
Published in Transactions on Machine Learning Research (04/2023)

Group Fairness in Reinforcement Learning

Harsh Satija harsh.satija@mail.mcgill.ca
McGill University, Mila

Alessandro Lazaric lazaric@meta.com
Meta AI (FAIR)

Matteo Pirotta pirotta@meta.com
Meta AI (FAIR)

Joelle Pineau jpineau@cs.mcgill.ca
McGill University, Mila, Meta AI (FAIR)

Reviewed on OpenReview: https: // openreview. net/ forum? id= JkIH4MeOc3

Abstract

We pose and study the problem of satisfying fairness in the online Reinforcement Learning
(RL) setting. We focus on the group notions of fairness, according to which agents belonging
to different groups should have similar performance based on some given measure. We
consider the setting of maximizing return in an unknown environment (unknown transition
and reward function) and show that it is possible to have RL algorithms that learn the
best fair policies without violating the fairness requirements at any point in time during
the learning process. In the tabular finite-horizon episodic setting, we provide an algorithm
that combines the principle of optimism and pessimism under uncertainty to achieve zero
fairness violation with arbitrarily high probability while also maintaining sub-linear regret
guarantees. For the high-dimensional Deep-RL setting, we present algorithms based on the
performance-difference style approximate policy improvement update step and we report
encouraging empirical results on various traditional RL-inspired benchmarks showing that
our algorithms display the desired behavior of learning the optimal policy while performing
a fair learning process.

1 Introduction

With an ever-increasing number of automated decision-making algorithms deployed around us, it becomes
important to be cautious of the risks and biases that can result due to the nature in which these algorithms
are being trained. Reinforcement Learning (RL, Sutton, 1988) has emerged as a powerful paradigm for
learning in the sequential decision-making setting. At the same time, several studies have demonstrated
that it is even more important to control for fairness in sequential decision-making, as imposing fairness
constraints without considering feedback effects of the policy can lead to further discrepancy (Liu et al.,
2018). Therefore, in this paper, we focus on the concerns related to imposing fairness not only to the RL
optimization problem but also during the learning process.

We first clarify what we mean by fairness. At an abstract level, fairness can be defined as the absence of
discrimination. This definition requires us to define some measure of discrimination, and then the fairness
property is defined w.r.t. that measure. For this work, we focus on the category of Group fairness. This
definition of fairness is based on a notion of protected subgroups and a measure across groups. The subgroups

1

https://openreview.net/forum?id=JkIH4MeOc3

Published in Transactions on Machine Learning Research (04/2023)

are defined on the choice of some sensitive attributes (such as race, gender, ethnicity, etc.), and a measure
that is required for comparing the outcomes of different subgroups (such as false-positive rate or classification
error). Fairness is then defined in terms of requiring equal measure for different protected subgroups. A
majority of definitions of fairness falls under this category, such as demographic parity (Dwork et al., 2012),
disparate impact (Feldman et al., 2015), equality of opportunity and equalized odds (Hardt et al., 2016).

Example 1 (College admissions): Consider a scenario where an RL agent assists the college admissions
process to accept candidates every semester. A candidate’s information consists of sensitive features
representative of their demographic information (like socio-economic background or gender) and non-sensitive
features like their standardized test scores. Due to resource constraints, the college can only admit a limited
number of candidates during every admission cycle. Suppose the college consistently admits candidates from
one demographic group over the other. In that case, it can create a feedback loop where candidates from
that particular group are encouraged to apply more and vice versa (Immorlica et al., 2019; Garg et al., 2020;
Puranik et al., 2022). From an equity and diversity perspective, one can motivate the need to create feedback
loops for the minority groups to reverse existing trends (Emelianov et al., 2020). Thus, under this fairness
requirement, the admissions agent should admit the top-scoring candidates such that the long-term disparity
between demographics should be below some target over all the admission cycles.

Example 2 (Credit lending): Consider another scenario where an RL-based credit lending system assists
a bank by filtering loan applicants. The lending agent interacts with applicants having features consisting of
both sensitive attributes (like demographics) and non-sensitive attributes (like credit score). An applicant
might file for multiple loans over a span of time, and for any given application, the lending agent needs to
decide whether to approve or reject an application to maximize the number of loan repayments for the bank.
The problem is sequential as both the repayment and defaults on the granted loans take over some time,
during which the applicant’s non-sensitive features can change due to the agent’s actions (for instance, credit
score might decrease for applicants that are unable to repay in time). Furthermore, the applicants in different
demographics can have different dynamics (how the creditworthiness of each group evolves) and other initial
starting non-sensitive state distributions (like credit score distributions). Recent works on imposing fairness
in the credit lending domain have highlighted the caution regarding the long-term effect of deploying such
decision-making systems as these systems have to potential to increase further the disparity between groups
(Liu et al., 2018; Castelnovo et al., 2021; D’Amour et al., 2020; Fuster et al., 2022). Thus, external regulations
like the European AI Act (The European Commission, 2021) might require that such a system not exhibit
discriminatory behaviour toward different population segments. Under this requirement, the policies deployed
by our algorithm should not exhibit behaviour that contributes to the existing disparity between groups,
such as rejecting more applications from a particular demographic compared to the other.

Although we motivate the problem in the credit lending and college admissions domain, the evidence related
to the biased nature of deployed algorithms is substantial and can be found in a variety of settings such as
hiring, ads and marketing (Miller, 2015; Dastin, 2018; Datta et al., 2015; Celis et al., 2019; Fu et al., 2020).

1.1 Contributions and limitations

(a) Traditional (b) Fair

Figure 1: Toy grid-world example demon-
strating traditional vs fair optimal policies.

We now highlight how introducing the fairness requirement
in the RL framework changes its different aspects. First, the
fairness requirement changes the definition of the optimal
policy; the learning objective becomes to find the policy that
maximizes the reward in a restricted class of policies that
satisfy the fairness property. Additionally, at any point in
the learning process, the policy executed by the agent should
meet the fairness criteria. This makes applying traditional RL
exploration strategies, such as those based on optimism under
uncertainty, particularly challenging for this setting as being
optimistic can lead to being unfair.

Example 3 (Four-rooms grid): Consider the modified four-rooms domain in Figure 1 that contains two
subgroups: the circle agents that start in the upper-left corner and the diamond agents in the lower-left corner.

2

Published in Transactions on Machine Learning Research (04/2023)

The state is defined both by the position of the agent in the grid (non-sensitive attribute) and the shape of
the agent (sensitive attribute). The goal is to reach the cell containing the gold star in the least amount of
steps. Both subgroups start at a similar distance from the goal, but the transition dynamics of circle agents
is deterministic whereas the diamond agents have very stochastic dynamics. Thus, the trajectories taken by
the circle agents via traditional RL optimal policy are shorter compared to the diamond agents (Figure 1a).
Enforcing the group fairness constraints here leads to slightly longer trajectories for circle agents (Figure 1b)
and we observe that both subgroups now take similar time to reach the goal to satisfy the fairness criteria.

We aim to answer the following question in this work: Can we design algorithms that can respect the given
fairness constraints throughout the policy improvement learning procedure and achieve good performance?
In Section 3, we show it is possible to have an algorithm with high probability guarantees on performance
and fairness during the learning in the tabular episodic RL setting. This is achieved by leveraging the
principle of combining optimism and pessimism, as previously used in constrained bandits (Amani et al.,
2019; Pacchiano et al., 2021), constrained MDPs (Wachi and Sui, 2020; Liu et al., 2021) and robust-RL (Curi
et al., 2021). We apply this principle to the fairness setting with unknown MDP parameters for balancing
the exploration and fairness trade-off to simultaneously achieve zero fairness constraint violation during
learning, and sub-linear regret. In Section 4, we present a scalable and practical Deep-RL algorithm that uses
a trust-region-based update rule to approximate guarantees on the fairness violation. This approach is based
on the constrained policy improvement performance bounds proposed by Achiam et al. (2017) and allows us
to extend the Deep-RL algorithms such as PPO (Schulman et al., 2017) to our setting. In Section 4.3, we
provide empirical evidence that our approach is indeed able to achieve good performance while achieving the
fairness requirement on simulated robotic locomotion and navigation tasks.

We now identify some of the limitations of our approach. First, note that we neither impose any structure on
the environment nor consider the case where there is any information sharing within the groups. This makes
our setting different from the multi-agent setting as the agents interact with the environment independently
and do not interact with other agents in any form. Our setting is closer to the typical single-agent RL setting,
with the added caveat that the environment can behave differently for some populations of agents.

Next, we work in the context of the traditional group fairness definitions and do not investigate the effectiveness
of these definitions. In practice, selecting a particular algorithmic fairness definition for any domain can
be quite challenging as the fairness demands can be formulated under different perspectives and scenarios.
This is further exacerbated by the fact that there is no consensus on a universally accepted definition of
algorithmic fairness and some fairness definitions are at odds with each other (Chouldechova, 2017; Pleiss
et al., 2017). We are not advocating that using existing group-based notions of fairness will address all the
concerns related to fairness in the sequential decision-making setting. This is a rather complex problem, and
the solution will potentially be more involved than either a single kind of fairness definition (Awasthi et al.,
2020). Our work should be viewed as the first step toward this bigger goal where we establish the general
results regarding satisfying group-based notions of fairness in the context of the RL paradigm.

Finally, our approach is based on enforcing the fairness requirements by directly restricting the policy space.
This implies that guaranteeing fairness can limit the scope of available policies and can come at a performance
cost for some groups. As such, given a group fairness requirement, our approach can potentially penalize the
higher-performing groups (as in Example 2) to match the performance of the lesser-performing subgroups
(within some margin), whereas an ideal scenario would have been to increase the performance of the latter.
We will revisit this limitation in Section 5 and propose possible workarounds against this for future work.

1.2 Related work

Fairness in machine learning is an active field of research (Mehrabi et al., 2019; Pessach and Shmueli, 2020;
Gajane et al., 2022). A number of recent works have specifically explored various aspects of the fair-RL
setting. Jabbari et al. (2017) study the problem of fairness in online RL setting and Doroudi et al. (2017);
Nabi et al. (2019) study the problem in offline RL setting, however, they work with different non-group
specific notions of fairness has no notion of sensitive attributes or groups. Siddique et al. (2020) study a
notion of fairness based on social welfare functions in the multi-objective RL setting and provide methods to
adapt the traditional RL techniques to their modified objective. Mandal and Gan (2022) study the problem

3

Published in Transactions on Machine Learning Research (04/2023)

of selecting a measure that ensures fairness in the multi-agent RL setting. They propose properties that a fair
policy should satisfy and provide an algorithm to find such fair optimal policy in the unknown multi-agent
MDP. Their notion of fairness is different from the group-based fairness we consider in this work.

The problem studied in this work is closely related to the one studied in the Constrained MDPs (CMDPs,
Altman, 1999). The focus in CMDPs is to find a policy that maximizes the return in some restricted policy
class, where the constraints that define the restricted policy space are based on the additional feedback
signals from the environment. The main difference in our setting and CMDPs is how the constraints on the
policy space are being defined. In CMDPs, a constraint is based solely on a return defined w.r.t. a single
reward signal, and multiple constraints differs only in the corresponding reward signals while all the other
environment parameters remain the same. Whereas in our setting, given a fairness criteria, the constraints
are based on the returns belonging to different populations that may differ due to variation in any possible
environment parameters. As a result, the constraints in our case are based on a combination of multiple
returns, each of which can differ in either reward signal or the transition dynamics. Despite this difference,
we build on the works on exploration in CMDPs (Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2019;
Zhang et al., 2020; Efroni et al., 2020; Liu et al., 2021).

A closely related work to ours is the recent work by Wen et al. (2021) who incorporate the group fairness
criteria as a constraint in the CMDP framework. Similar to Wen et al. (2021) we also make an assumption
that the sensitive attributes (like race) do not change via interactions with the environment. However, the
formulation in Wen et al. (2021) requires that populations corresponding to different sensitive attributes to
share the same environment transition dynamics. Instead our work addresses a more general setting where
the different populations can differ in any of the environment parameters, including the transition dynamics.
Furthermore, in the approach proposed by Wen et al. (2021) the policy is only updated once throughout the
entire learning process. Finally, they also assume that the uniform exploration policy is fair, which is not
true in general, and can violate the fairness constraints any number of times.

2 Problem setting in finite-horizon episodic MDPs

For any positive integer n, let [n] denotes the set {1, . . . , n}. An episodic Markov Decision Process (MDP,
Bellman, 1957) is denoted as M = (S,A, P, r, µ, H), where S = [N] and A = [A] denotes the finite state
and action sets, H denotes the horizon or length of the episode, and rh : S ×A → [0, 1] denotes the reward
function at time step h ∈ [H]. The transition model is denoted by P·(·|s, a) ∈ ∆H

S ,∀s ∈ S,∀a ∈ A, where ∆S
denotes the |S|-dimensional probability simplex. Ph(s′|s, a) denotes the probability of transitioning to state
s′ after taking an action a from state s at time step h ∈ [H]. The initial state distribution is denoted by
µ ∈ ∆S , where µ(s) denotes the probability of the agent starting in state s.

A non-stationary policy in this setting is defined as π : [H] × S → ∆A. We abuse the notation and use
πh(a|s) to denote the probability of taking action a in state s at time step h. The expected return of a policy
at some state s ∈ S is defined by the value function V π

h (s; r, P) .= EP,π

[∑H
t=h rh(St, At) | Sh = s

]
, where

At ∼ πt(·|St) and St+1 ∼ Ph(·|St, At). The return of the policy is defined by Jπ(r, P) .= ES1∼µ[V π
1 (S1; r, P)].

The occupancy measure dπ of a policy π denotes the set of distributions generated by executing the policy
π and is defined as dπ

h(s, a; µ, P) .= E[1{Sh = s, Ah = a|S1 ∼ µ, P, π}] = Pr{Sh = s, Ah = a|S1 ∼ µ, P, π}
(Efroni et al., 2020). Using the occupancy measure, the return of a policy can be reformulated as Jπ(r, P) =∑

h,s,a dπ
h(s, a; µ, P)rh(s, a) (Altman, 1999; Puterman, 2014). The traditional RL optimal policy w.r.t. reward

function r is defined as arg maxπ Jπ(r, P).

2.1 Introducing fairness

We focus on the fairness definition based on groups where different sub-populations of agents are interacting
with the environment independently. We assume the agent’s state space is jointly comprised of sensitive
attributes that are required for defining a notion of group, and environment specific features that determine
how the agent navigates in the environment. For instance, in a recommender systems context, the agent
specific sensitive attributes can be race, gender, nationality, etc. whereas the environment specific attributes

4

Published in Transactions on Machine Learning Research (04/2023)

can be budget, past order history, preferred categories. We also assume that interactions with the environment
do not change the agent’s sensitive attributes. Formally, these assumptions can be defined as:
Assumption 2.1 (Separable and observable attributes). We assume the state space S is jointly composed of
sensitive-attributes Z and non-sensitive attributes S̃, i.e., S = Z × S̃.
Assumption 2.2 (Consistent sensitive attributes). We assume that an agent’s sensitive attributes remain
constant throughout an episode. This implies that the transition function at any h ∈ [H] satisfies Ph(s′|s, a) =
Ph((z′, s̃′)|(z, s̃), a) = Ph(s̃′|z, s̃, a)1[z = z′] relation, where Ph(s̃′|z, s̃, a) is the underlying transition function
associated with non-sensitive attributes S̃ and z ∈ Z.
Definition 2.1 (Subgroup). We refer to the population of agents associated with a particular sensitive
attribute z ∈ Z as the subgroup associated with z. The initial non-sensitive state distribution associated with
a particular subgroup z ∈ Z is denoted by µ̃z ∈ ∆S̃ , and defined as µ̃z(s̃) = Pr(s̃|z) = µ(z,s̃)

Pr(z) ,∀s̃ ∈ S̃, where
Pr(z) =

∑
s̃∈S̃ µ(z, s̃) is a normalizing constant.

For an agent belonging to subgroup z ∈ Z, µ̃z(s̃) denotes the probability of the agent starting the episode in
the non-sensitive state s̃. Similarly, we use Pz to denote the subgroup specific transition function corresponding
to the non-sensitive attributes, i.e., Pz,h(s̃′|s̃, a) .= Ph(s̃′|z, s̃, a). Note that the definition of policy remains
unchanged, i.e., it depends on both s̃ and z. We can thus define the subgroup specific returns for any policy
π as:

Jπ
z (r, P) .= E

S̃1∼µ̃z

[V π
1 ((z, S̃1); r, Pz)]. (1)

We work with a particular group fairness criteria known as demographic parity (Dwork et al., 2012; Zafar
et al., 2017). Informally, the demographic parity constraint requires that different subgroups should have
similar returns. Formally, in our setting it is defined as follows.
Definition 2.2 (Demographic fairness). For some ϵ ≥ 0, that denotes an acceptable margin of error, a policy
π satisfies demographic fairness criteria if |Jπ

i (r, P)− Jπ
j (r, P)| ≤ ϵ,∀i ≥ j; (i, j) ∈ Z2.

The decision maker’s reward might or might not be aligned with the reward of the demographics. For instance,
in the grid world navigation scenario, there is no distinction between the reward of the decision-maker and
the demographics with the reward being reaching the goal quickly. Whereas in the credit lending scenario,
the decision-maker’s reward is to maximize the bank’s profits via loan repayments, whereas the demographics
reward is to get more loans. We consider the general case where the decision maker’s reward can be different
and denote it by lh : S ×A → [0, 1]. Let π∗ denote the optimal policy that maximizes the return among the
class of policies that satisfy the above fairness condition, i.e.,

π∗ = arg max
π

Jπ(l, P) (2)

s.t. |Jπ
i (r, P)− Jπ

j (r, P)| ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

Note that the primary objective in Equation (2) is concerned with maximizing the cumulative returns for all
subgroups w.r.t. the decision-maker’s reward function l whereas as the fairness constraint is based on the
demographics reward function r. When all the MDP parameters are known, it is possible to devise a Linear
Programming (LP) solution to the problem in Equation (2). The details of the LP solver are provided in
Appendix B. In Appendix B.3, we show how other group fairness definitions, such as equality of opportunity
and equalized odds (Hardt et al., 2016), can be formulated and solved in our setting.

In order to avoid making any assumption regarding the feasibility of the problem, we make the following
assumption regarding an initial fair policy:
Assumption 2.3 (Initial feasible policy). The algorithm has access to a policy π0 that satisfies the fairness
constraints in Equation (2). We also assume |Jπ0

i (r, P)− Jπ0

j (r, P)| ≤ ϵ0 < ϵ, ∀(i, j) ∈ Z2 and the value of
ϵ0 is known to the algorithm.

Having an initial fair policy ensures that the problem in Equation (2) is always feasible, even in the case
when the agent is unaware of the MDP parameters as it can always interact with the environment without

5

Published in Transactions on Machine Learning Research (04/2023)

violating fairness constraints via π0. Assumption 2.3 will not be valid if either Equation (2) is unfeasible,
or none of feasible policies satisfy the strict inequality condition, i.e., none of them have any margin for
exploration. From a practical perspective, any known sub-optimal policy that the algorithm practitioner
regards as fair can be used, by controlling the acceptable fairness threshold ϵ.

We acknowledge that Assumption 2.3 is a strong assumption as it requires the algorithm practitioner to have
a fair exploration policy with some margin. We want to highlight that the learning problem we consider in
this work is also quite challenging, hence the reliance on a stronger assumption. When the learning algorithm
has neither any information about the environment nor any access to some initial fair exploration policy,
it cannot avoid unfair decisions in the first episode of learning itself, as any potential interaction with the
environment might lead to a fairness violation at the beginning of the learning process. Similar assumptions
are also made in safe RL literature (Pacchiano et al., 2021; Liu et al., 2021; Bura et al., 2022). The assumption
is not unrealistic, as the practitioner can use any existing strategy, even if it incurs low rewards, to initialize
the algorithm. The strict inequality in the initial exploration policy is required to leave some margin of error
for the agent to be able to explore where the dependence on the margin term ϵ− ϵ0 is also captured in the
regret bounds in Theorem 3.2.

Note that it is possible to leverage the techniques from Efroni et al. (2020) and provide a sublinear regret
result without such an assumption, however, doing so does not guarantee zero fairness violation during the
learning process. We can then only guarantee that the number of violations decreases over time. Finally, it is
possible to devise algorithms for the simpler problem of recovering a fair policy. While this will remove the
necessity of having access to a fair initial policy, the algorithm will only be guaranteed to deploy a sublinear
number of unfair policies. However, this is outside the scope of this work.

2.2 Motivating example

We expand on the credit lending example provided in the Section 1 to better illustrate our setting. We
build on the lending environment from D’Amour et al. (2020); Wen et al. (2021) where the agent is making
applicant filtering decisions on behalf of a financial institution. An applicant applies for multiple loans
over a span of time and the agent is tasked to accept or reject the application, i.e., A = {grant, reject}.
The applicant features consists of non-sensitive attributes based on credit score S̃ = {1, . . . , Cmax}, where
the probability that an applicant successfully repays the loan is a deterministic function of the credit score
denoted by ξ : S̃ → [0, 1]. The bank makes a profit of interest Ib on a successful repayment of a granted loan
and suffers a loss of principal Pb on a default, i.e., l(·, s̃, grant) = ξ(s̃)Ib + (1− ξ(s̃))Pb.

There are two group of candidates Z = {high, low} that have different initial credit score distribution as well
as dynamics of how the credit score evolves due to agent’s actions. The initial credit-score distribution of the
group high skews more towards the higher ranges with a higher mean of initial credit score compared to the
low group. For both the groups, if granted a loan, a successful repayment of a loan leads to improvement
of the applicant’s credit score by c+ whereas a default causes the credit score to decrease by c−. However,
the dynamics of both groups differ on rejection where an applicant from the group low is affected more
and suffers a possible decrease in ability to repay future loans. This is modeled by decreasing the credit
score of applicants in group low by c− with a probability ν on rejection, where ν is a hyper-parameter that
denotes the handicap. The candidates in the group high do not experience any change in credit score on
rejection. The candidates are applying for loans because they need credit, thus the reward of the candidates
is based on whether or not they were given loan, r(z, s̃, a) = 1[a = grant]. Therefore, the fairness constraint
here ensures that a near equal amount of loans are given to both the groups. This prevents the agent from
significantly rejecting more loans from the disadvantaged group, that was disadvantaged due to possible
history of financial oppression in the first place. In this setting, the traditional non-fair RL algorithms will
focus solely on maximizing the bank profits leading to rejecting more applicants from the low group and
further increasing the existing disparity.

Finally, an initial policy that grants the loans to every applicant regardless of their credit score can be used
for Assumption 2.3. Even though this policy might be quite sub-optimal in maximizing the bank profits,
but since it approves loans with same rate for both the groups (ϵ0 = 0), it can be used to drive the initial
exploration for any choice of margin.

6

Published in Transactions on Machine Learning Research (04/2023)

3 Algorithm for the unknown model and reward setting

We now turn our attention to the setting where the agent only has access to the subgroup specific initial
non-sensitive state distributions µ̃z,∀z ∈ Z, and relies on the observed (sampled) rewards and transitions to
improve its performance over time. For clarity, we present our method for the case where groups are sampled
uniformly for each episode (or Pr(z) = 1/|Z|,∀z ∈ Z). We relax this assumption later and show that our
results also extend to the general case of non-uniform group sampling distributions.

We assume that the algorithm interacts with the environment for a total of K episodes, with each episode
being H steps long. For each episode k ∈ [K], a subgroup Zk

1 is selected uniformly from Z and then
the corresponding initial state (Zk

1 , S̃k
1) is sampled from µ̃Zk

1
. The agent then executes the non-stationary

policy at that current episode πk, where the agent takes an action Ak
h on state (Zk

h , S̃k
h) at the time step

h , transitions to state (Zk
h+1, S̃k

h+1) where Zk
h+1 = Zk

h and S̃k
h+1 ∼ Ph(·|Zk

h , S̃k
h, Ak

h) (Assumption 2.2),
and receives the rewards rk

h(Zk
h , S̃k

h, Ak
h) = rh(Zk

h , S̃k
h, Ak

h) + ζk
h and lk

h(Zk
h , S̃k

h, Ak
h) = lh(Zk

h , S̃k
h, Ak

h) + ζk
h ,

where ζk
h is zero mean 1/2-sub-Gaussian. We define the cumulative regret in the traditional sense as

Reg(K; l) .=
∑K

k=1(Jπ∗(l, P) − Jπk (l, P)). Given some initial fair exploration policy π0 (Assumption 2.3),
our goal is to design a learning algorithm that can (i) satisfy the fairness requirement with arbitrarily high
probability throughout the learning, and (ii) achieve a sub-linear cumulative regret in the number of episodes.

To guarantee the fairness requirement holds throughout the learning, we construct a set that contains the
possible policies that are fair (with high-confidence) based on the general principle of the optimism in face of
uncertainty (Auer et al., 2008; Efroni et al., 2020; Liu et al., 2021). We want this set to contain the policy
updates, based on the current MDP estimates, that ensure we do not violate the fairness constraints in the
true MDP with high confidence. However, optimism alone is not sufficient to construct such set as we want
the fairness guarantee to hold in the true MDP model and not just in the best possible optimistic MDP
model (formal argument provided in Appendix C.1). Therefore, we use the techniques from Liu et al. (2021)
that combine both optimism and pessimism to construct reward estimates to achieve this goal.

At each episode k, we denote the empirical estimates of the rewards and transition model at time step h
based on the episodes [1, . . . , k−1] by r̂k

h, l̂k
h and P̂ k

h . For a given value of δ ∈ (0, 1), we denote the uncertainty

estimate for the empirical transition and rewards by, βk
h(z, s̃, a) .=

√
1

max{Nk
h

(z,s̃,a),1)} log
(

4|Z|2|S̃|2|A|HK
δ

)
,

where Nk
h (z, s̃, a) denotes the number of times the state-action tuple (z, s̃, a) was observed at time step h so

far ∀(z, s̃, a, h) ∈ Z × S̃ × A× [H]. We define the optimistic and pessimistic reward estimates as:

rk
h(z, s̃, a) .= r̂k

h(z, s̃, a) + (1 + |Z||S̃|H)βk
h(z, s̃, a)

rk
h(z, s̃, a) .= r̂k

h(z, s̃, a)− (1 + |Z||S̃|H)βk
h(z, s̃, a)

(3)

With high confidence, we want an optimistically estimated return to be greater than the underlying true
return and vice versa, even when accounting and integrating the uncertainty due to rewards and transitions
over the horizon. The constants for the optimistic and pessimistic rewards in Equation (3) are defined to get
the corresponding properties for the associated returns as described in Appendix C.3.

The key step in our approach that is different from Liu et al. (2021) is that for a pair of subgroups i, j ∈ Z2,
we optimistically estimate the return for the one subgroup and at the same time pessimistically estimate the
return for the other subgroup to ensure that the fairness constraint still holds true with high-confidence. We
define the set of policies that satisfy the fairness guarantees based on the optimistic and pessimistic reward
estimates as:

Πk
F

.=
{

π :
Jπ

i (rk, P̂ k)− Jπ
j (rk, P̂ k) ≤ ϵ, ∀i ≥ j; (i, j) ∈ Z2.

Jπ
j (rk, P̂ k)− Jπ

i (rk, P̂ k) ≤ ϵ, ∀i ≥ j; (i, j) ∈ Z2.

}
, (4)

7

Published in Transactions on Machine Learning Research (04/2023)

where we have omitted the conditions for π ∈ ∆H
A for the sake of brevity. The final set of policies available to

the algorithm to execute at episode k is chosen from the high-confidence set Πk, defined as:

Πk =

{π
0},

{
if Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k) > (ϵ + ϵ0)/2,

or Jπ0

j (rk, P̂ k)− Jπ0

i (rk, P̂ k) > (ϵ + ϵ0)/2,
∀i ≥ j; (i, j) ∈ Z2.

Πk
F , otherwise.

(5)

The first case denotes the scenario where the r̂k, P̂ k parameters are not well estimated and as such the agent
needs to gather more data by executing the known initial fair policy π0. We now present a result stating
that policies chosen from Πk do not violate the fairness guarantees for any of the subgroups throughout the
learning duration with arbitrarily high probability.
Theorem 3.1 (Fairness violation). Given an input confidence parameter δ ∈ (0, 1) and an initial fair policy
π0, the construction of Πk ensures that there are no fairness violations at any episode in the learning procedure
in the true environment with high probability (1− δ), i.e., for any π ∈ Πk,

Pr
(∣∣Jπ

i (r, P)− Jπ
j (r, P)

∣∣ ≤ ϵ
)
≥ 1− δ, ∀(i, j) ∈ Z2,∀k ∈ [K]. (6)

The proof of the above claim is presented in Appendix C.4. Even though selecting just any policy from
Πk will satisfy the fairness guarantees, we also care about efficiency of the exploration. In order to achieve
sub-linear regret, we incorporate another optimistic reward estimate that is defined as:

l̈k
h(z, s̃, a) .= l̂k

h(z, s̃, a) + αlβ
k
h(z, s̃, a), (7)

where αl
.= 1 + |Z||S̃|H + 8H(1+|Z||S̃|H)

η is another scaling factor with η = (ϵ− ϵ0).

To conclude, for an episode k ∈ [K], the maximum performing policy within the set Πk w.r.t. the new
optimistic reward is selected to be executed as πk, i.e.,

πk ∈ arg max
π∈Πk

Jπ(l̈k, P̂ k) (8)

The above optimization problem can be solved in a similar manner as the LP formulation in Section 2.1. The
complete algorithm is presented in Algorithm 1 and the exact formulation of LP for solving Equation (8) is
given in Appendix C.5.
Theorem 3.2 (Regret Bound). For any δ ∈ (0, 1), with probability 1− δ, executing πk from Equation (8) at
every episode k ∈ [K] incurs in a regret of at most

Reg(K; l) = Õ
(

H3

η

√
|Z|3|S̃|3|A|K + H5|Z|5|S̃|3|A|

min{η, η2}

)
, (9)

where Õ(·) hides polylogarithmic terms.

The first term in the above result corresponds to the difference from using estimated parameters instead of the
true MDP parameters. This term is consistent with the result of Liu et al. (2021) in the context of CMDPs,
where this quantity takes the form Õ(H3

ηC

√
|Z|3|S̃|3|A|K). Here ηC denotes the exploration margin in terms

of constraint violation for CMDPs and we assume |S| = |Z||S̃|. In (Efroni et al., 2020), this term takes the
form Õ(H2

√
|Z|2|S̃|2|A|K), but they do not guarantee zero constraint violation during learning. The second

term in Equation (9) (independent of K) represents the upper bound on the amount of time the agent needs
to resort to executing π0 due to inaccurately estimated MDP parameters. In (Liu et al., 2021), this term
when defined in context of a CMDP with a single constraint, takes the form H5|Z|3|S̃|3|A|/ min{ηC , η2

C}.
In our result, we have an additional factor of |Z|2 to account for constraints in our case that are defined
pairwise.

As mentioned earlier, we currently sample z ∼ Z uniformly for each episode (or Pr(z) = 1/|Z|,∀z ∈ Z).
However, this might not be the case in reality as different populations might not be always represented equally.

8

Published in Transactions on Machine Learning Research (04/2023)

Algorithm 1 LP based algorithm for Section 3
Input: π0, ϵ0, ϵ, K, δ.

1: Initialize: Nh(z, s̃, a) = 0,∀(z, s̃, a, h) ∈ Z × S̃ × A× [H].
2: for k = 1, . . . , K do
3: Update the empirical estimates P̂ k, r̂k, l̂k.
4: Compute the optimistic and pessimistic reward estimates l̈k, rk, rk.
5: Set πk ← Null
6: for i ≥ j; (i, j) ∈ Z2: do
7: if

(
Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k) > (ϵ + ϵ0)/2
)

∨
(

Jπ0

j (rk, P̂ k)− Jπ0

i (rk, P̂ k) > (ϵ + ϵ0)/2
)

then
8: Set πk ← π0.
9: end if

10: end for
11: if πk == Null then
12: Set πk ← arg maxπ∈Πk Jπ(l̈k, P̂ k).
13: end if
14: Execute πk in the true environment and collect a trajectory

(Zk
h , S̃k

h , Ak
h, rk

h(Zk
h , S̃k

h , Ak
h), lk

h(Zk
h , S̃k

h , Ak
h)),∀h ∈ [H];

15: Update counters Nh(Zk
h , S̃k

h , Ak
h),∀h ∈ [H];

16: end for

In Appendix C.7, we show that our approach can be easily extended to the setting with any arbitrary ∆Z
by also incorporating the Pr(z) term in the definition of subgroup specific returns. The results regarding
fairness violations and regret Theorems 3.1 and 3.2 remain valid even in this extended setting.

To summarize, we build on the methodology of Liu et al. (2021), defined in the context of traditional
CMDP setting, and extend it to the setting of group-based fairness constraints. We show that the proposed
approach still maintains desirable properties of achieving good performance while respecting the given fairness
constraints. The methodology of Liu et al. (2021) only requires pessimism in the constraints as the safety
constraints in CMDPs are based entirely on a single reward function. However, the group fairness constraints
we consider in this work require pairwise treatment of returns as the statistics of different groups are considered.
When introducing more than one reward function in the constraint, a single reward scaling technique such
as pessimism fails to be sufficient anymore and instead we require techniques that can carefully balance
the different notions of reward scaling. This combination of optimistic and pessimistic reward shaping and
balancing in the fairness constraints, along with the pairwise nature of group constraints, requires substantial
effort and new results (like Lemma C.6 and proof for Theorem 3.1) to extend the analysis techniques from
Liu et al. (2021).

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn

Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

Lending environment with applicant sampling probabilites z=[0.9,0.1]

(a) ∆Z = [0.9, 0.1]

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn

Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

Lending environment with applicant sampling probabilites z=[0.1,0.9]

(b) ∆Z = [0.1, 0.9]

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn

Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

Lending environment with applicant sampling probabilites z=[0.5,0.5]

(c) ∆Z = [0.5, 0.5]

Figure 2: Regret and fairness violations on the credit landing environment for different underlying group
distributions, where ∆Z denotes [Pr(high), Pr(low)]. In all the scenarios, our proposed approach achieves
sub-linear regret and close to zero fairness violations.

We provide an empirical study validating the above results on the credit lending environment (Section 2.2)
as well as a variation of the classic RiverSwim environment (Strehl and Littman, 2008) in Appendix D. We

9

Published in Transactions on Machine Learning Research (04/2023)

compare our method with an MLE baseline that starts with π0 and then builds the MLE estimates of the
MDP parameters. The MLE baseline then uses the estimated parameters in the LP solver (Appendix B) to
get a policy to execute at an episode k. We show the results for credit lending environment in Figure 2 where
we see that the proposed algorithm can reach good performance and sub-linear regret while maintaining the
zero fairness violation property across different group distributions. While the MLE baseline incurs a very
low regret, however it comes at a cost of large number of fairness violations. We provide all the additional
environment and experimentation details in Appendix D where we show the properties of our method also
hold true for the RiverSwim environment. Finally, note that Liu et al. (2021) do not provide any empirical
evidence of their approaches for the unknown MDPs.

4 The infinite-horizon and high-dimensional Deep-RL setting

Much of the recent interest in RL is in the Deep-RL setting where the state and/or action spaces are high
dimensional and non-linear function-approximators are used for policy and value estimation. As the state
and/or action spaces can be infinite, the LP-based approaches from the previous sections are not applicable
in this setting anymore. Rather, most of the practical algorithms in this setting fall into the category of
approximate policy iteration that are usually implemented in an actor-critic learning control architecture
with policy gradient-based updates (Sutton and Barto, 2018).

In order to be consistent with the other works in this space, we make the following modifications to our
setting. We now consider the time-homogeneous infinite horizon setting, where γ ∈ [0, 1) denotes the discount
factor. Let τ ∼ π denote a trajectory τ = (S1, A1, . . . ,) sampled from the MDP using the stationary
policy π, i.e, S1 ∼ µ, At ∼ π(·|St), St+1 ∼ P (·|St, At). The infinite-horizon discounted return associ-
ated with a stationary policy π and reward function r is denoted by J(π; r) .= Eτ∼π[

∑∞
t=1 γtr(St, At)].

The value and state-action value functions are defined as V π(s; r) .= Eτ∼π[
∑∞

t=1 γtr(St, At)|S1 = s]
and Qπ(s, a; r) .= Eτ∼π[

∑∞
t=1 γtr(St, At)|S1 = s, A1 = a] respectively. The advantage function is de-

fined Aπ(s, a; r) .= Qπ(s, a; r) − V π(s; r). The discounted future state visitation distribution is defined by
dπ(s) .= (1− γ)

∑∞
t=1 γt Pr(St = s|π).

When introducing fairness in this setting, we assume Z is a finite set (countable number of subgroups) but
the non-sensitive attribute space S̃ can be potentially infinite. Additionally, we use πz : S̃ → ∆A to denote
stationary policy associated with a subgroup z ∈ Z, i.e, πz = {π(a|z, s̃) : a ∈ A, s̃ ∈ S̃}). The complete
policy can be denoted by π = {π1, . . . , π|Z|}. The discounted return of subgroup z under πz is denoted
by J(πz). Finally, similarly to the Section 2.1, the subgroup specific quantities can also be defined for the
infinite-horizon setting, i.e., µ̃z, dπ

z , V π
z , Qπ

z , and Aπ
z .

4.1 Trust-region based fair policy updates

We base our approach on the trust-region based local policy gradient methods that focus on iteratively
updating the policy such that it maximizes the return over a local neighbourhood of the current policy
(Kakade, 2003; Peters et al., 2010; Pirotta et al., 2013; Schulman et al., 2015). Using the methodology of
Constrained Policy Optimization (CPO, Achiam et al., 2017), we present a result that extends the trust-region
based updates to our setting with fairness constraints.
Proposition 4.1. Let π and π′ denote two arbitrary policies such that there exists only one subgroup for which
the associated policies differ, i.e., ∃=1i ∈ Z : πi ̸= π′

i. Then for any j ∈ Z : j ≠ i, the policy performance
difference Jπ′,π

i,j = J(π′
i; r)− J(πj ; r) associated with π′

i and πj is bounded as:

Jπ′,π
i,j ≤ Jπ,π

i,j + 1
1− γ

E
s̃∼dπ

i
a∼πi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a; r) +
√

2γξπ′

i

(1− γ)

√
DKL(π′

i||πi)[s̃]
]

,

Jπ′,π
i,j ≥ Jπ,π

i,j + 1
1− γ

E
s̃∼dπ

i
a∼πi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a; r)−
√

2γξπ′

i

(1− γ)

√
DKL(π′

i||πi)[s̃]
]

,

where ξπ′

i = maxs̃ |Ea∼π′
i
[Aπ

i (s̃, a; r)]|, and DKL denotes the KL divergence.

10

Published in Transactions on Machine Learning Research (04/2023)

The proof is provided in Appendix E. This result allows to quantify the difference in returns of two different
policies associated with a particular subgroup (π′

i, πi) without the need of sampling from the distribution dπ′

i .
Therefore, these computable upper and lower bounds can be used to control the performance difference and
enforce the fairness requirement.

Let Πθ denote the class of parameterized policies and πk
i denote the policy for subgroup i at some iteration k.

The trust-region based update procedure for updating πk
i takes the following form:

πk+1
i = arg max

πi∈Πθ:D̄KL(πi||πk
i

)≤κ

 E
s̃∼dπk

i
a∼πi

[Aπk

i (s̃, a; l)]

 (10)

s.t. uJπ,π
i,j + u E

s̃∼dπk

i
a∼πi

[
Aπk

i (s̃, a; r)
1− γ

]
≤ ϵ, ∀j ̸= i; j ∈ Z, u ∈ {−1, 1}

where D̄KL(πi||πk
i) = E

s̃∼d
πk

i
[DKL(πi||πk

i)[s̃]], κ is a hyper-parameter that controls the size of the trust-region
update, and u is an indicator for incorporating both upper and lower bounds.

4.2 Practical algorithm

Consider the scenario where each subgroup’s policy is parameterized independently, for instance, each of
the subgroup can have their separate neural networks. If the optimization problem in Equation (10) can be
solved exactly, then we can use it as an inner loop of an algorithm that updates only one subgroup’s policy at
a time while ensuring that each update satisfies that fairness requirement.

In practice, solving Equation (10) is usually quite challenging as it requires inverting the high-dimensional
Fisher information matrix, which makes it computationally expensive and difficult to implement. It is possible
to devise an approximate analytical solution based on Taylor approximations (Achiam et al., 2017; Yang
et al., 2020), but that requires approximating the Hessian. Therefore, we focus on approaches that only
rely on the first-order gradient information and make approximations around that. We consider two such
approaches and describe them briefly below:

• Projection-based approach: This category of methods solves the optimization problem first in the
non-parametric policy space and then projects the computed non-parametric solution policy back to the
parameter space (Abdolmaleki et al., 2018; 2020; Zhang et al., 2020). We use the methodology from
First-Order Constrained Optimization in Policy Space (FOCOPS, Zhang et al., 2020) and give the full
details on how the FOCOPS approach can be used in our setting in Appendix F.1.

• Lagrangian-based approach: There also exists penalty-based approaches that convert the problem
into a single objective via the Lagrangian method (Tessler et al., 2018; Chow et al., 2017; 2019), where
the penalty coefficient is also updated at every iteration to enforce the constraints. Full details of the
Lagrangian method can be found in Appendix F.2.

While both of the above approaches are easy to implement, the FOCOPS based approach provides approximate
bounds on worst-case constraint violation, whereas that remains an open question in the case of Lagrangian
methods. The complete algorithms are presented in Appendix F.

4.3 Deep-RL experiments

Environments: For the first set of experiments, we modify the Half-Cheetah-v3 environment from the
OpenAI gym (Brockman et al., 2016) to create two additional subgroups with different dynamics: one with
2× the feet size of the default Half-Cheetah-v3, and another with 10× friction than the default setting. We
use the default reward function across all the three subgroups.

We also design a navigation task based on Point environment (Duan et al., 2016), where we have two different
subgroups corresponding to two different sizes of the Point agent (default and 5×). The task is to navigate

11

Published in Transactions on Machine Learning Research (04/2023)

(a) 10× friction (b) 2× feet size (c) Default size (d) 5× agent size

Figure 3: Different environments for the DeepRL experiments: Half-Cheetah variation with 10× friction but
default size (Figure 3b) and the 2×feet size (Figure 3a), and Navigation environments with default size point
agent (Figure 3c) and 5× size (Figure 3d).

through the maze to reach the goal located in the top-left location. The agent receives a per-step penalty of
−0.05, and reaching the goal leads to a reward of +1.0 and episode termination. Additionally, there are two
different openings of different sizes in the maze. The smaller point agent can pass through the smaller opening
on the left (Figure 3c) leading to episodes of smaller length (and higher return), whereas the larger agent
needs to navigate through the opening on the right (Figure 3d) to reach the goal leading to a relatively longer
episode length (and lesser return). Note that, for both the environments we do not make any distinction
between the agent and decision-maker’s reward, i.e., r = l.

Baselines: We benchmark different variations of the Proximal Policy Optimization algorithm (PPO, Schulman
et al., 2017). We follow the methodology described in Section 4.2 to get two fair versions of the PPO algorithms:
FOC-PPO (projection based) and Lagrangian-PPO (Lagrangian based). We also include the traditional PPO
algorithm as a baseline to get an estimate of the trade-off in performance due to the fairness requirement.

Results: For both the experiment settings we compare the baselines across three different levels of fairness
thresholds (ϵ ∈ {high, medium, low}). Due to space constraints, we present only selected results that highlight
the representative behaviour among the different environments and ϵ configurations. We report the results
for all configurations in Appendix G. For each iteration of the algorithm, the same amount of training data is
used for every subgroup’s policy update. Note that PPO baseline is agnostic to the fairness threshold and
therefore its behavior does not vary across changing ϵ.

A high ϵ value denotes the scenario where the acceptable fairness gap is so large that it can never be violated
during learning (Figure 4a). We observe that both the algorithms are able to perform competitively with
PPO, with the latter performing slightly better than the rest. Both the medium and low ϵ values denote the
scenario where the algorithms need to trade-off the performance for fairness satisfactions. In Figure 4b, we see
that the traditional PPO baseline ends up violating the fairness constraint whereas both Lagrangian-PPO and
FOC-PPO are able to satisfy the fairness constraints throughout learning. For the navigation environment,
the initial random policy is exploratory enough to reach the goal faster for the smaller sized agents compared
to the larger sized agents. As a result, our assumption about having an initial fair policy does not hold
anymore in this task, and we observe a high fairness gap during the initial part of the learning for all the
baselines (Figure 4c). In spite of that, as the training progresses Lagrangian-PPO and FOC-PPO are able
to reduce this fairness gap to the specified acceptable threshold and maintain it over the course of training
while reaching the goal state. Another interesting phenomena that we observe is the fair algorithms delay the
learning for the smaller agents subgroup until the larger groups have learned to reach the goal consistently
(the dip in learning curve of smaller subgroup in the rightmost subplot in Figure 4c).

Across the different experimental settings, we observe that both FOC-PPO and Lagrangian-PPO are able to
satisfy the fairness guarantees, with the performance of FOC-PPO only marginally better than Lagrangian-
PPO in terms of cumulative returns. More details about the experiments, including environment and
architecture details, hyper-parameter selection procedure, generalization analysis and results with a minimal
implementation of the PPO baseline, can be found in Appendix G.

12

Published in Transactions on Machine Learning Research (04/2023)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(a) Half-Cheetah variations with high fairness threshold (ϵ = 10, 000).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

500

1000

1500

2000

2500

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(b) Half-Cheetah variations with medium fairness threshold (ϵ = 1000).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

50

40

30

20

10

0

10

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
ps

io
di

c
re

tu
rn

Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
pi

so
di

c
re

tu
rn

Default size subgroup

(c) Navigation task with low fairness threshold (ϵ = 0.5).

Figure 4: Learning curves for different environments with different fairness thresholds. The first subplot in
each row denotes the fairness gap (maximum of absolute difference of returns between subgroups) and the
black dotted horizontal line denotes the specified acceptable fairness threshold (ϵ). The second subplot in
each row denotes the cumulative return for all subgroups, and the rest of the subplots in the row denote
the subgroup specific returns. The x-axis denote the number of samples used during the learning. The solid
colored lines represent the smoothed mean over 10 random seeds for different baselines (with weight=0.9)
and the colored shaded regions represent the normal 95% confidence interval. Plots for running mean over
the last 100 episodes are included in Appendix G.

5 Discussion

In this work, we pose and study the problem of satisfying group fairness requirement in the online RL setting
where unfair decisions should be avoided throughout learning. Our main contribution is to show we can
leverage methods from the constrained MDPs literature to satisfy this problem leading to new algorithmic
solutions to this open problem. We also provide empirical evidence in support of our proposed algorithms
on a variety of synthetic domains: discrete classic control tasks, continuous control robotic locomotion and
navigation tasks, with extensive complementary analysis in the appendices. We based most of our empirical
studies on traditional RL domains, which are convenient to validate the properties of our algorithms, but
where fairness is not an inherent issue. The next step is to apply our techniques in real-world domains where
fairness is the primary concern.

As mentioned in Section 1.1, a limitation of our work is that we enforce the fairness constraints only via
restricting the policy space. This is also reflected in the navigation experiments in Section 4.3, where we
observe that our methods end up penalizing the higher-performing subgroups to match the performance of
the lesser-performing subgroups. An interesting future line of work can be to explore ways to increase the

13

Published in Transactions on Machine Learning Research (04/2023)

performance of the lower-performing possibly by modifying the environment itself. Consider the scenario
where the system designer has some partial control over a part of the environment dynamics and can decide to
modify them by paying some cost. In this setting, the task becomes to find a configuration of the environment
along with a policy such that the resulting system is fair and allows various subgroups to achieve similar
levels of high performance.

However, the problem described above is significantly harder than the problem we originally considered in
Section 2. As the agent decisions can change the environment dynamics itself, all the past experiences of the
learning algorithm can become obsolete unless we introduce even stronger assumptions regarding either the
environment or initial fair exploration policies. If the system designer can afford to relax the requirement
of not violating any fairness constraint during the learning procedure, then we should be able to leverage
the recent advances in configuring environments via RL to take a step toward this problem of inclusive
environment design. For instance, the framework of Configurable MDPs (Metelli* et al., 2018; Metelli et al.,
2019) provides tools for finding the environment and policy configuration that achieves maximum performance
in absence of any other constraints. We conjecture that their methodology can be used in conjunction with
our work but we leave that for future work.

We acknowledge that Assumption 2.3 is indeed strong. However, as we mentioned in Section 2, this is
necessary for RL algorithms that do not violate the fairness constraints during the entire learning procedure.
A promising approach towards the practical relaxation of this assumption can be to consider the setting
where instead of having access to an explicit fair policy, the learning algorithm has access to an offline dataset
collected under some fair policy. The recent advances in policy fine-tuning and hybrid-RL methods (Xie
et al., 2021; Wagenmaker and Pacchiano, 2022; Song et al., 2023) indicate that we might be able to extract
an approximately fair policy from the offline dataset. We can then use the extracted policy to initialize the
algorithm in Section 3, but further studies need to be conducted regarding the impact of such an approach
on regret and fairness guarantees.

We also note that our results regarding the regret bounds in Section 3 can be improved further by using
Bernstein’s concentration inequalities-based analysis (Maurer and Pontil, 2009). This is a known result in
traditional MDPs (Azar et al., 2017) and has also been applied in the CMDP setting (Efroni et al., 2020;
Bura et al., 2022). We leave this for future work, as our primary focus is not to improve the results in the
exploration of CMDPs but rather to show how these results can be extended to a different setting where they
are traditionally not employed.

Our work does not impose any structure on the environment or the subgroup dynamics, and as such, it
is difficult to do something different than treating them independently. Considering structured problems
is another interesting avenue for future research as well as identifying common parts of the dynamics (if
possible). A more interesting setting would be one in which some information-sharing between groups is
possible, e.g. while there might be some differences in the dynamics for each group, there is some similarity,
so information on the performance of one group could be used to learn for another group.

Finally, our analysis is limited to discrete subgroups, which corresponds to precise fairness criteria. Future
work should investigate broader notions of fairness, and extensions to the multi-agent and multi-objective
settings where subgroups can have conflicting interests or shared global resource constraints.

Broader Impact Statement

Our algorithms can help in reducing a particular notion of bias (group based) during the learning for the RL
based systems (Sections 1 and 2). We also provide the conditions under which the proposed algorithms can
attain these theoretical guarantees (Section 3). As mentioned in Sections 1.1 and 5, our notion of fairness is
enforced by penalizing the members of the highest performing subgroup to match the performance of the
lowest performing subgroups (within some margin). Therefore we caution against deploying our algorithms
in settings where such a notion of fairness might not be suitable.

14

Published in Transactions on Machine Learning Research (04/2023)

Acknowledgments

The authors would like to thank NSERC (Natural Sciences and Engineering Research Council), IVADO
(Institut de valorisation des données) and CIFAR (Canadian Institute for Advanced Research) for funding to
McGill in support of this research. The computational component of this research was enabled in part by
support provided by Calcul Québec (www.calculquebec.ca), Compute Canada (www.computecanada.ca)
and Mila’s IDT team.

15

www.calculquebec.ca
www.computecanada.ca

Published in Transactions on Machine Learning Research (04/2023)

References
Abdolmaleki, A., Huang, S., Hasenclever, L., Neunert, M., Song, F., Zambelli, M., Martins, M., Heess, N.,

Hadsell, R., and Riedmiller, M. (2020). A distributional view on multi-objective policy optimization. In
International Conference on Machine Learning, pages 11–22. PMLR.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. (2018). Maximum
a posteriori policy optimisation. arXiv preprint arXiv:1806.06920.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization. arXiv preprint
arXiv:1705.10528.

Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC Press.

Amani, S., Alizadeh, M., and Thrampoulidis, C. (2019). Linear stochastic bandits under safety constraints.
arXiv preprint arXiv:1908.05814.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L., Geist, M.,
Pietquin, O., Michalski, M., et al. (2020). What matters in on-policy reinforcement learning? a large-scale
empirical study. arXiv preprint arXiv:2006.05990.

Auer, P., Jaksch, T., and Ortner, R. (2008). Near-optimal regret bounds for reinforcement learning. Advances
in neural information processing systems, 21.

Awasthi, P., Cortes, C., Mansour, Y., and Mohri, M. (2020). Beyond individual and group fairness. arXiv
preprint arXiv:2008.09490.

Azar, M. G., Osband, I., and Munos, R. (2017). Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, pages 263–272. PMLR.

Bellman, R. (1957). A markovian decision process. Journal of mathematics and mechanics, pages 679–684.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Bura, A., Hasanzadezonuzy, A., Kalathil, D., Shakkottai, S., and Chamberland, J.-F. (2022). Dope: Doubly
optimistic and pessimistic exploration for safe reinforcement learning. In Advances in Neural Information
Processing Systems.

Castelnovo, A., Malandri, L., Mercorio, F., Mezzanzanica, M., and Cosentini, A. (2021). Towards fairness
through time. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 647–663. Springer.

Celis, E., Mehrotra, A., and Vishnoi, N. (2019). Toward controlling discrimination in online ad auctions. In
International Conference on Machine Learning, pages 4456–4465. PMLR.

Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big data, 5(2):153–163.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M. (2017). Risk-constrained reinforcement learning
with percentile risk criteria. The Journal of Machine Learning Research, 18(1):6070–6120.

Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E., and Ghavamzadeh, M. (2019). Lyapunov-based safe
policy optimization for continuous control. arXiv preprint arXiv:1901.10031.

Curi, S., Bogunovic, I., and Krause, A. (2021). Combining pessimism with optimism for robust and efficient
model-based deep reinforcement learning. arXiv preprint arXiv:2103.10369.

D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., and Halpern, Y. (2020). Fairness is
not static: deeper understanding of long term fairness via simulation studies. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, pages 525–534.

16

Published in Transactions on Machine Learning Research (04/2023)

Dann, C., Lattimore, T., and Brunskill, E. (2017). Unifying pac and regret: Uniform pac bounds for episodic
reinforcement learning. arXiv preprint arXiv:1703.07710.

Dastin, J. (2018). Amazon scraps secret ai recruiting tool that
showed bias against women. https: // www. reuters. com/ article/
us-amazon-com-jobs-automation-insight/ \amazon-scraps-secret-ai-recruiting-%
20tool-that-showed-bias\ -against-women-idUSKCN1MK08G .

Datta, A., Tschantz, M. C., and Datta, A. (2015). Automated experiments on ad privacy settings: A tale of
opacity, choice, and discrimination. Proceedings on privacy enhancing technologies, 2015(1):92–112.

Diamond, S. and Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1–5.

Doroudi, S., Thomas, P. S., and Brunskill, E. (2017). Importance sampling for fair policy selection. Grantee
Submission.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329–1338. PMLR.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In
Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226.

Efroni, Y., Mannor, S., and Pirotta, M. (2020). Exploration-exploitation in constrained mdps. arXiv preprint
arXiv:2003.02189.

Emelianov, V., Gast, N., Gummadi, K. P., and Loiseau, P. (2020). On fair selection in the presence of implicit
variance. In Proceedings of the 21st ACM Conference on Economics and Computation, pages 649–675.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and Madry, A. (2020). Implemen-
tation matters in deep policy gradients: A case study on ppo and trpo. arXiv preprint arXiv:2005.12729.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. (2015). Certifying
and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 259–268.

Fu, Z., Xian, Y., Gao, R., Zhao, J., Huang, Q., Ge, Y., Xu, S., Geng, S., Shah, C., Zhang, Y., et al. (2020).
Fairness-aware explainable recommendation over knowledge graphs. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 69–78.

Fuster, A., Goldsmith-Pinkham, P., Ramadorai, T., and Walther, A. (2022). Predictably unequal? the effects
of machine learning on credit markets. The Journal of Finance, 77(1):5–47.

Gajane, P., Saxena, A., Tavakol, M., Fletcher, G., and Pechenizkiy, M. (2022). Survey on fair reinforcement
learning: Theory and practice. arXiv preprint arXiv:2205.10032.

Garg, N., Li, H., and Monachou, F. (2020). Dropping standardized testing for admissions trades off information
and access. arXiv preprint arXiv:2010.04396.

Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. arXiv preprint
arXiv:1610.02413.

Huang, S., Dossa, R. F. J., Ye, C., and Braga, J. (2021). Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms.

Immorlica, N., Ligett, K., and Ziani, J. (2019). Access to population-level signaling as a source of inequality.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, pages 249–258.

Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., and Roth, A. (2017). Fairness in reinforcement learning.
In International Conference on Machine Learning, pages 1617–1626. PMLR.

17

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/\ amazon-scraps-secret-ai-recruiting-%20tool-that-showed-bias\ -against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/\ amazon-scraps-secret-ai-recruiting-%20tool-that-showed-bias\ -against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/\ amazon-scraps-secret-ai-recruiting-%20tool-that-showed-bias\ -against-women-idUSKCN1MK08G

Published in Transactions on Machine Learning Research (04/2023)

Kakade, S. M. (2003). On the sample complexity of reinforcement learning. University of London, University
College London (United Kingdom).

Kanagawa, Y. and Kaneko, T. (2020). Diverse exploration via infomax options. arXiv preprint
arXiv:2010.02756.

Liu, L. T., Dean, S., Rolf, E., Simchowitz, M., and Hardt, M. (2018). Delayed impact of fair machine learning.
In International Conference on Machine Learning, pages 3150–3158. PMLR.

Liu, T., Zhou, R., Kalathil, D., Kumar, P., and Tian, C. (2021). Learning policies with zero or bounded
constraint violation for constrained mdps. arXiv preprint arXiv:2106.02684.

Mandal, D. and Gan, J. (2022). Socially fair reinforcement learning. arXiv preprint arXiv:2208.12584.

Maurer, A. and Pontil, M. (2009). Empirical bernstein bounds and sample variance penalization. arXiv
preprint arXiv:0907.3740.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019). A survey on bias and fairness
in machine learning. arXiv preprint arXiv:1908.09635.

Metelli, A. M., Ghelfi, E., and Restelli, M. (2019). Reinforcement learning in configurable continuous
environments. In Proceedings of the 36th International Conference on Machine Learning (ICML), volume 97,
pages 4546–4555. PMLR.

Metelli*, A. M., Mutti*, M., and Restelli, M. (2018). Configurable markov decision processes. In Proceedings
of the 35th International Conference on Machine Learning (ICML), volume 80, pages 3488–3497.

Miller, C. C. (2015). Can an algorithm hire better than a human. The New York Times, 25.

Nabi, R., Malinsky, D., and Shpitser, I. (2019). Learning optimal fair policies. In International Conference
on Machine Learning, pages 4674–4682. PMLR.

Pacchiano, A., Ghavamzadeh, M., Bartlett, P., and Jiang, H. (2021). Stochastic bandits with linear constraints.
In International Conference on Artificial Intelligence and Statistics, pages 2827–2835. PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32.

Pessach, D. and Shmueli, E. (2020). Algorithmic fairness. arXiv preprint arXiv:2001.09784.

Peters, J., Mulling, K., and Altun, Y. (2010). Relative entropy policy search. In Twenty-Fourth AAAI
Conference on Artificial Intelligence.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D. (2013). Safe policy iteration. In International
Conference on Machine Learning, pages 307–315. PMLR.

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Weinberger, K. Q. (2017). On fairness and calibration.
Advances in neural information processing systems, 30.

Puranik, B., Madhow, U., and Pedarsani, R. (2022). Dynamic positive reinforcement for long-term fairness.
In ICML 2022 Workshop on Responsible Decision Making in Dynamic Environments.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimization. In
International conference on machine learning, pages 1889–1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

18

Published in Transactions on Machine Learning Research (04/2023)

Siddique, U., Weng, P., and Zimmer, M. (2020). Learning fair policies in multi-objective (deep) reinforcement
learning with average and discounted rewards. In International Conference on Machine Learning, pages
8905–8915. PMLR.

Song, Y., Zhou, Y., Sekhari, A., Bagnell, D., Krishnamurthy, A., and Sun, W. (2023). Hybrid RL: Using
both offline and online data can make RL efficient. In The Eleventh International Conference on Learning
Representations.

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval estimation for markov decision
processes. Journal of Computer and System Sciences, 74(8):1309–1331.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tessler, C., Mankowitz, D. J., and Mannor, S. (2018). Reward constrained policy optimization. arXiv preprint
arXiv:1805.11074.

The European Commission (2021). A european approach to artificial intelligence. https: //
digital-strategy. ec. europa. eu/ en/ policies/ european-approach-artificial-intelligence .

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE.

Wachi, A. and Sui, Y. (2020). Safe reinforcement learning in constrained markov decision processes. In
International Conference on Machine Learning, pages 9797–9806. PMLR.

Wagenmaker, A. and Pacchiano, A. (2022). Leveraging offline data in online reinforcement learning. arXiv
preprint arXiv:2211.04974.

Wen, M., Bastani, O., and Topcu, U. (2021). Algorithms for fairness in sequential decision making. In
Banerjee, A. and Fukumizu, K., editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 1144–1152.
PMLR.

Xie, T., Jiang, N., Wang, H., Xiong, C., and Bai, Y. (2021). Policy finetuning: Bridging sample-efficient offline
and online reinforcement learning. Advances in neural information processing systems, 34:27395–27407.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J. (2020). Projection-based constrained policy
optimization. arXiv preprint arXiv:2010.03152.

Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi, K. P. (2017). Fairness constraints: Mechanisms for
fair classification. In Artificial Intelligence and Statistics, pages 962–970. PMLR.

Zhang, Y., Vuong, Q., and Ross, K. W. (2020). First order constrained optimization in policy space. arXiv
preprint arXiv:2002.06506.

Zimin, A. and Neu, G. (2013). Online learning in episodic markovian decision processes by relative entropy
policy search. In Neural Information Processing Systems 26.

19

https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

Published in Transactions on Machine Learning Research (04/2023)

A Notation

Table 1: Notation

General MDPs:

M denotes the entire MDP
S state-space
A action-space
µ initial starting state distribution
r reward function (can be non-stationary rh(s, a) or stationary r(s, a))
H horizon length for finite-horizon episodic MDPs
P transition model (can be non-stationary Ph(s′|s, a) or stationary P (s′|s, a))
π policies (can be stationary π(a|s) or non-stationary πh(a|s))
Sh state observed at time step h
Ah action taken at time step h
Rh reward observed at time step h
V π

h (s; r, P) value function under policy π starting at state s at time step h for MDP with reward
function r and transition P

Jπ(r, P) return of a policy π for MDP with reward function r and transition P
dπ

h(s, a; µ, P) occupancy measure of policy π for state s and action a at time step h when starting with
initial distribution µ and transition P

Introducing fairness:

Z set of sensitive attributes that define subgroups
S̃ non-sensitive state space
S̃t non-sensitive state observed at time step t
µ̃z subgroup specific initial non-sensitive starting state distribution
Pz subgroup specific transition function corresponding to the non-sensitive attributes

Pz,h(s̃|s̃, a)
Jπ

z (r, P) return for a subgroup z under policy π with reward function r and transition Pz (starting
from µz)

πz policy corresponding to a subgroup z
l decision maker’s reward function (can be non-stationary lh(s, a) or stationary l(s, a))
ϵ specified fairness threshold
π0 initial feasible and fair policy
ϵ0 fairness margin corresponding to π0

Algorithm for the unknown model and reward setting:

ζ noise in the observed reward
δ confidence parameter
r̂k

h empirical estimate of the reward function for time step h at episode k

P̂ k
h empirical estimate of the transition function for time step h at episode k

βk
h uncertainty estimate for time step h at episode k

rk
h, rk

h optimistically and pessimistically scaled reward estimates
Πk high confidence set consisting of fair policies
r̈k

h optimistically scaled reward estimate
αr scaling factor associated with r̈
η exploration margin, η = (ϵ− ϵ0)

The infinite-horizon and high-dimensional Deep-RL setting :

20

Published in Transactions on Machine Learning Research (04/2023)

γ discount factor associated with MDP for the infinite-horizon setting
τ sampled trajectory
J(π) infinite-horizon return under a stationary policy π
J(πz) infinite-horizon return associated with subgroup z under policy πz

Aπ
z (s̃, a) advantage function under the policy πz for the subgroup z

Jπ′,π
i,j J(π′

i)− J(πj)
κ trust-region parameter
DKL KL divergence
ξi worst case error for subgroup i in Proposition 4.1
Πθ parameterized policy space

B Linear Programming solution for finite-horizon episodic MDPs

B.1 Linear Programming based solver

Note that any policy π : Z × S̃ × [H] → ∆A can be decomposed into a set of |Z| sub-policies. A policy
associated with a particular subgroup z ∈ Z is denoted with πz, where πz : S̃ × [H]→ ∆A, with πz,h(a|s̃)
being the probability of taking action a in state (z, s̃) at time step h ∈ [H]. Thus, the complete policy at an
episode k ∈ [K] is denoted by the πk = {πk

1 , . . . , πk
|Z|}.

The occupancy measure associated with a particular subgroup z ∈ Z and its corresponding policy πz is
defined as:

dπz

h (s̃, a; µ̃z, Pz) .= E[1{S̃h = s̃, Ah = a | S̃1 ∼ µ̃z, Pz, πz}] (11)
= Pr{S̃h = s, Ah = a | S̃1 ∼ µ̃z, Pz, πz}.

Similarly, the return associated with a particular subgroup w.r.t. a reward function g : [H]×Z × S̃ ×A → R
can be written as:

Jπ
z (g, P) =

∑
h,s̃,a

dπz

h (s̃, a; µ̃z, Pz)gh(z, s̃, a). (12)

The subgroup specific occupancy measure should satisfy the properties of an occupancy measure (Zimin and
Neu, 2013; Efroni et al., 2020), i.e.,∑

a

dπz

h (s̃, a) =
∑
s̃′,a′

Ph−1(s̃|z, s̃′, a′)dπz

h−1(s̃′, a′) ∀s̃ ∈ S̃, (13)

dπz

h (s̃, a) ≥ 0 ∀s̃, a ∈ S̃ × A,

for all h ∈ [H] \ 1. For h = 1 and corresponding initial distribution µ̃z, we have∑
a

dπz
1 (s̃, a) = µ̃z(s̃) ∀s̃. (14)

For any policy π and z, s̃, a, h ∈ Z × S̃ ×A× [H], we define the combined occupancy measure over the entire
orginal state-space S as:

dπ
h((z, s̃), a) = Pr(z) dπz

h (s̃, a) (15)

We show that the final occupancy measure returned by the above formulation satisfies the properties of a
valid occupancy measure in Lemma B.1. This allows us to reformulate the problem in Equation (2) to a
Linear Program where the optimization variables are measures. The optimal solutions to the LP define the
optimal Markov policy through occupancy measure where,

πz,h(a|s̃) = dπz

h (s̃, a)∑
a′ dπz

h (s̃, a′) , ∀(z, s̃, a, h) ∈ Z × S̃ × A× [H]. (16)

21

Published in Transactions on Machine Learning Research (04/2023)

The final LP program takes the following form:

max
∑
h,z,s̃

∑
a

dπ
h((z, s̃), a)lh((z, s̃), a) (17)

s.t.
∣∣∣ ∑

h,s̃,a

dπi

h (s̃, a)rh(i, s̃, a)︸ ︷︷ ︸
= Jπ

i
(r,P)

−
∑
h,s̃,a

d
πj

h (s̃, a)rh(j, s̃, a)︸ ︷︷ ︸
= Jπ

j
(r,P)

∣∣∣ ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2.

∑
a

dπz

h (s̃, a) =
∑
s̃′,a′

Ph−1(s̃|z, s̃′, a′)dπz

h−1(s̃′, a′) ∀z, s̃, h ∈ Z × S̃ × [H] \ 1

∑
a

dπz
1 (s̃, a) = µ̃z(s̃) ∀z, s̃ ∈ Z × S̃

dπz

h (s̃, a) ≥ 0 ∀z, s̃, a, h ∈ Z × S̃ × A× [H]

Finally, in Proposition B.1 (below) we show that the above LP is able to find the solution of the problem in
Equation (2).

B.2 Supporting results for LP formulation

Lemma B.1. For any policy π, the occupancy measure dπ in Equation (15) is a valid occupancy measure
and satisfies the following properties of an occupancy measure:∑

s,a

dπ
h(s, a) = 1 ∀h ∈ [H] (18)

∑
a

dπ
h(s, a) =

∑
s′,a′

Ph−1(s|s′, a′)dπ
h−1(s′, a′) ∀s ∈ S (19)

dπ
h(s, a) ≥ 0 ∀s, a, h ∈ S ×A× [H]. (20)

Proof. Recall that, for any policy π and z, s̃, a, h ∈ Z × S̃ × A× [H], the combined occupancy measure over
S is defined as (Equation (15)):

dπ
h((z, s̃), a) = Pr(z) dπz

h (s̃, a) (21)

Part 1: From Equation (13) we know that for any z ∈ Z,

dπz

h (s̃, a) ≥ 0 ∀s̃, a, h ∈ S̃ × A× [H],

As, Pr(z) ≥ 0, ∀z ∈ Z,

Pr(z)dπz

h (s̃, a) ≥ 0 ∀z, s̃, a ∈ Z × S̃ × A× [H],
dπ

h((z, s̃), a) ≥ 0 ∀z, s̃, a ∈ (Z × S̃)×A× [H],
dπ

h(s, a) ≥ 0 ∀s, a ∈ S ×A× [H],

which implies that the property in Equation (20) is valid.

Part 2: From the construction in Equation (13) we know that for any z ∈ Z∑
a

dπz

h (s̃, a) =
∑
s̃′,a′

Ph−1(s̃|z, s̃′, a′)dπz

h−1(s̃′, a′) ∀s̃, h

The above equation can be rewritten as,∑
a

dπz

h (s̃, a) =
∑

z′,s̃′,a′

Ph−1(s̃|z, s̃′, a′)1[z = z′]dπz

h−1(s̃′, a′) ∀z, s̃, h

22

Published in Transactions on Machine Learning Research (04/2023)

Multiplying both sides by Pr(z), we get:∑
a

Pr(z)dπz

h (s̃, a) =
∑

z′,s̃′,a′

Ph−1(s̃|z, s̃′, a′)1[z = z′] Pr(z)dπz

h−1(s̃′, a′) ∀z, s̃, h

Replacing Pr(z)dπz

h (s̃, a) by dπ
h(z, s̃, a) from Equation (15),∑

a

dπ
h((z, s̃), a) =

∑
z′,s̃′

∑
a′

(Ph−1(s̃)|z′, s̃′, a′)1[z = z′])dπ
h−1(z, s̃′, a′) ∀z, s̃, h

As we are only considering case where z′ = z in RHS (due to 1[z = z′]), we can replace dπ
h−1(z, s̃′, a′) with

dπ
h−1(z′, s̃′, a′):∑

a

dπ
h((z, s̃), a) =

∑
z′,s̃′

∑
a′

(Ph−1(s̃|z′, s̃′, a′)1[z = z′])dπ
h−1(z′, s̃′, a′) ∀z, s̃, h

From the definition of transition function in Assumption 2.1 and substituting (z′, s̃′) with s′, we get:∑
a

dπ
h((z, s̃), a) =

∑
z′,s̃′

∑
a′

Ph−1(z, s̃|z′, s̃′, a′)dπ
h−1(z′, s̃′, a′) ∀z, s̃, h

∑
a

dπ
h(s, a) =

∑
s′

∑
a′

Ph−1(s|s′, a′)dπ
h−1(s′, a′) ∀s, h

Hence, the property in Equation (19) is also valid.

Part 3: We show the property in Equation (18) is true using induction. First for the base case fix h = 1,
and we need to show

∑
s,a dπ

1 (s, a) = 1.

∑
a

dπ
1 (s, a) =

∑
z

∑
s̃

∑
a

dπ
1 (s, a)

=
∑

z

∑
s̃

∑
a

Pr(z)dπz
1 (s̃, a) (by definition of dπ eq. (21))

=
∑

z

∑
s̃

Pr(z)
∑

a

dπz
1 (s̃, a)

By construction (Equation (14)), we have
∑

a dπz
1 (s̃, a) = µ̃z(s̃),∀s̃, therefore:

=
∑

s̃

∑
z

Pr(z)µ̃z(s̃)

From Definition 2.1, we have µ(z, s̃) = Pr(z)µ̃z(s̃) or
∑

z∈Z µ(z, s̃) =
∑

z∈Z Pr(z)µ̃z(s̃). Therefore, we get:∑
a

dπ
1 (s, a) =

∑
s̃

∑
z

µ(z, s̃)

= 1 (By definition of µ)

We have shown that
∑

s,a dπ
1 (s, a) = 1. Note that we have already proved that Equation (19) is true. For

h = 2,∀s ∈ S, we have: ∑
a

dπ
2 (s, a) =

∑
s′,a′

P1(s|s′, a′)dπ
1 (s′, a′)

23

Published in Transactions on Machine Learning Research (04/2023)

By summing over s ∈ S, we get: ∑
s,a

dπ
2 (s, a) =

∑
s

∑
s′,a′

P1(s|s′, a′)dπ
1 (s′, a′)

=
∑
s′,a′

dπ
1 (s′, a′)

= 1.

Similarly, by summing over the first constraint in Equation (19) over s for different values of h iteratively we
can show that

∑
s,a dπ

h(s, a) = 1,∀h ∈ [H].Therefore, dπ is a valid probability measure.

Lemma B.2. For any policy π and any arbitrary reward function g : [H]×S ×A → R, we have the following
relation between the cumulative return and subgroup specific returns:

Jπ(g, P) =
∑

z

Pr(z)Jπ
z (g, P).

Proof.

Jπ(g, P) =
∑

h,z,s̃,a

dπ
h(z, s̃, a)gh(z, s̃, a)

=
∑
h,a

∑
z,s̃

dπ
h((z, s̃), a)gh((z, s̃), a)

=
∑
h,a

∑
z,s̃

Pr(z)dπz

h (s̃, a)gh((z, s̃), a) (From Equation (15))

=
∑

z

Pr(z)
∑
h,a,s̃

dπz

h (s̃, a)gh((z, s̃), a)

=
∑

z

Pr(z)Jπ
z (g, P). (From Equation (12))

Proposition B.1. The LP in Equation (17) returns the solution π∗ to Equation (2).

Proof. Let π∗ denote the optimal solution to Equation (2), and let π′ denote the solution returned by the LP.
Note that the problem is feasible due to Assumption 2.3.

As π∗ is the solution to Equation (2), it must satisfy the fairness criteria and have a valid occupancy measure.
From Lemma B.1 and the fairness constraint in the construction of LP (the first constraint in Equation (17)),
all the valid occupancy measures that satisfy fairness constraint are feasible points in the LP. As occupancy
measure corresponding to π∗ is a feasible point of the LP, we can denote its return as Jπ∗(l, P).

If π′ is the solution returned by the LP, that implies that π′ satisfies the fairness criteria and also has the
maximum return over all the feasible points, i.e.,

Jπ′
(l, P) ≥ Jπ∗

(l, P).

However, π∗ is the solution to Equation (2), therefore π′ must also be a solution to Equation (2).

24

Published in Transactions on Machine Learning Research (04/2023)

B.3 Extension to other Group fairness definitions

For all the valid π ∈ ∆H
A , the Linear Program for the Demographic parity based fairness constraints can be

written in the following form:

max
∑
h,z,s̃

∑
a

dπ
h((z, s̃), a)lh((z, s̃), a) (22)

s.t.
∣∣∣ ∑

h,s̃,a

dπi

h (s̃, a)rh(i, s̃, a)︸ ︷︷ ︸
= Jπ

i
(r,P)

−
∑
h,s̃,a

d
πj

h (s̃, a)rh(j, s̃, a)︸ ︷︷ ︸
= Jπ

j
(r,P)

∣∣∣ ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2.

Equality of Opportunity: Informally, this fairness constraint is defined as having equal rates or measure
(such as true positive rate) for the qualified sub-populations for all subgroups (Hardt et al., 2016). In
our setting, this implies that the subgroup space (Z) can be further decomposed into qualified (Z1) and
unqualified (Z0) groups, i.e., Z = Z1 ×Z0.

For all the valid π ∈ ∆H
A , the Linear Program for this definition takes the following form:

max
∑
h,z,s̃

∑
a

dπ
h((z, s̃), a)lh((z, s̃), a) (23)

s.t.
∣∣∣Jπ

i (r, P)− Jπ
j (r, P)

∣∣∣ ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2
1 .

Note that the only difference of the above equation with with Equation (22) is that the constraints are defined
only for the pairs belonging in the qualified subgroups (Z1) instead of pver all possible subgroups (Z).

Equalized Odds: This fairness constraint is similar to the Equality of Opportunity case, with the difference
that it requires equal rates or measure for both the qualified and unqualified population for all subgroups
(Hardt et al., 2016). Assuming, Z = Z1 ×Z0, the Linear Program takes the following form ∀π ∈ ∆H

A :

max
∑
h,z,s̃

∑
a

dπ
h((z, s̃), a)lh((z, s̃), a) (24)

s.t.
∣∣∣Jπ

i (r, P)− Jπ
j (r, P)

∣∣∣ ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2
1 .∣∣∣Jπ

i (r, P)− Jπ
j (r, P)

∣∣∣ ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2
0 .

The main difference between the three formulations—Demographic parity (used in our main paper), Equality
of Opportunity and Equalized Odds—is the number of subgroup pairs on which the constraint is being
defined. In Demographic parity, all the possible combinations are being considered, whereas in the other
two definitions only a proportion of the possible pairs is included in the constraints. Thus, our approach
can be transferred directly to other settings by appropriately removing the unnecessary constraints for each
definition.

C Proofs for episodic case

C.1 Why optimism alone might not be enough

The core idea in optimism-based approaches is to select the MDP model that yields the best return among the
set of all possible MDP models. Let Pk, Rk and Lk denote the confidence sets based on empirical estimates
that contain the true transition and reward models with high confidence. Thus, by using only the optimism
in the face of uncertainty approach, the policy to execute at episode k can be found by solving the following
problem:

πk, rk, lk, P k = arg max
π,r′∈Rk,l′∈Lk,P ′∈Pk

Jπ(l′, P ′)

s.t. |Jπ
i (r′, P ′)− Jπ

j (r′, P ′)| ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

25

Published in Transactions on Machine Learning Research (04/2023)

However, the solution policy from the above optimization problem only guarantees the constraint satisfaction
w.r.t. to the best optimistic MDP model and not the true MDP. To expand, we can get guarantees on
|Jπk

i (rk, P k)− Jπk

j (rk, P k)|, whereas we are interested in the guarantees on |Jπk

i (r, P)− Jπk

j (r, P)|.

C.2 High probability good event

We follow the notation and proof technique from Liu et al. (2021) for this section. The goal is to have high
confidence guarantees based on some probability parameter 0 < δ < 1 given by the user. In order to do that,
we first define a high probability event E that is required for analyzing the performance guarantees of the
algorithm.

Let {Fk}k≥0 denotes the filtration with Fk = σ
(

(S̃k′

h , Zk′

h , Ak′

h , Rk′

h , Lk′

h)h∈[H],k′∈[k]

)
∀k ∈ [K] and F0 being

the trivial sigma algebra. The set of deployed policies {πk}k∈[K] is a predictable process w.r.t. filtration
{Fk}k≥0. Recall that Nk

h (z, s̃, a) is the number of times the state-action tuple (z, s̃, a) was observed at time
step h in the episodes [1, . . . , k − 1]. Thus, Nk

h (z, s̃, a) ∈ Fk−1.

In our setting, the algorithm has access to µ̃z and additionally we sample z ∼ Z uniformly for each
episode, or Pr(z) = 1/|Z|,∀z. Therefore, the joint µ is also accessible as µ(z, s̃) = Pr(z)µ̃z(s̃)∀z, s̃ ∈ Z × S̃
(Definition 2.1). We can therefore define the expectation operator Eµ,P,π[·] w.r.t. a stochastic trajectory
(Sh, Ah)h∈[H] according to Markov chain induced by (µ, P, π). Next we formally state the noise assumption
on the reward function,
Assumption C.1 (Sub-Gaussian-noise). We assume the reward noise variables are zero mean 1/2-sub-
Gaussian, i.e., E[ζk

h |Fk−1] = 0,E[exp(λζk
h)|Fk−1] ≤ exp(λ2/4),∀λ ∈ R, where Fk denotes the σ-algebra

generated by random variables up to episode k, ∀h ∈ [H], k ∈ [K].

Therefore, for each (z, s̃, a, h) ∈ Z × S̃ ×A× [H], the empirical estimates of the rewards and transition based
on the observations so far are defined as:

P̂ k
h (z′, s̃′|z, s̃, a) .=

∑k−1
k′=1 1(Zk′

h = z, S̃k′

h = s̃, Ak′

h = a, Zk′

h+1 = z′, S̃k′

h+1 = s̃′)
max(Nk

h (z, s̃, a), 1)
, (25)

r̂k
h(z, s̃, a) .=

∑k−1
k′=1 1(Zk′

h = z, S̃k′

h = s̃, Ak′

h = a)(rh(z, s̃, a) + ζk
h(z, s̃, a))

max(Nk
h (z, s̃, a), 1)

, (26)

l̂k
h(z, s̃, a) .=

∑k−1
k′=1 1(Zk′

h = z, S̃k′

h = s̃, Ak′

h = a)(lh(z, s̃, a) + ζk
h(z, s̃, a))

max(Nk
h (z, s̃, a), 1)

. (27)

Next, for an event sequence G1:K , that is predictable w.r.t. {F}k≥0, i.e., Gk ∈ Fk−1,∀k ∈ [K], we define the
event:

EG(δ) .=
{
∀K ′ ∈ [K],

K′∑
k=1

H∑
h=1

∑
z,s̃,a

1(Gk)dπk

h (z, s̃, a)
max(Nk

h (z, s̃, a), 1)
≤ 4H|Z||S̃||A|+ 2H|Z||S̃||A| ln K ′

G + 4 ln 2HK

δ
,

K′∑
k=1

H∑
h=1

∑
z,s̃,a

1(Gk)dπk

h (z, s̃, a)√
max{Nk

h (z, s̃, a), 1}
≤ 6H|Z||S̃||A|+ 2H

√
|Z||S̃||A|K ′

G

+ 2H|Z||S̃||A| ln K ′
G + 5 ln 2HK

δ
,
}

,

where K ′
G

.=
∑K′

k=1 1(Gk), and dπk is the occupancy measure of policy πk, ie, dπk

h (z, s̃, a) = Eµ,P,πk [1(Zk
h =

z, S̃k
h = s̃, Ak

h = a)|Fk−1].

Let EΩ(δ) be the event associated with the trivial predictable event sequence Gk = Ω,∀k ∈ [K], where Ω is the
sample space. Similarly, let G′

1:K = {(Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k) > (ϵ + ϵ0)/2)∨ (Jπ0

j (rk, P̂ k)− Jπ0

i (rk, P̂ k) >

26

Published in Transactions on Machine Learning Research (04/2023)

(ϵ + ϵ0)/2),∀i ≥ j; i, j ∈ Z2.}k∈[K], where ∨ denotes the logical OR operator. Note that the event sequence
G′

1:K is also predictable w.r.t. {Fk}k≥0. Let E0(δ) denote the event EG′(δ) defined by the event sequence
G′

1:K .

Good event E is defined as:

E .=
{
∀k ∈ [K],∀h ∈ [H],∀z ∈ Z,∀s̃ ∈ S̃,∀a ∈ A,

|rh(z, s̃, a)− r̂k
h(z, s̃, a)| ≤ βk

h(z, s̃, a),
|lh(z, s̃, a)− l̂k

h(z, s̃, a)| ≤ βk
h(z, s̃, a),

|P̂ k
h (z′, s̃′|z, s̃, a)− P k

h (z′, s̃′|z, s̃, a)| ≤ βk
h(z, s̃, a),∀z′, s̃′ ∈ Z × S̃

}
∩ EΩ(δ/4) ∩ E0(δ/4), (28)

where βk
h(z, s̃, a) .=

√
1

max(Nk
h

(z,s̃,a),1) C and C = log(4|Z|2|S̃|2|A|HK/δ).

Lemma C.1. For a given value of δ ∈ (0, 1), the event E occurs with probability at least 1− δ.

Proof. We can get the above results directly using Lemma A.1 (Liu et al., 2021). As the rest of our analysis
is based on this good event, for completeness, we briefly present their proof extended to our setting below.

For each (z, s̃, a, h) ∈ Z × S̃ ×A× [H], we first define a dataset of K mutually independent samples of reward
and next state collected under the true MDP model as {Rn(z, s̃, a, h), Ln(z, s̃, a, h), Sn(z, s̃, a, h)}K

n=1. Let
r̂n(z, s̃, a, h), l̂n(z, s̃, a, h) and P̂ n(·|z, s̃, a, h) be the corresponding running empirical means for the samples
{Ri(z, s̃, a, h), Li(z, s̃, a, h), Si(z, s̃, a, h)}n

i=1. We can then define the failure events:

F r
n

.= {∃z, s̃, a, h : |r̂n
h(z, s̃, a)− rh(z, s̃, a)| ≥ β(n), }

F l
n

.= {∃z, s̃, a, h : |l̂n
h(z, s̃, a)− lh(z, s̃, a)| ≥ β(n), }

F P
n

.= {∃z, s̃, a, z′, s̃′, h : |Ph(z′, s̃′|z, s̃, a)− P̂ n
h (z′, s̃′|z, s̃, a)| ≥ β(n)},

where β(n) =
√

1
max(n,1) C. We also define another event,

Egen .=
(
Pr(∪K

n=1(F r
n ∪ F l

n ∪ F P
n))C ∩ EΩ(δ/4) ∩ E0(δ/4)

)
Let nk(z, s̃, a, h) denote the quantity Nk

h (z, s̃, a) + 1. Then the problem in our setting can
be simulated as following: at an episode k, taking action a in state z, s̃ at time-step h, we
get the sample (Rnk(z,s̃,a,h)(z, s̃, a, h), Lnk(z,s̃,a,h)(z, s̃, a, h), Snk(z,s̃,a,h)(z, s̃, a, h)). Therefore, the set
{Rn(z, s̃, a, h), Ln(z, s̃, a, h), Sn(z, s̃, a, h)}K

n=1 already contains all the samples drawn in the learning problem
and the sample averages calculated by the algorithms are:

(r̂k
h(z, s̃, a), l̂k

h(z, s̃, a), P̂ k
h (z′, s̃′|z, s̃, a)) = (rnk(z,s̃,a,h)(z, s̃, a, h), lnk(z,s̃,a,h)(z, s̃, a, h), P nk(z,s̃,a,h)(·|z, s̃, a, h))

As a result the Egen implies E , and it is sufficient to show that Egen occurs with probability at least 1− δ.

Using Lemma H.4 and union bound, we get the result that EΩ(δ/4) ∩ E0(δ/4) occurs with probability at least
1− δ/2 Next, we define δ′ .= δ|Z||S̃|

2(|Z||S̃|+2) , that satisfies the relation δ
4 ≤ δ′. To see that,

2 ≤ |Z||S̃| (since |Z| > 1)
4δ ≤ 2δ|Z||S̃|
4δ ≤ 4δ|Z||S̃| − 2δ|Z||S̃|

2δ(|Z||S̃|+ 2) ≤ 4δ|Z||S̃|
δ

4 ≤
δ|Z||S̃|

2(|Z||S̃|+ 2)

or, δ

4 ≤ δ′.

27

Published in Transactions on Machine Learning Research (04/2023)

For F r
n , by Hoeffding’s Inequality and Union bound, we have:

Pr(∪K
n=1F r

n) ≤ |Z||S̃||A|HK exp(−n(β(n))2) = K|Z||S̃||A|H δ

4|Z|2|S̃|2|A|HK
≤ δ′

|Z||S̃|
,

which is equivalent to the event Pr(∪K
n=1F r

n)C ≥ 1− δ′

|Z||S̃| . For F l
n, using Hoeffding’s Inequality and Union

bound, we also get:

Pr(∪K
n=1F l

n) ≤ |Z||S̃||A|HK exp(−n(β(n))2) = K|Z||S̃||A|H δ

4|Z|2|S̃|2|A|HK
≤ δ′

|Z||S̃|
,

which is equivalent to the event Pr(∪K
n=1F l

n)C ≥ 1− δ′

|Z||S̃| . Finally, for F P
n , by Hoeffding’s Inequality and

Union bound, we get:
Pr(∪K

n=1F P
n) ≤ K|Z|2|S̃|2|A|HK exp(−n(β(n))2) ≤ δ′.

Therefore for the event Pr(∪K
n=1(F r

n ∪ F l
n ∪ F P

n)), using the definition of δ′, we have:

Pr(∪K
n=1(F r

n ∪ F l
n ∪ F P

n)) ≤ Pr(∪K
n=1F P

n) + Pr(∪K
n=1F r

n) + Pr(∪K
n=1F l

n) ≤ δ′
(

1 + 2
|Z||S̃|

)
= δ

2 .

Or, the event Pr(∪K
n=1(F r

n ∪ F l
n ∪ F P

n))C ≥ 1− δ/2.

Finally, combining the above results we get that the event Pr(∪K
n=1(F r

n ∪ F l
n ∪ F P

n))C ∩ EΩ(δ/4) ∩ E0(δ/4)
holds with probability at least 1− δ or Egen holds with probability 1− δ, that implies E holds with probability
1− δ.

All the results in the rest of this section are conditioned on the good event E defined above.

C.3 Supporting Results based on Optimistic and Pessimistic MDP Estimates

Recall that at an episode k we define the optimistic and pessimistic reward estimates as following ∀(z, s̃, a, h) ∈
Z × S̃ × A× [H]:

rk
h(z, s̃, a) .= r̂k

h(z, s̃, a) + (1 + |Z||S̃|H)βk
h(z, s̃, a)

rk
h(z, s̃, a) .= r̂k

h(z, s̃, a)− (1 + |Z||S̃|H)βk
h(z, s̃, a)

Lemma C.2. On good event E, for any policy π and z ∈ Z, using the optimistic reward estimate leads to a
higher estimated return compared to the true return, i.e.,

Jπ
z (r, P) ≤ Jπ

z (rk, P̂ k).

Proof. For any k, h, z, s̃, a we assume the sample point ω ∈ E :

rk
h(z, s̃, a)− rh(z, s̃, a) = rk

h(z, s̃, a)− r̂k
h(z, s̃, a) + r̂k

h(z, s̃, a)− rh(z, s̃, a)
= (1 + |Z||S̃|H)βk

h(z, s̃, a) + r̂k
h(z, s̃, a)− rh(z, s̃, a) (From definition eq. (3))

≥ (1 + |Z||S̃|H)βk
h(z, s̃, a)− βk

h(z, s̃, a) (due to E)
≥ |Z||S̃|Hβk

h(z, s̃, a).

Additionally,

∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, s̃, a)V πz

h+1(z′, s̃′; r, P)
(a)
≥ −H

∑
z′,s̃′

βk
h(z, s̃, a) = −|Z||S̃|Hβk

h(z, s̃, a),

28

Published in Transactions on Machine Learning Research (04/2023)

where (a) holds due to Holder’s inequality. Using Value difference lemma (Lemma H.2), for any policy π, we
have:

Jπ
z (rk, P̂ k)− Jπ

z (r, P)

= E

 H∑
h=1

(rk
h(z, S̃h, Ah)− rh(z, S̃h, Ah) +

∑
s̃′,z′

(P̂ k
h − Ph)(z′, s̃′|z, S̃h, Ah)V πz

h+1(z′, s̃′; r, P))
∣∣∣Fk−1

≥ E

[
H∑

h=1
|Z||S̃|Hβk

h(z, S̃h, Ah)− |Z||S̃|Hβk
h(z, S̃h, Ah)

∣∣∣Fk−1

]
≥ 0.

Therefore we have,
Jπ

z (r, P) ≤ Jπ
z (rk, P̂ k).

Lemma C.3. For any policy π and z ∈ Z, using the pessimistic reward estimate leads to a lower estimated
return compared to the true return, i.e.,

Jπ
z (rk, P̂ k) ≤ Jπ

z (r, P).

Proof. For any k, h, z, s̃, a, we assume the sample point ω ∈ E :

rk
h(z, s̃, a)− rh(z, s̃, a) = rk

h(z, s̃, a)− r̂k
h(z, s̃, a) + r̂k

h(z, s̃, a)− rh(z, s̃, a)
= −(1 + |Z||S̃|H)βk

h(z, s̃, a) + r̂k
h(z, s̃, a)− rh(z, s̃, a) (From definition eq. (3))

≤ (−1− |Z||S̃|H)βk
h(z, s̃, a) + βk

h(z, s̃, a) (due to E)
≤ −|Z||S̃|Hβk

h(z, s̃, a).

Additionally,∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, s̃, a)V πz

h+1(z′, s̃′; r, P)
(a)
≤ H

∑
z′,s̃′

βk
h(z, s̃, a) = |Z||S̃|Hβk

h(z, s̃, a).

where we get (a) via the Holder’s inequality. Using value difference lemma (Lemma H.2), for any policy π,
we have:

Jπ
z (rk, P̂ k)− Jπ

z (r, P)

= E

 H∑
h=1

(rk
h(z, S̃h, Ah)− rh(z, S̃h, Ah) +

∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, S̃h, Ah)V πz

h+1(z′, s̃′; r, P))
∣∣∣Fk−1

≤ E

[
H∑

h=1
−|Z||S̃|Hβk

h(z, S̃h, Ah) + |Z||S̃|Hβk
h(z, S̃h, Ah)

∣∣∣Fk−1

]
≤ 0.

Therefore,
Jπ

z (rk, P̂ k) ≤ Jπ
z (r, P).

Lemma C.4. For any policy π and z ∈ Z, the difference in returns using the optimistic reward estimate and
the true return can be bounded in terms of βk as,

Jπ
z (rk, P̂ k)− Jπ

z (r, P) ≤ 2(1 + |S̃||Z|H)Jπ
z (βk, P̂ k).

29

Published in Transactions on Machine Learning Research (04/2023)

Proof. For any k, h, z, s̃, a we assume the sample point ω ∈ E :
rk

h(z, s̃, a)− rh(z, s̃, a) = rk
h(z, s̃, a)− r̂k

h(z, s̃, a) + r̂k
h(z, s̃, a)− rh(z, s̃, a)

= (1 + |Z||S̃|H)βk
h(z, s̃, a) + r̂k

h(z, s̃, a)− rh(z, s̃, a) (From definition eq. (3))
≤ (1 + |Z||S̃|H)βk

h(z, s̃, a) + βk
h(z, s̃, a) (due to E)

≤ (2 + |Z||S̃|H)βk
h(z, s̃, a).

Additionally,∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, s̃, a)V πz

h+1(z′, s̃′; r, P)
(a)
≤ H

∑
z′,s̃′

βk
h(z, s̃, a) = |Z||S̃|Hβk

h(z, s̃, a),

where we get (a) via the Holder’s inequality. Using Value difference lemma (Lemma H.2), for any policy π,
we have:

Jπ
z (rk, P̂ k)− Jπ

z (r, P)

= E

 H∑
h=1

(rk
h(z, S̃h, Ah))− rh(z, S̃h, Ah) +

∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, S̃h, Ah)V πz

h+1(z, s̃′; r, P))
∣∣∣Fk−1

≤ E

[
H∑

h=1
2(1 + |Z||S̃|H)βk

h(z, S̃h, Ah)
∣∣∣Fk−1

]
= 2(1 + |Z||S̃|H)Jπ

z (βk, P̂ k).
Therefore we have,

Jπ
z (rk, P̂ k)− Jπ

z (r, P) ≤ 2(1 + |Z||S̃|H)Jπ
z (βk, P̂ k).

Lemma C.5. For any policy π and z ∈ Z, the difference in returns using the pessimistic reward estimate
and the true return can be bounded in terms of βk as,

Jπ
z (r, P)− Jπ

z (rk, P̂ k) ≤ 2(1 + |S̃||Z|H)Jπ
z (βk, P̂ k).

Proof. For any k, h, z, s̃, a, we assume the sample point ω ∈ E :
rk

h(z, s̃, a)− rh(z, s̃, a) = rk
h(z, s̃, a)− r̂k

h(z, s̃, a) + r̂k
h(z, s̃, a)− rh(z, s̃, a)

= −(1 + |Z||S̃|H)βk
h(z, s̃, a) + r̂k

h(z, s̃, a)− rh(z, s̃, a) (From definition eq. (3))
≥ (−1− |Z||S̃|H)βk

h(z, s̃, a)− βk
h(z, s̃, a) (due to E)

≥ −(2 + |Z||S̃|H)βk
h(z, s̃, a).

Additionally,∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, s̃, a)V πz

h+1(z′, s̃′; r, P)
(a)
≥ −H

∑
z′,s̃′

βk
h(z, s̃, a) = −|Z||S̃|Hβk

h(z, s̃, a),

where (a) holds due to Holder’s inequality. Using value difference lemma (Lemma H.2), for any policy π, we
have:

Jπ
z (rk, P̂ k)− Jπ

z (r, P)

= E

 H∑
h=1

(rk
h(z, S̃h, Ah)− rh(z, S̃h, Ah) +

∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|S̃h, Ah)V πz

h+1(z′, s̃′; r, P))
∣∣∣Fk−1

≥ E

[
H∑

h=1
−2(1 + |Z||S̃|H)βk

h(z, S̃h, Ah)
∣∣∣Fk−1

]
≥ −2(1 + |Z||S̃|H)Jπ

z (βk, P̂ k).

30

Published in Transactions on Machine Learning Research (04/2023)

Therefore,
Jπ

z (r, P)− Jπ
z (rk, P̂ k) ≤ 2(1 + |S̃||Z|H)Jπ

z (βk, P̂ k).

C.4 Proof for Theorem 3.1

W.l.o.g., let {i, j} denote any pair of subgroups in Z2. For π0, we have |Jπ0
i (r, P)−Jπ0

j (r, P)| ≤ ϵ by definition
of initial fair policy (Assumption 2.3). We will now show that the our construction of Πk

F in Equation (4)
satisfies the zero constraint violation property for any such pair of subgroup.

Part 1: In the first part of the proof, we will show that on the good event E , for any k ∈ [K] and policy
π ∈ Πk

F ,
Jπ

i (r, P)− Jπ
j (r, P) ≤ ϵ.

Proof. Using Lemma C.2 w.r.t. z = i and r, we have:

Jπ
i (r, P) ≤ Jπ

i (rk, P̂ k) (29)

Similarly, using Lemma C.3 w.r.t. z = j and r, we get Jπ
j (rk, P̂ k) ≤ Jπ

j (r, P), or,

−Jπ
j (r, P) ≤ −Jπ

j (rk, P̂ k) (30)

From Equations (29) and (30), we have:

Jπ
i (r, P)− Jπ

j (r, P) ≤ Jπ
i (rk, P̂ k)− Jπ

j (rk, P̂ k). (31)

Note that from the definition of Πk
F , we know any policy in π ∈ Πk

F satisfies the constraint:

Jπ
i (rk, P̂ k)− Jπ

j (rk, P̂ k) ≤ ϵ.

Therefore, we have the following relation:

Jπ
i (r, P)− Jπ

j (r, P) ≤ Jπ
i (rk, P̂ k)− Jπ

j (rk, P̂ k) ≤ ϵ.

Part 2: Now we will present the result that shows on the good event E , for any k ∈ [K] and policy π ∈ Πk
F ,

Jπ
j (r, P)− Jπ

i (r, P) ≤ ϵ.

Proof. Using Lemma C.2 w.r.t. z = j and r, we have:

Jπ
j (r, P) ≤ Jπ

j (rk, P̂ k) (32)

Now, using Lemma C.3 w.r.t. z = i and r, we get Jπ
i (rk, P̂ k) ≤ Jπ

i (r, P), or,

−Jπ
i (r, P) ≤ −Jπ

i (rk, P̂ k) (33)

from Equations (32) and (33), we have:

Jπ
j (r, P)− Jπ

i (r, P) ≤ Jπ
j (rk, P̂ k)− Jπ

i (rk, P̂ k).

Note that from the definition of Πk
F , we know any policy in π ∈ Πk

F satisfies the constraint:

Jπ
j (rk, P̂ k)− Jπ

i (rk, P̂ k) ≤ ϵ.

Therefore, we have the following relation:

Jπ
j (r, P)− Jπ

i (r, P) ≤ Jπ
j (rk, P̂ k)− Jπ

i (rk, P̂ k) ≤ ϵ.

31

Published in Transactions on Machine Learning Research (04/2023)

Finally, we know that an episode k, either π0 or a policy from Πk
F will be deployed. We already know that

|Jπ0

i (r, P)−Jπ0

j (r, P)| ≤ ϵ by definition of initial fair policy from Assumption 2.3. From the results from Parts
1 and 2 above, we get that on the good event E , for any k ∈ [K] and policy π ∈ Πk

F , Jπ
j (r, P)− Jπ

i (r, P) ≤ ϵ
and Jπ

i (r, P)− Jπ
j (r, P) ≤ ϵ, or,

|Jπk

i (r, P)− Jπk

j (r, P)| ≤ ϵ.

The above argument holds true for any pair of subgroups. Extending this argument to all the pairs of
subgroups we get,

|Jπ
i (r, P)− Jπ

j (r, P)| ≤ ϵ ∀i ≥ j; (i, j) ∈ Z2.

C.5 LP formulation for Section 3

The algorithm in Algorithm 1 requires solving an LP that takes the following form:

max
∑
h,z,s̃

∑
a

dπ
h((z, s̃), a)l̈k

h((z, s̃), a) (34)

s.t.
∑
h,s̃,a

dπi

h (s̃, a)rk
h(i, s̃, a)︸ ︷︷ ︸

= Jπ
i

(rk,P̂ k)

−
∑
h,s̃,a

d
πj

h (s̃, a)rk
h(j, s̃, a)︸ ︷︷ ︸

= Jπ
j

(rk,P̂ k)

≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

∑
h,s̃,a

d
πj

h (s̃, a)rk
h(j, s̃, a)︸ ︷︷ ︸

= Jπ
j

(rk,P̂ k)

−
∑
h,s̃,a

dπi

h (s̃, a)rk
h(i, s̃, a)︸ ︷︷ ︸

= Jπ
i

(rk,P̂ k)

≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

∑
a

dπz

h (s̃, a) =
∑
s̃′,a′

P̂ k
h−1(s̃|z, s̃′, a′)dπz

h−1(s̃′, a′) ∀z, s̃, h ∈ Z × S̃ × [H] \ 1

∑
a

dπz
1 (s̃, a) = µ̃z(s̃) ∀z, s̃ ∈ Z × S̃

dπz

h (s̃, a) ≥ 0 ∀z, s̃, a, h ∈ Z × S̃ × A× [H]

C.6 Proof for Theorem 3.2

Change w.r.t. l.

When the r̂k, P̂ k parameters are not well estimated, the LP in Equation (34) might not be feasible itself. In that
case, the only available policy to execute is π0 and |Πk| = 1. As the algorithm proceeds with gathering more
data via executing π0, the Equation (34) eventually become feasible. However, the algorithm will continue to
execute π0 even when the problem becomes feasible as long as there exists at least one pair subgroup i, j ∈ Z2

for which either Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k) ≥ (ϵ + ϵ0)/2 or Jπ0

j (rk, P̂ k)− Jπ0

i (rk, P̂ k) ≥ (ϵ + ϵ0)/2 (from the
definition of Πk in Equation (5)). From Assumption 2.3, we know that π0 satisfies the fairness condition with
strict inequality, or ϵ0 < (ϵ0 + ϵ)/2 < ϵ. Therefore, eventually after enough rounds of |Πk| = 1, the above
condition will be not valid anymore and at that point the algorithm can proceed with using solution based
on the estimated parameters from Equation (34). Additionally, at that time, we know that all the policies
that close enough to π0, which are infinitely many will also be feasible solutions or |Πk| =∞.

We use the proof techniques from Liu et al. (2021) where we decompose the regret in three terms, then
analyze each of individual terms separately and combine them later for the final result. First, notice that the

32

Published in Transactions on Machine Learning Research (04/2023)

regret can be decomposed as:

Reg(K; l) =
K∑

k=1
1(|Πk| = 1)

(
Jπ∗

(l, P)− Jπ0
(l, P)

)
︸ ︷︷ ︸

(I)

+
K∑

k=1
1(|Πk| > 1)

(
Jπ∗

(l, P)− Jπk

(l̈k, P̂ k)
)

︸ ︷︷ ︸
(II)

+
K∑

k=1
1(|Πk| > 1)

(
Jπk

(l̈k, P̂ k)− Jπk

(l, P)
)

︸ ︷︷ ︸
(III)

(35)

For the first term, we have the following result that gives an upper bound on the number of episodes required
for exploration by π0.
Lemma C.6. On good event E,

∑K
k=1 1(|Πk| = 1) ≤ C ′′, where

C ′′ = Õ
(

H4|S̃|3|Z|5|A|
min{(ϵ− ϵ0)2, (ϵ− ϵ0)}

)
.

Proof. Recall that |Πk| = 1 when there is at least one pair of subgroups i, j ∈ Z2 for which the fairness
constraint was violated w.r.t. π0: Jπ0

i (rk, P̂ k) − Jπ0

j (rk, P̂ k) ≥ (ϵ + ϵ0)/2 ∨ Jπ0

j (rk, P̂ k) − Jπ0

i (rk, P̂ k) ≥
(ϵ + ϵ0)/2. We will use the indicator 1(|Πk| = 1; i, j) to denote that if a pair i, j violates this constraint.

Wlog, assume that a subgroup pair i, j ∈ Z2 violates this constraint. Note that |Πk| = 1 if either of the
following conditions is true:

• (Case A) Jπ0

i (rk, P̂ k)−Jπ0

j (rk, P̂ k) ≥ (ϵ+ϵ0)/2, which we will denote by the event 1(|Πk| = 1; Ai,j) .=
1(Jπk

i (rk, P̂ k)− Jπk

j (rk, P̂ k) ≥ (ϵ + ϵ0)/2) where πk = π0, and

• (Case B) Jπ0

j (rk, P̂ k)− Jπ0

i (rk, P̂ k) ≥ (ϵ + ϵ0)/2 that is denoted by 1(|Πk| = 1; Bi,j).

In context of i, j, either of these two scenarios can be responsible for |Πk| = 1. Therefore, we have:

K∑
k=1

1(|Πk| = 1; i, j) ≤
K∑

k=1
1(|Πk| = 1; Ai,j) +

K∑
k=1

1(|Πk| = 1; Bi,j)

Now, we define K ′ .=
∑K

k=1 1(|Πk| = 1; i, j). We have,

(ϵ− ϵ0)
2 K ′ =

K∑
k=1

1(|Πk| = 1; i, j) (ϵ− ϵ0)
2

=
K∑

k=1
1(|Πk| = 1; i, j)

(
(ϵ + ϵ0)

2 − ϵ0
)

≤
K∑

k=1
1(|Πk| = 1; Ai,j)

(
(ϵ + ϵ0)

2 − ϵ0
)

+
K∑

k=1
1(|Πk| = 1; Bi,j)

(
(ϵ + ϵ0)

2 − ϵ0
)

33

Published in Transactions on Machine Learning Research (04/2023)

For the first term in the above equation corresponding to Case A, .i.e., 1(|Πk| = 1; Ai,j), we have :

K∑
k=1

1(|Πk| = 1; Ai,j)
(

(ϵ + ϵ0)
2 − ϵ0

)
(a)
≤ 1(|Πk| = 1; Ai,j)

(
(Jπk

i (rk, P̂ k)− Jπk

j (rk, P̂ k))− (Jπk

i (r, P)− Jπk

j (r, P))
)

= 1(|Πk| = 1; Ai,j)(Jπk

i (rk, P̂ k)− Jπk

i (r, P))︸ ︷︷ ︸
A.1

+1(|Πk| = 1; Ai,j)(Jπk

j (r, P)− Jπk

j (rk, P̂ k))︸ ︷︷ ︸
A.2

,

where (a) holds because πk = π0 when |Πk| = 1 and Jπk

i (rk, P̂ k)− Jπk

j (rk, P̂ k) ≥ (ϵ + ϵ0)/2 (from definition
of Case A), and Jπk

i (r, P)− Jπk

j (r, P) ≤ ϵ0 due to Assumption 2.3.

For the A.1 term above, we will use Lemma H.3 with

|rk
h − rh| = |r̂k

h + (1 + |Z||S̃|H)βk
h − rh|

= |r̂k
h − rh + (1 + |Z||S̃|H)βk

h|
≤ βk

h + (1 + |Z||S̃|H)βk
h

≤ (2 + |Z||S̃|H)βk
h.

Now we can directly apply Lemma H.3 to get the following result that bounds A.1,

A.1 = Õ
(

H4|S̃|3|Z|3|A|+ H2
√
|S̃|3|Z|3|A|K ′

)
.

Similarly for term A.2, we have:

|rh − rk
h| = |rh − (hrk

h − (1 + |Z||S̃|H)βk
h)|

= |rh − r̂k
h + (1 + |Z||S̃|H)βk

h|
≤ βk

h + (1 + |Z||S̃|H)βk
h

≤ (2 + |Z||S̃|H)βk
h.

Again applying Lemma H.3 we get,

A.2 = Õ
(

H4|S̃|3|Z|3|A|+ H2
√
|S̃|3|Z|3|A|K ′

)
.

Therefore,

K∑
k=1

1(|Πk| = 1; Ai,j)
(

(ϵ + ϵ0)
2 − ϵ0

)
= Õ

(
H4|S̃|3|Z|3|A|+ H2

√
|S̃|3|Z|3|A|K ′

)
.

The analysis for 1(|Πk| = 1; Bi,j) is analogous and leads to the following result:

K∑
k=1

1(|Πk| = 1; Bi,j)
(

(ϵ + ϵ0)
2 − ϵ0

)
= Õ

(
H4|S̃|3|Z|3|A|+ H2

√
|S̃|3|Z|3|A|K ′

)
.

Combining the results for 1(|Πk| = 1; Ai,j) and 1(|Πk| = 1; Bi,j):

(ϵ− ϵ0)
2 K ′ = Õ

(
H4|S̃|3|Z|3|A|+ H2

√
|S̃|3|Z|3|A|K ′

)

34

Published in Transactions on Machine Learning Research (04/2023)

Using Lemma H.5 for K ′, there exists some parameter C ′ such that,

K ′ ≤ C ′ = Õ
(

H4|S̃|3|Z|3|A|
(ϵ− ϵ0) min{1, (ϵ− ϵ0)}

)

Now we must consider that |Πk| = 1 if the constraint w.r.t. π0 in Equation (5) is violated for any of the
subgroup pairs. Note that we have the relation,

K∑
k=1

1(|Πk| = 1) ≤
∑

i,j∈Z2

K∑
k=1

1(|Πk| = 1; i, j)

The inner term of the above expression can be bounded using the above result w.r.t. K ′. We also know that
the number of pairs of subgroups is bounded by |Z|2, therefore we have:

K∑
k=1

1(|Πk| = 1) ≤ C ′′ = Õ
(

H4|S̃|3|Z|5|A|
(ϵ− ϵ0) min{1, (ϵ− ϵ0)}

)

We use the following result for the high-probability bound for the (II) term in Equation (35).
Lemma C.7. For αl = 1 + |Z||S̃|H + 8H(1 + |Z||S̃|H)/(ϵ− ϵ0), on good event E,

K∑
k=1

1(|Πk| > 1)
(

Jπ∗
(l, P)− Jπk

(l̈k, P̂ k)
)
≤ 0,

Proof. In our setting, we sample a subgroup z uniformly from Z at the beginning of each episode, or
Pr(z) = 1/|Z|, ∀z. From Lemma B.2, we have:

K∑
k=1

1(|Πk| > 1)
(

Jπ∗
(l, P)− Jπk

(l̈k, P̂ k)
)

=
K∑

k=1
1(|Πk| > 1)

∑
z∈Z

Pr(z)
(

Jπ∗

z (l, P)− Jπk

z (l̈k, P̂ k)
)

= 1
|Z|

K∑
k=1

1(|Πk| > 1)
∑
z∈Z

(
Jπ∗

z (l, P)− Jπk

z (l̈k, P̂ k)
)

. (36)

Therefore, it suffices to show that
∑

z∈Z

(
Jπ∗

z (l, P)− Jπk

z (l̈k, P̂ k)
)
≤ 0 holds true for the case when |Πk| > 1.

We will show that this statement holds true for cases when π∗ ∈ Πk and π∗ /∈ Πk for any k ∈ [K].

When π∗ ∈ Πk, using Lemma C.2 with the relation that l̈k(z, s̃, h) ≥ lk(z, s̃, h)∀z, s̃, h, it can be shown that
for any z ∈ Z,

Jπ∗

z (l̈k, P̂ k) ≥ Jπ∗

z (l, P)

Multiplying the above inequality on both sides with Pr(z) and summing over all z ∈ Z, we have:

Jπ∗
(l̈k, P̂ k) ≥ Jπ∗

(l, P) (37)

However, as πk is the solution of Equation (8) and |Πk| > 1, we have:

Jπk

(l̈k, P̂ k) ≥ Jπ∗
(l̈k, P̂ k) (38)

35

Published in Transactions on Machine Learning Research (04/2023)

From, Equation (37) and Equation (38), when |Πk| > 1 and π∗ ∈ Πk, then for any k ∈ [K]:

1(|Πk| > 1)
(

Jπ∗
(l, P)− Jπk

(l̈k, P̂ k)
)
≤ 0.

We will now focus on the case when π∗ ̸∈ |Πk for the rest of the proof. We will first show this result for a
pair of subgroups and then extend it to the general case. Wlog, assume that we have a pair {i, j} ∈ Z2. Let
Bγk

denote an independent Bernoulli distributed random variable with mean γk. Using this, we can define a
probabilistic mixed policy as:

π̃k = Bγk
π∗ + (1−Bγk

)π0,

Let γk ∈ [0, 1] be the largest coefficient that satisfies,

J π̃
i (rk, P̂ k)− J π̃

j (rk, P̂ k) ≤ ϵ. (39)

If Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k) < ϵ, then γk = 1. Else, the equality holds in Equation (39). Therefore,

ϵ = γkJπ∗

i (rk, P̂ k) + (1− γk)Jπ0

i (rk, P̂ k)− γkJπ∗

j (rk, P̂ k)− (1− γk)Jπ0

j (rk, P̂ k)

= γk

(
Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)

+ (1− γk)
(

Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k)
)

(a)
≤ γk

(
Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)

+ (1− γk)
(

ϵ + ϵ0

2

)
= γk

(
Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)

+ (1− γk)
(

ϵ + ϵ0

2

)
+ γk

(
Jπ∗

i (r, P)− Jπ∗

j (r, P)
)
− γk

(
Jπ∗

i (r, P)− Jπ∗

j (r, P)
)

≤ γk

(Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)
−
(

Jπ∗

i (r, P)− Jπ∗

j (r, P)
)

︸ ︷︷ ︸
.=∆Jk

i,j

+ γk

(
Jπ∗

i (r, P)− Jπ∗

j (r, P)
)

︸ ︷︷ ︸
≤ϵ

+(1− γk)
(

ϵ + ϵ0

2

)

= γk(∆Jk
i,j) + γkϵ +

(
ϵ + ϵ0

2

)
− γk

(
ϵ + ϵ0

2

)
= γk

(
∆Jk

i,j + ϵ− ϵ0

2

)
+
(

ϵ + ϵ0

2

)
, (40)

where (a) holds because |Πk| > 1 which implies Jπ0

i (rk, P̂ k)− Jπ0

j (rk, P̂ k) < (ϵ + ϵ0)/2 for all subgroup pairs
(Equation (5)), and

(
Jπ∗

i (r, P)− Jπ∗

j (r, P)
)
≤ ϵ because π∗ satisfies the fariness constraint by definition. We

also denote ∆Jk
i,j

.=
(

Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)
−
(
Jπ∗

i (r, P)− Jπ∗

j (r, P)
)

for readability.

Note that from Equation (31), we know that for any π,

Jπ
i (r, P)− Jπ

j (r, P) ≤ Jπ
i (rk, P̂ k)− Jπ

j (rk, P̂ k),

therefore for π = π∗, (
Jπ∗

i (rk, P̂ k)− Jπ∗

j (rk, P̂ k)
)
−
(

Jπ∗

i (r, P)− Jπ∗

j (r, P)
)
≥ 0,

or, ∆Jk
i,j ≥ 0.

36

Published in Transactions on Machine Learning Research (04/2023)

Therefore, ∆Jk
i,j + (ϵ− ϵ0)/2 ≥ 0 (∵ ϵ0 < ϵ). Plugging this back to Equation (40) we get,

γk ≥
ϵ− ϵ0

ϵ− ϵ0 + 2(∆Jk
i,j)

. (41)

By Lemma C.4 for any policy π and z = i,

Jπ
i (rk, P̂ k)− Jπ

i (r, P) ≤ 2(1 + |S̃||Z|H)Jπ
i (βk, P̂ k). (42)

Similarly, by Lemma C.5 for any policy π and z = j,

Jπ
j (r, P)− Jπ

j (rk, P̂ k) ≤ 2(1 + |S̃||Z|H)Jπ
j (βk, P̂ k). (43)

Adding Equations (42) and (43) for any policy π:

Jπ
i (rk, P̂ k)− Jπ

i (r, P) + Jπ
j (r, P)− Jπ

j (rk, P̂ k)

≤ 2(1 + |S̃||Z|H)
(

Jπ
i (βk, P̂ k) + Jπ

j (βk, P̂ k)
)

(
Jπ

i (rk, P̂ k)− Jπ
j (rk, P̂ k)

)
−
(
Jπ

i (r, P)− Jπ
j (r, P)

)
︸ ︷︷ ︸

∆Jk
i,j

≤ 2(1 + |S̃||Z|H)
(

Jπ
i (βk, P̂ k) + Jπ

j (βk, P̂ k)
)

︸ ︷︷ ︸
.=Jπ

i,j
(βk,P̂ k)

Here we also introduce the notation for return w.r.t. only two subgroups Jπ
i,j(g, P) .= Jπ

i (g, P) + Jπ
j (g, P) for

any reward function g and dynamics P . Thus, we have the following relation for any policy π and any pair
i, j ∈ Z2:

∆Ji,j ≤ 2(1 + |Z||S̃|H)Jπ
i,j(βk, P̂) (44)

Although π̃k might both not a Markov policy, from Lemma D.3 of Liu et al. (2021) (Theorem 6.1(i) of Altman
(1999)), we can find a randomized Markov policy π̂k that matches the occupation distributions of π̃k under
transition probabilities P̂ k, with J π̂k (g, P̂ k) = J π̃k (g, P̂ k) for any g.

From the definition of πk (Equation (8)) and π̂k ∈ Πk, we have:

Jπk

i,j (l̈k, P̂ k) ≥ J π̂k

i,j (l̈k, P̂ k) = J π̃k

i,j (l̈k, P̂ k)

= γkJπ∗

i,j (l̈k, P̂ k) + (1− γk)Jπ0

i,j (l̈, P̂ k)︸ ︷︷ ︸
≥0

≥ γkJπ∗

i,j (l̈k, P̂ k)

≥ ϵ− ϵ0

ϵ− ϵ0 + 2(∆Jk
i,j)

Jπ∗

i,j (l̈k, P̂ k) (Substitute γk using Equation (41))

≥ ϵ− ϵ0

ϵ− ϵ0 + 4(1 + |Z||S̃|H)Jπ∗
i,j (βk, P̂ k)

Jπ∗

i,j (l̈k, P̂ k) (Using Equation (44))

To make Jπk

i,j (l̈k, P̂ k) ≥ Jπ∗

i,j (l, P), it is sufficient to show:

ϵ− ϵ0

ϵ− ϵ0 + 4(1 + |Z||S̃|H)Jπ∗
i,j (βk, P̂ k)

Jπ∗

i,j (l̈k, P̂ k) ≥ Jπ∗

i,j (l, P),

or,
(ϵ− ϵ0)(Jπ∗

i,j (l̈k, P̂ k)− Jπ∗

i,j (l, P)) ≥ 4(1 + |Z||S̃|H)Jπ∗

i,j (βk, P̂ k)Jπ∗

i,j (l̈k, P̂ k). (45)

37

Published in Transactions on Machine Learning Research (04/2023)

From value difference lemma (Lemma H.2), for any z ∈ Z,

Jπ∗

z (l̈k, P̂ k)− Jπ∗

z (l, P)

= E

 H∑
h=1

l̈k(z, S̃h, Ah)− l(z, S̃h, Ah) +
∑
z′,s̃′

(P̂ k
h − Ph)(z′, s̃′|z, S̃h, Ah)V π∗

z

h+1(z, s̃′; l, P)

∣∣∣Fk−1

≥ E

[
H∑

h=1
(αl − 1− |Z||S̃|H)βk

h(z, S̃h, Ah)
∣∣∣Fk−1

]
= (αl − 1− |Z||S̃|H)Jπ∗

z (βk, P̂ k).

Using the above result separately for z = i and z = j we have:

Jπ∗

i (l̈k, P̂ k)− Jπ∗

i (l, P) ≥ (αl − 1− |Z||S̃|H)Jπ∗

i (βk, P̂ k),
Jπ∗

j (l̈k, P̂ k)− Jπ∗

j (l, P) ≥ (αl − 1− |Z||S̃|H)Jπ∗

j (βk, P̂ k).

Adding the above two equations, we get:

Jπ∗

i,j (l̈k, P̂ k)− Jπ∗

i,j (l, P) ≥ (αl − 1− |Z||S̃|H)Jπ∗

i,j (βk, P̂ k).

If we use αl = 1 + |Z||S̃|H +
(

4(1+|Z||S̃|H)
(ϵ−ϵ0)

)
2H, then

Jπ∗

i,j (l̈k, P̂ k)− Jπ∗

i,j (l, P) ≥ 4(1 + |Z||S̃|H)
(ϵ− ϵ0) Jπ∗

i,j (βk, P̂ k)2H.

As the the maximum value of Jπ∗

i,j (l̈k, P̂ k) is 2H, therefore the Equation (45) is always satisfied. This implies
Jπk

i,j (l̈k, P̂ k) ≥ Jπ∗

i,j (l, P), or Jπk

i (l̈k, P̂ k)+Jπk

j (l̈k, P̂ k) ≥ Jπ∗

i (l, P)+Jπ∗

j (l, P) for any k and for any {i, j} ∈ Z2

with |Πk| > 1.

Using the above result for consecutive pairs of subgroups {(1, 2), (2, 3), . . . , (|Z|− 1, |Z|), (|Z|, 1)}, and adding
them together we get

2
|Z|∑
z=1

Jπk

z (l̈k, P̂ k) ≥ 2
|Z|∑
z=1

Jπ∗

z (l, P)

or, ∑
z∈Z

(
Jπ∗

z (l, P)− Jπk

z (l̈k, P̂ k)
)
≤ 0

Therefore, using Equation (36), Jπ∗(l, P)− Jπk (l̈k, P̂ k) ≤ 0 for any k with |Πk| > 1.

The last term (III) in Equation (35) is bounded directly using the Lemma B.4 of Liu et al. (2021) with the
value of αl. We provide the result here for completeness.
Lemma C.8. On good event E,

K∑
k=1

1(|Πk| > 1)
(

Jπk

(l̈k, P̂ k)− Jπk

(l, P)
)

= Õ
(

H3

(ϵ− ϵ0)

√
|S̃|3|Z|5|A|K + H5|S̃|3|Z|4|A|

(ϵ− ϵ0)

)
.

38

Published in Transactions on Machine Learning Research (04/2023)

Proof. As |l̈k
h − rh| = |l̂k

h − lh + αlβ
k
h| ≤ (1 + αl)βk

h, by Lemma H.3,

K∑
k=1

1(|Πk| > 1)
(

Jπk

(l̈k, P̂ k)− Jπk

(l, P)
)

≤
K∑

k=1
|Jπk

(l̈k, P̂ k)− Jπk

(l, P)|

= Õ
(

(αl + H

√
|S̃||Z|)H

√
|S̃||Z||A|K + H3|S̃|2|Z|2|A|αl

)
= Õ

(
H3

(ϵ− ϵ0)

√
|S̃|3|Z|3|A|K + H5|S̃|3|Z|3|A|

(ϵ− ϵ0)

)
.

Combining the results for terms (I), (II) and (III) derived above, we get

K∑
k=1

(
Jπ∗

(l, P)− Jπk

(l, P)
)

= Õ
(

H3

ϵ− ϵ0

√
|Z|3|S̃|3|A|K + H5|Z|5|S̃|3|A|

min{(ϵ− ϵ0), (ϵ− ϵ0)2}

)
.

C.7 Extension to non-uniform ∆Z

In our current setup, we sample z ∼ Z uniformly for each episode (or Pr(z) = 1/|Z|,∀z ∈ Z). As such, the
optimization problem takes the form:

max
π

1
|Z|

∑
z

Jπ
z (l, P) (46)

s.t.|Jπ
i (r, P)− Jπ

j (r, P)| ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

where the 1/|Z| acts as positive multiplicative constant and can be ignored from an optimization perspective.

As we mentioned in Section 3, this scenario might not be the case in reality as different populations might
not be always represented equally. In this section, we will show how our approach can be extended to the
setting with any arbitrary ∆Z , given that the ∆Z is also know to the algorithm. We will do so by taking the
Pr(z) term into account in the definition of the subgroup specific returns.

J̃π
z (r, P) = E

(S̃1,Z1)∼µ

[V π
1 (S̃1, Z1; r, P)]1[z == Z1]

= E
Z1∼∆Z
S̃1∼µ̃Z1

[V π
1 (S̃1, Z1; r, P)]1[z == Z1]

= Pr(z) E
S̃1∼µ̃z

[V π
1 (S̃1, Z1; r, P)]. (47)

In the setting considered in the main paper, where the algorithms can sample trajectories from each subgroup
for every iteration of the algorithm, Pr(z) = 1/|Z|, ∀z ∈ Z, and as such the 1/|Z| term can be ignored in the
definition subgroup specific returns (Equation (1)).

For this new setting, the problem in Equation (2) takes the following form:

max
π

∑
z

J̃π
j (l, P) (48)

s.t.|J̃π
i (r, P)− J̃π

j (r, P)| ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

The Assumption 2.3 also modifies accordingly in this setting, i.e., we assume that |J̃π0

i (r, P)− J̃π0

j (r, P)| ≤
ϵ0 < ϵ, ∀i, j ∈ Z2 and the value of ϵ0 is known to the algorithm.

39

Published in Transactions on Machine Learning Research (04/2023)

Note that the LP based solution is still valid to this setting as the constraints are still linear even with the
addition of Pr(z) term. In the rest of this section, we will show that the results from Section 3 are still valid
in new setting for the same choice of optimistic and pessimistic reward estimates.

In this setting, we can define the set of fair policies Π̃k
F (analogous to Equation (4)) at an episode k ∈ [K] as:

Π̃k
F

.=
{

π :
J̃π

i (rk, P̂ k)− J̃π
j (rk, P̂ k) ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

J̃π
j (rk, P̂ k)− J̃π

i (rk, P̂ k) ≤ ϵ, ∀i ≥ j; i, j ∈ Z2.

}
, (49)

The final set of policies is now chosen from the high-confidence set Π̃k, defined as:

Π̃k =

{π
0},

{
if J̃π0

i (rk, P̂ k)− J̃π0

j (rk, P̂ k) > (ϵ + ϵ0)/2,

or J̃π0

j (rk, P̂ k)− J̃π0

i (rk, P̂ k) > (ϵ + ϵ0)/2,
∀i ≥ j; i, j ∈ Z2.

Π̃k
F , otherwise.

(50)

The result from Theorem 3.1 is still valid in the setting, i.e, given an input confidence parameter δ ∈ (0, 1)
and an initial fair policy π0, the construction of Π̃k ensures that there are no fairness violations at any episode
in the learning procedure in the true environment with high probability (1− δ), i.e., for any π ∈ Π̃k,

Pr
(∣∣J̃π

i (r, P)− J̃π
j (r, P)

∣∣ ≤ ϵ
)
≥ 1− δ, ∀i, j ∈ Z2,∀k ∈ [K]. (51)

The proof follows the exact same steps as in Appendix C.4 but in context with J̃π
z (r, P). We describe the

proof sketch briefly below:

Proof. To see that the Part 1 of the proof from Appendix C.4 holds true, notice that from Lemma C.2 w.r.t.
z = i and r, we have:

Jπ
i (r, P) ≤ Jπ

i (rk, P̂ k)
Pr(i)Jπ

i (r, P) ≤ Pr(i)Jπ
i (rk, P̂ k)

or,

J̃π
i (r, P) ≤ J̃π

i (rk, P̂ k).

Similarly, from Lemma C.3 w.r.t. z = j and r, we get

−J̃π
j (r, P) ≤ −J̃π

j (rk, P̂ k)

Combining the above relations, we have:

J̃π
i (r, P)− J̃π

j (r, P) ≤ J̃π
i (rk, P̂ k)− J̃π

j (rk, P̂ k).

From the definition of Π̃k
F , we know any policy in π ∈ Π̃k

F satisfies the constraint:

J̃π
i (rk, P̂ k)− J̃π

j (rk, P̂ k) ≤ ϵ.

Therefore, we have the following relation:

J̃π
i (r, P)− J̃π

j (r, P) ≤ J̃π
i (rk, P̂ k)− J̃π

j (rk, P̂ k) ≤ ϵ.

The proof of Part 2 of Appendix C.4 follows the same steps, and we get:

J̃π
j (r, P)− J̃π

i (r, P) ≤ J̃π
j (rk, P̂ k)− J̃π

i (rk, P̂ k) ≤ ϵ.

Finally, from the same argument as the last step of Appendix C.4, we know that either π0 is deployed in an
episode (which is fair) or a policy from Π̃k

F will be deployed. We have shown in Parts 1 and 2 above that on

40

Published in Transactions on Machine Learning Research (04/2023)

the good event E , for any k ∈ [K] and policy π ∈ Π̃k
F , J̃π

j (r, P)− J̃π
i (r, P) ≤ ϵ and J̃π

i (r, P)− J̃π
j (r, P) ≤ ϵ,

or,
|J̃πk

i (r, P)− J̃πk

j (r, P)| ≤ ϵ.

Extending this argument to all the pairs of subgroups we get,

|J̃π
i (r, P)− J̃π

j (r, P)| ≤ ϵ ∀i ≥ j; i, j ∈ Z2.

The result from Theorem 3.2 also holds true in this setting for the same definition of l̈h (Equation (7)). We
will describe the proof sketch briefly below:

Note that the results from Lemma C.6 and Lemma C.8 extend directly to this setting by replacing the term
Jπ

z (l, P) with J̃π
z (l, P) and then following the exact same steps in the corresponding proofs. For Lemma C.7,

notice that we have:
K∑

k=1
1(|Πk| > 1)

(
Jπ∗

(l, P)− Jπk

(l̈k, P̂ k)
)

=
K∑

k=1
1(|Πk| > 1)

∑
z∈Z

Pr(z)
(

Jπ∗

z (l, P)− Jπk

z (l̈k, P̂ k)
)

(from Lemma B.2)

=
K∑

k=1
1(|Πk| > 1)

∑
z∈Z

(
J̃π∗

z (l, P)− J̃πk

z (l̈k, P̂ k)
)

. (52)

Therefore, it suffices to show that
∑

z∈Z

(
J̃π∗

z (l, P)− J̃πk

z (l̈k, P̂ k)
)
≤ 0 holds true for the case when |Πk| > 1.

From here, the same steps from the proof of Lemma C.7 can be followed by replacing the term Jπ
z (l, P) with

J̃π
z (l, P).

D Tabular experiments

The goal for the experiments to validate if the proposed algorithm in Section 3 achieves: (i) zero constraint
violation (with probability 1− δ), and (ii) incurs a sub-linear regret.

D.1 RiverSwim

Environment: We take the RiverSwim environment (|S̃| = 7, H = 10, |A| = 2) (Strehl and Littman, 2008)
and make the following modifications to suit our fairness setting:

• There are two subgroups (|Z| = 2), with different Pz and µz. In terms of Pz, the major distinction
between the subgroups is that one group has more stochastic transitions (Figure 5a) compared to
the other (Figure 5b). In terms of difference in µz, the more stochastic subgroup (Figure 5a) starts
the episode in the leftmost state with high probability (µhigh(S̃1 = 1) = 0.999) and uniformly from
the other states. Similarly, the less stochastic subgroup (Figure 5b) starts at the second from left
state with high probability (µlow(S̃1 = 2) = 0.999) and uniformly from the other states.

• There is no distinction between the decision-maker and demographics rewards, i.e. l = r in this case.

• Another important distinction from classic river swim environment is the presence of a halfway state
where the agent receives a reward higher than the initial state but lesser than the rightmost state.
Therefore, reward at reaching right-most state = +1.0, at initial state= 0.01, halfway point = 0.1.

In this setting, the traditional non-fair RL algorithms will generate different optimal policies for different
subgroups that have distinctively different behaviour. For the subgroup with higher stochasticity that starts

41

Published in Transactions on Machine Learning Research (04/2023)

1 2 3 4 5 6 7

0.4
0.6

1

0.6
0.35

0.05

1

0.6
0.35

0.05

1

0.6
0.35

0.05

1

0.6
0.35

0.05

1

0.6
0.35

0.05

1

0.6

1

0.4

r = 0.01 r = 0.1 r = 1.0

(a) Higher stochasticity subgroup

1 2 3 4 5 6 7

0.4
0.6

1

0.05
0.9

0.05

1

0.05
0.9

0.05

1

0.05
0.9

0.05

1

0.05
0.9

0.05

1

0.6
0.9

0.05

1

0.6

1

0.4

r = 0.01 r = 0.1 r = 1.0

(b) Lower stochasticity subgroup

Figure 5: Description of the modified RiwerSwim environment. Figure 5a denotes the transition dynamics for
the higher stochasticity subgroup, and Figure 5b denotes the transition dynamics for the other subgroup.
The nodes in the graph denote the non-sensitive states and r denotes the reward function (that is same for
both the subgroups). The solid arrows denote the transitions corresponding to taking the right action, and
the dashed arrows denote left action. The number above arrows denotes the probability that action will
result in the corresponding transition.

furthest from the rightmost state, the agent under the traditional RL optimal policy for this subgroup stays
close to the halfway point (that gives a return of 0.4167), whereas for the subgroup with lesser stochasticity,
the agent under the traditional RL optimal policy for this subgroup reaches the right-most state and stays
there (return of 3.1901).

Experiment methodology: For the experiments, instead of sampling only a single trajectory from one
subgroup at an iteration, we instead sample one trajectory from both subgroups for efficiency. Additionally,
we use the time-homogeneous transition and reward functions to simplify the experimentation setting. We
present the experimentation methodology in Algorithm 2, and introduce the experiment design and input
parameters below:

• ϵ0 denotes the fairness gap corresponding to the initial fair exploration policy. We use an alternate
reward function, along with the ϵ0 = 0.1 and true MDP transition function P to construct the
corresponding π0. The alternate reward function is similar to the true reward, with the difference
that there is no reward for the rightmost state. This allows us to get a π0 that can reach the midway
point quite easily, but has a very low probability of reaching to the rightmost state. The motivation
behind this is to start with an inefficient fair-exploration strategy.

• η : The final fairness constraint is ϵ = ϵ0 + η. This is set to 1.0 as it allows the agent to reach till the
end but forces the agent to not stay there in order to prevent violating the fairness criteria.

• K : The number of episodes to run the algorithm K = 20k.

• δ = 0.1, the high-probability constant (or the failure-rate).

• B, confidence set scaling parameter: If we do not scale the confidence sets βk, then it would take the
algorithm millions of episodes before making a switch from the initial policy (i.e., algorithm behaves
conservatively). Due to computational reasons , we scale the βk to have more sensible confidence
sets.

42

Published in Transactions on Machine Learning Research (04/2023)

Evaluation criteria: We plot the following quantities for different algorithms during the learning:

• Cumulative regret, Reg(K; l) .=
∑K

k=1(Jπ∗(l, P)− Jπk (l, P)),

• Cumulative regret w.r.t. π0,

• The returns for both of the subgroups throughout the learning (Jπk

z),

• Number of unfair policies executed so far,

• Failure-rate (δ): The average number of time the executed policy violated the fairness constraints ,

• The fairness gap at each iteration ϵk,

• Whether the algorithm is using π0 or not.

Baselines: We consider the Maximum Likelihood Estimation (MLE) based baseline for the comparison. The
MLE baseline starts with π0 and then simply builds the MLE estimates of the MDP parameters. It then uses
the estimated parameters in the LP solver in Equation (17) directly to get a policy to execute at an episode k.

Algorithm 2 Experiment procedure for RiverSwim
Input: Env, ϵ0, η, K, δ, PI-Algorithm and B.

1: Calculate π0 based using the true MDP parameters and alternate reward.
2: Set ϵ = ϵ0 + η.
3: Compute π∗ using Equation (17) using true MDP parameters, calculate Jπ∗ .
4: Initialize: Np(z, s̃, a) = N c(z, s̃, a) = 0,∀(z, s̃, a) ∈ Z × S̃ × A.
5: for k = 0, 1, . . . , K do
6: if ∃(z, s̃, a) : N c(z, s̃, a) ≥ 2Np(z, s̃, a) : then
7: Update the empirical model P̂ k, r̂k, l̂k;
8: Estimate βk and multiply it with B;
9: Estimate optimistic/pessimistic reward estimates l̈k, rk, rk;

10: Find πk based on the input algorithm;
11: Np ← N c

12: end if
13: for z = 1, . . . , |Z| do
14: Get initial state Zk

1 = z, S̃k
1 ∼ µ̃z.

15: Execute πk in the true environment and collect a trajectory (Zk
h , S̃k

h , Ak
h, Rk

h),∀h ∈ [H];
16: Update counters N c(Zk

h , S̃k
h , Ak

h),∀h ∈ [H];
17: end for
18: end for

Hypothesis: As the initial fair policy π0 mostly discovers the reward at the halfway state, an inefficient
exploration strategy will have difficulty discovering the rightmost state. Therefore, we expect the MLE
baseline to have difficulty in exploration and accumulate higher regret. Note that the probability of reaching
right-most state under π0 is quite small but non-zero. As such, once the MLE baseline is able to discover the
reward at the rightmost state, we would expect it to violate the fairness constraints as the MLE baseline
does not take into account the uncertainty associated with the transitions.

Compared to MLE, we expect out algorithm to discover the rightmost state quickly and achieve a sub-linear
regret, while maintaining a failure rate of less that δ and incurring very low constraint violations over the
learning.

Results: Before diving into results, we note that the only hyper-parameter in our experiments is the scaling
coefficient B. When B → 1, the algorithm behaves conservatively and needs more samples to switch from π0

(no computational advantage), and when B → 0 then the algorithm behaves similar to MLE baseline (as
β ≈ 0, and there is no consideration of uncertainty). For this task, we found that the scaling values in range

43

Published in Transactions on Machine Learning Research (04/2023)

Figure 6: River swim environment with a starting π0 with an inefficient exploration strategy, i.e., π0 has very
low probability of discovering the right most state (Fine-tuned B hyper-parameter).

[10−3, 10−4] tend to achieve this computational speedup without affecting the behavior of the algorithm. We
present the results for B = 3× 10−4 in Figure 6, and highlight the following observations 1:

• Cumulative regret (Figure 6: Row 1, Column 1): We observe that for the most of the training, the
MLE baseline accumulates a linear-regret rate, which then plateaus once it discovers the rightmost
state. Compared to MLE, our algorithm achieves sub-linear regret throughout the learning. We note
that our algorithm’s regret has not plateaued, i.e., there is still some scope of improvement, which
might resolve with more amount of samples.

• Cumulative regret w.r.t. π0 (Figure 6: Row 1, Column 2): We observe that our algorithm has
consistently negative regret w.r.t. π0, i.e., it performs better that π0 consistently over the training.
The MLE baseline accumulates a positive regret in the beginning and performs worse than baseline
(e.g., it stays at the left most state possibly due to incorrect transition estimates), and afters a while
it performs as good as baseline (able to reach halfway state consistently), and then it eventually
discovers the rightmost state and after which the regret w.r.t. π0 goes down.

• The returns for both the subgroups through-out learning (Figure 6: Row 1, Column 3,4): These plots
depict when the different algorithms were able to achieve different reward states. For instance, we
see for the second subgroup (Row 1, column 4), our algorithm is able to achieve a return greater
than 1 (able to discover the rightmost state) quite early in training.

• The number of unfair policies executed over the learning (Figure 6: Row 2, Column 1): The total
number of times our algorithm violated the fair constraints is 3, compared to the ≈ 2.5k violations
for the MLE approach. For our algorithm, the violations occurred when it first switched from π0

(as evident in the small peak in failure-rate plot), whereas for MLE, the fairness violations occurred
when the MLE agent discovered the rightmost state but had inaccurate transition estimates.

• Failure-rate (Figure 6: Row 2, Column 2): We observe that the average failure rate of our algorithm
is < δ = 0.1, whereas the MLE baselines violates this property.

• The fairness gap at each iteration ϵk (Figure 6: Row 2, Column 3): We observe that our algorithm
quickly reaches closer to the specified fairness threshold. We also observe that once the algorithm
reaches close to the specified ϵ value, the learning also slows down (not much change in the cumulative
regret rate) as there is less margin for deviating from policy.

1Another result for B = 10−4 is presented in Figure 7, where we observe similar trends but it requires more samples.

44

Published in Transactions on Machine Learning Research (04/2023)

• Average amount of times π0 was used (Figure 6: Row 2, Column 4): We observe that the algorithm
quickly switches from π0 (in about 200 episodes).

Figure 7: River swim environment with a starting π0 with an inefficient exploration strategy, i.e., π0 has very
low probability of discovering the right most state (B = 10−4).

Additional details: We used cvxpy (Diamond and Boyd, 2016) with the default parameters for solving all
the different LP problems. In terms of compute, on an Intel(R) Xeon(R) CPU E5-2623 v3 (3.00GHz), 20k
iterations of the algorithm take about 5 hours.

D.2 Credit lending

Environment: The MDP description follows Section 2.2. The horizon is set to H = 5, handicap for the low
group is set as τ = 0.7, and the target ϵ is set to 0.11. The traditional (unfair) RL policy leads to a gap
of ≈ 50 approved between the groups with a profit for the bank 13.64, whereas a fair policy with ϵ = 0.11
leads to gap of ≈ 10 loans and the bank return of 13.58. All the additional details can be found in the
accompanying code.

Evaluation methodology, criteria and baselines : We use the similar methodology and baselines as in
Appendix D.1, except that now we only sample one subgroup from the specified ∆Z at the beginning of each
episode. As a result, different subgroups might now be have uneven amount of learning experience.

Results: As in Appendix D.1, we use the scaling coefficient hyper-parameter B for computational speedup.
We show the results for B = 5e− 4 in Figure 8.

E Proof of Proposition 4.1

Proof. We omit the r term in the notation for the associated return, value and advantage functions for the
sake of clarity. Recall that π and π′ denote two arbitrary policies such that there exists only one subgroup
for which the associated policies differ, i.e., ∃=1i ∈ Z : πi ̸= π′

i. The value function associated with any policy
π for subgroup z ∈ Z is denoted by V π

z .

Using Lemma H.6 with π′
i and f = V π

i , we get:

J(π′
i) = E

s̃∼µ̃i

[V π
i (s̃)] + 1

1− γ
E

s̃∼dπ′
i

a∼π′
i

s̃′∼Pi

[δi(s̃, a, s̃′)], (53)

45

Published in Transactions on Machine Learning Research (04/2023)

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn
Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

0 1 2 3 4 5

Time-steps 1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ep
iso

di
c

re
tu

rn

Fairness gap k

0 1 2 3 4 5

Time-steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ep
iso

di
c

re
tu

rn

Return for first subgroup, Jk
1(r, P)

0 1 2 3 4 5

Time-steps 1e4

0

2

4

6

8

10

12

Ep
iso

di
c

re
tu

rn

Return for second subgroup, Jk
2(r, P)

Lending environment with applicant sampling probabilites z=[0.1,0.9]

(a) ∆Z = [0.1, 0.9]

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn

Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

0 1 2 3 4 5

Time-steps 1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ep
iso

di
c

re
tu

rn

Fairness gap k

0 1 2 3 4 5

Time-steps 1e4

0

2

4

6

8

10

12

Ep
iso

di
c

re
tu

rn

Return for first subgroup, Jk
1(r, P)

0 1 2 3 4 5

Time-steps 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ep
iso

di
c

re
tu

rn

Return for second subgroup, Jk
2(r, P)

Lending environment with applicant sampling probabilites z=[0.9,0.1]

(b) ∆Z = [0.9, 0.1]

0 1 2 3 4 5

Time-steps 1e4

0

5000

10000

15000

20000

25000

30000

Ep
iso

di
c

re
tu

rn

Cumulative regret

0 1 2 3 4 5

Time-steps 1e4

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

Fairness violations

MLE Ours

0 1 2 3 4 5

Time-steps 1e4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ep
iso

di
c

re
tu

rn

Fairness gap k

0 1 2 3 4 5

Time-steps 1e4

0

1

2

3

4

5

6

7

Ep
iso

di
c

re
tu

rn

Return for first subgroup, Jk
1(r, P)

0 1 2 3 4 5

Time-steps 1e4

0

1

2

3

4

5

6

Ep
iso

di
c

re
tu

rn

Return for second subgroup, Jk
2(r, P)

Lending environment with applicant sampling probabilites z=[0.5,0.5]

(c) ∆Z = [0.5, 0.5]

Figure 8: Learning curves for the credit lending task with different ∆Z . The subplots in each row denote
the following (from left to right): cumulative regret, number of fairness violations, fairness gap between the
groups, return of group high, return of group low. The x-axis denote the number of samples used during the
learning.

where δi(s̃, a, s̃′) = r((i, s̃), a) + V π
i (s̃′)− V π

i (s̃). Similarly, for πj using Lemma H.6 with f = V π
j , we get:

J(πj) = E
s̃∼µ̃j

[V π
j (s̃)] + 1

1− γ
E

s̃∼dπ
j

a∼πj

s̃′∼Pj

[δj(s̃, a, s̃′)], (54)

where δj(s̃, a, s̃′) = r((j, s̃), a) + V π
j (s̃′)− V π

j (s̃).

From the above two relations, we have:

Jπ′,π
i,j = J(π′

i)− J(πj) = E
s̃∼µ̃i

[V π
i (s̃)]− E

s̃∼µ̃j

[V π
j (s̃)]︸ ︷︷ ︸

Term 1

+ 1
1− γ

 E
s̃∼dπ′

i

a∼π′
i

s̃′∼Pi

[δi(s̃, a, s̃′)]− E
s̃∼dπ

j
a∼πj

s̃′∼Pj

[δj(s̃, a, s̃′)]

︸ ︷︷ ︸

Term 2

, (55)

46

Published in Transactions on Machine Learning Research (04/2023)

The quantity in the Term 1 of the above Equation (55) denotes the difference in the returns of the subgroups
under the policy π and can be written as:

E
s̃∼µ̃i

[V π
i (s̃)]− E

s̃∼µ̃j

[V π
j (s̃)] = J(πi)− J(πj) = Jπ,π

i,j . (56)

Notice that we do not require any any samples from π′
i to estimate the above quantity. However, this is not

the case for the second term in Equation (55) as it requires samples from dπ′

i . We will now follow the same
methodology from (Lemma 2, Achiam et al., 2017) to bound the second term so that we do not require the
samples from dπ′

i . We provide the proof below for completeness.

We focus on the first quantity in the Term 2 of Equation (55) (Es̃∼dπ′
i

,a∼π′
i
,s̃′∼Pi

[δi(s̃, a, s̃′)]). Let δ̄π′

i ∈ R|S̃|

denote the vector with δ̄π′

i (s̃) = Ea∼π′
i
,s̃′∼Pi

[δi(s̃, a, s̃′)|s̃]. Using this, we get the relation:

E
s̃∼dπ′

i ,

a∼π′
i,

s̃′∼Pi

[δi(s̃, a, s̃′)] =
〈

dπ′

i , δ̄π′

i

〉
=
〈

dπ
i , δ̄π′

i

〉
+
〈

dπ′

i − dπ
i , δ̄ii

π′
〉

.

Using Hölder’s inequality: for any p, q ∈ [1,∞), s.t. 1
p + 1

q = 1,〈
dπ

i , δ̄π′

i

〉
−
∥∥∥dπ′

i − dπ
i

∥∥∥
p

∥∥∥δ̄π′

i

∥∥∥
q
≤ E

s̃∼dπ′
i ,

a∼π′
i,

s̃′∼Pi

[δi(s̃, a, s̃′)] ≤
〈

dπ
i , δ̄π′

i

〉
+
∥∥∥dπ′

i − dπ
i

∥∥∥
p

∥∥∥δ̄π′

i

∥∥∥
q

. (57)

For p = 1 and q =∞, we get: ∥∥∥dπ′

i − dπ
i

∥∥∥
1

= 2DT V (dπ′
||dπ),∥∥∥δ̄π′

i

∥∥∥
∞

= ξπ′

i ,

where ξπ′

i = maxs̃ |Ea∼π′
i
,s̃′∼Pi

[δi(s̃, a, s̃′)]| is the worst case error. Plugging this back in Term 2 for Equa-
tion (55),

1
1− γ

 E
s̃∼dπ′

i

a∼π′
i

s̃′∼Pi

[δi(s̃, a, s̃′)]− E
s̃∼dπ

j
a∼πj

s̃′∼Pj

[δj(s̃, a, s̃′)]

≤ 1

1− γ

(〈
dπ

i , δ̄π′

i

〉
+ 2DT V (dπ′

||dπ)ξπ′

i −
〈
dπ

j , δ̄π
j

〉)
, (where δ̄π

j = Ea∼πj ,s̃′∼Pj
[δj(s̃, a, s̃′)|s̃])

≤ 1
1− γ

 E
s̃∼dπ

i
a∼πi

s̃′∼Pi

[(
π′

i(a|s̃)
πi(a|s̃)

)
δi(s̃, a, s̃′)

]
+ 2DT V (dπ′

||dπ)ξπ′

i − E
s̃∼dπ

j
a∼πj

s̃′∼Pj

[δj(s̃, a, s̃′)]

(by Importance Sampling: E s̃∼dπ

i

a∼π′
i

s̃′∼Pi

[δi(s̃, a, s̃′)] = E s̃∼dπ
i

a∼πi

s̃′∼Pi

[(
π′

i(a|s̃)
πi(a|s̃)

)
δi(s̃, a, s̃′)

]
)

Note that the term Es̃′∼Pz
[δz(s̃, a, s̃′)|z, s̃, a] = Es̃′∼P [r((z, s̃), a) + γV π

z (s̃′) − V π
z (s̃)|z, s̃, a] = Aπ

z (s̃, a), i.e.,
the advantage estimate associated with πz for subgroup z. Additionally, from Lemma H.7, we know:∥∥∥dπ′

i − dπ
i

∥∥∥
1
≤ 2γ

(1− γ) E
s∼dπ

i

[DT V (π′
i||πi)[s]],

47

Published in Transactions on Machine Learning Research (04/2023)

where DT V (π′
i||πi)[s] = 1

2
∑

a |π′
i(a|s)− πi(a|s)|. Therefore the quantity in Equation (55) becomes,

Jπ′,π
i,j ≤ Jπ,π

i,j + 1
1− γ

 E
s̃∼dπ

i
a∼πi

s̃′∼Pi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a)
]
− E

s̃∼dπ
j

a∼πj

s̃′∼Pj

[Aπ
j (s̃, a)]

+ 2 γξπ′

i

(1− γ)2 E
s∼dπ

i

[DT V (π′
i||πi)[s]]

Additionally, for any policy π and subgroup z, we have Ea∼π−z[Aπ
z (s̃, a)] = 0 by the definition of the advantage

function. Thus,

E
s̃∼dπ

j
a∼πj

[Aπ
j (s̃, a)] = E

s̃∼dπ
j

[E
a∼πj

Aπ
j (s̃, a)] = 0.

Putting these term back ion Equation (55), we get:

Jπ′,π
i,j ≤ Jπ,π

i,j + 1
1− γ

E
s̃∼dπ

i
a∼πi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a) + 2γξπ′

i

(1− γ)DT V (π′
i||πi)[s̃]

]

From (Corollary 3 Achiam et al., 2017), we can replace the term Es̃∼dπ
i
[DT V (π′

i||πi)[s̃]] with
√

1
2 DKL(π′

i||πi)[s̃],
that gives us:

Jπ′,π
i,j ≤ Jπ,π

i,j + 1
1− γ

E
s̃∼dπ

i
a∼πi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a) +
√

2γξπ′

i

(1− γ)

√
DKL(π′

i||πi)[s̃]
]

Similarly, using the Hölder’s inequality in the other direction in Equation (57) gives us the lower bound:

Jπ′,π
i,j ≥ Jπ,π

i,j + 1
1− γ

E
s̃∼dπ

i
a∼πi

[(
π′

i(a|s̃)
πi(a|s̃)

)
Aπ

i (s̃, a)−
√

2γξπ′

i

(1− γ)

√
DKL(π′

i||πi)[s̃]
]

F Practical Deep-RL algorithm methodology

Consider the scenario where each subgroup’s policy is parameterized independently and they have their
separate neural networks. As we mentioned in Section 4.2, if the Equation (10) can be solved exactly, then we
can use it to construct an algorithm that only updates one subgroup at a time, while ensuring each update
satisfies the fairness requirement. We present the algorithm based on this methodology in Algorithm 3.

F.1 FOCOPS methodology

In this section we will describe in detail how the FOCOPS (Zhang et al., 2020) methodology can be used to
solve the problem in Equation (10) based solely on the first-order approximations. For ease of exposition,
we will show the approach for only two subgroups (Z = {i, j}), however the approach is also valid for any
number of subgroups. Instead of solving Equation (10) directly, we will follow the FOCOPS approach, under
which now a two-step approach will be taken as following:

48

Published in Transactions on Machine Learning Research (04/2023)

Algorithm 3 General algorithm methodology for the Deep-RL case
Input: π0 = πθ0

z ∈ Πθ,∀z ∈ Z, κ, ϵ.
▷ π0 = πθ0 = {πθ0

1 , . . . , πθ0
|Z|} denotes the parameterized input fair policy where πθ0

z denotes the separate
policy network for the subgroup z.

1: for k = 0, 1, . . . do
2: for z ∈ Z do
3: Sample trajectories for each subgroup Dl = τ ∼ πθ

l , ∀ l ∈ Z.
4: Get π

θk+1
z using the update rule in Equation (10) with πk

z = πθk
z and i = z.

5: ▷ The algorithm only updates one subgroup at a time.
6: end for
7: ▷ All the subgroups have been updated once.
8: end for

Step 1: Given some policy πθk
i , the first step is to find the optimal update policy π∗

i by solving the
optimization problem in Equation (10) in in the non-parameterized policy space, i.e., solve the following
optimization problem for non-parameterized πi ∈ Π (and not Πθ):

max
πi∈Π

 E
s̃∼dπθk

i
a∼πi

[Aπθk

i (s̃, a; l)]

 (58)

s.t. Jπθk ,πθk

i,j + E
s̃∼dπθk

i
a∼πi

[
Aπθk

i (s̃, a; r)
1− γ

]
≤ ϵ,

− Jπθk ,πθk

i,j − E
s̃∼dπθk

i
a∼πi

[
Aπθk

i (s̃, a; r)
1− γ

]
≤ ϵ,

D̄KL(πi||πθk
i) ≤ κ,

We have the following result that follows directly from Theorem 1 of Zhang et al. (2020).

Lemma F.1 (Restatement of Theorem 1 of Zhang et al. (2020)). Let b̂1 = (1 − γ)
(

ϵ− Jπθk ,πθk

i,j

)
and

b̂2 = (1− γ)
(

ϵ + Jπθk ,πθk

i,j

)
. If πθk is a feasible solution, the optimal policy for Equation (58) takes the form:

π∗
i (a|s̃) = πθk

i (a|s̃)
Gλ,ν1,ν2(s̃) exp

(
1
λ

(
Aπθk

i (s̃, a; l)− ν1Aπθk

i (s̃, a; r) + ν2Aπθk

i (s̃, a; r)
))

, (59)

where Gλ,ν1,ν2(s̃) =
∑

a πθk
i (a|s̃) exp

(
1
λ

(
Aπθk

i (s̃, a; l)− ν1Aπθk

i (s̃, a; r) + ν2Aπθk

i (s̃, a; r)
))

is a partition func-
tion which ensures that the Equation (59) is a valid probability distribution, and λ, ν1 and ν2 are solutions to
the optimization problem:

min
λ,ν1≥0,ν2≥0

λδ + ν1b̂1 − ν2b̂2 + λ E
s̃∼dπθk

i

a∼π∗
i

[log Gλ,ν1,ν2(s̃)]. (60)

Proof. We need to show that the problem in eq. (58) is convex w.r.t. πi = {πi(a|s̃) : s̃ ∈ S̃, a ∈ A}. The
objective in Equation (58) is linear w.r.t. πi. As Jπθk ,πθk

i,j is also constant w.r.t. πi, the constraint in
Equation (58) is also linear. Finally, the KL constraint

∑
s̃ dπθk

i (s̃)DKL(πi||πθk)[s̃] ≤ κ, is the same as in
Theorem 1 of Zhang et al. (2020) and is also linear. From here we can directly follow the steps from Theorem
1 of Zhang et al. (2020).

49

Published in Transactions on Machine Learning Research (04/2023)

Step 2: The optimal policy π∗
i found in the previous step is now projected back to the parameterized policy

space Πθ by solving for the closest policy to π∗
i ie:

L(θ) = E
s̃∼dπθk

i

[DKL(πθ
i ||π∗

i)[s̃]],

where πθ
i ∈ Πθ is the projected policy which is going to approximate the optimal update policy and then

used later as π
θk+1
i . Instead of solving for π∗

i , we can use the Corollary 1 of Zhang et al. (2020) with the form
of optimal policy derived in the Lemma F.1. This allows us to rewrite the gradient of L(θ) as:

∇θL(θ) = E
s̃∼dπθk

i

[∇θDKL(πθ
i ||π∗

i)[s̃]],

where,

∇θDKL(πθ
i ||π∗

i)[s̃] = ∇θDKL(πθ
i ||π

θk
i)[s̃]− 1

λ
E

a∼π
θk
i

[
∇θπθ

i (a|s̃)
πθk

i (a|s̃)

(
Aπθk

i (s̃, a; l)− ν1Aπθk

i (s̃, a; r) + ν2Aπθk

i (s̃, a; r)
)]

.

The above expression allows to estimate the gradient update from the samples generated from πθk
i without

the need of exact optimal policy update π∗
i .

Estimating λ, ν1, and ν2: Note that we still need the parameters λ, ν1, ν2 from solving the dual in
Equation (60) at every iteration. Solving this is impractical for high-dimensional state and action spaces, and
Zhang et al. (2020) propose the following approximations for estimating the values for λ, ν1 and ν2:

• λ corresponds to the trust-region constraint and Zhang et al. (2020) found that, in practice, a fixed
value of λ found through hyper-parameter sweeping works in practice.

• Unlike λ, Zhang et al. (2020) claim that ν1 and ν2 need to be continuously adapted during the training.
The heuristic proposed by them is based on closeness approximation, (E

s̃∼dπθk
i

,a∼π∗
i

[Aπθk

i (s̃, a; r)] ≈

E
s̃∼dπθk

i
,a∼π

θk
i

[Aπθk

i (s̃, a; r)] = 0), and takes the following form for our problem:

ν1 ← projν [ν1 − α
(

ϵ− Jπθk ,πθk

i,j

)
],

ν2 ← projν [ν2 − α
(

ϵ + Jπθk ,πθk

i,j

)
],

where α is the step size hyper-parameter and projν is a projection operator that projects ν1, ν2 to
the interval [0, νmax] where νmax is another hyper-parameter.

The final updates take the form:

∇̂θL(θ) ≈ 1
N

N∑
n=1

[
∇θDKL(πθ

i ||π
θk
i)[s̃n]

− 1
λ

∇θπθ
i (an|s̃n)

πθk
i (an|s̃n)

(
Aπθk

i (s̃n, an; l)− ν1Aπθk

i (s̃n, an; r) + ν2Aπθk

i (s̃n, an; r)
)]

I(s̃n), (61)

where N denotes the sample collected under dπθk

i and I(s̃n) .= 1
DKL(πθ

i
||πθk

i
)[s̃n]≤κ

is in indicator function
that ensures only the states that satisfy the πθ

i ≈ πθk
i condition are used for the updates. The complete

algorithm is provided in Algorithm 4.

50

Published in Transactions on Machine Learning Research (04/2023)

Algorithm 4 FOC-PPO for |Z| = 2
Initialize: Subgroup policies π0 = {π0

1 , π0
2} ∈ Πθ; value functions V r,0 = {V r,0

1 , V r,0
2 } ∈ Vϕr , V l,0 =

{V l,0
1 , V l,0

2 } ∈ Vϕl ; subgroup specific constraint parameters νz
1 , νz

2 = 0,∀z ∈ Z.
Input: Fairness threshold ϵ, trust-region parameter κ, maximum projection bound νmax, learning rate

for νz
1 , νz

2 updates α, temperature parameter λ, GAE parameter, discount factor γ, learning rates for policy
networks απ and value networks αV .

1: for k = 0, 1, . . . do
2: Generate batch data of M episodes of length T using the current policies for both subgroups πk

1 and
πk

2 .
3: ▷ Updating policy for 1st subgroup (πθk

1).
4: Estimate the average difference in returns between the two subgroups based on batch data Jπθk ,πθk

1,2 .
5: Estimate the advantage functions Aπθk

1 (; r), Aπθk

1 (; l) using GAE. Get the bootstrapped target value
function for critic updates.

6: Update ν1
1 , ν1

2 corresponding to this subgroup:

ν1
1 ← projν [ν1

1 − α
(

ϵ− Jπθk ,πθk

1,2

)
],

ν1
2 ← projν [ν1

2 − α
(

ϵ + Jπθk ,πθk

1,2

)
],

7: for l = 0, 1, . . . # update epochs do
8: for mb = 0, 1, . . . # mini-batches do
9: Sample a minibatch of size Mb.

10: Calculate the loss function for the critics using MSE loss Lr
V (ϕr

1),Ll
V (ϕl

1).
11: Update the value networks:

ϕl
1 ← ϕl

1 − αV∇ϕlLl
V (ϕl

1),
ϕr

1 ← ϕr
1 − αV∇ϕrLr

V (ϕr
1).

12: Update the policy:

θ1 ← θ1 − απ∇̂θLπ(θ1),

where,

∇̂θ1Lπ(θ) ≈ 1
Mb

Mb∑
n=1

[
∇θDKL(πθ

1 ||π
θk
1)[s̃n]

− 1
λ

∇θπθ
1(an|s̃n)

πθk
1 (an|s̃n)

(
Aπθk

1 (s̃n, an; l)− ν1Aπθk

1 (s̃n, an; r) + ν2Aπθk

1 (s̃n, an; r)
)]

I(s̃n),

13: end for
14: if 1

Mb

∑M
i=1
∑T −1

t=0 DKL(πθ
1 ||π

θk
1)[s̃i,t] > κ then

15: exit the update loop;
16: end if
17: end for
18: ▷ Similar procedure for updating the policy for 2nd subgroup, (πθk

2), but we sample trajectories w.r.t.
π

θk+1
1 and use the it compute the corresponding Jπθk ,πθk+1

2,1 .
19: end for

51

Published in Transactions on Machine Learning Research (04/2023)

F.2 Lagrangian based approach

As mentioned in Section 4, the Lagrangian based approaches use adaptive penalty coefficients to enforce the
constraints. Borrowing the description from Zhang et al. (2020): for an objective function f(θ) and constraint
g(θ) ≤ 0 the Lagrangian methods solve the problem maxθ minν≥0 f(θ)− νg(θ) where ν denotes the Lagrange
multiplier or the penalty coefficient. The optimization problem is solved in two steps: a maximization step
w.r.t. θ and a minimization step for the penalty coefficient ν.

We now describe how the Lagrangian methodology based on PPO can be applied to out setting. We again
show the procedure only for Z = {i, j}, but the approach is general and can be applied to any number of
subgroups. W.l.o.g., assume that we are only updating the policy for subgroup i, πθ

i where where θ denotes
only the parameters of the policy network. Let L(θ) denote the traditional PPO objective function for return

maximization and let ∆Ji(θ) .= Jπθk ,πθk

i,j + E
s̃∼dπk

i

a∼πθ
i

[
Aπθk

i (s̃,a;r)
1−γ

]
. Then the update rule in Equation (10), in

context to only θ, can be re-written as:

max
θ

L(θ)

s.t. ∆Ji(θ)− ϵ ≤ 0
−∆Ji(θ)− ϵ ≤ 0

Using the Lagrangian methodology, the augmented objective with penalty coefficients ν1, ν2 can be written
as:

L̃(θ, ν1, ν2) = L(θ)− ν1(∆Ji(θ)− ϵ)− ν2(−∆Ji(θ)− ϵ) (62)

For the maximization step we take the gradient w.r.t. θ and we get the update of the form:

∇θL̃(θ, ν1, ν2) = ∇θ min
(

πθ
i (a|s̃)

πθk
i (a|s̃)

(
Aπθk

i (s̃, a; l)− ν1Aπθk

i (s̃, a; r) + ν2Aπθk

i (s̃, a; r)
)

,

clip

(
πθ

i (a|s̃)
πθk

i (a|s̃)
, 1− ξ, 1 + ξ

)(
Aπθk

i (s̃, a; l)− ν1Aπθk

i (s̃, a; r) + ν2Aπθk

i (s̃, a; r)
))

, (63)

where ξ denotes the PPO-specific clipping coefficient, and clip denotes the clip operator that clamps the
value of πθ

i (a|s̃)
π

θk
i

(a|s̃)
to [1− ξ, 1 + ξ] range. For the minimization step we apply gradient descent w.r.t. ν1, ν2 and

get the following update rule:

ν1 ← projν [ν1 − α
(

ϵ− Jπθk ,πθk

i,j

)
],

ν2 ← projν [ν2 − α
(

ϵ + Jπθk ,πθk

i,j

)
],

In the above update rule for ν1, ν2, we have made similar approximations as in the projection based method
described in Appendix F.1.

G Additional details for the Deep-RL experiments

G.1 Environment Details

We build on the Half-Cheetah-v3 environment from OpenAI Gym (Brockman et al., 2016) for the locomotion
based experiments. We use the default implementation of Half-Cheetah-v3 as one subgroup, and make the
following adjustments for the other two subgroups based on the MuJoCo guidelines (Todorov et al., 2012):

• We create the subgroup with 2× the default feet size by increasing the size parameter in the body
model associated with the default Half-Cheetah-v3. We modify the flags associated with back and
front feet only (bfoot and ffoot).

52

Published in Transactions on Machine Learning Research (04/2023)

• We create the subgroup with 10× the default friction by increasing the global friction parameter in
the body model associated with the default Half-Cheetah-v3. We modify the geom flag under the
default section in the model file.

For the point maze navigation, we build on top of the open source library mujoco-maze (https://github.
com/kngwyu/mujoco-maze). The parameters for the size of the point agent parameters are increased to 5×
the default size based on the torso section of the body model.

The implementations for both the environments is provided in the supplemental material.

G.2 Architecture and Hyper-parameter selection procedure

We use the same network architecture for both the tasks. We follow the same network architecture as Huang
et al. (2021); Zhang et al. (2020), where we have two-layered neural network with tanh activation for both
the policy and value networks. The policy is modeled as Gaussian, where the network outputs the mean
and state-independent log standard deviations. The same pre-processing procedure as Huang et al. (2021) is
followed for both the tasks. We use PyTorch (Paszke et al., 2019) for implementing the Deep-RL algorithms.

For the algorithm specific hyper-parameters, we follow the guidelines from FOCOPS (Zhang et al., 2020).
We set the νmax hyper-parameter to a very large value 1000.0 and do not fine tuned it. We found that the
learning rate for the ν1, ν2 parameters typically works best in the range [0.01, 0.1] for our tasks, and we ended
up using α = 0.01 for the our experiments. For the λ hyper-parameters, we did hyper-parameter search in
range {1.0, 1.5, 3.0, 10.0} and used λ = 1.0 for the maze navigation tasks and λ = 1.5 for the Half-Cheetah
tasks. The initial values for all the ν1, ν2 parameters are set to 0. The other parameters, such as mini-batch
size, number of updates, trust-region size, clipping parameter, etc. are taken from the PPO-based libraries
on which we build our implementations, i.e., Huang et al. (2021) for the Half-Cheetah based locomotion
environments and Kanagawa and Kaneko (2020) for the maze navigation based experiments.

G.3 Additional results

From an implementation point of view, the state-of-the-art implementations of PPO include many code level
optimizations (Engstrom et al., 2020; Andrychowicz et al., 2020; Huang et al., 2021) that were not part
of the originally proposed algorithm on which we base our fair versions. As a result, we include both the
variations of PPO in our baselines. We refer to the version with all the code level optimizations as PPO and
the minimal version that is more consistent with the other fair baselines as Minimal-PPO.

We present the results for both the tasks and different level of fairness thresholds below:

• Half-Cheetah task with ϵ ∈ {high, medium, low} is presented in Figure 9 (with smoothing) and
Figure 10 (with running average).

• Point Navigation task with ϵ ∈ {high, medium, low} is presented in Figure 11 (with smoothing) and
Figure 12 (with running average).

In terms of compute, on an Nvidia Quadro RTX 8000 GPU with AMD EPYC 7502 32-Core Processor, the
navigation experiments take about 3 hours to run with 16 CPU cores and Half-Cheetah experiments take
about 7 hours to run with a single CPU core.

G.4 Generalization results

We train the algorithms with a fixed random seed in a train environment, and then evaluate the performance
of the algorithm on ten test environments, each with a different random seed. We present the aggregated
results on the test environments for the both the tasks and the lowest ϵ setting in Figure 13. We observe that
even though the fair versions of the PPO (FOC-PPO and Lagrangian-PPO) are not able to perfectly satisfy
the fairness requirement, they perform vastly superior to the unfair baselines (PPO and Minimal-PPO) in
this aspect.

53

https://github.com/kngwyu/mujoco-maze
https://github.com/kngwyu/mujoco-maze

Published in Transactions on Machine Learning Research (04/2023)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(a) Half-Cheetah : High fairness threshold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

500

1000

1500

2000

2500

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(b) Half-Cheetah: Medium fairness threshold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

500

1000

1500

2000

2500

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(c) Half-Cheetah: Low fairness threshold.

Figure 9: Learning curves for Half-Cheetah environment with different fairness thresholds. The first subplot
in each row denotes the fairness gap (maximum of absolute difference of returns between subgroups) and the
black dotted horizontal line denotes the specified acceptable fairness threshold (ϵ). The second subplot in
each row denotes the cumulative return for all subgroups, and the rest of the subplots in the row denote
the subgroup specific returns. The x-axis denote the number of samples used during the learning. The solid
colored lines represent the smoothed mean over 10 random seeds for different baselines (with weight=0.9)
and the colored shaded regions represent the normal 95% confidence interval.

54

Published in Transactions on Machine Learning Research (04/2023)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(a) Half-Cheetah : High fairness threshold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

500

1000

1500

2000

2500

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(b) Half-Cheetah: Medium fairness threshold.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

500

1000

1500

2000

2500

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

2000

4000

6000

8000

10000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
ps

io
di

c
re

tu
rn

Big-feet subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

0

1000

2000

3000

4000

E
pi

so
di

c
re

tu
rn

High-friction subgroup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time-steps 1e6

500

0

500

1000

1500

2000

2500

3000

E
pi

so
di

c
re

tu
rn

Default subgroup

(c) Half-Cheetah: Low fairness threshold.

Figure 10: Learning curves for Half-Cheetah environment with different fairness thresholds. The first subplot
in each row denotes the fairness gap (maximum of absolute difference of returns between subgroups) and the
black dotted horizontal line denotes the specified acceptable fairness threshold (ϵ). The second subplot in
each row denotes the cumulative return for all subgroups, and the rest of the subplots in the row denote
the subgroup specific returns. The x-axis denote the number of samples used during the learning. The solid
colored lines represent the running mean over the last 100 episodes for 10 random seeds for different baselines
and the colored shaded regions represent the normal 95% confidence interval.

55

Published in Transactions on Machine Learning Research (04/2023)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0

10

20

30

40

50

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

40

30

20

10

0

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
ps

io
di

c
re

tu
rn

Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

20

15

10

5

0

E
pi

so
di

c
re

tu
rn

Default size subgroup

(a) Point-Navigation : High fairness threshold.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

50

40

30

20

10

0

10

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5
E

ps
io

di
c

re
tu

rn
Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
pi

so
di

c
re

tu
rn

Default size subgroup

(b) Point-Navigation: Medium fairness threshold.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

50

40

30

20

10

0

10

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
ps

io
di

c
re

tu
rn

Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
pi

so
di

c
re

tu
rn

Default size subgroup

(c) Point-Navigation: Low fairness threshold.

Figure 11: Learning curves for Point Navigation environment with different fairness thresholds. The first
subplot in each row denotes the fairness gap (maximum of absolute difference of returns between subgroups)
and the black dotted horizontal line denotes the specified acceptable fairness threshold (ϵ). The second
subplot in each row denotes the cumulative return for all subgroups, and the rest of the subplots in the row
denote the subgroup specific returns. The x-axis denote the number of samples used during the learning. The
solid colored lines represent the smoothed mean over 10 random seeds for different baselines (with weight=0.9)
and the colored shaded regions represent the normal 95% confidence interval.

56

Published in Transactions on Machine Learning Research (04/2023)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0

10

20

30

40

50

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

40

30

20

10

0

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
ps

io
di

c
re

tu
rn

Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

20

15

10

5

0

E
pi

so
di

c
re

tu
rn

Default size subgroup

(a) Point-Navigation: High fairness threshold.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

40

30

20

10

0

10

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5
E

ps
io

di
c

re
tu

rn
Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

20

15

10

5

0

5

E
pi

so
di

c
re

tu
rn

Default size subgroup

(b) Point-Navigation: Medium fairness threshold.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

40

30

20

10

0

10

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

25

20

15

10

5

0

5

E
ps

io
di

c
re

tu
rn

Big size subgroup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

20

15

10

5

0

5

E
pi

so
di

c
re

tu
rn

Default size subgroup

(c) Point-Navigation: Low fairness threshold.

Figure 12: Learning curves for Point Navigation environment with different fairness thresholds. The first
subplot in each row denotes the fairness gap (maximum of absolute difference of returns between subgroups)
and the black dotted horizontal line denotes the specified acceptable fairness threshold (ϵ). The second
subplot in each row denotes the cumulative return for all subgroups, and the rest of the subplots in the row
denote the subgroup specific returns. The x-axis denote the number of samples used during the learning. The
solid colored lines represent the running mean over the last 100 episodes for 10 random seeds for different
baselines and the colored shaded regions represent the normal 95% confidence interval.

57

Published in Transactions on Machine Learning Research (04/2023)

0.0 0.2 0.4 0.6 0.8 1.0

Time-steps 1e6

500

1000

1500

2000

2500

3000

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.2 0.4 0.6 0.8 1.0

Time-steps 1e6

0

2000

4000

6000

8000

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

Half-Cheetah Variations : Big-Feet vs High-Friction vs Default Half-Cheetah-v3 with = 500

(a) Half-Cheetah: Test time results on low fairness threshold.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

0

5

10

15

20

25

D
iff

er
en

ce
 in

 re
tu

rn
s

Fairness gap,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-steps 1e6

50

40

30

20

10

0

C
um

ul
at

iv
e

re
tu

rn

All subgroups

FOC-PPO Lagrangian-PPO Minimal-PPO PPO

Navigation: Big vs Regular Point Subgroups with = 0.5

(b) Point-Navigation: Test time results on low fairness threshold.

Figure 13: Test time performance plots for the Half-Cheetah and Point-Navigation environments with low ϵ
on 10 unseen environment instantiation with different random seeds. The first subplot in each row denotes the
fairness gap (maximum of absolute difference of returns between subgroups) and the black dotted horizontal
line denotes the specified acceptable fairness threshold (ϵ). The second subplot in each row denotes the
cumulative return for all subgroups. The x-axis denote the number of samples used during the learning. The
solid colored lines represent the smoothed mean over 10 random seeds for different baselines (with weight=0.9)
and the colored shaded regions represent the normal 95% confidence interval.

58

Published in Transactions on Machine Learning Research (04/2023)

H Other supporting results

Lemma H.1 (Hoeffding’s inequality for sub-Gaussian random variables). Let X1, . . . , Xn be n independent
random variables such that Xi ∼ sub−Gaussian(σ2). Let X̄ = 1

n

∑
n Xi we have,

Pr(X̄ ≥ t) ≤ exp
(
−nt2

2σ2

)
and Pr(X̄ ≤ −t) ≤ exp

(
−nt2

2σ2

)
When σ2 = 1/2, i.e., X1, . . . , Xn are 1/2-sub-Gaussian random variables, we have:

Pr(X̄ ≥ t) ≤ exp
(
−nt2) and Pr(X̄ ≤ −t) ≤ exp

(
−nt2)

Lemma H.2 (Value difference lemma, Dann et al. (2017), Lemma E.15). Let M = (S,A, µ, H, g, P) and
M ′ = (S,A, µ, H, g′, P ′) be two MDPs with different non-stationary reward functions (g, g′) and transition
functions (P, P ′). Then, for any policy π, we have the following relation:

Jπ(µ; g′, P ′)− Jπ(µ; g, P)

= E
µ,P,π

[
H∑

h=1

(
gh(Sh, Ah)− g′

h(Sh, Ah) +
∑

s′

(P ′
h − Ph)(s′|Sh, Ah)V π

h+1(s′; g′, P ′)
)∣∣∣Fk−1

]

= E
µ,P ′,π

[
H∑

h=1

(
g′

h(Sh, Ah)− gh(Sh, Ah) +
∑

s′

(P ′
h − Ph)(s′|Sh, Ah)V π

h+1(s′; g, P)
)∣∣∣Fk−1

]
.

Lemma H.3 (Lemma D.4 of Liu et al. (2021)). Let G1:K be a sequence of events such that G ∈ Fk−1 for
each k ∈ [K]. Suppose |g̃k − g| ≤ αβk, α ≥ 1. On good event E, for any K ′ ≤ K,

K′∑
k=1

1(Gk)|Jπk

z (g̃k, P̂ K)− Jπk

z (g, P)| ≤ (3α + 3
√

2H

√
|S̃||Z|)H

√
|S̃||Z||A|K ′

GC

+ Õ(αH3|S̃|2|Z|2|A|),

where K ′
G =

∑K′

k=1 1(Gk).
Lemma H.4 (Lemma D.5 of Liu et al. (2021)). Given a sequence of events G1:K that Gk ∈ {F}k−1 for each
k ∈ [K]. With probability at least 1− δ, for any K ′ ≤ K,

K′∑
k=1

H∑
h=1

∑
z,s̃,a

1(Gk)dπk

h (z, s̃, a)
max(Nk

h (z, s̃, a), 1)
≤ 4H|Z||S̃||A|+ 2H|Z||S̃||A| ln K ′

G + 4 ln 2HK

δ
,

K′∑
k=1

H∑
h=1

∑
z,s̃,a

1(Gk)dπk

h (z, s̃, a)√
max{Nk

h (z, s̃, a), 1}
≤ 6H|Z||S̃||A|+ 2H

√
|Z||S̃||A|K ′

G + 2H|Z||S̃||A| ln K ′
G

+ 5 ln 2HK

δ
,

where Nk
h (z, s̃, a) denotes the number of times the state-action tuple (z, s̃, a) was observed at time step h

so far in episodes [1, . . . , k − 1], K ′
G

.=
∑K′

k=1 1(Gk), and dπk is the occupancy measure of policy πk, ie,
dπk

h (z, s̃, a)Eµ,P,πk [1(Zk
h = z, S̃k

h = s̃, Ak
h = a)|Fk−1].

Lemma H.5 (Lemma D.6 of Liu et al. (2021)). Suppose 0 ≤ x ≤ a + b
√

x, for some a, b > 0,

x ≤ 3
2a + 3

2b2.

Lemma H.6 (Restatement of Lemma 1 of Achiam et al. (2017)). For any subgroup z ∈ Z, function f : S̃ → R
and any policy π, we have:

J(πz) = E
s̃∼µ̃z

[f(s̃)] + 1
1− γ

E
s̃∼dπ

z
a∼πz

s̃′∼Pz

[r((z, s̃), a) + γf(s̃′)− f(s̃)].

59

Published in Transactions on Machine Learning Research (04/2023)

Proof. From the definition of dπ
z , we have:

dπ
z = (1− γ)

∞∑
t=0

(γP π
z)tµ̃z = (1− γ)(1− γP π

z)−1µ̃z

where µ̃z, dπ
z ∈ R|S̃|, P π

z ∈ R|S̃|×|S̃| denote the vector form of the estimates. Multiplying by (1 − γP π
z) on

both sides and taking inner product with vector f ∈ R|S̃|,

(1− γP π
z)dπ

z = (1− γ)µ̃z,

(1− γ) E
s̃∼µz

[f(s)] + E
s∼dπ

z
a∼πz

s̃′∼Pz

[γf(s̃′)]− E
s̃∼dπ

z

[f(s̃)] = 0.

Adding the above relation with the definition of J(πz) = 1
1−γ E s∼dπ

z
a∼πz

s̃′∼Pz

[r(s, a)], we get:

J(πz) = E
s̃∼µ̃z

[f(s̃)] + 1
1− γ

E
s̃∼dπ

z
a∼πz

s̃′∼Pz

[R((z, s̃), a) + γf(s̃′)− f(s̃)].

Lemma H.7 (Achiam et al. (2017), Lemma 3). The divergence between discounted future state visitation
distributions

∥∥∥dπ′

i − dπ
i

∥∥∥
1

is bounded by average divergence of the policies π′
i and πi:∥∥∥dπ′

i − dπ
i

∥∥∥
1
≤ 2γ

(1− γ) E
s∼dπ

i

[DT V (π′||π)[s]],

where DT V (π′||π)[s] = 1
2
∑

a |π′(a|s)− π(a|s)|.

60

	Introduction
	Contributions and limitations
	Related work

	Problem setting in finite-horizon episodic MDPs
	Introducing fairness
	Motivating example

	Algorithm for the unknown model and reward setting
	The infinite-horizon and high-dimensional Deep-RL setting
	Trust-region based fair policy updates
	Practical algorithm
	Deep-RL experiments

	Discussion
	Notation
	Linear Programming solution for finite-horizon episodic MDPs
	Linear Programming based solver
	Supporting results for LP formulation
	Extension to other Group fairness definitions

	Proofs for episodic case
	Why optimism alone might not be enough
	High probability good event
	Supporting Results based on Optimistic and Pessimistic MDP Estimates
	Proof for thm:ep-constraint-violation
	LP formulation for sec:tabular-algorithm
	Proof for thm:bounded-regret
	Extension to non-uniform Z

	Tabular experiments
	RiverSwim
	Credit lending

	Proof of prop:fair-perf-diff
	Practical Deep-RL algorithm methodology
	FOCOPS methodology
	Lagrangian based approach

	Additional details for the Deep-RL experiments
	Environment Details
	Architecture and Hyper-parameter selection procedure
	Additional results
	Generalization results

	Other supporting results

