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ABSTRACT

Existing image super-resolution (SR) techniques often fail to generalize effectively
in complex real-world settings due to the significant divergence between training
data and practical scenarios. To address this challenge, previous efforts have either
manually simulated intricate physical-based degradations or utilized learning-based
techniques, yet these approaches remain inadequate for producing large-scale,
realistic, and diverse data simultaneously. In this paper, we introduce a novel
Realistic Decoupled Data Generator (RealDGen), an unsupervised learning data
generation framework designed for real-world super-resolution. We meticulously
develop content and degradation extraction strategies, which are integrated into
a novel content-degradation decoupled diffusion model to create realistic low-
resolution images from unpaired real LR and HR images. Extensive experiments
demonstrate that RealDGen excels in generating large-scale, high-quality paired
data that mirrors real-world degradations, significantly advancing the performance
of popular SR models on various real-world benchmarks.

1 INTRODUCTION

Real-world image Super-Resolution (Real SR) is a fundamental problem in image processing, aiming
to enhance the resolution and quality of images in real-world scenarios (Chen et al., 2022; Yu et al.,
2024; Liu et al., 2023; Zhang et al., 2023b; Sun et al., 2023; Zhang et al., 2024; Chen et al., 2023a;
Huang et al., 2020; Lugmayr et al., 2020b; Li et al., 2022a; Lugmayr et al., 2019a; Sun & Chen, 2024).
It has a wide range of applications across various fields, including photography (Chen et al., 2019)
and medical imaging (Li et al., 2021), which enhance human visual perception and the robustness
of vision systems (Haris et al., 2021; Noor et al., 2019; Gunturk et al., 2003; Chen et al., 2020a).
However, traditional bicubic-interpolation-based Real SR methods have proven less effective in
complex real-world scenarios due to the significant discrepancy between the bicubic pattern and real
degradation (Chen et al., 2022; Liu et al., 2023; Cai et al., 2019; Wang et al., 2020; Chen et al., 2024).
Consequently, substantial efforts have been directed towards developing methods for generating more
realistic data to improve the generalization ability of Real SR models (Cai et al., 2019; Wei et al.,
2020; Zhang et al., 2021; Wang et al., 2021b; Zhang et al., 2023a; Park et al., 2023; Li et al., 2022b;
Xiao et al., 2020; Wolf et al., 2021; Luo et al., 2024; Sun & Chen, 2024; Hendrycks & Dietterich,
2019; Deng et al., 2023).

To explore what kind of data contributes most to the SR model’s capability, we synthesize different
sets of training data using (Elad & Feuer, 1997) and evaluate the performance of FSRCNN (Dong
et al., 2016). As shown in Figure 1(a), the red triangles represent test samples of the target domain,
while rectangular boxes indicate training sets with different blur kernels and noise levels. The results
clearly demonstrate that the closer the training data distribution is to the test data, the better the
model’s performance. This underscores the importance of designing a method that can adaptively
generate accurate data for different target domains. Therefore, an ideal data generation system for
Real SR should meet the following criteria: I) Large-scale, to satisfy the extensive data requirements
for training deep learning models (Raicu et al., 2008; Maeda, 2020; Sehwag et al., 2022; Wu et al.,
2023); II) Realistic, to enable Real SR models to accurately learn the characteristics of real-world
degradation (Cai et al., 2019; Wei et al., 2020; Zhang et al., 2021; Ji et al., 2020; Liu et al., 2022);
and III) Adaptive, to flexibly generate data with arbitrary given degradation patterns, improving
generalization in target domains (Liu et al., 2023; Zhang et al., 2023a; Chen et al., 2019; Lugmayr
et al., 2019b; Mou et al., 2022).
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Figure 1: (a) and (b) are SR performance on different train data and degradation distribution of
different methods. (c) is the pipeline of our unsupervised data generation framework RealDGen.

Existing data generation methods for Real SR (Cai et al., 2019; Wei et al., 2020; Zhang et al., 2021;
Wang et al., 2021b; Maeda, 2020; Bulat et al., 2018; Yang et al., 2023; Lugmayr et al., 2020a; Yuan
et al., 2018; Ignatov et al., 2017), as shown in Figure 1(b), can be broadly categorized into the
following: a) Manual Collection via Focal Length Adjustment: This approach involves using
digital single-lens reflex cameras (DSLRs) with varying focal lengths to capture images, followed
by alignment (Cai et al., 2019; Wei et al., 2020). While it can produce realistic paired data, it is
labor-intensive and often results in scene monotony and image misalignment, failing to meet the
large-scale data requirement. b) Hand-Crafted Physical-Based Degradation Modeling: This
method employs various degradation models (e.g., noise, blur, bicubic, JPEG) applied in single-
order or higher-order combinations (Zhang et al., 2021; Wang et al., 2021b). Although efficient
in generating large data quantities, the synthetic data often fails to accurately reflect the complex
degradation patterns of real-world images, and its lack of adaptability to specific domains limits
effectiveness. c) Learning-Based Methods: Techniques involving Generative Adversarial Networks
(GANs) (Bulat et al., 2018) and diffusion models (Yang et al., 2023) are proposed to simulate realistic
real-world degradation for low-resolution (LR) images. While these methods produce more realistic
data compared to hand-crafted approaches, they often struggle to generalize to new and diverse
domains, limiting their applicability in real-world scenarios. In summary, existing data generation
methods face challenges in achieving both realism and adaptability: tailoring models to specific target
domains may hinder their adaptability to new domains, and vice versa. Overcoming these challenges
is crucial for advancing the field of Real SR.

In this paper, we introduce a novel unsupervised learning framework Realistic Decoupled Data
Generator (RealDGen) to meet the large-scale, realistic, and adaptive data generation criteria, as
shown in Figure 1(c). RealDGen enhances degradation realism and content fidelity by separately
modeling content and degradation through unsupervised learning and integrating them into a diffusion
model to generate paired data. The training involves two steps: first, pre-training degradation and
content extractors using contrastive and reconstruction learning to improve representation robustness;
second, using these pre-trained extractors to condition the diffusion model with real LR degradation
and content representations. To improve generalization to unknown LR distributions, the partial
parameters of the extractors are fine-tuned. During data generation, unpaired HR and real LR images
are used to extract content and degradation representations, which are then combined in the diffusion
model. This process produces data that marries HR content with arbitrary LR degradation, improving
adaptability to new domains. Extensive experiments show that RealDGen outperforms previous
methods in generating realistic paired data and enhancing the performance of SR models in real-world
scenarios.

The contributions of this paper can be summarized as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: An overview of the training pipeline of our proposed RealDGen. We first train on the content
and degradation extractors, then train Decoupled DDPM while fine-tuning the partial parameters of
the extractors. RealDGen adaptively generates realistic LR images with arbitrarily given real LR
images and unpaired HR images.

• We propose a novel unsupervised Realistic Decoupled Data Generator (RealDGen) to
adaptively generate large-scale, realistic, and diverse data for real-world super-resolution.

• We introduce well-designed content and degradation extraction strategies and a novel content-
degradation decoupled diffusion model to generate realistic LR with arbitrary unpaired LR
and HR conditions.

• Compared with previous methods, our method significantly advances the generalization
ability of popular SR models, achieving the best performance on real-world benchmarks.

2 METHOD

In this paper, we introduce a novel Realistic Decoupled Data Generator (RealDGen) for real-world
super-resolution to adaptively generate large-scale, realistic, and diverse real paired data. In particular,
well-designed content and degradation extractor learning strategies are proposed to capture robust
content and degradation representations in the real world. A novel content-degradation decoupled
diffusion model is proposed to generate realistic LR with arbitrary unpaired LR and HR conditions.
The training process is divided into two distinct phases: (a) Content and Degradation Extractor
Pre-training and (b) Decoupled DDPM Training and Extractor Fine-tuning, as shown in Figure 2.

2.1 CONTENT AND DEGRADATION EXTRACTOR PRE-TRAINING

To capture content and degradation representations, we propose dedicated degradation and con-
tent extractors, denoted as Edeg and Econt, respectively. We employ reconstruction learning for
training Econt, as shown in the left of Figure 2. Specifically, for a given high-resolution (HR)
image X ∈ RC×H×W , we degrade it to a low-resolution (LR) counterpart Xlr ∈ RC×h×w by
Real-ESRGAN (Wang et al., 2021b) degradation model D with diverse synthetic degradations. Sub-
sequently, Econt is engaged to extract the content representation Fcont from Xlr. Thereafter, a HR
reconstruction network Rechr is harnessed to reconstruct the HR image X̂ ∈ RC×H×W from Fcont,
as follows:

Fcont = Econt (Xlr) , X̂ = Rechr (Fcont) . (1)

The objective is to minimize the reconstruction loss Lrh between the reconstructed image X̂ and the
original high-resolution image X , as follows:

Lrh =
1

N

N∑
i=1

(
X̂i −Xi

)2

(2)
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Algorithm 1 Decoupled DDPM Training
1: repeat
2: xlr ∼ q(xlr)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Fcont = Econt (xlr)
6: Fdeg = Edeg (xlr)
7: c = M (Fcont, Fdeg)
8: Take gradient descent step on

∇θ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, c, t)

∥∥2

9: until converged

Algorithm 2 Data Generation

1: xlr ∼ q (xlr) ,xhr ∼ p (xhr)
2: c = M (Edeg (xlr) , Econt (xhr))
3: τ ∼ Uniform({1, . . . , T})
4: xt = (

√
ᾱtD (xlr) +

√
1− ᾱtϵ), ϵ ∼ N (0, I)

5: for t = τ, . . . , 1 do
6: z ∼ N (0, I) if t > 1, else z = 0

7: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, c, t)

)
+ σtz

8: end for
9: return x0

where N denotes the batch size, which we empirically set to 64. After using LR-HR paired training,
Econt is able to learn a robust content representation under diverse degradation and real scenarios.

Considering the variability of degradation in diverse scenarios and imaging devices in the real
world, we advocate for contrastive learning (Chen et al., 2020b; Hermans et al., 2017) to curate
positive and negative samples for training Edeg , which guarantees the uniqueness of the degradation
representations. Specifically, for a HR image X ∈ RC×H×W , we generate an LR image Xlr ∈
RC×h×w by D with parameter θ as the anchor Xanc. We further obtain a set of negative samples
Xnegi

∈ RC×h×w by applying D with different parameters θi to X , and a set of positive samples
Xposi ∈ RC×h×w by applying the degradation D with same parameter θ to different HR images
X ′

i ∈ RC×H×W , as follows:

Xneg = {D (X , θ1) ,D (X , θ2) , . . . ,D (X , θn)},
Xpos = {D (X ′

1, θ) ,D (X ′
2, θ) , . . . ,D (X ′

n, θ))} .
(3)

The objective is to minimize the contrastive loss Lcl to drive Edeg learn the uniqueness of the
degradation representations in LR images, suppressing the interruption of content, as follows:

Lcl =

n∑
i=1

max (0, d (Edeg (Xanc) , Edeg (Xposi))− d (Edeg (Xanc) , Edeg (Xnegi)) +margin) . (4)

where d symbolizes the L2 distance, n is the number of samples, and we empirically set n and
margin to 3 and 0.01, respectively. Furthermore, to drive Edeg to learn the complete degradation
representations, we utilize the reconstruction learning strategy as aforementioned for supervising Edeg .
Specifically, we utilize the pre-trained Econt to learn the content representation of HR images Xhr

and Edeg to learn the degradation representations of Xlr. We employ a low-resolution reconstruction
network, Reclr, to combine these representations and reconstruct the LR image, X̂lr, as follows:

X̂lr = Reclr (Edeg (Xlr) , Econt (Xhr)) . (5)

The objective is to minimize the reconstruction loss Lrl to drive Edeg learn the completeness of the
degradation representations as follows:

Lrl =
1

N

N∑
i=1

(
X̂lri −Xlri

)2

. (6)

After training with well-designed learning strategies, our extractors effectively capture robust content
and degradation representations. More details and analysis are provided in Appendix A.1 and A.2.

2.2 DECOUPLED DDPM TRAINING AND EXTRACTOR FINE-TUNING

We introduce a content-degradation Decoupled Diffusion Probabilistic Model (Decoupled DDPM) to
generate real LR images. In detail, given real LR images Xlr from real-world q encompassing various
degradations, we extract their robust content representation Fcont and degradation representation Fdeg

by pre-trained Econt and Edeg, respectively. To enhance the generalization of Edeg and Econt on
unseen real distributions, partial parameters are fine-tuned, as shown in Figure 2. A modulation block
M is introduced to adequately incorporate degradation representation into the content, formulated as:

c = M (Edeg (xlr) , Econt (xlr)) . (7)
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Then, this fused image representation is utilized as a condition c for controlling our Decouple DDPM
to generate LR images. To make it clear, we illustrate the detailed training procedure of the Decouple
DDPM, as shown in Algorithm 1. More details of fine-tuning and analysis of Econt and Edeg are
provided in Sections A.3, A.4 and A.5 of the appendix.

2.3 DATA GENERATION

We propose a novel strategy to generate realistic LR images using unpaired LR and HR images
by decoupling content and degradation. First, we extract the degradation representation from a
real-world LR image and the content representation from an HR image. These representations are
combined in the modulation module M to serve as the condition c for the diffusion model to generate
LR images. The generated LR images retain the content of the HR image and the degradation of the
real LR image, as shown on the right of Figure 1. To enhance fidelity, following (Meng et al., 2021),
we denoise from an initial LR image xt with t steps of noise rather than from pure Gaussian noise.
This initial LR image is degraded by D. In Section 3.4, we analyze the step number T . Details of our
data generation pipeline are in Algorithm 2.

Although using content and degradation conditions improves the controllability and fidelity of
Decoupled DDPM, the inherent stochasticity of the diffusion model (Ho et al., 2020; Rombach et al.,
2022) can still introduce tiny artifacts and content distortion. To mitigate this, we propose a filtering
mechanism. For each generated LR image, we re-extract content and degradation representations,
then calculate the degradation error with the real LR image and the content error with the HR
image. By selecting samples with the smallest errors, we reduce diffusion stochasticity and produce
higher-fidelity LR images. More details and analysis are presented in Appendix A.3, A.5 and A.6.

3 EXPERIMENTS AND ANALYSIS

3.1 EXPERIMENTS SETTINGS

Training details. We collect about 152,000 real low-resolution images from both public datasets (Wei
et al., 2020; Cai et al., 2019; Ignatov et al., 2017) and those captured using smartphones to train
RealDGen. Extractors and Decouple DDPM are trained with learning rate 1× 10−4 and batch size 16
on 16 NVIDIA V100 GPUs. More details of the training setting are presented in Section A.1 and A.3
of the appendix. To ensure a fair comparison, we compare our approach with existing methods
by using the widely-used DIV2K dataset (Agustsson & Timofte, 2017) as HR images and real LR
images as degradation references to create the paired training data for training various popular SR
models. To maintain a rigorous and fair comparison, we maintain consistency in all experimental
settings and environments, with the exception of data generation. We utilize the public BasicSR1 for
training Real-SR methods with 16 NVIDIA V100 GPUs.

Compared data generation methods. We compare our methods with some state-of-the-art real-
world data generation methods, including Hand-Crafted Physical-Based Degradation Models (BSR-
GAN (Zhang et al., 2021) and Real-ESRGAN (Wang et al., 2021b)) and learning-based degradation
diffusion models proposed by (Yang et al., 2023), denoted as SynDiff for convenience.

Real-SR models. To comprehensively validate the effectiveness of the generated data, we select
five classic and representative backbone architectures for evaluation, including CNN-based model
RRDB (Wang et al., 2018), transformer-based model SwinIR (Liang et al., 2021) and HAT (Chen
et al., 2023b), diffusion-based model ResShift (Yue et al., 2024) and lightweight model SwinIR-
L (Liang et al., 2021). To be fair, we conduct comparative evaluations under consistent experimental
conditions and settings. We utilize L1Loss (Chen et al., 2023b; Liang et al., 2021) and perception
GAN loss (Wang et al., 2021b; Johnson et al., 2016; Wang et al., 2018) for training PNSR-oriented
and Perception-oriented Real SR models, respectively.

Metrics. For the PNSR-oriented Real SR model, we adopt PSNR (Huynh-Thu & Ghanbari, 2008)
and SSIM (Wang et al., 2004) to quantitatively evaluate the performance. For the perception-oriented
Real-SR model, we adopt LPIPS (Zhang et al., 2018) and FID (Heusel et al., 2017) to quantitatively
evaluate the performance. DISTS (Ding et al., 2020) and CLIP-Score (Radford et al., 2021) are

1https://github.com/XPixelGroup/BasicSR
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Table 1: Quantitative comparisons of PSNR-oriented and Perceptual-oriented training SR models on
three real-world image super-resolution benchmarks. The best results are highlighted in bold.

RealSR DRealSR SmartPhonePSNR-oriented Training PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SwinIR (Real-ESRGAN) 24.395 0.7760 26.944 0.8308 27.395 0.8338
SwinIR (BSRGAN) 25.852 0.7808 27.985 0.8308 28.049 0.8407
SwinIR (SynDiff) 25.589 0.7687 28.301 0.8309 28.566 0.8453
SwinIR (Ours) 26.094 0.7822 28.721 0.8341 28.737 0.8489
RRDB (Real-ESRGAN) 24.579 0.7614 27.131 0.8193 27.841 0.8378
RRDB (BSRGAN) 25.406 0.7685 27.523 0.8017 28.029 0.8278
RRDB (SynDiff) 25.488 0.7691 28.078 0.8257 28.303 0.8426
RRDB (Ours) 26.238 0.7747 28.727 0.8340 28.754 0.8507
HAT (Real-ESRGAN) 24.893 0.7726 27.339 0.8215 27.781 0.8336
HAT (BSRGAN) 25.997 0.7816 28.135 0.8273 28.137 0.8369
HAT (SynDiff) 25.790 0.7584 28.506 0.8286 28.508 0.8471
HAT (Ours) 26.140 0.7832 28.802 0.8345 28.767 0.8489
SwinIR-L (Real-ESRGAN) 24.367 0.7723 27.018 0.8244 27.581 0.8409
SwinIR-L (BSRGAN) 25.651 0.7800 27.813 0.8301 28.118 0.8437
SwinIR-L (SynDiff) 25.281 0.7516 28.170 0.8244 28.474 0.8487
SwinIR-L (Ours) 26.025 0.7810 28.869 0.8328 28.868 0.8522

RealSR DRealSR SmartPhonePerceptual-oriented Training LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓
SwinIR (Real-ESRGAN) 0.3037 69.965 0.3219 39.175 0.4053 78.242
SwinIR (BSRGAN) 0.2945 79.833 0.3023 38.541 0.3043 76.871
SwinIR (SynDiff) 0.3835 103.179 0.3801 54.588 0.3129 83.485
SwinIR (Ours) 0.2536 69.736 0.2660 38.257 0.2964 74.778
RRDB (Real-ESRGAN) 0.3480 82.056 0.3551 39.310 0.3480 77.573
RRDB (BSRGAN) 0.3041 77.412 0.3127 36.528 0.3381 78.812
RRDB (SynDiff) 0.4004 98.798 0.4017 56.573 0.3511 88.431
RRDB (Ours) 0.2972 76.973 0.3077 36.259 0.3125 76.723
HAT (Real-ESRGAN) 0.3066 79.209 0.3219 41.862 0.4022 87.950
HAT (BSRGAN) 0.2852 80.192 0.2835 41.723 0.3049 81.247
HAT (SynDiff) 0.3332 93.763 0.3465 50.808 0.3171 85.587
HAT (Ours) 0.2457 67.573 6.2587 41.319 0.2816 76.873
SwinIR-L (Real-ESRGAN) 0.3108 79.491 0.3234 42.986 0.4021 87.531
SwinIR-L (BSRGAN) 0.3013 84.195 0.2978 43.246 0.3146 83.444
SwinIR-L (SynDiff) 0.3793 98.646 0.3748 52.464 0.3190 80.708
SwinIR-L (Ours) 0.2795 75.779 0.2862 42.542 0.3047 78.632

further introduced to evaluate the accuracy of generated data. Note that the higher the PSNR, SSIM,
and CLIP-Score, the better, and the lower the LPIPS, FID, and DISTS, the better.

Evaluation. We utilize two public benchmarks to evaluate the performance of real-world image super-
resolution methods, including the real-world dataset RealSR (Cai et al., 2019) and DRealSR (Wei et al.,
2020) captured by digital single-lens reflex cameras (DSLRs). To further improve the diversity and
quantity of real degradation scenarios, we have collected 891 pairs of data captured by smartphones
for evaluation, denoted as SmartPhone.

3.2 QUANTITATIVE RESULTS

Generalization ability of Real SR models. We compare our method with the existing data generation
methods on both PSNR-oriented and Perceptual-oriented Real SR models to validate the superiority
of our method in boosting the generalization capabilities for real-world image super-resolution, and
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Table 2: Performance comparison of the diffusion-based ResShift model trained on our generated
data versus Real-ESRGAN’s simulated data on the SmartPhone and DRealSR benchmarks.

Benchmark Methods PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑
ResShift (Yue et al., 2024) 27.05 0.806 0.352 0.546SmartPhone ResShift (Ours) 27.27 0.818 0.345 0.557
ResShift (Yue et al., 2024) 26.19 0.755 0.413 0.574DRealSR ResShift (Ours) 26.32 0.772 0.378 0.622

Figure 3: Visual comparison of generated LR. Our method achieves the best visual results with
realistic degradation and high fidelity. Please zoom in for better visualization.

the results are shown in Table 1. We can observe that our method comprehensively improves the
performance of PSNR-oriented and Perceptual-oriented SR models across three benchmarks. It’s
worth noting that our approach achieves a significant performance improvement, including 0.75 dB
in RRDB (Wang et al., 2018) on the PSNR of the RealSR benchmark; 0.296dB and 0.699 dB in
SwinIR (Liang et al., 2021) and light-weight SwinIR-L on the PSNR of the RealSR benchmark.
Furthermore, our methods also significantly improve LPIPS and FID in four SR models, including
0.0395 and 12.619 in HAT (Chen et al., 2023b) on the LPIPS and FID of the RealSR benchmark.
Furthermore, we also conduct experiments on the diffusion-based model ResShift (Yue et al., 2024).
Specifically, the official implementation of ResShift is trained on a large-scale dataset using Real-
ESRGAN degradation with 500,000 iterations, and we perform a quick fine-tuning with 10,000
iterations using our generated data. As shown Table 2, our proposed method effectively generates
accurate and realistic data in the target domain and helps ResShift quickly adapt to the new domain,
yielding consistent improvements on both DRealSR and SmartPhone benchmarks. The experiments
demonstrate that our method significantly improves performance across various SR approaches,
including CNN-based, Transformer-based, and diffusion-based methods.

Accuracy of generated real LR. To validate our method’s superiority in generating accurately
realistic and matched real LR, we conduct comparisons with existing methods in terms of the
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Table 3: Quantitative comparisons of the accuracy of generating real LR images on three real-world
benchmarks under six distinct similarity metrics.

Benchmark Methods PSNR↑ SSIM↑ LPIPS↓ FID↓ DISTS↓ CLIP-Score↑
Real-ESRGAN 24.3974 0.6798 0.3881 157.5237 0.2618 0.7552
BSRGAN 23.2665 0.6043 0.5093 177.9996 0.3048 0.6783
SynDiff 25.2461 0.7588 0.2371 119.9950 0.1944 0.7984RealSR

Ours 26.1615 0.7940 0.2226 107.2375 0.1865 0.8238
RealESRGAN 26.3510 0.6935 0.3842 60.2665 0.2437 0.7710
BSRGAN 26.1970 0.6869 0.4319 62.9189 0.2646 0.7137
SynDiff 28.0125 0.8136 0.1739 31.0855 0.1673 0.8462DRealSR

Ours 28.6629 0.8360 0.1497 30.0078 0.1567 0.8577
RealESRGAN 26.0680 0.5981 0.5202 106.3958 0.2855 0.7231
BSRGAN 27.6215 0.7179 0.4399 105.3289 0.2760 0.6771
SynDiff 28.5020 0.8075 0.2423 70.6379 0.2044 0.8213SmartPhone

Ours 29.0054 0.8292 0.2121 69.1162 0.1964 0.8334

Figure 4: Visual comparison of Real SR based on different data generation methods. Real SR training
using our data achieves the best visual results. Please zoom in for better visualization.

accuracy of the generated data on six metrics for evaluation. Specifically, we utilize HR images in
the three real-world datasets as the content reference and employ the existing methods to synthesize
generated LR images, while our method is able to utilize the degradation reference from real LR. As
shown in Table 3, we can observe that our method achieves the best performance on three datasets
under six metrics, including distribution distance metric: FID, image structure and texture similarity
metric: DISTS, and perceptual metric: LPIPS and CLIP-score, etc. It demonstrates the superiority of
our Decoupled DDPM and verifies that our generation method is closer to target real LR images.

Generalization Ability on Out-of-distribution Data. Although we have collected about 152,000
real LR images for training, unseen scenarios often arise in real-world applications. To further explore
our generalization capabilities on out-of-distribution data, we randomly extract 200 images from
the unseen real-world video SR data (Yang et al., 2021) for evaluation, denoted as RealVSR. Then,
we capture the degradation representing those images to generate the training data and compare
it with existing methods on the SwinIR-L model, and the results are shown in Table 6. We can
observe that our method still achieves the best performance on the out-of-distribution RealVSR
benchmark, surpassing the existing state-of-the-art methods by 0.2214 and 0.0055 in PSNR and
SSIM, respectively. This demonstrates the ability of our method to generalize for unseen scenarios in
the real world.
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T 0-200 0-300 0-400 0-500

PSNR↑ 28.762 28.868 28.542 26.713
SSIM↑ 0.8501 0.8522 0.8435 0.7931

Table 4: Ablation study on T in our proposed
Decoupled DDPM during inferencing.

Method w/o Edeg w/o Econt Ours

PSNR↑ 21.642 25.745 28.868
SSIM↑ 0.7432 0.8095 0.8522

Table 5: Ablation study on degradation extrac-
tor Edeg and content extractor Econt.

Figure 5: Visual comparison of generated low-resolution images with different reference real LR
images. Please zoom in for better visualization.

3.3 QUALITATIVE RESULTS

We visualize the results of the generated LR images, as shown in Figure 3. It is clear that the Real-
ESRGAN and BSRGAN, which are unable to perceive real degradation, exhibit a significant gap
compared to real LR images. The SynDiff also struggles to adaptively capture the real degradation
and content representation, resulting in unreal degradation distribution and low fidelity, as shown
in the third row in Figure 3. However, benefiting from our adaptive perception ability of the
degradation of real LR image and content of HR image, our RealDGen achieves the best visual
effect in terms of both the realism of degradation and the fidelity of content. To demonstrate our
method’s ability to capture the degradation distribution of arbitrary LR images, we simulate data
using degradation representations from various real-world LR images and content representation from
an HR image (Figure 5). In contrast to existing methods like BSRGAN and Real-ESRGAN, which
rely on handcrafted degradation models and struggle to accurately reflect degradation in specific LR
images, our approach separates content representation from the HR image and extracts degradation
representation from the reference LR image, enabling more accurate and realistic data generation.

To further present the effectiveness of our generated data for Real SR models, we visualize the
super-resolved results of the SwinIR model on the RealSR and DRealSR benchmarks, as shown in
Figure 4. Models trained on SynDiff, BSRGAN, and Real-ESRGAN data exhibit noticeable artifacts
and blurring, shile our method consistently delivers superior visual quality without such defects. The
textual scene in the second row of Figure 4 highlights the clear advantage of our approach. Additional
visual comparisons are provided in Appendix A.16.

3.4 ABLATION STUDY

Degradation and content extractor. Our core idea is utilizing the degradation extractor Edeg and
content extractor Econt to extract degradation and content representation to control Decoupled DDPM
in generating realistic LR. To verify this, we eliminate components Edeg and Econt, subsequently
training the decoupled DDPM and fine-tuning the remaining extractor. For quick evaluation, we
employ SwinIR-L as the baseline and evaluate on the Smartphone benchmark. The results in Table 5
demonstrate that the absence of Edeg and Econt will cause mismatch and unreal degradation and con-
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Figure 6: User study of generated real LR.

RealVSR PSNR↑ SSIM↑
Real-ESRGAN 22.7402 0.6939
BSRGAN 22.6564 0.6779
SynDiff 22.4607 0.6704
Ours 22.9616 0.6994

Table 6: The performance comparison
with existing data generation method on
out-of-distribution RealVSR benchmark.

tent distortion problems and result in performance degradation, thereby affirming the indispensability
of Edeg and Econt in our method.

T in data generation. As illustrated in Section 2.3, in inferencing, we denoise from an initial
LR image xt with t-step noise added and perform t steps of denoising to improve the fidelity of
Decoupled DDPM, where t is selected from the range of 0 to T . To explore it, we set T to 200,
300, 400, and 500 and conduct ablation experiments, as presented in Table 4. It is observed that the
optimal T is 300. A lower T will result in insufficient generation of degradation, while a high T will
lead to a decrease in image fidelity. We propose that the value of T should be dynamically adjusted
to align with the degradation level of the given LR image, rather than being manually set. In future
work, we plan to develop an automatic selection mechanism for T to enhance the model’s control and
improve the fidelity of the generated data. More ablation studies of loss function’s hyperparameters,
n, and margin, are presented in Appendix A.7.

3.5 USER STUDY

To demonstrate the superiority of RealDGen in generating accurate and realistic low-resolution
images, we conduct a user study involving 10 real-world LR images randomly chosen from existing
benchmarks. 10 volunteers are asked to rate each scene individually (0: not similar at all; 2: not
very similar; 4: slightly similar; 6: moderately similar; 8: similar; 10: extremely similar). Then, we
aggregate the scores from all volunteers, and the results are shown in Figure 6. We can observe that
the previous methods are unable to adaptively and accurately perceive real degradation, resulting in
low fidelity in the generated real LR data, which leads to a general perception among users that there
is a significant gap compared to real LR images. However, our RealDGen can adaptively capture
the real degradation to accurately generate realistic LR images, resulting in an average score of 8.46
from human evaluators, surpassing previous approaches and thereby highlighting the improved visual
quality that our method offers.

4 CONCLUSION

In this paper, we introduce a novel RealDGen to adaptively generate large-scale, high-quality
paired data with arbitrary real LR as degradation reference and unpaired HR as content reference.
Well-designed extractors and strategies are proposed to facilitate the extraction of robust content
and degradation representations. A content-degradation decoupled diffusion model is proposed to
adaptively generate realistic LR with given unpaired LR and HR conditions. Extensive experiments
demonstrate that RealDGen not only achieves the best performance in generating realistic and accurate
real LR images but also comprehensively improves the generalization ability of various popular SR
models on real-world benchmarks. In addition, benefiting from the unsupervised learning of our
method and the convenience of real LR image collection, it is easy to collect more real LR images
with various real degradations to enhance generalization capability further.

Limitation analysis: Due to the high stochasticity inherent in diffusion models, RealDGen sometimes
struggles to preserve fine textures. In future work, we plan to incorporate perceptual loss during
training and develop a robust mechanism for automatically selecting the optimal denoising step based
on the degradation level, thereby further enhancing the fidelity of the generated data.
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A APPENDIX

A.1 TRAINING DETAIL AND ANALYSIS OF CONTENT AND DEGRADATION EXTRACTOR

A.1.1 CONTENT EXTRACTOR

we initially contemplate leveraging the auto-regressive architecture of VQGAN Esser et al. (2021)
as our Content Extractor Econt to capture content representations. However, our experimental
endeavors reveal that the Generative Adversarial Network (GAN) in VQGAN impedes fine-tuning
and the extraction of realistic content representations. Consequently, we elect to employ the encoder
component of VQVAE Razavi et al. (2019) as Econt. Given that these extractors have not been
trained on degradation scenarios, they are not immediately suitable for our method. To surmount this
challenge, we have meticulously crafted a fine-tuning strategy predicated on reconstruction learning.
Specifically, we adopt Real-ESRGAN to degrade high-resolution (HR) images to generate paired
datasets for training. During training, we maintain the decoder of VQVAE in a frozen state while
fine-tuning the encoder, using HR images for supervised learning, with the objective loss function
being the L2 Loss. Our fine-tuning regimen is conducted with a learning rate of 1× 10−5, utilizing 8
NVIDIA V100 GPUs, which spent approximately one week for training. The reconstructed samples
rendered by our fine-tuned Content Extractor are delineated in Figure 7. It is evident that after
fine-tuning, VQVAE adeptly captures content representations in degraded scenarios and adeptly
reconstructs high-resolution images.

Figure 7: Visutal comparison with Input LR image, VQVAE, our pretrained VQVAE, and GT.
VQVAE, after training on our designed learning strategy, can better capture the robust content
representations to reconstruct high-quilty HR.

Why can the content feature extractor pre-trained on LR data robustly extract content features
from HR data during data generation? The proposed content extractor is designed to robustly
extract content information from an arbitrary image. Given the inevitable presence of degradation in
real-world HR images, we collect 152,000 real images with various types and degrees of degradation
for unsupervised fine-tuning. Within this dataset, images with relatively low degradation levels
exhibit a distribution closer to that of HR images. Fine-tuning the content extractor on these real
images improves its generalization capability in real-world scenarios. Quantitative results (Tables 1,
2, and 5) and qualitative results (Figures 3, 4, and 5) validate that our content extractor can effectively
extract robust content representations from any HR image to generate realistic and high-fidelity LR
images.
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Why use LR-HR pairs to pre-train the content extractor? The content extractor is designed to
extract robust ’pure’ content information from an image while ignoring potential degradation. Using
LR-LR or HR-HR pairs causes the content extractor to learn identity mapping, mixing content, and
degradation representations. During inference, we aim to extract content from a relatively clear
image (’HR’) without involving its degradation and combine it with the degradation of another image
(’LR’) to generate a new LR image. Therefore, we should use LR-HR pairs to train the content
extractor. Table 2 and Figure 3 validate that our content extractor can effectively extract robust
content representations to generate realistic and high-fidelity LR images.

A.1.2 DEGRADATION EXTRACTOR

We introduce a novel Degradation Extractor denoted as Edeg, which is comprised of a feature
extraction layer integrated with 16 residual blocks and a mapping function facilitated by adaptive
polling and a 4-layer convolutional structure, as shown in Figure 8. Specifically, given the input
of a low-resolution image into the Degradation Extractor, it engenders the output degradation
representation Fdeg ∈ R1×1×2048. To ensure the extraction of comprehensive and unique degradation
representations in the LR image, we employ both reconstruction learning and contrastive learning
methodologies in training our network. The training is executed on 8 NVIDIA V100 GPUs over the
course of approximately seven days, with the learning rate configured at 1e− 4.

Figure 8: Illustration of our proposed degradation extractor.

A.2 DETAIL OF HR AND LR RECONSTRUCTION NETWORK

To better adapt to the content extractor, that is, the encoder of the VQVAE, the decoder of VQVAE
is adopted as HR reconstruction network Rechr tasked with the reconstruction of high-resolution
images. Given that the LR reconstruction network is tasked with reconstructing the LR image from
content and degradation representations, we have adopted the aforementioned modulation network as
our LR reconstruction network Reclr.

A.3 TRAINING DETAILS OF DECOUPLE DDPM

During the training of the Decoupled DDPM, we configure the maximum diffusion step to be 500,
span the training over 100 epochs, and utilize a learning rate of 1e− 4 for the decoupled diffusion
model. For the fine-tuning of the extractors, we apply a more refined learning rate of 1e− 6. The
batch size is defined as 8, and the entire training regimen is on 8 NVIDIA V100 GPUs, which
typically consume around 14 days to complete.

We have amassed a collection of approximately 152,000 real low-resolution images sourced from
publicly available datasets such as Wei et al. (2020); Cai et al. (2019); Ignatov et al. (2017) and those
captured using smartphones. To elaborate, we have extracted all low-resolution images from these
datasets and have cropped each to a uniform size of 256× 256, resulting in a total of 110,000 images.
Subsequently, to enhance the diversity of real-world degradation distribution, we have additionally
procured 42,000 low-resolution images, each of the same 256× 256 size. Collectively, this corpus of
152,000 low-resolution images serves as the training data for our Decoupled DDPM.
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A.4 DETAIL OF MODULATION BLOCK

As detailed in Section 2, we commence with real low-resolution images, denoted as Xlr, which are
derived from the real-world degradation distribution q. Utilizing our pre-trained extractors Econt

and Edeg , we meticulously extract the respective content and degradation representations, Fcont and
Fdeg . To authentically emulate the intricacies of the real imaging process, we introduce a modulation
block, denoted as M, which seamlessly integrates the degradation representation into the content
representation. The integration is mathematically articulated as follows:

c = M (Edeg (xlr) , Econt (xlr)) (8)

In this section, we proceed to elucidate the intricate mechanisms underpinning the modulation
block M. M is meticulously constructed from a series of four modulation layers, each comprising
a convolutional layer, an activation function, and a modulation unit, as shown in Figure 9. The
inputs to M encompass both the degradation and content representations. Within each modulation
unit, the degradation representation is subjected to a sophisticated fusion process. Ultimately, the
block culminates in its output through a final convolutional operation, synthesizing the enhanced
representation.

Figure 9: llustration of our modulation block.

A.5 ANALYSIS AND DETAILS OF FINE-TUNING EXTRACTOR

During the second phase of training, we froze the majority of parameters in the content extractor,
allowing only the first block within the VQVAE to undergo fine-tuning. Simultaneously, we applied a
similar approach to the degradation extractor, restricting fine-tuning to the final convolutional layer.
To validate the effectiveness of fine-tuning, we conduct an ablation experiment. In the second phase,
we completely freeze the extractor and train only the Decoupled DDPM. We find that the realism of
the generated degradation decreases because the extractor is trained exclusively on synthetic datasets,
which results in its inability to extract real degradation representations and content. Consequently,
the subsequent DDPM also has difficulty fitting the real LR accurately. Specifically, we test on
the RealSR dataset using SwinIR-L, resulting in a 0.25dB performance degradation in PSNR with
fine-tuning.

A.6 STOCHASTICITY OF DIFFUSION

As discussed in Sec. 4, to mitigate the stochasticity of diffusion, we propose a filtering mechanism to
eliminate outlier data. Specifically, we extract the degradation and content representations of the three
simulated LR images, compare their similarities with the input LR’s degradation and the HR’s content
representations, and select the best one to enhance the fidelity and quality of the generated LR images.
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RealSR PSNR↑ SSIM↑ LPIPS↓ FID↓
w/o Filtering 25.8965 0.7886 0.2316 116.8970

Ours 26.1615 0.7940 0.2226 107.2375

Table 7: The similarity results of ablation study on proposed
filtering mechanic.

SwinIR-L PSNR↑ SSIM↑
w/o Filtering 25.8747 0.7783

Ours 26.0250 0.7810

Table 8: The performance of
SwinIR-L on RealSR benchmark.

To validate this, we conduct experiments on the RealSR dataset, calculating the similarity and data
distribution compared to the real LR images in RealSR. Additionally, we verify the effectiveness
using the downstream SR network SwinIR-L, with results presented in Tables 7 and 8. It can be
observed that the data generated without the filtering mechanism exhibits lower similarity and further
divergence from the real LR images, as well as reduced performance in the downstream SR network.
This confirms the effectiveness and practicality of our proposed filtering mechanism in real-world
scenarios.

A.7 MORE ABLATION STUDIES

n 1 0.1 0.01 0.001 0.0001

PSNR↑ 28.34 28.43 28.66 28.52 28.60
FID↓ 31.37 30.78 30.00 30.49 30.15

Table 9: Ablation studies on n.

margin 1 2 3 4 5

PSNR↑ 28.35 28.50 28.66 28.61 28.60
FID↓ 30.97 30.61 30.00 30.16 30.15

Table 10: Ablation studies on margin.

In the loss function of the manuscript, we set the number of samples n and margin to 3 and 0.01,
respectively, based on our experimental results. As shown in Tables 9 and 10, evaluating PSNR and
FID between synthetic LR and real LR images on the DRealSR dataset, this configuration yields
the best performance. Since it is impractical to exhaustively test all possible configurations, we
empirically chose these values.

A.8 MORE DOWNSAMPLE SCALE

Table 11: Comparison of data generation performance of different methods at different downsample
scales on RealSR datasets.

Downsample Scale Metric BSRGAN Real-ESRGAN SynDiff Ours

×4 PSNR (dB)↑ 23.26 24.39 25.24 26.16

×2 PSNR (dB)↑ 23.26 24.39 25.24 26.16

In our manuscript, we adopt the typical downsample scale ×4 scale setting to validate the effectiveness
of the proposed data generation method. Furthermore, our method is easily adaptable to synthesizing
images at different super-resolution scales, such as ×2, and ×4. To further demonstrate the flexibility
and superiority of our approach, we present comparison results for ×4 and ×2. As shown in Table 11,
our method achieves the best performance at both ×4 and ×2 scales.

A.9 INFERENCE TIME AND PARAMETERS COMPARISON

Inference time. We test the average inference time (including IO, image processing, and generation)
of producing 100 images and report the PSNR between synthetic LR and real LR on the RealSR
dataset, as shown in Table 12. Using the official implementation, we measure inference time
on 4 V100 GPUs. Our method adopts a sampling step of adding noise and denoising from 1 to
30, generating the highest-quality LR images and being faster than the learning-based SynDiff,
although it is slower than RealESRGAN and BSRGAN. Our method and RealESRGAN can be used
collaboratively and efficiently. We can use RealESRGAN for pre-training and then apply our method
to create a small amount of high-quality data for fine-tuning the target scene, which does not require
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Table 12: Comparison of inference time with different methods.

Hand-Crafted Physical-Based Learning-Based

Methods BSRGAN Real-ESRGAN SynDiff Ours

Platform 4 CPU 4 V100 4 V100 4 V100
Times (s) 0.4267 0.1085 0.7801 0.6086

PSNR (dB) 23.26 24.39 25.24 26.16

Table 13: Parameters and performance comparison.

RealSR Param (M) PSNR↑ SSIM↑ LPIPS↓ FID↓ DISTS↓ CLIP-Score↑
RealSR (Syndiff) 101.121 25.24 0.7588 0.2371 119.950 0.1944 0.7984
RealSR (Ours) 73.676 26.16 0.7940 0.2226 107.2375 0.1865 0.8238

DRealSR (Syndiff) 101.121 28.0125 0.8136 0.1739 31.0855 0.1673 0.8462
DRealSR (Ours) 73.676 28.6629 0.8360 0.1497 30.0078 0.1567 0.8577

SmartPhone (Syndiff) 101.121 28.5020 0.8075 0.2423 70.6379 0.2044 0.8213
SmartPhone (Ours) 73.676 29.0054 0.8292 0.2121 69.1162 0.1964 0.8334

high speed from our method. For example, as shown in Table 2, fine-tuning ResShift on our generated
realistic data significantly improves its generalization capability in real-world scenarios. Additionally,
we will explore more efficient sampling strategies and distillation methods to speed up the inference
of our method further.

Model parameters. Considering that BSRGAN and Real-ESRGAN are not deep-learning-based
methods, following your suggestion, we compare the capacity and performance of deep learning-
based Syndiff in Table 13. We see that our model not only has fewer parameters but also consistently
achieves better performance on RealSR, DRealSR, and SmartPhone benchmarks.

A.10 PERFORMANCE COMPARISON WITH REAL DATA COLLECTION

To further explore the performance comparison on real paired data, we further train the RRDB model
using the real-collected training subset of RealSR and evaluate it on the test subset, as shown in
Table 14. Since the training and test data in RealSR are captured using the same camera, they share
a similar degradation distribution. Consequently, the model trained on real data achieves better
performance compared to those trained on simulated data. However, collecting real-world data is
often impractical, highlighting the importance of an accurate simulation method. Compared to other
data synthesis approaches, our method is capable of generating realistic large-scale paired training
data across diverse scenarios, enhancing the generalization capability of SR models. Furthermore,
by incorporating our generated data into the real-collected training set, as shown in the last row
of Table 14, the SR model’s performance improves further, demonstrating the effectiveness of our
approach.

A.11 MORE ABLATION STUDIES ON DEGRADATION AND CONTENT EXTRACTORS

Performance comparison before and after fine-tuning degradation and content extractor. To
enhance the generalization of Edeg and Econt on unseen real distributions, as shown in the main
text, only a small portion of the parameters in Edeg and Econt are fine-tuned. We fine-tune the last
layer, as shown in Figure 2. Therefore, it’s nearly impossible for information to be directly passed
through to the output. To further validate this, we conducted comparative experiments. As shown
in Table 15, even without fine-tuning, our method can still generate realistic real LR, achieving the
best performance compared to existing methods. After fine-tuning the extractors, the network’s
generalization ability in real scenarios is further enhanced, allowing for better generation of real LR
in real-world settings.

Validating the Effectiveness of Pretraining Edeg and Econt. To Validate the effectiveness of the
pretraining stage, we removed the pretrained weights of Edeg and Econt and proceeded to train them
alongside DDPM. However, without pretraining, Edeg and Econt were unable to distinguish between
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Table 14: Performance comparison with existing data synthesis methods and real data collection.

PSNR↑ SSIM↑
RRDB (Real-ESRGAN) 24.579 0.7614
RRDB (BSRGAN) 25.406 0.7685
RRDB (SynDiff) 25.488 0.7691
RRDB (Ours) 26.238 0.7747
RRDB (Real Data) 27.302 0.7934
RRDB (Real Data+Ours) 27.302 0.7934

Table 15: Performance comparison before and after fine-tuning degradation and content extractor.

RealSR PSNR↑ SSIM↑ LPIPS↓
Real-ESRGAN 24.39 0.679 0.388
BSRGAN 23.26 0.604 0.509
SynDiff 25.24 0.758 0.237
Our methods w/o pretraining 24.13 0.761 0.301
Our methods w/o finetuning 25.93 0.786 0.234
Our methods 26.16 0.794 0.222

content and degradation effectively. This incapacity led to a significant decline in performance when
synthesizing data, as they failed to extract degradation accurately from Real LR. Simultaneously, the
content extractor struggled to capture high-fidelity content representations, resulting in generated
images with lower fidelity, as shown in Table 15. We observed that without pretraining, Edeg and
Econt could not properly extract the respective degradations, making it challenging to maintain
content consistency and degradation authenticity during the generation process, leading to a marked
drop in network performance.

A.12 COMPARISON WITH BICUBIC

We incorporate bicubic degradation as a baseline and compare the SR performance. To ensure
a fair comparison, we utilize the officially released pre-trained RRDB models trained on bicubic
data and evaluate them on the RealSR and Smartphone datasets, as shown in Tables 16. The
results clearly demonstrate that the RRDB model trained on our data achieves significantly better
SR performance across various evaluation metrics, particularly in the perceptual-oriented LPIPS
metric. This highlights the limitations of a single bicubic model, which struggles to handle the high
complexity of real-world degradations (Wang et al., 2021b; Zhang et al., 2021).

A.13 PERFORMANCE EVALUATION ON BLURRED LR SCENARIOS

To evaluate performance on blurred LR scenarios, we select blurred LR images from the popular
REDS benchmark (Nah et al., 2019) to test and validate the improved generalization of our proposed
method in more real-world scenarios. Specifically, we evaluate RRDB models pre-trained using
synthesized data from different methods. The results, as shown in Table 17, demonstrate that our
method consistently achieves the best performance on out-of-distribution data with blur degradation.

A.14 COMPARISON WITH DIFFERENT CONTRASTIVE LEARNING METHODS

In (Wang et al., 2021a), the contrastive learning approach for training the degradation model constructs
positive samples from different patches of the same image and negative samples from different images.
However, the degradation between different patches of the same image is not always identical. For
instance, in a defocused LR image, the defocused and non-defocused areas exhibit completely
different degradations, and the degradation between different images may sometimes be similar.
In contrast, our strategy constructs positive samples by keeping the degradation consistent while
varying the content and generates negative samples by keeping the content consistent while varying
the degradation, as described in Section 2.1 of the main text. This design ensures that the degradation
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Table 16: Performance comparison with bicubic.

Dataset PSNR↑ SSIM↑ LPIPS↓

Smartphone Bicubic 28.45 0.845 0.395
Our method 28.75 0.850 0.312

RealSR Bicubic 25.98 0.755 0.442
Our method 26.23 0.774 0.297

Table 17: Performance comparison on REDS.

REDS BSRGAN Real-ESRGAN Syndiff Ours
PSNR↑ 23.4629 23.6475 23.6472 23.9834
SSIM↑ 0.6615 0.6600 0.6443 0.6712

extractor captures the complete and unique degradation distribution of the current LR image. To
validate this, we replace the degradation model in (Wang et al., 2021a) and train the diffusion model,
then generate real LR images on the RealSR dataset. The results, shown in Table 18, demonstrate
that our proposed degradation model produces more realistic LR images compared to (Wang et al.,
2021a).

A.15 MORE VISUAL COMPARISON ON INTERNET REAL LR IMAGES

To evaluate real LR images from the internet, we compared existing methods on the SwinIR model
and visualized the results, as shown in Figure 10 in the Appendix. It can be seen that our method
better generates textures, while other methods tend to be over-smooth, validating the effectiveness of
our approach.

Figure 10: Visual comparison of generated HR image from real internet LR images.

A.16 MORE VISUAL COMPARISON

Here, we present additional visual results on the DRealSR benchmark to demonstrate the superiority
of our method in adaptively generating accurate and realistic LR images, as shown in Figure 11
and 12. Additionally, we also present some visual results on the SmartPhone benchmark, as shown in
Figure 13.
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Table 18: Performance comparison with different contrastive learning.

RealSR PSNR↑ SSIM↑ LPIPS↓
DASR[D] 25.73 0.778 0.265
Our method 26.16 0.794 0.222

Figure 11: Visual comparison of generated LR on DRealSR.
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Figure 12: Visual comparison of generated LR on DRealSR.

Figure 13: Visual comparison of generated LR images on the smartphone benchmark.
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