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ABSTRACT

The growing use of deep learning necessitates efficient network design and de-
ployment, making neural predictors vital for estimating attributes such as accuracy
and latency. Recently, Graph Neural Networks (GNNs) and transformers have
shown promising performance in representing neural architectures. However, each
method has its disadvantages. GNNs lack the capabilities to represent complicated
features, while transformers face poor generalization when the depth of architecture
grows. To mitigate the above problems, we rethink neural architecture topology
and show that sibling nodes are pivotal while overlooked in previous research. Thus
we propose a novel predictor leveraging the strengths of GNNs and transformers
to learn the enhanced topology. We introduce a novel token mixer that consid-
ers siblings, and a new channel mixer named bidirectional graph isomorphism
feed-forward network. Our approach consistently achieves promising performance
in both accuracy and latency prediction, providing valuable insights for learning
Directed Acyclic Graph (DAG) topology. The code will be released.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable success across various applications, high-
lighting the significance of neural architecture design. Designing neural architectures can be quite
resource-intensive. Evaluating the performance of a model necessitates training on large datasets.
Measuring its inference latency and throughput involves multiple steps such as compilation, de-
ployment, inference, and latency evaluation on various hardware platforms, incurring substantial
human effort and resources. One strategy to mitigate these challenges is to predict network attributes
with machine learning predictors. By feeding the network structure and hyperparameters into these
predictors, valuable attributes of the network can be estimated with just a single feedforward pass, e.g.,
accuracy on a validation set or inference times on specific hardware configurations. This predictive
approach has been successfully applied in various tasks including neural architecture search (Xu
et al., 2021; Luo et al., 2018; Wen et al., 2020; Lu et al., 2021; Yi et al., 2023; 2024) and hardware
deployment (Zhang et al., 2021; Kaufman et al., 2021; Dudziak et al., 2020; Liu et al., 2022; Yi et al.,
2023; 2024), yielding promising outcomes in improving the efficiency and effectiveness of network
design.

Previous neural predictors model the neural architecture as a Directed Acyclic Graph (DAG) (Wen
et al., 2020; Li et al., 2020; Shi et al., 2020; Dudziak et al., 2020; Liu et al., 2022; Dong et al.,
2022; Luo et al., 2023) and utilize Graph Neural Networks (GNNs) or Transformers to extract
neural architecture representation. GNNs have emerged as an intuitive solution for learning graph
representations (Wen et al., 2020; Li et al., 2020; Shi et al., 2020; Dudziak et al., 2020; Liu et al.,
2022), which leverage the graph Laplacian and integrate adjacency information to learn the graph
topology. GNN-based predictors show strong generalization ability, yet their performance may
not be optimal. This is attributed to the structural bias in the message-passing mechanism, which
typically relies solely on adjacency information. As illustrated in Figure. 1(a) and (b), GCNs (Kipf
& Welling, 2016) aggregate the forward and backward adjacent nodes without discrimination, and
GATs (Veličković et al., 2018) aggregate them with dynamic weights. Both of them are limited to
adjacent information.

With the recent development of transformers, various transformer-based frameworks have been
introduced (Lu et al., 2021; Yi et al., 2023; 2024). Transformers have strengths in global modeling and
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Figure 1: Comparison of different methods on DAG representation of neural architectures.
(a) GCNs (Kipf & Welling, 2016) aggregate adjacent information without discrimination. (b)
GATs (Veličković et al., 2018) distinguish adjacent operations, while are still constrained to adjacent
nodes. (c) Vanilla transformers (Vaswani et al., 2017) aggregate weighted global information, which
can result in poor generalization as the network depth increases. (d) Transformers on directed transi-
tive closure (Dong et al., 2022; Luo et al., 2023) aggregate the successor information but still suffer
from poor generalization. (e) Our method aggregates sibling information with weighted coefficients.
Sibling nodes could extract complementary features in accuracy prediction and allow for concurrent
execution in latency prediction.

dynamic weight adjustments, hence could extract strong features. Despite the promising performance,
they still exhibit several shortcomings. One particular challenge of transformer is related to the
long-range receptive field, as depicted in Figure. 1(c) and (d), which can lead to poor generalization
performance on deep architectures (Yi et al., 2023; 2024). The vanilla transformer (Vaswani et al.,
2017; Lu et al., 2021; Yi et al., 2023) have a global receptive field, and recent studies proposed
transformers on directed transitive closure (Dong et al., 2022; Luo et al., 2023). Both methods conduct
long-range attention that could mix up the information from operations far away, especially when the
depth of the input architecture increases to hundreds of layers. For example, NAR-Former (Yi et al.,
2023; 2024) has illustrated that transformer predictors with global attention struggle in deep network
latency prediction, leading to worse performance than GNNs (Liu et al., 2022; Yi et al., 2024).

To study a more effective neural predictor, we rethink the DAG topology and show that the commonly
used topological information is not suitable for the neural architecture representation. Most of recent
works focus on modeling the relationship of preceding and succeeding operations (Dong et al., 2022;
Luo et al., 2023). However, it is essential to recognize the importance of “sibling nodes”, which share
a common parent or child node with the current node as shown in Figure. 1(e). They often exhibit
strong connections to the current nodes in neural architecture representation. For example, in the
accuracy prediction task, parallel branches may extract complementary features, hence enhancing
overall model performance. Furthermore, operations that share the same parent or child node can
be executed simultaneously, potentially reducing inference latency. On the contrary, long-range
dependency might not be crucial, given that features typically propagate node-by-node within the
architecture. Previous methods have not explicitly leveraged sibling cues.

Based on the analysis above, we introduce a new model for neural architecture representation, named
Neural Network transFormer (NN-Former). It leverages the strengths of GNNs and transformers,
exhibiting good generalization and high performance. For the token mixing module, we utilize a
self-attention mechanism of transformers to extract dynamic weights for capturing complex features.
We explicitly learn the adjacency and sibling nodes’ features to enhance the topological information.
For the channel mixing module, we use a bidirectional graph isomorphism feedforward network. It
learns strong graph topology information such that the position encoding is no longer necessary.

Extensive experiments reveal that 1) our approach surpasses existing methods in both accuracy
prediction and latency prediction, demonstrating expressivity and generalization ability, and 2) our
method has good scalability on both cell-structured architectures and complete neural networks that
have hundreds of operations. To the best of our knowledge, this is an original work that leverages
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sibling cues in neural predictor. Integrating strengths of both GNNs and transformers effectively
guarantees its promising performance in. The importance of sibling nodes also provides a valuable
insight into rethinking DAG topology representation in future research.

2 RELATED WORKS

Neural Architecture Representation Learning. Neural architecture representation learning es-
timates network attributes without actual training or deployment, resulting in significant resource
savings. Accuracy predictors forecast the evaluation accuracy, avoiding the resource-intensive process
of network training in neural architecture search (Liu et al., 2018; White et al., 2021; Deng et al.,
2017; Luo et al., 2018; 2020; Cai et al., 2019; Zhang et al., 2018; Li et al., 2020; Shi et al., 2020;
Chen et al., 2021; Yan et al., 2020; Lu et al., 2021; Yi et al., 2023; 2024). Additionally, latency
prediction can estimate the inference latency without actual deployment, saving time and materials
for engineering application (Dudziak et al., 2020; Zhang et al., 2021; Kaufman et al., 2021; Liu
et al., 2022). Given the complex connections between operations and the one-way message-passing
mechanism, the neural network is better described as a DAG, with the connection between nodes
represented by the adjacency matrix. Consequently, graph-based (Zhang et al., 2018; Li et al., 2020;
Shi et al., 2020; Chen et al., 2021; Yan et al., 2020) and transformer-based (Lu et al., 2021; Yi
et al., 2023; 2024) predictors have been employed to learn the representation of neural architectures.
Both methods achieve promising results in neural architecture representation, while they still face
challenges. In this paper, we absorb the strengths of both methods and delve into the topological
relationship.

Message-Passing Graph Neural Networks. Most contemporary graph neural networks can be
expressed within the framework of the message-passing architecture (Gilmer et al., 2017; Kipf &
Welling, 2016; Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2018; You et al., 2020). In
this framework, node representations are computed iteratively by aggregating the embeddings of
their neighboring nodes, and a final graph representation can be obtained by aggregating the node
embeddings, such as GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018), GIN (Xu et al.,
2018), etc. GNN-based models have emerged as a prominent and widely adopted approach for
neural network representation learning (Zhang et al., 2018; Li et al., 2020; Shi et al., 2020; Chen
et al., 2021; Yan et al., 2020). The straightforward structural characteristics of GNNs contribute to
strong generalization ability, yet also necessitate further improvement in the performance. Enhancing
topological information and dynamic bi-directional aggregation is a promising approach.

Transformers on Graphs. Recently, transformer has been introduced into graph representation
learning (Dwivedi & Bresson, 2020; Wu et al., 2021; Dong et al., 2022; Luo et al., 2023), together with
network architecture representation learning (Lu et al., 2021; Yi et al., 2023; 2024). TNASP (Lu et al.,
2021) inputs the sum of the operation type embedding matrix and Laplacian matrix into the standard
transformer. NAR-Former (Yi et al., 2023) encodes each operation and connection information into
a token and inputs all tokens into a proposed multi-stage fusion transformer. NAR-Former V2 (Yi
et al., 2024) introduced a graph-aided transformer block, which can handle both cell-structured
networks and entire networks. However, transformers face challenges of poor generalization when
the network goes deeper, with global attention mixing up the far away information (Yi et al., 2024).
To address this limitation, we propose a novel predictor that harnesses the strengths of both GNNs
and transformers, allowing it to extract both topology features and dynamic weights. This approach
enhances the model’s ability to extract valuable insights and maintains good generalization.

Neural Networks over DAGs. The inductive bias inherent in DAGs has led to specialized neural
predictors. GNNs designed for DAGs typically compute graph embeddings using a message-passing
framework (Thost & Chen, 2021). On the other hand, transformers applied to DAGs often incorporate
the depth of nodes (Kotnis et al., 2021; Luo et al., 2023) or Laplacian (Gagrani et al., 2022) as the
position encoding, which may seem non-intuitive for integrating structural information into the model.
Additionally, transformer-based models frequently use transitive closure (Dong et al., 2022; Luo
et al., 2023) as attention masks, leading to poor generalization as mentioned above. Some hybrid
methods with GNNs and Transformers are not tailored to neural architecture representation and also
face similar challenges (Ying et al., 2021; Wu et al., 2021). This paper proposes a novel hybrid model
with enhanced topological information from sibling nodes.
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Figure 2: The proposed NN-Former framework. We introduce adjacency and sibling attention
masks in the Adjacency-Sibling Multihead Attention (ASMA) to learn graph topology information.
We also introduce adjacency aggregation in the Bidirectional Graph Isomorphism Feed-Forward
Network (BGIFFN) to enhance the topology structure.

3 METHODS

3.1 OVERVIEW

We adopt a commonly used graph representation of neural architectures (Lu et al., 2021; Yi et al.,
2023; 2024; Dong et al., 2022; Luo et al., 2023; Liu et al., 2022). An architecture with n operations
is refered to as a Graph G = (V,E,Z), with node set V , edge set E ⊆ V × V , and node features
Z ∈ Rn×d. Each operation is denoted as a node in V such that |V | = n. The edge set E is often
given in form of an adjacency matrix A ∈ {0, 1}n×n, where Aij = 1 denotes a directed edge
from node i to node j. Each row of Z represents the feature vector of one node, i.e., operation
type and hyperparameters, with the number of nodes n and feature dimension d. Unlike previous
methods (Lu et al., 2021; Yi et al., 2023), our predictor is strong and position encoding is unnecessary.
For simplicity, Z is encoded with one-hot encoding for operation type and sinusoidal encoding for
operation attributes as (Yi et al., 2024). The neural architecture representation (Luo et al., 2018; Wen
et al., 2020; Xu et al., 2021; Lu et al., 2021; Yi et al., 2023; 2024; Liu et al., 2022) utilizes a predictor
fθ(·) with parameters θ to estimate specific attributes of candidate architectures, e.g., validation
accuracy or inference latency:

ŷ = fθ (Z,A) , (1)
where ŷ denotes the predicted attribute of the architecture.

As illustrated in Figure. 2, our approach uses a transformer as the baseline and incorporates dis-
criminative topological features to pursue a strong predictor. Previous transformer-based predictors
considered adjacent propagation (Lu et al., 2021; Yi et al., 2023; 2024) or transitive closure (Dong
et al., 2022; Luo et al., 2023) as the graph structure information. Global attention is effective in
shallow network prediction as shown in previous works such as TNASP (Lu et al., 2021) and NAR-
Former (Yi et al., 2023). However, with the network depth increasing, there is a decrease in the
generalization of global attention as shown in Yi et al. (2024). Global attention may be biased
towards training data and demonstrate poor generalization performance. To build a general neural
predictor for the range of all depths, we propose a non-global neural predictor that outperforms
the previous methods on both accuracy and latency predictions. As we discussed in Section 1,
sibling nodes have a strong relationship with the current nodes and also provide useful information
in accuracy and latency prediction. Thus we introduce an Adjacency-Sibling Multi-head Attention
(ASMA) in the self-attention layer to learn the local features. As the sibling relationship can be
calculated from adjacency matrix A, our ASMA is formulated as:

Ĥ l−1 = ASMA
(
LN

(
H l−1

)
,A

)
+H l−1, (2)

where H l denotes the feature for the layer l and LN denotes layer normalization. ASMA injects
topological information into the transformer, thereby augmenting the capability of Directed Acyclic
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Graph (DAG) representation learning. In the channel-mixing part, we introduce a Bidirectional Graph
Isomorphism Feed-Forward Network (BGIFFN). This module extracts strong topology features and
alleviates the necessity of complex position encoding:

H l = BGIFFN
(
LN

(
Ĥ l−1

)
,A

)
+ Ĥ l−1. (3)

As for input and output, the first layer feature H0 and the last layer feature HL are related to the
input and output in the following way:

H0 = LN(FC (Z)) , (4)

ŷ = FC
(
ReLU

(
FC

(
HL

)))
, (5)

where FC denotes fully-connected layer. The following parts proceed to introduce ASMA and
BGIFFN in detail.

3.2 ADJACENCY-SIBLING MULTIHEAD ATTENTION

Given a node, we define its sibling nodes as those that share the same parents or children. To identify
these sibling nodes, we use the adjacency matrix A and its transpose AT . Specifically, nodes sharing
the same parent nodes are indicated by the non-zero positions in the matrix product AAT , reflecting
the backward mapping followed by the forward mapping. Similarly, nodes sharing the same children
nodes are identified through the matrix product ATA. In this way, we can identify whether there is a
sibling relationship between each pair of nodes.

To inject topological information, we introduce a novel multi-head attention module. As shown in
Figure. 2, we use four-head attention, where each head uses an attention mask indicating a specific
topology. These masks include forward adjacency A, backward adjacency AT , siblings with the
same parents AAT , and siblings with the same children ATA, respectively. The proposed ASMA is
denoted as:

ASMA(H) = Concat (X1,X2,X3,X4)W
O, (6)

X1 = σ
((

Q1K
T
1 ◦ (I +A)

)
/
√
h
)
V1, (7)

X2 = σ
((

Q2K
T
2 ◦

(
I +AT

))
/
√
h
)
V2, (8)

X3 = σ
((

Q3K
T
3 ◦

(
I +AAT

))
/
√
h
)
V3, (9)

X4 = σ
((

Q4K
T
4 ◦

(
I +ATA

))
/
√
h
)
V4, (10)

where Xi denote the i-th head feature and Qi = HWQ
i , Ki = HWK

i , Vi = HW V
i denotes

the query, key, and value for each head, respectively. σ is the softmax operation, and h denotes the
dimension of each head. I is introduced to contain self-position information. ◦ is an elementwise
masking operation, which constrains the attention to the non-zero positions of the mask matrix.
For example, the first head H1 utilizes an attention mask of I +A, which means it only conducts
attention on the self-position and forward adjacency position. ASMA decouples the local structure
information into 4 different perspectives. This module extracts diverse topological information and
thus exhibits enhanced representation power in modeling neural architecture.

3.3 BIDIRECTIONAL GRAPH ISOMORPHISM FEED-FORWARD NETWORK

To further enhance the topology information, we propose a bidirectional graph isomorphism feed-
forward network. We utilize the adjacency matrix A and its transpose AT to aggregate the forward
and backward adjacency positions in the feedforward module. The BGIFFN is formulated as:

BGIFFN (H,A) = ReLU (HW1 +Hg)W2, (11)

Hg = Concat
(
GC(H,A) ,GC

(
H,AT

))
, (12)

where Hg denotes the output features of the graph convolution and W1, W2 denote the parameters
of linear transformation. GC denotes the graph convolution, which is a simplified form of GCN(Kipf
& Welling, 2016):

GC(H,A) = AHW , (13)

5
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Table 1: Accuracy prediction results on NAS-Bench-101 (Ying et al., 2019). We use different
proportions of data as the training set and report Kendall’s Tau on the whole dataset.

Backbone Method Publication Training Samples
0.02% (100) 0.04% (172) 0.1% (424) 1% (4236)

CNN ReNAS (Xu et al., 2021) CVPR 2021 - - 0.657 0.816

LSTM NAO (Luo et al., 2018) NeurIPS 2018 0.501 0.566 0.666 0.775

GNN
NP (Wen et al., 2020) ECCV 2020 0.391 0.545 0.679 0.769
GATES (Ning et al., 2020) ECCV 2020 0.605 0.659 0.691 0.822
GMAE-NAS (Jing et al., 2022) IJCAI 2022 0.666 0.697 0.732 0.775

Transformer

Graphormer (Ying et al., 2021) NeurIPS 2021 0.564 0.580 0.611 0.797
TNASP (Lu et al., 2021) NeurIPS 2021 0.600 0.669 0.705 0.820
NAR-Former (Yi et al., 2023) CVPR 2023 0.632 0.653 0.765 0.871
PINAT (Lu et al., 2023) AAAI 2024 0.679 0.715 0.772 0.846

Hybrid
GraphTrans (Wu et al., 2021) NeurIPS 2021 0.330 0.472 0.602 0.700
NAR-Former V2 (Yi et al., 2024) NeurIPS 2023 0.663 0.704 0.773 0.861
NN-Former (Ours) - 0.709 0.765 0.809 0.877

where W denotes the parameters of fully-connected layer. Note that we use the directed adjacency
matrix rather than graph Laplacian, which makes it simpler and stronger. With GC(H,A) and
GC

(
H,AT

)
, we obtain the forward features and backward features. Since we concatenate the two

directional features, the BGIFFN will learn forward propagation in one half of the channels, and
backward propagation in the other. We will show that BGIFFN demonstrates bidirectional graph
isomorphism in Appendix A.3, which enhances topology information.

4 EXPERIMENTS

We conduct experiments on two tasks, namely accuracy prediction and latency prediction. For
accuracy prediction, we evaluate the ranking performance of NN-Former on two benchmarks NAS-
Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong & Yang, 2020). For latency performance,
we conduct experiments on NNLQ (Liu et al., 2022). A series of ablation experiments are conducted
to demonstrate the effectiveness of our design. More details will be provided in the appendix.

4.1 ACCURACY PREDICTION

We conduct accuracy prediction on NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong
& Yang, 2020). Both datasets adopt cell-structured architectures. The NAS-Bench-101 (Ying
et al., 2019) dataset contains 423,624 unique architectures, each comprising 9 repeated cells with
a maximum of 7 nodes and 9 edges per cell. Similar to the NAS-Bench-101, the architectures in
NAS-Bench-201 (Dong & Yang, 2020) are also built using repeated cells. It presents 15,625 distinct
cell candidates, each composed of 4 nodes and 6 edges. We report Kendall’s Tau as the previous
methods (Lu et al., 2021; Ning et al., 2020; Yi et al., 2023).

Experiments on NAS-Bench-101. We implemented the configuration outlined in TNASP (Lu
et al., 2021) to train our predictor on subsets of 0.02%, 0.04%, 0.1%, and 1% of the entire dataset.
Subsequently, we utilized the complete dataset as the test set and computed Kendall’s Tau to evaluate
the performance. The results are detailed in Table 1. Our predictor consistently outperforms baseline
methods, such as CNNs, LSTMs, GNNs, Transformers, and hybrid GNNs and Transformers. This
result underscores the superior predictive capability of NN-Former in determining neural architecture
performance.

Experiments on NAS-Bench-201. We employ a comparable experimental setup to NAS-Bench-101,
i.e., training predictors on different subsets of 1%, 3%, 5%, and 10%, and then evaluating them on
the complete dataset. The results are depicted in Table 2. NN-Former surpasses other methods in
all scenarios except for the 10% subsets. Note that our method aims at unified prediction for both
accuracy and latency, it is acceptable that our method achieves comparable results. We outperform
NAR-Former V2 (Yi et al., 2024) for all setups, which has a similar unifying motivation. Additionally,
neural architecture search prefers high generalization performance with fewer training samples,
resulting in significant resource savings. More details are discussed in Section B.1.2.
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Table 2: Accuracy prediction results on NAS-Bench-201 (Dong & Yang, 2020). We use different
proportions of data as the training set and report Kendall’s Tau on the whole dataset.

Backbone Method Publication Training Samples
1% (156) 3% (469) 5% (781) 10% (1563)

LSTM NAO (Luo et al., 2018) NeurIPS 2018 0.493 0.470 0.522 0.526

GNN NP (Wen et al., 2020) ECCV 2020 0.413 0.584 0.634 0.646

Transformer

Graphormer (Ying et al., 2021) NeurIPS 2021 0.630 0.680 0.719 0.776
TNASP (Lu et al., 2021) NeurIPS 2021 0.589 0.640 0.689 0.724
NAR-Former (Yi et al., 2023) CVPR 2023 0.660 0.790 0.849 0.901
PINAT (Lu et al., 2023) AAAI 2024 0.631 0.706 0.761 0.784

Hybrid
GraphTrans (Wu et al., 2021) NeurIPS 2021 0.409 0.550 0.588 0.673
NAR-Former V2 (Yi et al., 2024) NeurIPS 2023 0.752 0.846 0.874 0.888
NN-Former (Ours) - 0.804 0.860 0.879 0.890

Table 3: In domain latency prediction on NNLQ (Liu et al., 2022). Training and test on the same
distribution.

Test Model
MAPE↓ Acc(10%)↑

NNLP NAR-Former V2 Ours NNLP NAR-Former V2 Ours
avg / best avg / best avg / best avg / best avg / best avg / best

All 3.47 / 3.44 3.07 / 3.00 2.85 / 2.65 95.25 / 95.50 96.41 / 96.30 97.45 / 97.85
AlexNet 6.37 / 6.21 6.18 / 5.97 4.69 / 4.61 81.75 / 84.50 81.90 / 84.00 90.50 / 91.00
EfficientNet 3.04 / 2.82 2.34 / 2.22 2.31 / 2.21 98.00 / 97.00 98.50 / 100.0 99.00 / 100.0
GoogleNet 4.18 / 4.12 3.63 / 3.46 3.48 / 3.39 93.70 / 93.50 95.95 / 95.50 97.15 / 97.50
MnasNet 2.60 / 2.46 1.80 / 1.70 1.52 / 1.48 97.70 / 98.50 99.70 / 100.0 99.50 / 100.0
MobileNetV2 2.47 / 2.37 1.83 / 1.72 1.54 / 1.50 99.30 / 99.50 99.90 / 100.0 99.60 / 100.0
MobileNetV3 3.50 / 3.43 3.12 / 2.98 3.17 / 2.99 95.35 / 96.00 96.75 / 98.00 96.50 / 97.00
NasBench201 1.46 / 1.31 1.82 / 1.18 1.11 / 0.96 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0
SqueezeNet 4.03 / 3.97 3.54 / 3.34 3.09 / 3.08 93.25 / 93.00 95.95 / 96.50 97.70 / 98.00
VGG 3.73 / 3.63 3.51 / 3.29 2.94 / 2.89 95.25 / 96.50 95.85 / 96.00 95.80 / 96.50
ResNet 3.34 / 3.25 3.11 / 2.89 2.66 / 2.47 98.40 / 98.50 98.55 / 99.00 99.45 / 99.50

4.2 LATENCY PREDICTION

We employ NNLQ as the latency prediction task. NNLQ (Liu et al., 2022) includes 20,000 deep-
learning networks and their respective latencies on the specified hardware. This dataset encompasses
10 distinct network types, with 2,000 networks for each type. The depth of each architecture varies
from tens to hundreds of operations, requiring the scalability of the neural predictor. In line with
NNLP, the Mean Absolute Percentage Error (MAPE) and Error Bound Accuracy (Acc(δ)) are
employed to assess the disparities between latency predictions and actual values.

We conduct the experiments on two scenarios following (Yi et al., 2024). In the first in-domain
scenario, the training and testing sets are from the same distribution. The results are shown in Table 3.
When testing with all test samples, the average MAPE of our methods is 0.62% lower than the
NNLP (Liu et al., 2022) and 0.22% lower than the NAR-Former V2 (Yi et al., 2024). The average
Acc(10%) is 2.20% higher than the NNLP and 1.04% higher than the NAR-Former V2. When tested
on various types of network data separately, previous methods fail on specific model types, especially
on AlexNet, while our method largely mitigates this challenge and obtains a balanced performance
on each model type.

The other out-of-domain scenario is more significant, as it involves inferring an unseen network type
during the evaluation. The results in Table 4 indicate that relying solely on FLOPs and memory access
data is insufficient for predicting latency. Due to the disparity between kernel delay accumulation and
actual latency, kernel-based approaches such as nn-Meter (Zhang et al., 2021) and TPU (Kaufman
et al., 2021) exhibit inferior performance compared to GNNs (NNLP (Liu et al., 2022)) and hybrid
models (NAR-Former V2 (Yi et al., 2024)). Leveraging enriched topological information, our method
achieves the highest MAPE and Acc(10%) among the average metrics of the ten experimental sets.
In comparison to the runner-up NAR-Former V2 (Yi et al., 2024), our approach demonstrates a
substantial 11.61% increase in average Acc(10%).
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Table 4: Out of domain latency prediction on NNLQ (Liu et al., 2022). “Test Model = AlexNet”
means that only AlexNet models are used for testing, and the other 9 model families are used for
training. The best results refer to the lowest MAPE and corresponding ACC (10%) in 10 independent
experiments.

Test Model FLOPs FLOPs nn-Meter TPU BRP-NAS NNLP NAR-Former V2 Ours
+MAC (avg / best) (avg / best) (avg / best)

MAPE ↓
AlexNet 44.65 15.45 7.20 10.55 31.68 10.64 / 9.71 24.28 / 18.29 11.47 / 11.17
EfficientNet 58.36 53.96 18.93 16.74 51.97 21.46 / 18.72 13.20 / 11.37 5.13 / 4.81
GoogleNet 30.76 32.54 11.71 8.10 25.48 13.28 / 10.90 6.61 / 6.15 6.74 / 6.65
MnasNet 40.31 35.96 10.69 11.61 17.26 12.07 / 10.86 7.16 / 5.93 2.71 / 2.54
MobileNetV2 37.42 35.27 6.43 12.68 20.42 8.87 / 7.34 6.73 / 5.65 4.17 / 3.66
MobileNetV3 64.64 57.13 35.27 9.97 58.13 14.57 / 13.17 9.06 / 8.72 9.07 / 9.03
NasBench201 80.41 33.52 9.57 58.94 13.28 9.60 / 8.19 9.21 / 7.89 7.93 / 7.71
ResNet 21.18 18.91 15.58 20.05 15.84 7.54 / 7.12 6.80 / 6.44 7.49 / 7.38
SqueezeNet 29.89 23.19 18.69 24.60 42.55 9.84 / 9.52 7.08 / 6.56 9.08 / 7.05
VGG 69.34 66.63 19.47 38.73 30.95 7.60 / 7.17 15.40 / 14.26 20.12 / 19.64
Average 47.70 37.26 15.35 21.20 30.76 11.55 / 10.27 10.55 / 9.13 8.39 / 7.96

Acc(10%) ↑
AlexNet 6.55 40.50 75.45 57.10 15.20 59.07 / 64.40 24.65 / 28.60 56.08 / 57.10
EfficientNet 0.05 0.05 23.40 17.00 0.10 25.37 / 28.80 44.01 / 50.20 90.85 / 90.90
GoogleNet 12.75 9.80 47.40 69.00 12.55 36.30 / 48.75 80.10 / 83.35 80.43 / 83.40
MnasNet 6.20 9.80 60.95 44.65 34.30 55.89 / 61.25 73.46 / 81.60 98.65 / 98.70
MobileNetV2 6.90 8.05 80.75 33.95 29.05 63.03 / 72.50 78.45 / 83.80 94.90 / 96.85
MobileNetV3 0.05 0.05 23.45 64.25 13.85 43.26 / 49.65 68.43 / 70.50 74.18 / 74.30
NasBench201 0.00 10.55 60.65 2.50 43.45 60.70 / 70.60 63.13 / 71.70 69.90 / 71.10
ResNet 26.50 29.80 39.45 27.30 39.80 72.88 / 76.40 77.24 / 79.70 70.83 / 71.55
SqueezeNet 16.10 21.35 36.20 25.65 11.85 58.69 / 60.40 75.01 / 79.25 77.85 / 80.95
VGG 4.80 2.10 26.50 2.60 13.20 71.04 / 73.75 45.21 / 45.30 29.40 / 29.85
Average 7.99 13.20 47.42 34.40 21.34 54.62 / 60.65 62.70 / 67.40 74.31 / 75.47

Table 5: Ablation studies on the proposed ASMA and BGIFFN. (a) Ablation study of ASMA on
NNLQ (Liu et al., 2022). Results on the NAS-Bench-201 family are reported. (b) Ablation study of
ASMA and BGIFFN on NAS-Bench-101 (Ying et al., 2019). All experiments are conducted on the
0.04% training set.

(a)

Attention MAPE↓ Acc(10%)↑

Global 10.83% 58.45%
ASMA 7.93% 69.90%

(b)

Attention FFN Kendall’s Tau↑
Global vanilla 0.4598
ASMA vanilla 0.6538
Global BGIFFN 0.7656
ASMA BGIFFN 0.7654

4.3 ABLATION STUDIES

In this section, we perform a series of ablation experiments on the NAS-Bench-101 (Ying et al., 2019)
and NNLQ (Liu et al., 2022) datasets to analyze the effects of the proposed modifications. First, we
assess the performance of ASMA and BGIFFN over a vanilla transformer baseline. Second, we verify
the design for both modules, especially by examining the significance of the topological information.

Ablation on ASMA on latency prediction. To evaluate the generalization ability of ASMA, we
conducted experiments on NNLQ (Liu et al., 2022) under the out-of-domain setting. We use NAS-
Bench-201 as our target model type due to its intricate connections between operations. The results
are shown in Table 5a, where we keep the number of heads unchanged ablate on the attention mask.
The model with ASMA shows a large performance enhancement of 11.45% Acc(10%) in contrast
to the one utilizing global attention. It indicates that global attention presents a noticeable disparity,
underscoring the advantages of local features when building a unified neural predictor.

Ablation on ASMA and BGIFFN on accuracy prediction. To evaluate the effectiveness of ASMA
and BGIFFN, we conducted accuracy prediction experiments using the 0.04% setting of NAS-Bench-
101 as discussed in Section 4.1. The findings are detailed in Table 5b. The baseline method utilizes a
vanilla transformer and the result is respectable since it does not incorporate any topology information.
Introducing ASMA, which integrates adjacency and sibling information, leads to an enhancement of
0.6538. Incorporating BGIFFN leads to further enhancement of 0.7656. It indicates that the ASMA
and BGIFFN modules effectively capture structural features within the models. Furthermore, when
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Table 6: Ablation studies on ASMA design. All experiments are conducted on the NAS-Bench-
101 (Ying et al., 2019) with the 0.04% training set. (a) Ablation study on the topological structure
of ASMA. We explore different attention masks for the 4 heads. (b) Ablation study on the position
encoding with ASMA. We explore different ways of position encoding when utilizing ASMA.

(a)

Row Attention Mask Kendall’s Tau↑
1 A ,A ,A ,A 0.7522
2 AT ,AT ,AT ,AT 0.7545
3 A ,A ,AT ,AT 0.7566
4 A ,AT ,AA,ATAT 0.7573
5 A ,AT ,ATA,AAT 0.7654

(b)

ASMA design Kendall’s Tau↑

Ours 0.7654
+NAR PE (Yi et al., 2023) 0.7449
+Laplacian (Lu et al., 2021) 0.7063

Table 7: Ablation studies on BGIFFN design. All experiments are conducted on NAS-Bench-
101 (Ying et al., 2019) with the 0.04% training set. (a) Ablation study on the topological structure of
BGIFFN. We explore different ways of structure aggregation in BGIFFN. (b) Ablation study on the
BGIFFN design. We explore different ways of adjacency aggregation when utilizing BGIFFN.

(a)

Row BGIFFN Kendall’s Tau↑
1 A 0.7253
2 AT 0.7501
3 A ,AT ,ATA,AAT 0.7470
4 A ,AT 0.7654

(b)

BGIFFN design Kendall’s Tau↑
Ours 0.7654
add→multiply 0.7076
→ GCN (Laplacian) 0.7296
→ GAT 0.6973

ASMA and BGIFFN are combined, the model achieves a performance score of 0.7654 which is
comparable to the global attention mechanism. However, we have highlighted the limitations of
global attention in latency prediction, and our ASMA achieved the best trade-off across both accuracy
and latency prediction tasks.

Ablation on topological structure of ASMA. Next, we verify the design of the ASMA and BGIFFN.
First, we examine the designs of ASMA in Table 6. The performance of different attention masks is
shown in Table 6a. Maintaining a consistent number of heads at 4, we modify the attention mask
for each head. Rows 1 and 2 exclusively utilize forward or backward adjacency across all 4 heads.
Row 3 combines forward and backward adjacency and improves performance. Row 4 investigates
the impact of predecessors and successors, indicating only marginal enhancement. It shows that
empirical topological information in DAG tasks (Dong et al., 2022; Luo et al., 2023) is helpless in
neural architecture representation. Row 5 combines the adjacency and sibling nodes, achieving the
highest performance. These results highlight the significance of sibling nodes. It also shows that the
design of ASMA is robust and logically sound, showcasing its effectiveness in capturing architectural
patterns.

Ablation on Position Encoding (PE). We also explored the impact of PE on our model. Traditionally,
transformers have heavily relied on PE to capture structural information. However, our approach
makes this reliance unnecessary because our method inherently incorporates abundant topological
information. As shown in Table 6b, we experiment with the inclusion of position encoding in our
framework, i.e., NAR PE tailored for neural architecture representation in NAR-Former (Yi et al.,
2023), and Laplacian position encoding in TNASP (Luo et al., 2023). The results suggest that
they have no improvement in the performance of NN-Former. It indicates that our method presents
exceptional structural learning capabilities.

Ablation on topological structure of BGIFFN. As illustrated in Table 7a, this experiment maintains
the total parameters constant while adjusting the number of splits in the graph convolution branch.
In Rows 1 and 2, a single split is retained, and the forward or backward adjacent convolution is
conducted. Moving to Row 3, the use of 4 splits for adjacency and siblings results in a performance
that is even worse than using backward adjacency only. This outcome may be attributed to the
considerable strength of the topological information provided by ASMA, rendering such a complex
graph structure unnecessary. In Row 4, employing 2 splits with both forward and backward adjacency
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produces the most favorable result, underscoring the rationale behind our BGIFFN approach. This
finding suggests that BGIFFN is well-founded and effective in leveraging topological information.

Ablation on BGIFFN design. The gating mechanism in recent neural networks (Ning et al., 2020;
Xu et al., 2023) has demonstrated superior performance to the standard feed-forward layer. However,
substituting the elementwise add operation in BGIFFN with the Hadamard product results in a
significant performance decrease to 0.7076. This may be attributed to the different features of the
two branches, as one represents self-position only, and the other aggregates adjacency features.
Directly multiplying the two features yields a decrease in performance. Furthermore, we compare
our approach with the conventional GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018).
Both methods lead to a noticeable performance decline, rendering the superiority of our NN-Former.

5 CONCLUSION

We introduce a novel neural architecture representation model. This model unites the strengths of
GCN and transformers, demonstrating strong capability in topology modeling and representation
learning. We also conclude that different from the intuition on other DAG tasks, sibling nodes
significantly affect the extraction of topological information. Our proposed model performs well
on accuracy and latency prediction, showcasing model capability and generalization ability. This
work may inspire future efforts in neural architecture representation and neural networks on DAG
representation.
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A METHODS DETAILS

A.1 IMPLEMENTATION FOR ASMA

We present Python-style code for calculating the attention matrix in the ASMA module in Listing 1.
ASMA is motivated by the importance of sibling nodes. In the accuracy prediction, sibling nodes
provide complementary features, such as parallel 1x1 and 3x3 convolutions extracting pixel features
and local aggregations, respectively. Although the two nodes are neither connected nor reachable
through transitive closure, their information can influence each other. This conclusion has been
studied in works such as Inception (Szegedy et al., 2015) and RepVGG (Ding et al., 2021). In latency
prediction, sibling nodes can run in parallel. For example, if two parallel 1x1 convolutions are merged
into one, it takes only one CUDA kernel and fully utilizes parallel computing. Hence it is reasonable
for ASMA to fuse the sibling nodes information directly.

Listing 1: Calculating the attention matrix in ASMA.
def attention_matrix(Q, K, A):

# Q: query, K: key, A: adjacency matrix
# Calculate the attention scores
attn = torch.matmul(Q, K.mT) / math.sqrt(Q.size(-1))
# Prepare attention masks
pe = torch.stack([A, A.mT, A.mT @ A, A @ A.mT], dim=1)
pe = pe + torch.eye(L, dtype=A.dtype, device=A.device)
# Apply masking
attn = attn.masked_fill(pe == 0, -torch.inf)
# Softmax operation
attn = F.softmax(attn, dim=-1)
return attn

To implement the masking operation, the values at the non-zero positions remain unchanged, while
the other values are set to minus infinity. Consequently, the softmax operation on these masked values
results in zeroes.

A.2 PROOF OF SIBLING NODES IDENTIFICATION

In the paper we use ATA to represent sibling nodes that share a same successor. Here we provide a
trivial proof. Aij = 1 denotes there is a directed edge linked from node i to node k. Thus AT

ki = 1
denotes that there is a directed edge linked from node i to node k. Thus

(
ATA

)
kj

=
∑

v A
T
kvAvj ≥

AT
kiAij = 1, which denotes that node k and node j share a same successor i. Similar to AAT ,

where
(
AAT

)
kj

≥ 1 if node k and node j share a same predecossor.

A.3 PROOF OF BI-DIRECTIONAL GRAPH ISOMORPHISM FEED-FORWARD NETWORK

We begin by summarizing the BIGFFN as the common form of message-passing GNNs, and then
prove the isomorphism property. Modern message-passing GNNs follow a neighborhood aggregation
strategy, where we iteratively update the representation of a node by aggregating representations of its
neighbors. To make comparison with modern GNNs, we follow the same notations, where the feature
of node v is denoted as hv. The l-th layer of a GNN is composed of aggregation and combination
operation:

a(l)v = AGGREGATE
(
h(l)u : u ∈ N (v)

)
, h(l)v = COMBINE

(
h(l−1)
v , a(l)v

)
, (14)

where h(l)v is the feature vector of node v at the l-th iteration/layer. In our cases, the graph is
directional, thus the neighborhood N (v) is also divided into forward propagation nodes N+(v) and
backward propagation nodes N−(v):

a(l)v = AGGREGATE
(
h(l−1)
u : u ∈ N+(v) ∪N−(v)

)
. (15)

The AGGREGATE function in BGIFFN is defined as a matrix multiplication followed by concate-
nation:

AGGREGATE : H 7→ Concat
(
AHW+,ATHW−) , (16)
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where W+ and W− are the linear transform for forward and backward propagation, respectively.
This is equivalent to a bidirectional neighborhood aggregation followed by a concatenation operation:

a(l)v = Concat

 ∑
u∈N+(v)

h(l−1)
u W+,

∑
u∈N−(v)

h(l−1)
u W−

 , (17)

and the COMBINE function is defined as follows:

h(l)v = ReLU
(
h(l−1)
v W1 + a(l)v

)
W2. (18)

We quote Theorem 3 in (Xu et al., 2018). For simple reference, we provide the theorem in the
following:

Theorem 1 (Theorem 3 in (Xu et al., 2018)). With a sufficient number of GNN layers, a GNN
M : G 7→ Rd maps any graphs G1 and G2 that the Weisfeiler-Lehman test of isomorphism decides
as non-isomorphic, to different embeddings if the following conditions hold:

a) T aggregates and updates node features iteratively with

h(l)v = ϕ
(
h(l−1)
v , f

({
h(l−1)
v : u ∈ N (v)

}))
, (19)

where the function f , which operates on multisets, and φ are injective.

b) T ’s graph-level readout, which operates on the multiset of node features
{
h
(l)
v

}
, is injective.

Please refer to (Xu et al., 2018) for the proof. In our cases, the difference lies in condition a), where
our tasks use directed acyclic graphs. Thus we modify condition a) as follows:

Theorem 2 (Modified condition for undirected graph). a) T aggregates and updates node features
iteratively with

h(l)v = ϕ
(
h(l−1)
v , f

({
h(l−1)
v : u ∈ N+(v) ∪N−(v)

}))
, (20)

where the function f , which operate on multisets, and φ are injective.

The proof is trivial, as it turns back to the original undirected graph. Following the Corollary 6 in (Xu
et al., 2018), we can build our bidirectional graph isomorphism feed-forward network:

Corollary 1 (Corollary 6 in (Xu et al., 2018)). Assume X is countable. There exists a function
f : X → Rn so that for infinitely many choices of ϵ, including all irrational numbers, h(c,X) =
(1 + ϵ) · f(c) +

∑
x∈X f(x) is unique for each pair (c,X), where c ∈ X and X ⊂ X is a multiset

of bounded size. Moreover, any function g over such pairs can be decomposed as g (c,X) =
φ
(
(1 + ϵ) · f(c) +

∑
x∈X f(x)

)
for some function φ.

In our cases, ϵ is substituted by a linear transform with weights W1. f is the aggregation function,
and φ is the combine function. There exist choices of f and φ that are injective, thus the conditions
are satisfied.

Furthermore, our BGIFFN distinguishes the forward and backward propagation, yielding stronger
capability in modeling graph topology. Our method corresponds to a stronger “directed WL test”,
which applies a predetermined injective function z to update the WL node labels k(l)v :

k(l)v = z
(
k(l)v ,

{
k(l)v : u ∈ N+(v)

}
,
{
k(l)v : u ∈ N−(v)

})
, (21)

and the condition is modified as:

Theorem 3 (Modified condition for directed graph). a) T aggregates and updates node features
iteratively with

h(l)v = ϕ
(
h(l−1)
v , f

({
h(l−1)
v : u ∈ N+(v)

})
, g

({
h(l−1)
v : u ∈ N−(v)

}))
, (22)

where the function f and g, which operate on multisets, and φ are injective.
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Proof. The proof is a trivial extension to Theorem 1. Let T be a GNN where the condition holds.
Let G1 and G2 be any graphs that the directed WL-test (which means propagating on the directed
graph) decides as non-isomorphic at iteration L. Because the graph-level readout function is injective,
it suffices to show that T ’s neighborhood aggregation process embeds G1 and G2 into different
multisets of node features with sufficient iterations. We will show that for any iteration l, there always
exists an injective function φ such that h(k)v = φ

(
k
(l)
v

)
. This holds for l = 0 because the initial node

features are the same for WL and GNN k
(0)
v = h

(0)
v . So φ could be the identity function for k = 0.

Suppose this holds for iteration k − 1, we show that it also holds for l. Substituting h(l−1)
v with

φ
(
h
(l−1)
v

)
gives us:

h(l)v = ϕ
(
φ
(
h(l−1)
v

)
, f

({
φ
(
h(l−1)
v

)
: u ∈ N+(v)

})
, g

({
φ
(
h(l−1)
v

)
: u ∈ N−(v)

}))
,

(23)
Since the composition of injective functions is injective, there exists some injective function ψ so that

h(l)v = ψ
(
h(l−1)
v ,

{
h(l−1)
v : u ∈ N+(v)

}
,
{
h(l−1)
v : u ∈ N−(v)

})
. (24)

Then we have

h(l)v = ψ ◦ z−1z
(
k(l)v ,

{
k(l)v : u ∈ N+(v)

}
,
{
k(l)v : u ∈ N−(v)

})
, (25)

and thus φ = ψ ◦ z−1 is injective because the composition of injective functions is injective. Hence
for any iteration l, there always exists an injective function φ such that h(l)v = φ

(
h
(l−1)
v

)
. At the

L-th iteration, the WL test decides that G1 and G2 are non-isomorphic, that is the multisets kLv are
different for G1 and G2. The graph neural network T ’s node embeddings

{
h
(L)
v

}
=

{
φ
(
k
(L)
v

)}
must also be different for G1 and G2 because of the injectivity of φ.

A.4 IMPLEMENTATION FOR BGIFFN

We present Python-style code for the BGIFFN module in Listing 2. BGIFFN is intended to extend
Graph Isomorpsim to the bidirectional modeling of DAGs. It extracts the topological features simply
and effectively, assisting the Transformer backbone in learning the DAG structure. Various works use
convolution to enhance FFN in vision (Guo et al., 2022) and language tasks (Wu et al., 2019). It is
reasonable for BGIFFN to assist Transformer in neural predictors.

Listing 2: Calculation for BGIFFN.
def bgiffn(x, A, W_1, W_forward, W_backward, W_2):

# x: node features, A: adjacency matrix
# W_1, W_forward, W_backward, W_2: the weight for linear transform
aggregate = torch.cat((A @ x @ W_forward, A.mT @ x @ W_backward),

dim=-1)
combine = F.relu(x @ W_1 + aggregate) @ W_2
return combine

B EXPERIMENT DETAILS

We present implementation details of our proposed NN-Former. For accuracy prediction, we show
the experiment settings on NAS-Bench-101 in Section B.1.1 and NAS-Bench-201 in Section B.1.2.
For latency prediction, we show the experiment settings on NNLQ (Liu et al., 2022) in Section B.2.1.

B.1 ACCURACY PREDICTION

For the network input, each operation type is represented by a 32-dimensional vector using one-hot
encoding. Subsequently, this encoding is converted into a 160-channel feature by a linear transform
and a layer normalization. The model contains 12 transformer blocks commonly employed in vision
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transformers (Dosovitskiy et al., 2020). Each block comprises ASMA and BGIFFN modules. The
BGIFFN has an expansion ratio of 4, mirroring that of a vision transformer. The output class token is
transformed into the final prediction value through a linear layer. Initialization of the model follows
a truncated normal distribution with a standard deviation of 0.02. During training, Mean Squared
Error (MSE) loss is utilized, alongside other augmentation losses as outlined in NAR-Former (Yi
et al., 2023) with λ1 = 0.2 and λ2 = 1.0. The model is trained for 3000 epochs in total. A warm-
up (Goyal et al., 2017) learning rate from 1e-6 to 1e-4 is applied for the initial 300 epochs, and cosine
annealing (Loshchilov & Hutter, 2016) is adopted for the remaining duration. AdamW (Loshchilov
& Hutter, 2017) with a coefficient (0.9, 0.999) is utilized as the optimizer. The weight decay is set
to 0.01 for all the layers except that the layer normalizations and biases use no weight decay. The
dropout rate is set to 0.1. We use the Exponential Moving Average (EMA) (Polyak & Juditsky, 1992)
with a decay rate of 0.99 to alleviate overfitting. Each experiment takes about 1 hour to train on an
RTX 3090 GPU.

B.1.1 EXPERIMENTS ON NAS-BENCH-101.

NAS-Bench-101 (Ying et al., 2019) provides the performance of each architecture on CIFAR-
10 (Krizhevsky et al., 2009). It is an operation-on-node (OON) search space, which means nodes
represent operations, while edges illustrate the connections between these nodes. Following the
approach of TNASP (Lu et al., 2021), we utilize the validation accuracy from a single run as the
target during training, and the mean test accuracy over three runs is used as ground truth to assess the
Kendall’s Tau (Sen, 1968). The metrics on the test set are computed using the final epoch model, the
top-performing model, and the best Exponential Moving Average (EMA) model on the validation set.
The highest-performing model is documented.

B.1.2 EXPERIMENTS ON NAS-BENCH-201.

NAS-Bench-201 offers three sets of results for each architecture, corresponding to CIFAR-10, CIFAR-
100, and ImageNet-16-120. This study focuses on the CIFAR-10 dataset, consistent with the setup in
TNASP (Lu et al., 2021).

NAS-Bench-201 (Dong & Yang, 2020) is originally operation-on-edge (OOE) search space, while
we transformed the dataset into the OON format. NAS-Bench-201 contains the performance of
each architecture on three datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), and ImageNet-16-120 (a downsampled subset of ImageNet (Deng et al., 2009)). We
use the results on CIFAR-10 in our experiments following previous TNASP (Lu et al., 2021), NAR-
Former (Yi et al., 2023) and PINAT (Lu et al., 2023). In the preprocessing, we drop the useless
operations taht only have zeroized input or output. The metrics on the test set are computed using
the final epoch model, the top-performing model, and the best Exponential Moving Average (EMA)
model on the validation set. The highest-performing model is documented.

As for the results in the 10% setting, we argue that these results are not a good measurement.
Concretely, the predictors are trained on the validation accuracy of NAS-Bench-201 networks, and
evaluated on the test accuracy. We calculate Kendall’s Tau between ground truth validation accuracy
and test accuracy on this dataset which is 0.889. It indicates an unneglectable gap between the
predictors’ training and testing. Thus the results around and higher than 0.889 are less valuable to
reflect the performance of predictors. For further studies, we also provide a new setting for this
dataset. Both training and evaluation are conducted on the test accuracy of NAS-Bench-201 networks,
and the training samples are dropped during evaluation. This setting has no gap between the training
and testing distribution. As shown in Table 8, our methods surpass both NAR-Former (Yi et al., 2023)
and NAR-Former V2 (Yi et al., 2024), showcasing the strong capability of our NN-Former.

B.2 LATENCY PREDICTION

B.2.1 EXPERIMENTS ON NNLQ.

There are two scenarios on latecny prediction on NNLQ (Liu et al., 2022). In the first scenario,
the training set is composed of the first 1800 samples from each of the ten network types, and the
remaining 200 samples for each type are used as the testing set. The second scenario comprises
ten sets of experiments, where each set uses one type of network as the test set and the remaining
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Table 8: Accuracy prediction results on NAS-Bench-201 (Dong & Yang, 2020) when the training
and testing data follow the same distribution. We use different proportions of data as the training
set and report Kendall’s Tau on the whole dataset.

Method Publication Training Samples
10% (1563)

NAR-Former (Yi et al., 2023) CVPR 2023 0.910

NAR-Former V2 (Yi et al., 2024) NeurIPS 2023 0.921
NN-Former (Ours) - 0.935

nine types serve as the training set. The network input is encoded in a similar way as NAR-Former
V2 (Yi et al., 2024). Each operation is represented by a 192-dimensional vector, with 32 dimensions
of one-hot operation type encoding, 80 dimensions of sinusoidal operation attributes encoding,
and 80 dimensions of sinusoidal feature shape encoding. Subsequently, this encoding is converted
into a 512-channel feature by a linear transform and a layer normalization. The model contains 2
transformer blocks, the same as NAR-Former V2 (Yi et al., 2024). Each block comprises ASMA
and BGIFFN modules. The BGIFFN has an expansion ratio of 4, mirroring that of a common
transformer (Dosovitskiy et al., 2020). The output features are summed up and transformed into the
final prediction value through a 2-layer feed-forward network. Initialization of the model follows
a truncated normal distribution with a standard deviation of 0.02. During training, Mean Squared
Error (MSE) loss is utilized. The model is trained for 50 epochs in total. A warm-up (Goyal et al.,
2017) learning rate from 1e-6 to 1e-4 is applied for the initial 5 epochs, and a linear decay scheduler
is adopted for the remaining duration. AdamW (Loshchilov & Hutter, 2017) with a coefficient (0.9,
0.999) is utilized as the optimizer. The weight decay is set to 0.01 for all the layers except that the
layer normalizations and biases use no weight decay. The dropout rate is set to 0.05. We also use
static features as NAR-Former V2 (Yi et al., 2024). Each experiment takes about 4 hours to train on
an RTX 3090 GPU.

C EXTENSIVE EXPERIMENTS

C.1 ABLATION ON HYPERPARAMETERS

This work adopts a Transformer as the backbone, and the hyperparameters of Transformers have
been well-settled in previous research. This article follows the common training settings (from
NAR-Former) and has achieved good results. Apart from these hyperparameters, we provide an
ablation on the number of channels and layers in the predictor as shown in Table 9:

Table 9: Ablation studies on hyperparameters. All experiments are conducted on the NAS-Bench-
101 (Ying et al., 2019) with the 0.04% training set. (a) Ablation study on the number of channels. (b)
Ablation study on the number of transformer layers.

(a)

Num of Channels KT
64 0.748
128 0.758
160 (Ours) 0.765

(b)

Num of Layers KT
6 0.744
9 0.760

12 (Ours) 0.765

C.2 COMPARISON WITH ZERO-COST PREDICTORS

Zero-cost proxies are lightweight NAS methods, but they performs not as well as the model-based
neural predictors.
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Table 10: Comparison with zero-cost predictors.

NAS search space NAS-Bench-101↑ NAS-Bench-201↑
grad_norm (Abdelfattah et al., 2021) 0.20 0.58
snip (Abdelfattah et al., 2021) 0.16 0.58
NN-Former 0.71 0.80

D MODEL COMPLEXITY

D.1 THEORETICAL ANALYSIS

Our ASMA method has less or equal computational complexity than the vanilla attention. On the
dense graph, the vanilla self-attention has a complexity of O(N2) where N denotes the number of
nodes. With the sibling connection preprocessed, our ASMA also has a complexity of O(N2). On
sparse graphs, the vanilla self-attention is still a global operation thus the complexity is also O(N2).
Our ASMA has a complexity of O(NK), where K is the average degree and K << N on sparse
graphs. In practical applications, sparse graphs are common thus our method is efficient. The latency
prediction experiments in the paper show that our predictor can cover the DAGs from 20 200 nodes,
which is applicable for practical use.

D.2 INFERENCE SPEED

We report the parameters and the latency, memory, and training time on a single RTX 3090 in
Table 11. Our method has comparable inference latency, memory usage, and training time compared
to NAR-Former Yi et al. (2023), indicating that the improvement brought by our method is solid.

Compared to the tremendous time spent training candidate architectures, the time of training neural
predictors is neglectable. Therefore, the computational resources consumed by predictors do not
affect practical applications. In the experiments on NNLQ, our method can make predictions for
networks with from 20 to 200 layers, which encompasses the size of most practical models. It
indicates that our method can be applied to practical use.

Table 11: Caption

Predictor Params (M) Latency (ms) Memory (GB) Training Time (h)

NAR-Former 4.8 10.31 0.58 0.7
NN-Former w/o ASMA 4.9 11.21 0.67 0.8
NN-Former w/o BGIFFN 3.7 10.17 0.60 0.7
NN-Former 4.9 11.53 0.67 0.8

E SIBLING NODES MODELING ON GENERAL DAG TASKS

Our method is dedicated to neural architecture representation learning. Experiments have shown that
the sibling nodes provide valuable insights into accuracy prediction and latency prediction. However,
considering the nature of our method is DAG modeling, one question comes out: is it possible for the
sibling property to generalize to other DAG tasks? Research on other DAG tasks is beyond the scope
of this study. However, we can provide theoretical analysis with validation experiments. The DAG
tasks are divided into two groups by the importance of sibling nodes:

One is that sibling nodes are important. Citation prediction is a situation where sibling nodes play
a crucial role. Two papers that cite the same paper might follow similar motivations, methods, or
experiments. Similarly, two papers cited by the same paper may also have these in common.

The other is that siblings are not as important. For example, Abstract Syntax Tree (AST) uses
syntactic construct to aggregate the successors, while siblings do not make practical sense.
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Table 12: Sibling perspective on other DAG tasks.

Model Cora(%)↑ ogbg-code2(%)↑
DAG Transformer 87.39 19.0
DAG Transformer + sibling 88.14 18.9

We also experimented on how siblings affect the results in these tasks. We use the DAG Trans-
former (Luo et al., 2023) as the baseline and add a sibling attention mask without careful calibration.
The results in the Table 12 show that sibling nodes play a crucial role in Cora node classification
(Citation prediction), while they are not as important in ogbg-code2 (AST prediction).
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