

Fed-Duet (Base-w/o PE) 64.34 -16.09 11.89 +4.07
Fed-Duet (Base-w/o SE) 70.64 -9.79 8.89 +1.07

Fed-Duet (Base) 77.96 -2.47 9.22 +1.40
Fed-Duet (Base + Lcross modal) 79.09 -1.34 8.96 +1.14
Fed-Duet (Base + Lstability) 79.46 -0.97 8.02 +0.20

Fed-Duet (Full) 80.43 – 7.82 –

Analysis on Core Compo-
nents. We conduct detailed
ablation studies of different
components on our frame-
work, as shown in Table 3,
from two central innovations
of our framework: the dual-
channel architecture and
the composite loss function.
1) First, we evaluate the
architecture by decoupling
its pathways, which confirms
our adaptation imbalance
premise. The semantic-only
pathway (Base-w/o PE) is
unstable and suffers from
high forgetting, while the
parametric-only pathway
(Base-w/o SE), though more stable, remains suboptimal. In contrast, our dual-channel Fed-Duet
(Base) model substantially boosts accuracy, proving the synergistic benefit of combining semantic
and parametric pathways. 2) Next, We analyze our auxiliary losses against advanced prompt-based
FCL methods. While our Fed-Duet (Base) model is highly accurate, it exhibits a higher forgetting
score than prompt-based FCL methods. This trade-off is systematically resolved by our two
complementary auxiliary losses: the expert stability loss primarily mitigates forgetting, while
the routing consistency loss enhances accuracy by enforcing multimodal alignment in the expert
representations. The final Fed-Duet (Full) model, benefiting from their synergy, achieves both the
highest accuracy and the lowest forgetting score, outperforming the baseline and validating the
contribution of our composite loss design.

Analysis of the Stability-Plasticity. Our framework effectively resolves the core stability-plasticity
dilemma. As shown in Figure 3a, Fed-Duet simultaneously achieves both the highest stability and
plasticity scores, a superior balance that contrasts sharply with leading baselines that are forced to
compromise one for the other. To formally quantify this trade-off, we introduce the Continual Utility
score, a unified metric representing the weighted aggregation of Stability and Plasticity. This robust
balance is further validated by our framework’s continual utility score, as shown in Figure 3b. Our
method consistently dominates the top score, maintaining a significant performance lead across the
entire range of the trade-off hyperparameter ζ. This result shows that Fed-Duet not only establishes
a superior balance but also demonstrates remarkable robustness to hyperparameter choices.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ours
MoAFCL

Powder
pFedMoAP

Fed-CPrompt
FedCLIP

FedKNOW
FedWeIT

50

55

60

65

70

75

80

85

A
cc

ur
ac

y 
(%

)

Stability Plasticity

(a) Stability & plasticity

0.0 0.2 0.4 0.6 0.8 1.0
 (zeta)

Ours
MoAFCL

Powder
pFedMoAP

Fed-CPrompt
FedCLIP

FedKNOW

FedWeIT

86.01 84.77 83.53 82.28 81.04 79.80

70.91 69.41 67.91 66.41 64.91 63.41

74.71 72.65 70.60 68.54 66.49 64.43

74.61 72.49 70.37 68.24 66.12 64.00

74.69 72.62 70.55 68.47 66.40 64.33

80.66 78.23 75.80 73.37 70.94 68.51

74.36 72.10 69.84 67.58 65.32 63.06

74.75 70.89 67.03 63.18 59.32 55.46

60

65

70

75

80

85

C
on

tin
ua

l U
til

ity

(b) Continual utility

104

105

C
om

m
un

ic
at

io
n 

C
os

t

Fed-EWC
Fed-LwF
MoAFCL
Fed-Duet

(c) Comm. Cost

0

2000

4000

6000

8000

10000

12000

G
PU

 B
ur

de
ns

Fed-EWC
Fed-LwF
MoAFCL
Fed-Duet

(d) Comp. Cost

Figure 3: Analysis of the stability-plasticity trade-off and efficiency on CIFAR-100 with 5 incremen-
tal tasks. (a) Stability and plasticity scores compared with different methods. Our method excels
in both aspects. (b) The continual utility trade-off for our method across varying values of the hy-
perparameter ζ.A larger ζ indicates more emphasis on stability. Darker colors indicate better utility.
(c) Total communication cost (MB, log scale) required by each method. (d) Peak GPU memory
footprint (MiB) during local client training. Lower values correspond to higher efficiency.

Efficiency Analysis. Our framework offers significant advantages in both communication and com-
putational efficiency. As shown in Figure 3c, Fed-Duet is not only orders of magnitude more efficient
than full-parameter tuning methods like Fed-EWC and FedLwF but also reduces overhead by ap-
proximately another order of magnitude relative to the PEFT-based MoAFCL. A rigorous baseline
selection is crucial, as existing methods are largely incompatible with our research context. For
instance, pFedMoAP (Luo et al., 2024) is not designed for continual learning, while Powder (Piao
et al., 2024) utilizes a standard ViT backbone. We therefore selected MoAFCL (Zhang & Liu, 2025)
as our primary baseline since it is the only framework specifically engineered for the federated con-
tinual learning of VLMs like CLIP. This efficiency extends to computation, measured by GPU mem-
ory burdens in Figure 3d, where Fed-Duet again achieves the lowest footprint. This demonstrates
that our dual-channel architecture provides a highly resource-efficient solution for FCL, enhancing
continual learning while significantly reducing both communication and computation burdens.
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Figure 4: Performance trajectory with large-scale
(20-client) setting. Accuracy (z-axis) is plotted
across 10 sequential tasks on CIFAR-100 and
Tiny-ImageNet. Fed-Duet remains robust under
large-scale scenario.

Analysis of Large-Scale Scalability. To rig-
orously assess our framework’s scalability, we
extended the experimental setup to a more de-
manding 20-client environment. The perfor-
mance trajectories, visualized in Figure 4, re-
veal two critical insights into Fed-Duet’s ro-
bustness. Firstly, Fed-Duet occupies the high-
est accuracy plane across all 10 tasks, consis-
tently surpassing all baseline methods. Sec-
ondly, its performance slope is notably flat-
ter, demonstrating superior resilience against
the performance degradation that hinders the
baselines. This visual evidence substantiates
that Fed-Duet’s core mechanism for mitigating
catastrophic forgetting remains potent at scale,
ensuring sustained high performance in larger
and more complex federated systems.

5 CONCLUSION

In this work, we introduced Fed-Duet, a novel framework that addresses the critical challenges
of catastrophic forgetting, data heterogeneity, and multimodal alignment degradation in Federated
Continual Learning for large-scale Vision-Language Models. Fed-Duet’s core innovation is a dual-
channel architecture that synergizes two complementary PEFT mechanisms: guiding prompts for
robust semantic alignment and modular adapters for fine-grained task specialization. Extensive
experiments demonstrate that Fed-Duet significantly outperforms state-of-the-art methods on chal-
lenging FCL benchmarks, validating its potential as an effective and practical solution for deploying
foundation models in dynamic, decentralized environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. This paper adheres to the ICLR Code of Ethics. The research presented in this
paper does not involve human participants, animals, or any other ethical considerations. All data
used in this study were obtained from publicly available sources. Our method does not involve
discrimination, bias, or fairness concerns.

Reproducibility Statement. To ensure reproducibility, we provide our source code, running scripts,
and hyperparameter configurations. We also include detailed algorithm pseudocode, dataset infor-
mation, and additional experimental results in Appendix 6.5 to facilitate the verification of our find-
ings.

LLM Usage. We employed a large language model (LLM) exclusively for polishing the language
and correcting typos. All ideas and methodologies were developed independently.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Techni-
cal Report. arXiv preprint arXiv:2303.08774, 2023.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–
11263, 2019.

Gaurav Bagwe, Xiaoyong Yuan, Miao Pan, and Lan Zhang. Fed-cprompt: Contrastive prompt for
rehearsal-free federated continual learning. arXiv preprint arXiv:2307.04869, 2023.

Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with dual memory. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 583–592, 2019.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10164–10173, 2022.

Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A survey of vision-language pre-trained
models. arXiv preprint arXiv:2202.10936, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Chun-Mei Feng, Bangjun Li, Xinxing Xu, Yong Liu, Huazhu Fu, and Wangmeng Zuo. Learning
federated visual prompt in null space for mri reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8064–8073, 2023.

Tao Guo, Song Guo, and Junxiao Wang. Pfedprompt: Learning personalized prompt for vision-
language models in federated learning. In Proceedings of the ACM Web Conference 2023, pp.
1364–1374, 2023a.

Tao Guo, Song Guo, Junxiao Wang, Xueyang Tang, and Wenchao Xu. Promptfl: Let federated par-
ticipants cooperatively learn prompts instead of models–federated learning in age of foundation
model. IEEE Transactions on Mobile Computing, 23(5):5179–5194, 2023b.

Tao Guo, Song Guo, and Junxiao Wang. Explore and cure: Unveiling sample effectiveness with
context-aware federated prompt tuning. IEEE Transactions on Mobile Computing, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
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6 APPENDIX

6.1 ALGORITHM PSEUDOCODE

We provide the detailed pseudocode for the Fed-Duet framework. The overall process is divided into
the server-side orchestration (Algorithm 1) and the client-side dual-channel training (Algorithm 2).
This describes the federated learning process for a single continual learning task.

Algorithm 1 Fed-Duet: Server-Side Procedure

1: Initialize: Global Prompt Pool P , Adaptive Gating Net gϕ.
2: Initialize: Global Shared Expert Eshared.
3: for each communication round r = 1, 2, ..., R do
4: Select a subset of clients Sr.
5: Initialize GateNet buffer B ← ∅.
6: for each client c ∈ Sr in parallel do
7: Receive feature summary fc from client c.
8: if fc is available then
9: Select prompt indices idxc ← TopKi(gϕ(fc)).

10: else
11: {Cold Start}
12: Select random prompt indices idxc.
13: end if
14: Send selected prompts {P[i]}i∈idxc and Eshared to client c.
15: Receive updated shared expert Eshared

c and final loss Lc.
16: Add tuple (fc, idxc,Lc) to buffer B.
17: end for
18: Aggregate Shared Experts:
19: Eshared ←

∑
c∈Sr

ωcE
shared
c {ωc is client weight}

20: Train Gating Net:
21: Compute loss Lgate =

∑
(fc,idxc,Lc)∈B

1
Lc+ϵ · BCE(gϕ(fc),1idxc

).
22: Update gϕ by descending the gradient of Lgate.
23: end for

6.2 DATASET AND TASK SETTINGS

We evaluate our framework under three distinct continual learning paradigms, each designed to test
different facets of model performance. The statistics for all datasets are summarized in Table 4.

Table 4: Statistics of the datasets used in our experiments.

Dataset Classes Train Test
CIFAR-100 100 50,000 10,000
Tiny-ImageNet 200 100,000 10,000
DomainNet 345 586,576 (Total)

Flowers102 102 2,040 6,149
Oxford Pets 37 3,680 3,669
Food101 101 75,750 25,250
Caltech-101 101 3,000 6,000
DTD 47 3,760 1,880

Class-Incremental Learning on CIFAR-100 and Tiny-ImageNet. For this setting, the model
must learn new classes over time without forgetting old ones.

• Task Construction: For CIFAR-100 (100 classes), we create scenarios with 5 sequential
tasks of 20 classes each, and 10 tasks of 10 classes each. For Tiny-ImageNet (200 classes),

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 Fed-Duet: Client-Side Procedure

1: Input: Shared prompts Ps, shared expert Eshared, current round r.
2: Initialize: Local prompt plocal, local experts Elocal.
3: Compute privacy-preserving feature summary fc from local data Dt

c.
4: if r ≤ R/2 then
5: {Stage 1: Adapt Parametric Experts}
6: for local epoch e = 1, ..., E do
7: for batch (x, y) from Dt

c do
8: Compute features using MoE-Adapter (combining Eshared and Elocal).
9: Compute loss L = LCE + αLmoe + βLcross + γLstab.

10: Update parametric experts parameters.
11: end for
12: end for
13: else
14: {Stage 2: Refine Semantic Guidance}
15: Freeze MoE-Adapter parameters.
16: for local epoch e = 1, ..., E do
17: for batch (x, y) from Dt

c do
18: Compute logits using Dual-Stream Cross-Attention.
19: Compute loss L = LCE.
20: Update semantic-experts-related parameters.
21: end for
22: end for
23: end if
24: Let Lfinal be the average loss from the last local epoch.
25: Send updated Eshared, Lfinal, and fc to server.

we create scenarios with 5 tasks (40 classes/task) and 10 tasks (20 classes/task). The class
order is fixed for reproducibility.

• Data Heterogeneity: To simulate federated environments, we partition data among clients
using a Dirichlet distribution over class labels, controlled by β. We test under moderate
(β = 0.5), severe (β = 0.1), and IID settings.

Domain-Incremental Learning on DomainNet. This challenging scenario evaluates the model’s
ability to adapt to severe distribution shifts, where each task is a new visual domain.

• Task Construction: We use all six domains from the dataset (Clipart, Infograph, Painting,
Quickdraw, Real, and Sketch) as a sequence of six tasks. The model learns these domains
in alphabetical order.

• Evaluation Protocol: This scenario uses a specific protocol to measure cumulative knowl-
edge. After training on each new domain, the model is evaluated on a dynamically ex-
panding test set comprising the test splits of all previously learned domains plus the current
one (e.g., after training on Sketch, the model is tested on the combined test sets of Real
and Sketch). The evaluation uses a zero-shot classification head spanning all 345 classes of
DomainNet.

Multi-Domain Task-Incremental Learning on Fine-grained Datasets. To further validate the
generalizability of our framework, we construct a task-incremental scenario where the model must
learn a sequence of entirely different datasets, assuming the task identity is known at inference time.

• Task Construction: We use a sequence of five distinct, fine-grained visual classification
datasets, learned in the following order: Flowers102 → OxfordPets → Food101 → Cal-
tech101→DTD. Each dataset constitutes a single, separate task, testing the model’s ability
to acquire and retain diverse knowledge without interference.

14
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6.3 FORMAL DEFINITIONS OF METRICS AND LOSSES

6.3.1 EVALUATION METRICS

Here, we provide the formal definitions for the standard continual learning metrics used to evaluate
our framework. Let T be the total number of tasks, and let ai,j be the accuracy of the model on task
j after it has been trained on task i.

Average Accuracy (Avg Acc) This metric measures the overall performance across all tasks after
training is complete.

Avg Acc =
1

T

T∑
j=1

aT,j (6)

Forgetting Measure (Forget) This metric quantifies how much the model forgets about past tasks.

Forget =
1

T − 1

T−1∑
j=1

(
max
k<T

ak,j − aT,j

)
(7)

Stability This measures the ability to retain knowledge of past tasks. After training on task i, it is
the average accuracy on all prior tasks:

Stabilityi =
1

i− 1

i−1∑
j=1

ai,j (8)

Plasticity This measures the ability to learn the current new task. After training on task i, it is the
accuracy on that task:

Plasticityi = ai,i (9)

Continual Utility This metric provides a score to evaluate the trade-off between stability and
plasticity, defined as their weighted linear combination. The hyperparameter ζ ∈ [0, 1] controls
the balance, assigning a weight of ζ to stability and (1 − ζ) to plasticity. A larger ζ places more
emphasis on stability.

Utilityi = ζ · Stabilityi + (1− ζ) · Plasticityi (10)

6.3.2 DETAILS OF PRIMARY AND REGULARIZATION LOSSES

Cross-Entropy Loss (LCE) The primary objective for the main classification task is the stan-
dard cross-entropy loss. It is designed to minimize the dissimilarity between the model’s predicted
probability distribution and the ground-truth label distribution. The formula is:

LCE = −
C∑
i=1

yi log(ŷi), (11)

where C is the total number of classes, y is the one-hot encoded ground-truth label vector, and ŷ
is the predicted probability distribution produced by applying the Softmax function to the model’s
final logits. Minimizing this loss guides the model to assign the highest possible probability to the
correct class.

MoE Load Balancing Loss (Lmoe) To prevent the MoE router from consistently favoring a small
subset of experts (a phenomenon known as expert collapse), we employ an auxiliary load-balancing
loss. This loss encourages the router to distribute the computational load as evenly as possible across
all available experts, ensuring that all experts are sufficiently trained. Following common practice,
we define this loss as:

Lmoe = α ·N
N∑
i=1

fi · Pi, (12)
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where N is the number of experts and α is a scaling hyperparameter. For a batch of tokens, fi is
the fraction of tokens dispatched to expert i, and Pi is the average router probability (the gating
value) assigned to expert i over the batch. This objective incentivizes the router to assign higher
probabilities (Pi) to experts that are utilized less frequently (low fi), thus promoting balanced expert
utilization throughout training.

6.4 IMPLEMENTATION AND ARCHITECTURAL DETAILS

6.4.1 DUAL-STREAM CROSS-ATTENTION MECHANISM

To create a dynamic, content-aware fusion of knowledge that is native to the CLIP architecture,
we introduce a Dual-Stream Cross-Attention mechanism. This design moves beyond static feature
combination by using the visual feature of an input image, Fimg, as a dynamic Query to actively
interrogate the available textual knowledge. This process unfolds in two parallel streams.

Local Knowledge Stream. First, to capture client-specific nuances, each client learns a private,
local prompt plocal

c . This prompt is prepended to the class token embeddings and processed by the
text encoder to produce the local text feature set, zlocal

c . The local knowledge stream then attends to
this private local prompt feature, which serves as both Key and Value. This produces an image-aware
local representation and its corresponding alignment score, or logits:

logitslocal = Cross-Attention(Fimg, z
local
c , zlocal

c ) (13)

Shared Knowledge Stream. Concurrently, to evaluate the relevance of the generalized knowledge
from the federation, the shared knowledge stream attends the same image query to the set of k
received shared prompt features, Zs. This computes the shared logits:

logitsshared = Cross-Attention(Fimg,Zs,Zs) (14)

Final Fusion. Finally, to create a prediction that flexibly balances local expertise with global con-
sensus, the logits from both streams are dynamically fused via a weighted sum, controlled by a
hyperparameter λ:

Logitsfinal = λ · logitslocal + (1− λ) · logitsshared (15)

This mechanism allows the model to dynamically weigh the importance of local versus global se-
mantic guidance based on the task and data.

6.5 ADDITIONAL RESULTS AND VISUALIZATIONS

To further substantiate the claims made in the main paper, this section provides additional visualiza-
tions and analyses of our framework’s performance.

6.5.1 DETAILED PERFORMANCE TRAJECTORY ANALYSIS

Figure 5 presents a comprehensive visualization of the accuracy trajectory for Fed-Duet against
baseline methods across Non-IID scenarios. These plots complement the summary results in Table
1 of the main paper by showing the performance degradation as more tasks are learned. Across
all settings, our method consistently establishes the highest accuracy. More importantly, its perfor-
mance curve exhibits a significantly flatter slope compared to all baselines, visually confirming its
superior resistance to catastrophic forgetting, especially in the Non-IID scenarios.

6.5.2 MULTI-DOMAIN TASK-INCREMENTAL LEARNING

In the main body of our paper, we extensively evaluated our framework under class-incremental and
domain-incremental learning scenarios. To further demonstrate the robustness and transferability
of our proposed Fed-Duet framework, we present an auxiliary experiment in this section under the
Multi-Domain Task-Incremental Learning setting.
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Figure 5: Detailed performance trajectories on CIFAR-100 and Tiny-ImageNet. Rows: The top row
displays results under the IID setting, while the bottom row shows the more challenging Non-IID
(β = 0.1) setting. Columns: From left to right, the columns correspond to CIFAR-100 (5 tasks),
CIFAR-100 (10 tasks), Tiny-ImageNet (5 tasks), and Tiny-ImageNet (10 tasks).

Table 5: Multi-domain Task-incremental learning (MTIL) performance on five benchmark datasets.
The final columns show the average accuracy and the ∆ (blue for lower) compared to our method.

Method Flowers102 OxfordPets Food101 Caltech101 DTD Average ∆

FedWeIT 62.03 53.97 66.35 69.50 71.68 64.71 -8.61
FedKNOW 63.69 53.98 64.81 70.02 72.31 64.96 -8.36
FedCLIP 68.97 64.67 71.83 76.31 79.84 72.32 -1.00
Fed-CPrompt 63.96 54.10 64.95 70.21 72.46 65.14 -8.18
Powder 65.48 58.37 67.87 72.32 76.47 68.10 -5.22
pFedMoAP 66.56 59.58 69.82 73.22 77.77 69.39 -3.93
MoAFCL 63.18 54.09 66.32 71.45 74.85 65.98 -7.34

Fed-Duet (Ours) 70.35 64.97 73.33 77.77 80.17 73.32 –

Analysis of Multi-Domain Task-Incremental. The performance of all methods on this Multi-
domain Task-incremental benchmark is presented in Table 5. The results unequivocally show that
our Fed-Duet framework achieves the highest accuracy across all five datasets in the sequence.
This consistent state-of-the-art performance in a third, distinct continual learning paradigm provides
strong evidence for the generalizability of our approach. It confirms that the superiority of Fed-Duet
is not confined to a specific problem formulation but is instead a robust attribute stemming from its
core design, further validating its advanced capabilities in diverse continual learning environments.

Table 6: Performance of FedDuet with Varying DP Noise on CIFAR-100 and Tiny-ImageNet.

Dataset DP Noise Multiplier (σ) Last Acc. (%) Avg Acc. (%)

CIFAR-100
0.1 72.16 80.77
0.5 69.58 79.79
1.0 68.78 78.54

Tiny-ImageNet
0.1 68.96 76.34
0.5 67.22 75.28
1.0 66.69 74.58
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Table 7: Performance comparison on CIFAR-100 and Tiny-ImageNet under compression strategy.

(a) CIFAR-100

Method T=5 T=10
Avg ↑ Last ↑ Avg ↑ Last ↑

FedWeIT 38.71 25.21 39.81 24.52
FedKNOW 42.08 34.60 46.69 35.86
FedCLIP 49.39 34.27 49.39 32.87
Fed-CPrompt 34.75 24.10 37.69 23.88
Powder 34.65 23.71 37.51 23.55
pFedMoAP 37.99 25.28 39.73 25.15
MoAFCL 40.69 27.47 42.29 27.17

Fed-Duet (Ours) 61.31 49.04 63.29 46.45

(b) Tiny-ImageNet

Method T=5 T=10
Avg ↑ Last ↑ Avg ↑ Last ↑

FedWeIT 23.67 16.90 25.64 15.58
FedKNOW 28.60 22.86 32.01 24.02
FedCLIP 35.15 22.82 35.25 21.18
Fed-CPrompt 23.80 15.98 25.36 15.86
Powder 24.03 15.86 25.46 15.82
pFedMoAP 27.75 18.26 28.63 17.29
MoAFCL 24.81 16.91 25.81 15.68

Fed-Duet (Ours) 46.62 34.96 47.58 33.29

6.5.3 ROBUSTNESS ANALYSIS UNDER NOISY CONDITIONS

To further investigate the robustness of our proposed Fed-Duet framework, we conduct a sensitivity
analysis with respect to varying levels of data noise. This experiment simulates a common real-
world challenge where client data quality may be inconsistent. Table 6 illustrates the performance
trajectory of our method as the noise intensity increases.

It is evident that Fed-Duet exhibits remarkable resilience. Across both CIFAR-100 and Tiny-
ImageNet, the accuracy degradation is notably graceful and marginal, even under significant noise
levels. This stability suggests that our framework’s dual-stream architecture and guidance mecha-
nisms are not easily perturbed by data corruption. The learned representations can effectively distill
the core semantic information while filtering out irrelevant noise. This result strongly validates the
inherent robustness of our approach and its transferability to non-ideal, practical federated learning
scenarios.

6.5.4 AUXILIARY EXPERIMENT: PERFORMANCE WITH A COMPRESSED BACKBONE

In our main experiments, we utilized the full CLIP ViT-B/16 model to ensure a fair comparison
with prior works. However, practical federated learning scenarios often involve clients with limited
computational resources, necessitating more lightweight models. To evaluate the robustness and
transferability of our framework under such constraints, we conduct an auxiliary experiment where
all methods are built upon a compressed CLIP backbone.

Pruning the CLIP Backbone. We adopt a simple yet effective layer-dropping strategy to com-
press the CLIP backbone. Specifically, we prune the model by removing the first two and last
two transformer layers from both the vision and text encoders. While more sophisticated pruning
techniques could be explored in future work, this method serves to effectively reduce the model’s
computational footprint for this analysis.

Sustained Performance with a Compressed Model. As shown in Table 7, Fed-Duet maintains
its state-of-the-art performance even with the compressed backbone, consistently outperforming all
baselines. This result demonstrates that the superiority of our framework is intrinsic to its architec-
tural design, not merely a byproduct of a large-scale model. Retaining this performance advantage
validates the robustness and practical applicability of Fed-Duet in resource-constrained federated
environments.

6.5.5 HYPERPARAMETER ANALYSIS

We conduct a hyperparameter analysis, with results in Table 8. The findings demonstrate that our
method exhibits strong robustness, showing low sensitivity to parameters such as the number of
K-means clusters across a wide range of values.
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Table 8: Hyperparameter analysis for Fed-Duet on CIFAR-100.

(a) Impact of Experts (E) and Top-K (k).

Experts (E) Top-K (k)
k=2 k=4 k=8

2 84.97 – –
4 85.77 – –
8 86.21 86.42 –

16 87.12 86.98 86.75

(b) Impact of K-means clusters.

Clusters Accuracy (%)
8 86.23
16 86.17
32 86.10
64 86.21

128 86.34

Table 9: Ablation study on our Progressive Decoupled Optimization strategy. Results are average
accuracy. The ∆ indicates the performance drop relative to our method, highlighted in blue.

Training Strategy CIFAR-100 Tiny-ImageNet Average ∆

Semantic Experts First 85.53 81.28 83.41 -0.98
Joint Training 86.02 81.88 83.95 -0.44
Parametric Experts First (Ours) 86.21 82.56 84.39 –

6.5.6 ABLATION ON OPTIMIZATION STRATEGY

We conduct an ablation study on our optimization strategy in Table 9. The results clearly show that
our approach significantly outperforms both ”Semantic Experts First” and ”Joint Training” alterna-
tives, which validates the effectiveness of our Progressive Decoupled Optimization Strategy.

6.5.7 FEATURE SPACE VISUALIZATION VIA T-SNE

To qualitatively verify the efficacy of our framework in mitigating catastrophic forgetting, we em-
ploy t-SNE to visualize the learned feature space after the model has trained on all sequential tasks.
As depicted in Figure 6, we project the feature embeddings of test samples into a 2D space. The visu-
alization reveals that Fed-Duet maintains a highly structured and separable feature space, evidenced
by the dense and distinct clusters formed by each task’s samples. This clear spatial separation serves
as strong qualitative evidence that our framework preserves the integrity of feature representations
for earlier tasks, thereby effectively mitigating catastrophic forgetting at the feature level.

CIFAR-100 Tiny-ImageNet

Task ID
Task 1
Task 2
Task 3
Task 4
Task 5

Figure 6: t-SNE visualization of feature representations for test samples from all tasks on CIFAR-
100 (Left) and Tiny-ImageNet (Right) after the final task. Each color corresponds to a different
continual learning task.
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6.5.8 ANALYSIS OF EXPERT UTILIZATION

The expert activation patterns, visualized in Figure 7, reveal both effective load balancing and a high
degree of specialization. The heatmaps show a distributed activation strategy, confirming that our
model avoids expert collapse by engaging a diverse set of experts. Furthermore, we observe a strong
tendency for specific experts to be responsible for distinct task categories, particularly in the deeper
layers. This dual observation of balance and specialization mutually corroborates the findings from
our t-SNE visualization (Figure 6), which similarly indicates that experts form distinct, specialized
clusters.
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Figure 7: Visualization of expert selection frequency per task in our proposed FedDuet framework.
The heatmaps illustrate which of the 8 experts are activated for each of the 10 sequential tasks across
12 transformer layers. The color intensity corresponds to the selection frequency, highlighting how
expert utilization evolves for different tasks and layers.
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