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ABSTRACT

Unrolling training trajectories over time strongly influences the inference accu-
racy of neural network-augmented physics simulators. We analyze these effects
by studying three variants of training neural networks on discrete ground truth tra-
jectories. In addition to commonly used one-step setups and fully differentiable
unrolling, we include a third, less widely used variant: unrolling without temporal
gradients. Comparing networks trained with these three modalities makes it possi-
ble to disentangle the two dominant effects of unrolling, training distribution shift
and long-term gradients. We present a detailed benchmark across physical sys-
tems, network sizes, network architectures, training setups, and test scenarios. It
provides an empirical basis for our main findings: Fully differentiable setups per-
form best across most tests, yielding an improvement of 38% on average. Never-
theless, the accuracy of unrolling without temporal gradients comes comparatively
close with 23%. These results motivate integrating non-differentiable numerical
simulators into training setups even if full differentiability is unavailable. Further-
more, we empirically show that these behaviors are invariant to changes in the
underlying physical system, the network architecture and size, and the numerical
scheme.

1 INTRODUCTION

Our understanding of physical systems relies on capturing their dynamics in mathematical models,
often representing them with a partial differential equation (PDE). Forecasting the behavior with
these models thus involves the notoriously costly and difficult task of solving the PDE. By aiming to
increase simulator efficiencies, machine learning was successfully deployed to augment traditional
numerical methods for solving these equations. Common areas of research are network architectures
(Sanchez-Gonzalez et al., 2020; Li et al., 2020; Geneva & Zabaras, 2020; Ummenhofer et al., 2019),
reduced order representations (Lusch et al., 2018; Wiewel et al., 2019; Eivazi et al., 2021; Brunton
et al., 2021; Wu et al., 2022), and training methods (Um et al., 2020; Sirignano et al., 2020; MacArt
et al., 2021; Brandstetter et al., 2022). Previous studies were further motivated by performance and
accuracy boosts offered by these methods, especially on GPU architectures (Beck & Kurz, 2021).

For hybrid simulators, neural network components are intended to run along the numerics at sim-
ulation time. Thus, long-term autoregressive stability and accuracy are required. In this setting,
the most straightforward setups, e.g. learning single update steps in a fully supervised manner, are
not ideal. Instead, integrating the numerical solver into the gradient backpropagation for machine
learning is a capable alternative (Hu et al., 2019; Holl et al., 2020b). Unrolling multiple simulator
steps during training drastically improved results compared to previously studied one-step training
based on non-differentiable simulators (Kochkov et al., 2021). This success is usually attributed
to two fundamental benefits of unrolling: (1) being aware of data shift, and (2) using information
about the long-term interactions of the underlying physical system (Um et al., 2020; Brandstetter
et al., 2022). Data shift during inference is a natural consequence of inferring long-term trajectories
(Wiles et al., 2021). For chaotic systems, we can go one step further: When the learned system
does not yield dynamics identical to the ground truth, data sampled from this ground truth distri-
bution will not fully explore the learned dynamics. This data shift can be seen as the difference
between the learned dynamics attractor and the ground truth attractor. In contrast, unrolling fully
exposes the learned attractor as the unrolled horizon grows. See Appendix B for theoretical details.
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Figure 1: Illustration of data shift and
gradient divergence over unrolling; gra-
dients of non-differentiable unrolling
diverge from the true gradient landscape
(blue), gradients of differentiable simu-
lators are prone to explosions over long
horizons (orange); shaded areas mark
potential benefits over one-step learn-
ing, with-gradient is best.

In principle, this would motivate ever longer horizons, as
illustrated in Figure 1. However, obtaining useful gradi-
ents through unrolled chaotic systems limits this horizon
in practice. The differentiability of numerical solvers is
crucial to backpropagate through solver-network chains.
Chaotic effects (Mikhaeil et al., 2022) or long recurrent
network chains (Pascanu et al., 2013) eventually lead to
gradient divergence in these backpropagation chains. As
an alternative, we study non-differentiable unrolling as
a new variant. This training modality has a high prac-
tical relevance, as it can be realized by integrating exist-
ing, non-differentiable solvers into a deep learning frame-
work. As a natural consequence, gradients diverge from
the loss landscape for long unrollings when using this
variant. Figure 1 illustrates these gradient inaccuracies
for both training modalities, while a theoretical analysis
is given in Appendix B. Our work provides new insights
about advantages and disadvantages of this previously un-
used, but practically important variant. We rigorously an-
alyze these setups using standardized solver and network
architectures. This allows disentangling the effects of training data shift introduced by forward un-
rolling and accurate long-term gradients calculated by backpropagation. We test our findings on
various physical systems with multiple network architectures, including convolutional and graph
networks. Five recommendations for unrolled neural simulators training are derived from our re-
sults:
(I) Low-dimensional problems match: Our results translate between physical systems. Provided
the systems are from a similar domain, i.e. we primarily consider turbulent chaotic systems, high-
level training behaviors translate between physical systems. This validates the approach common in
other papers, where broad studies were conducted on low-dimensional systems and only tested on
the high-dimensional target.
(II) Non-differentiable unrolling offers great value: The mitigating effects on data shift intro-
duced by unrolling can boost model performance. An unrolled but non-differentiable chain can in-
crease performance by 23% on average. While the computation costs per optimization step increase
with unrolling, the costs are still lower than full differentiable setups. In addition, non-differentiable
neural hybrid simulators do not require a new implementation of existing numerical solvers and thus
represent an attractive alternative for fields with large traditional code bases.
(III) Differentiable unrolling delivers the best accuracy: When other hyperparameters are fixed,
a differentiable unrolling strategy consistently outperforms other setups. At the cost of increased
software engineering efforts, differentiable unrolling outperforms its one-step counterpart by 38
percent on average. Long-term gradients prove to be especially important for hybrid setups where
neural networks correct numerical solvers.
(IV) Curriculums are necessary: The training of unrolled setups is non-trivial and sensitive to
hyperparameters. Reliable training setups utilize a curriculum where the unrolled number of steps
slowly increases. The learning rate needs to be adjusted to keep the amplitude of the gradient
feedback at a stable level.
(V) Parameter count matters: Network size remains the predominant factor regarding accuracy
on inter- and extrapolative tests. While large networks generally give best results, this somewhat
unsurprising finding comes with a caveat: Most neural PDE simulators directly compete with nu-
merical solvers. Thus, inference performance becomes critical. Our broad evaluation provides
convergence rates that show suboptimal scaling compared to numerical solvers, highlighting the
fundamental importance of resource-efficient architectures. Consequently, medium-sized networks
are preferable, and successful unrolling is crucial to obtain the best performance for a chosen net-
work size.

Our benchmark differentiates itself from previous work with its task and architecture-agnostic
stance. Combined with the large scale of evaluations across more than three thousand models, this
allows for extracting general trends and the aforementioned set of recommendations. Source code
and training data will be made available upon acceptance.
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2 RELATED WORK

Data-driven PDE solvers: Machine learning based simulators aim to address the limitations of
classical PDE solvers in challenging scenarios with complex dynamics (Frank et al., 2020; von
Rueden et al., 2020; Brunton et al., 2020). While physics-informed networks have gained popularity
in continous PDE modeling (Raissi et al., 2017; Duraisamy et al., 2019), many learned approaches
work in a purely data-driven manner on discrete trajectories. Several of these use advanced network
architectures to model the time-evolution of the PDE, such as graph networks (Pfaff et al., 2020;
Sanchez-Gonzalez et al., 2020), problem tailored architectures (Wang et al., 2020; Stachenfeld et al.,
2021), bayesian networks (Yang et al., 2021), transformer models (Han et al., 2021; Geneva &
Zabaras, 2022a; Li et al., 2022), or lately diffusion models (Lienen et al., 2023; Lippe et al., 2023;
Kohl et al., 2023). Variations of these approaches compute the evolution in an encoded latent space
(Wiewel et al., 2019; Geneva & Zabaras, 2020; 2022b; Brunton et al., 2021; Wu et al., 2022).

Unrolled training: Fitting an unrolled ground truth trajectory is frequently used for training au-
toregressive methods. This can be done with unrolled architectures that solely rely on networks
(Geneva & Zabaras, 2020), or for networks that correct solvers (Um et al., 2020; Kochkov et al.,
2021; MacArt et al., 2021; Melchers et al., 2023). For the latter, differentiable or adjoint solvers
allow backpropagation of gradients through the entire chain (Hu et al., 2019; Sirignano et al., 2020;
Holl et al., 2020a). The studies building on these solvers report improved network performance for
longer optimization horizons. However, differentiability is rarely satisfied in existing code bases.
A resulting open question is how much the numerical solver’s differentiability assists in training
accurate networks. As the introduction mentions, two properties of differentiable unrolling affect
the training procedure. The data shift moves the observed training data closer toward realistic in-
ference scenarios (Wiles et al., 2021; Wang et al., 2022). For instance, Brandstetter et al. (2022);
Prantl et al. (2022) proposed variations of classic truncation (Sutskever, 2013), and reported a posi-
tive effect on the network performance, where ”warm-up” steps without contribution to the learning
signal stabilize the trained networks. The differentiability of the numerical solver introduces the
second property, which allows the propagation of gradients through time evolutions. The resulting
loss landscape better approximates temporal extrapolation, which benefits model performance (Um
et al., 2020; Sirignano et al., 2020; Kochkov et al., 2021). Recently, possible downsides of differen-
tiable unrolling concerning gradient stability were investigated. While a vanishing/exploding effect
is well known for recurrent networks, it is only sparsely studied for hybrid approaches. Mikhaeil
et al. (2022) found that the stability of the backpropagation gradients aligns with the Lyapunov time
of the physical system for recurrent prediction networks. List et al. (2022) have proposed to cut the
backpropagation chain into individual sequences.

Benchmarks and datasets: Several benchmarks and datasets have been published to increase
comparability and promote standardization of machine-learned PDE simulators, especially in fluid
mechanics. A dataset of measured real-world smoke clouds can be found in (Eckert et al., 2019).
Bonnet et al. (2022) provide a high-fidelty Reynolds-averaged Navier-Stokes dataset. Furthermore,
more specialized datasets like (Xian et al., 2022) focus on fluid manipulation and robotics. Janny
et al. (2023) have generated a dataset of large-scale 2D fluid flows on non-uniform meshes and
established a benchmark for transformer models. As we focus on tasks that correct solvers, we
evaluate our models on frameworks with differentiable solvers (Holl et al., 2020a; Um et al., 2020).

3 UNROLLING PDE EVOLUTIONS

Unrolling is a common strategy for learning time sequences. A first important distinction is whether
the task at hand is a prediction or a correction task. Additionally, we formally introduce the differ-
ences between non-differentiable and differentiable unrolling in gradient calculation.

Evolving partial differential equations with neural networks: Let us consider the general for-
mulation of a PDE in the form of ∂u/∂t = F(u,∇u,∇2u, . . . ), with u representing the field
variables of the physical system. We study Neural Simulator architectures that use neural networks
for evolving discretized forms of PDEs. They are autoregressively applied to generate trajectories
of discrete ut. Prediction setups fully rely on a neural network to calculate the next timestep as
ut+1 = fθ(u

t), where θ represents the network parameters. In a prediction configuration, the net-
work fully replaces a numerical solver with the goal to improve its accuracy and performance. Sim-
ilarly, correction setups are also concerned with time-evolving a discretized PDE but additionally
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Figure 2: Left: Illustration of unrolling for a horizon m = 2 for correction and prediction chains,
including gradient flow in the backward pass for non-differentiable (blue, NOG) and differentiable
(orange, WIG) setups, note how the gradients do not flow through a time step for NOG; Right:
Contributions of networks and numerical solvers in prediction and correction paradigms

include a physical prior S that approximates the solution. The network then corrects this approxi-
mation such that ut+1 = fθ(S(ut)). These architectures represent a hybrid between numerical and
neural architectures, potentially combining advantages of both domains. Crucially, inputs and out-
puts of the networks live in the space of the solution vector field, both for predictive and corrective
setups. Thus, we use different instances of the same architecture in both setups.
Training neural networks to solve PDEs: The network models are trained to represent the un-
derlying PDE by fitting a dataset of ground truth trajectories Ũ = [ũ0 . . . ũN ]. The general training
procedure is given by as

θ∗ = argmin
θ

[N−m∑
i=1

m∑
s=1

L2

(
ũi+sτ , gs(ui)

)]
, (1)

where gs represents the recurrent application of s simulator steps. Furthermore, gs+1 = fθ(S(gs))
for correction and gs+1 = fθ(g

s) for prediction with g0 = ui. τ accounts for the relative timestep
between ground truth and predicted trajectories.

Table 1: Calculated gradients with unrolled
step s; for correction: ∂gs+1

∂gs =
∂fs

θ

∂Ss
∂Ss

∂gs ; for

prediction: ∂gs+1

∂gs =
∂fs

θ

∂gs

L ∂L/∂θ

ONE L1
2

∂L1
2

∂f1
θ

∂f1
θ

∂θ

NOG
∑
s
Ls
2

∑
s

∂Ls
2

∂fs
θ

∂fs
θ

∂θ

WIG
∑
s
Ls
2

∑
s

s∑
B=1

∂Ls
2

∂gs
∂gs

∂gB
∂gB

∂θ

We use three different methods of generating
and propagating optimization gradients for network
training. The simplest approach utilizes a one-step
(ONE) evolution in the forward process with m = 1.
An extension of the ONE setup uses unrolled tra-
jectories during training. The with-gradient (WIG)
setup differentiates this unrolled trajectory in the
backward pass. The neural network updates consist
of accumulated backpropagation paths from each
unrolled state to all previous applications of fθ. In
contrast, the no-gradient (NOG) setup assumes that
no differentiable solver is available. This is the case
in most scientific computing codebases. The NOG
setup is a learning approach that only requires inter-
facing these codebases with the network at training
time. Herein, no gradients flow from one recurrent application back to the previous one, and hence
the loss is individually computed for each unrolled step. Figure 2 contains a visualization including
the backpropagation flow through an unrolled chain. The gradient calculations for our three setups
are further denoted in table 1. Further detail of the gradient calculations is found in Appendix A.

4 PHYSICAL SYSTEMS AND ARCHITECTURES

Four physical systems were used for our learning tests. All systems are parameterized to exhibit
varying behavior, and each test set contains unseen values inside and outside the range of the training
data set. Further details of the systems and architectures are provided in Appendix C.
Kuramoto-Sivashinsky (KS): This equation is a fourth-order chaotic PDE. The domain size,
which leads to more chaotic behavior and shorter Lyapunov times for larger values (Edson et al.,
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Figure 3: Visualizations of our physical systems, from left to right: KS equation state, KOLM
vorticity field, WAKE vorticity field, AERO Mach numbers

2019), was varied across training and test data sets. The ground truth solver uses an exponential
RK2 integrator (Cox & Matthews, 2002), the base solver for correction resorts to a first order ver-
sion that diverges within 14 steps on average. We base most of our empirical tests on this KS case
since it combines challenging learning tasks with a small computational footprint.

Wake Flow (WAKE): Our second system is a two-dimensional flow around a cylinder, gov-
erned by the incompressible Navier-Stokes equations. The dataset consists of Karman-Vortex streets
with varying Reynolds numbers, and is simulated using a Chorin projection with operator splitting
(Ferziger et al., 2019). The training data is generated with second order advection, while learning
tasks use a truncated spatial resolution (4×), and first order advection as correction base solver.

Kolmogorov Flow (KOLM): Thirdly, we study a periodic two-dimensional Kolmogorov flow
(Givental et al., 2009) also following the incompressible Navier-Stokes equations. We use a more
involved semi-implicit numerical scheme (PISO by (Issa, 1986)) for this setup. Similarly to the
WAKE system, the KOLM learning cases are based on a spatiotemporal resolution truncation with a
ratio of 4× in both space and time, and the Reynolds number is varied across training and test cases.

Compressible Aerofoil flow (AERO): In the final physical system, we conduct an investigation
into compressible flow around an aerofoil, a task centered on pure prediction. We utilize the open-
source structured-grid code CFL3D (Rumsey et al., 1997; Rumsey, 2010) to solve the compressible
Navier-Stokes equations, thus generating our ground truth dataset. Here, we vary the Mach number
while keeping the Reynolds number constant.

Neural Network Architectures: The following benchmarking results primarily employ two pop-
ular architectures: a message-passing graph network (Scarselli et al., 2008; Sanchez-Gonzalez et al.,
2020) and a convolutional ResNet (He et al., 2016). Both use residual blocks with skip-connections.
The number of layers varies in line with classical ResNet architectures to obtain network sizes span-
ning several orders of magnitude. Additional U-net results are reported in Appendix D.

5 RESULTS

Our results compare the three training methods ONE, NOG, and WIG in various scenarios. The fig-
ure titles mark the physical system, whilst subscripts represent the network architecture (graph:
graph network, conv: convolutional ResNet), and superscripts differentiate between correction
(corr) and prediction (pred) tasks. For each test, we train multiple models (typically 8 to 20) for
each setup that differ only in terms of initialization (i.e. random seed). The evaluation metrics were
applied independently for outputs generated by each of the models, which are displayed in terms of
mean and standard deviations below. This indicates the expected performance of a training setup
and the reliability of obtaining this performance. A Welch’s test for statistical significance was per-
formed for the resulting test distributions, and p-values can be found alongside all tabulated data in
Appendix F. We focus on the L2 loss as a evaluation metric for our tests. Other test metrics lead to
similar conclusions and are shown in Appendix D.

5.1 DISTRIBUTION SHIFT AND LONG-TERM GRADIENTS

Agnosticisms: We first focus on establishing a common ground between the different variants by
focusing on correction tasks for the physical systems. Training over 400 models with different archi-
tectures, initialization, and parameter counts, as shown in figure 4, reveals a first set of fundamental
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Figure 4: Inference accuracy measured in L2 for correction setups on KS, KOLM, and WAKE sys-
tems; displayed models were trained with ONE(brown), NOG(blue), WIG(orange); across network
architectures (graph networks for KS, conv-nets otherwise), and network sizes WIG has lowest er-
rors; one 32k ONE model diverged in the KOLM case that NOG and WIG kept stable
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Figure 5: L2 error of NOG and WIG setups relative to the error achieved by ONE (i.e. LNOG
2 /LONE

2
and LWIG

2 /LONE
2 ); WIG training reliably produces more accurate results than NOG and ONE

properties of training via unrolling: it reduces inference errors for graph- and convolutional net-
works, despite changes in dimensionality, the order of the PDE, and the baseline solver architecture.
For the vast majority of tests, models trained with unrolling outperform the corresponding one-step
baselines. Unrolling is also versatile concerning the type of the modeled correction, as networks
were tasked to either learn convergence order truncations with graph networks (KS), or spatial grid
coarsening errors via CNNs (KOLM, WAKE). These findings are not new (Bar-Sinai et al., 2019;
Um et al., 2020), but confirm that our setup matches previous work. They already motivate rec-
ommendation (I), i.e. that testing unrolled architectures can be performed efficiently on cheaper
low-dimensional problems, such as the KS system.

Disentangling Contributions: Next, we investigate the effect of backpropagating gradients in the
unrolled chain of NN and simulator operations. The non-differentiable NOG setup already addresses
the data shift problem, as it exposes the learned dynamics’ attractor at training time. The inference
errors are visualized in figure 4. On average, training with NOG over ONE training yields an er-
ror reduction of 23%, in line with recommendation II. For large architectures, inference accuracy
increases and learned and ground truth systems become more alike. In these cases, their attractors
are similar, and unrolling is less crucial to expose the learned attractor. However, NOG training
still uses crude gradient approximations, which makes this variant fall behind for large sizes. While
NOG models remain closer to the target than ONE in all other cases, the results likewise show that
the differentiable WIG setup further improves the performance. These networks reliably produce the
best inference accuracy. Due to the stochastic nature of the non-linear learning processes, outliers
exist, such as the 0.5m NOG model of the KOLM system. Nonetheless, the WIG models consis-
tently perform best and yield an average improvement of 38% over the ONE baseline. Note that this
error average behavior matches best-performing networks’ behavior (Appendix D).

To conclude, our results allow for disentangling the influence of data shift and gradient divergence.
As all training modalities, from data sets to random seeds, were kept constant, the only difference be-
tween NOG and WIG is the full gradient information provided to the latter. As such, we can deduce
from our measurements that reducing the data shift contributes to the aforementioned improvement
of 23%, while long-term gradient information yields another improvement of 15% (recommenda-
tion III). Figure 5 highlights this by depicting the accuracy of the unrolled setups normalized by the
respective ONE setup for different model sizes and physical systems. WIG yields the best L2 reduc-
tions. NOG in certain cases even performs worse with factors larger than one, due to its mismatch
between loss landscape and gradient information, but nonetheless outperforms ONE on average.

Unrolling horizons: The effects of unrolling on data shift and gradient divergence depend on the
unrolled length m, as summarized in figure 1. A long horizon diminishes the data shift. At the same
time, gradient inaccuracy impairs the learning signal in the NOG case, while exploding gradients can
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Figure 6: Left: variation of unrolling horizons m trained for the KS system; all models were ini-
tialized with the leftmost ONE setup; with NOG training, the error increases and explodes for
m > 6; WIG remains stable for longer horizons, diverges at m > 18; Middle: different cur-
riculums for the KOLM system; starting the training with large m leads to unfavorable network
states; Right: Inference accuracy without learning rate schedule relative to with scheduling, i.e.
Lno−schedule
2 /Lschedule

2 ; All models benefit from learning rate scheduling, indicated by values are
larger than one, and especially for larger models the schedule is crucial

have a similar effect for long backpropagation chains in the WIG setup. We test this hypothesis by
varying the unrolled training horizon. The results are visualized in figure 6. For increasing horizons,
the inference performance of NOG variants improves until a turning point is reached. After that,
NOG performance deteriorates quickly. In the following regime, the stopped gradients cannot map
the information gained by further reducing the data shift to an effective parameter update. The
quality of the learning signal deteriorates. This is mitigated by allowing gradient backpropagation
through the unrolled chain in the WIG setup. Herein, the inference accuracy benefits from even
longer unrollings, and only diverges for substantially larger m when instabilities from recurrent
evaluations start to distort the direction of learning updates. These empirical observations confirm
the theoretical analysis from Appendix B that went into Figure 1: There exist unrolling horizons
for which training performance is improved for both NOG and WIG, while this effective horizon is
longer for WIG.

As training with long unrolling poses challenges, we found a curriculum-based approach with an
incremental increase of the unrolling length m at training time to be essential (Um et al., 2020; Lam
et al., 2022). Figure 6 shows how long unrollings in the initial training phases can hurt accuracy. At
the same time, learning rate scheduling is necessary to stabilize gradients (recommendation IV).

Gradient Stopping: Cutting long chains of gradients was previously proposed as a remedy for
training instabilities of unrolling (List et al., 2022; Brandstetter et al., 2022; Suh et al., 2022). Stop-
ping gradients for a number of initial steps (Brandstetter et al., 2022; Prantl et al., 2022) is indicated
by the parameter w describing the number of warm-up steps for which gradients are discarded.

m=6
w=1

w=2
v=

2
v=

3 init

m=6 init

0.3

0.4

0.5

0.6

2

KScorr
conv ONE

NOG
WIG
GSw

GSv

init

Figure 7: Gradient stopping techniques

As shown in figure 7, setting w=1 can yield mild
improvements over training over the full chain if no
curriculum is used. Dividing the backpropagation
into subsections (List et al., 2022) likewise does not
yield real improvements in our evaluation. We di-
vided the gradient chain into two or three subsec-
tions, identified by the parameter v in figure 7. The
best performance is obtained with the full WIG setup
and curriculum learning, where unrolled models are
pre-trained with m=1 models. This can be attributed
to the more accurate gradients of WIG, as all gradient-stopping variants above inevitably yield a
mismatch between loss landscape and learning updates (recommendation III).

Size: Figure 4 shows clear, continuous improvements in accuracy for increasing network sizes.
This effect dominates the absolute error metrics. In line with Liu et al. (2022), we do not observe any
”overfitting” effects even for models with millions of parameters applied to low-dimensional tasks
like the KS system. Figure 8 estimates the convergence rate of the correction networks with respect
to the parameter count to be n−1/3. This convergence rate is poor compared to classic numerical
solvers, albeit better rates could potentially be achieved by tailoring network architectures to specific
problems. Nonetheless, a direct trade-off between numerical solvers and learned models can often
be made for correction tasks. Thus, the benefits of NOG and WIG training are especially important
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Figure 8: Accuracy convergence over network size, correction networks converge with n−1/3
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Figure 9: Prediction setups with inference accuracy measured in terms of L2 on KS and WAKE;
NOG performs well for small network sizes, while WIG is show advantages for larger ones

for small- to medium-sized models that are relevant for most real-world applications where machine
learning competes with purely numerical approaches (recommendation V). Hybrid approaches could
benefit from the scaling of numerical solvers and the intrinsic benefits of learned models.

5.2 VARIED LEARNING TASKS

To broaden the investigation of the unrolling variants, we vary the learning task by removing the nu-
merical solver from training and inference. This yields prediction tasks where the networks directly
infer the desired solutions. Apart from this increased difficulty, all other training modalities were
kept constant, i.e., we likewise compare non-differentiable NOG models to full unrolling (WIG).
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KSpred
conv
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2
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graph

ONE NOG WIG n 1/4

Figure 10: Accuracy convergence over network size,
prediction converges with n−1/4

Prediction: The parameter count of
models still dominates the accuracy but
in contrast to before, the NOG setup per-
forms better than both alternatives for
smaller network sizes. This is shown in
figure 9. The inference errors for the pre-
diction setup are roughly an order of mag-
nitude larger than the respective correction
errors. This indicates that pure predic-
tions more quickly diverge from the ref-
erence trajectory, especially for small net-
work sizes. The deteriorated performance of WIG can be explained by these larger differences be-
tween the inferred state and the references, leading to suboptimal gradient directions. For the setups
in Figure 9, NOG training achieves improvements of 31%, and WIG improves on this by a further
3.6%. In general, unrolling maintains strong benefits in prediction setups, but differentiability is less
benefitial than in correction setups.
Smooth Transition: While the learning task is typically mandated by the application, our setup
allows us to investigate the effects of unrolling for a smooth transition from prediction to increas-
ingly simple correction tasks, in line with figure 2. In the pure prediction case, the physical prior
does not model any physics, i.e., is an identity operator. We transition away from pure predic-
tions by providing the network with improving inputs by increasing the time step of the reference
solver for correction tasks. On the other end of the spectrum the numerical solver computes the
full time step, and the neural network now only has the trivial task to provide an identity func-
tion. Since the total error naturally decreases with simpler tasks, figure 11 shows the performance
normalized by the task difficulty. The positive effects of NOG and especially WIG training carry
over across the full range of tasks. Interestingly, the NOG version performs best for very simple
tasks on the right sides of each graph. This is most likely caused by a relatively small mismatch of
gradients and energy landscape. In our experiments, the task difficulty was changed by artificially
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Figure 11: Transition from prediction to correction; a smooth transition in modeling difficulty is
achieved by varying the timestep of the numerical solver embedded in the correction step γ =
∆tS/∆t̃, with the solver timestep ∆tS and the ground truth timestep ∆t̃

varying the prior’s accuracy. This mimics the effects of basing the correction setups on different
numerical schemes. Since unrolling manifests a stable performance improvement across all priors,
it promises benefits for many correction setups in other applications. The results above indicate that
a 5x accuracy boost can be achieved by integrating low-fidelity physics priors in a NOG setup.
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Figure 12: Left: Prediction of the AERO system,
absolute errors of ONE, NOG, and WIG; Right:
Relative errors with respect to ONE

Changing the Physical System: The AERO
dataset comprises aerofoil flows in the tran-
sonic regime and features shocks, fast-changing
vorticial structures, and diverse samples around
the critical Ma = 0.8. As such, we deployed
a modern attention-based U-Net (Oktay et al.,
2018). As a complex, large-scale test scenario,
our learning setups for the AERO system im-
plement the recommendations we derived from
the previous results. Figure 12 shows the in-
ference evaluation of our trained models. Once
again, unrolling increases accuracy at inference
time. On average, unrolling improves the infer-
ence loss by up to 32% in the AERO case. The results reflect our recommendations: Network size
has the largest impact, and choosing the right size balances performance and accuracy (V). Addition-
ally, our models were trained with a learning rate scheduled curriculum to achieve the best results
(IV), details of which are found in Appendix C.4. Training on the AERO system resembles the
behavior of lower-dimensional problems, e.g. the KS system (I). Similar to our previous prediction
tasks, long-term gradients are less crucial, but still deliver the best models (III). However, unrolling
itself is essential for stable networks (II).

6 CONCLUSION

We have conducted in-depth empirical investigations of unrolling strategies for training neural PDE
simulators. The inherent properties of unrolling were deduced from an extensive test suite spanning
multiple physical systems, learning setups, network architectures, and network sizes. Our findings
rendered five best practices for training autoregressive neural simulators via unrolling. Additionally,
our test sets and differentiable solvers are meant to serve as a benchmark: The broad range of
network sizes for popular architectures as well as the selection of common physical systems as test
cases yield a flexible baseline for future experiments with correction and prediction tasks.

Nevertheless, there are limitations to our scope. Our physical systems live in the domain of non-
linear chaos and are primarily connected to fluid mechanics. As a consequence, there is naturally
no guarantee that our results will directly carry over to other domains. Additionally, we mentioned
the relevance of our results to the scientific computing community. Our recommendations can help
prioritize implementation efforts when designing unrolled training setups. At the same time, only
our AERO system matches the usual complexity in scientific computing. Lastly, we have only stud-
ied a subset of the relevant hyperparameters. In the context of unrolling, variations such as network
width and depth, advanced gradient-stopping techniques, and irregularly spaced curriculums could
be impactful. These topics are promising avenues for future research to further our understanding
of autoregressive neural networks for scientific applications.
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APPENDIX

A GRADIENT CALCULATION

A.1 CORRECTION

The network parameter optimization was defined in Equation 1. For one learning iteration, a loss
was accumulated over an unrolled trajectory. We can write this total loss over the unrolled trajectory
as a function of g(ui) = fθ(S(ui)) such that

L =

s∑
i=1

L2(ũ
i+τs, gs(ui)) =

s∑
i=1

Ls, (2)

where gs represents the recurrent application of multiple machine learning augmented simulation
steps, and Ls represents the loss evaluated after that step. Note that the full backpropagation through
this unrolled chain requires a differentiable solver for the correction setup. To test the effect of using
a differentiable solver, we introduce two different strategies for propagating the gradients ∂Lu

∂θ . The
differentiable setup can calculate the full optimization gradients by propagating gradients through
the solver. The gradients are thus evaluated as

∂Ls

∂θ
=

s∑
B=1

[
∂Ls

∂gs

(B+1∏
b=s

∂gb

∂f b
θ

∂f b
θ

∂Sb

∂Sb

∂gb−1

)
∂gB

∂fB
θ

∂fB
θ

∂θ

]
. (3)

We refer to this fully differentiable setup as WIG. In contrast, if no differentiable solver is available,
optimization gradients can only propagate to the network application, not through the solver. The
gradients are thus evaluated as

∂Ls

∂θ
=

∂Ls

∂gs
∂gs

∂fs
θ

∂fs
θ

∂θ
. (4)

This setup is referred to as NOG. Most existing code bases in engineering and science are not fully
differentiable. Consequentially, this NOG setup is particularly relevance, as it could be implemented
using existing traditional numerical solvers.

A.2 PREDICTION

Prediction operates on the same network parameter optimization from Equation 1. The total loss
over the unrolled trajectory is

L =

s∑
i=1

L2(ũ
i+τs, fs

θ (u
i)) =

s∑
i=1

Ls, (5)

where fs
θ represents the recurrent application of the network and Ls represents the loss evaluated af-

ter that step. To test the effect of using long-term gradients, we introduce two different strategies for
propagating the gradients ∂Lu

∂θ . The differentiable setup can calculate the full optimization gradients
by propagating gradients through the solver. The gradients are thus evaluated as

∂Ls

∂θ
=

s∑
B=1

[
∂Ls

∂fs
θ

(B+1∏
b=s

∂f b
θ

∂f b−1
θ

)
∂fB

θ

∂θ

]
. (6)

We refer to this fully differentiable setup as WIG. In contrast, if no differentiable solver is available,
optimization gradients can only propagate to the network application, not through the solver. The
gradients are thus evaluated as

∂Ls

∂θ
=

∂Ls

∂fs
θ

∂fs
θ

∂θ
. (7)

This setup is referred to as NOG. Most existing code bases in engineering and science are not fully
differentiable. Consequentially, this NOG setup is particularly relevance, as it could be implemented
using existing traditional numerical solvers.
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B UNROLLING CHAOTIC SYSTEMS

The following sections comprise a theoretical analysis of learning chaotic dynamics. For ease of
notation, we conduct this analysis for predictive setups. Such learning tasks focus on training a
mapping fθ that reproduces the dynamics of a ground truth f , without any numerical solver in the
loop. These considerations can be trivially expanded to correction setups.

B.1 DATA SHIFT

Suppose we study a chaotic dynamical system ũn+1 = f(ũn,∇ũ,∇2ũ, ...), where ũ represents a
discrete ground-truth state. The chaotic dynamics drive this system to an attractor Af representing
a subset of the phase space of ũ. In prediction and correction tasks, a neural simulator learns the
dynamics

un+1 = fθ(un,∇u,∇2u...), (8)

which approximates the evolution of the ground truth system. Since perfect reproduction of f is
generally not achieved, differences between the trajectories of ũ and u exist, leading to Af ̸= Afθ .
Crucially, there is no guarantee for ONE training that the states u observed during training suffi-
ciently represent Afθ . In other words,

∀ũi ∈ Af , Afθ : lim
N→∞

{fθ(ũ0), fθ(ũ1), ..., fθ(ũN )} ≠ Afθ . (9)

This means that we are not guaranteed to explore the attractor of the learned system Afθ when only
observing states based on one discrete evolution of fθ, regardless of the dataset size N .

Let us now suppose we unroll m steps during training such that um = fm
θ (u), where fm

θ denotes
the autoregressive evolution of m steps. Based on the definition of the attractor Afθ we can state
that

lim
m→∞

{f0
θ (ũ), f

1
θ (ũ), ..., f

m
θ (ũ)} = Afθ . (10)

In contrast to ONE training, unrolled training thus exposes the inference attractor Afθ at training
time for sufficiently large m. Precisely the difference between the observed training set (sampled
from Af ) and the inference attractor Afθ is commonly known as data shift in machine learning. The
dark red curve in Figure 1 shows how this data shift is thus reduced by choosing larger m.

B.2 GRADIENTS IN UNROLLED SYSTEMS

In Table 1 and Appendix A we derived the precise gradient equations for NOG and WIG setups.
These are

∂LNOG

∂θ
=

m∑
s=1

∂Ls

∂fs
θ

∂fs
θ

∂θ
,

∂LWIG

∂θ
=

m∑
s=1

s∑
B=1

[
∂Lb

∂f b
θ

(B+1∏
b=s

∂f b
θ

∂f b−1
θ

)
∂fB

θ

∂θ

]
. (11)

Note that WIG unrolling calculates the true gradient. We can thus derive the gradient inaccuracy of
the NOG setup as

∂LWIG

∂θ
− ∂LNOG

∂θ
=

m∑
s=1

s−1∑
B=1

[
∂Lb

∂f b
θ

( B+1∏
b=s−1

∂f b
θ

∂f b−1
θ

)
∂fB

θ

∂θ

]
(12)

We can now integrate a property of chaotic dynamics derived by Mikhaeil et al. (2022). Herein, the
authors show that for chaotic systems, the Jacobians Js =

∂fs
θ

∂fs−1
θ

have eigenvalues larger than 1 in
the geometric mean. Thus, ∣∣∣∣∣∣∣∣ B+1∏

b=s−1

∂f b
θ

∂f b−1
θ

∣∣∣∣∣∣∣∣ > 1 (13)

holds in this case. This means that the gradient inaccuracy increases with the unrolling. We can
also observe that the NOG gradient inaccuracy grows with ∝ m2, while the NOG gradients only
linearly depend on m. As a consequence, the gradients computed in the NOG system diverge from
the true (WIG) gradients for increasing m, as shown with the blue line in Figure 1. The gradient
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approximations used in NOG thus do not accurately match the loss used in training. This hinders
the network optimization.

Let us finally consider the full gradients of the WIG setup themselves. We can use Theorem 2 from
Mikhaeil et al. (2022), which states that

lim
m→∞

∣∣∣∣∂fm
θ

∂f0
θ

∣∣∣∣ = ∞ (14)

for almost all points on Afθ . The gradients of the WIG setup explode exponentially for long horizons
m, but less quickly than those of NOG, as indicated by the orange line below the blue one in Figure
1. As a direct consequence, the training of the WIG setup becomes unstable for chaotic systems
when m grows to infinity.

We can summarize the above findings as follows. Unrolling training trajectories for data-driven
learning of chaotic systems reduces the data-shift, as the observed training samples converge to the
learned attractor. At the same time, long unrollings lead to unfavorable gradients for both NOG
and WIG setups. A range of medium-sized unrolling horizons might exist, where the benefits of
reducing the data-shift outweigh instabilities in the gradient. These setups are studied in the paper
and exposed in figure 6 for the KS system.

C DETAILS OF PHYSICAL SYSTEMS AND ARCHITECTURES

C.1 KURAMOTO-SIVASHINSKY CASE (KS)
Numerical data: The KS equation is a fourth-order stiff PDE governed by

∂u

∂t
+ u

∂u

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0, (15)

with simulation state u, time t, and space x living in the domain of size X . The fourth-order term
leads to a highly chaotic behavior. The equation was simulated using a second-order exponential
time-stepping solver following the ETRK2 scheme in (Cox & Matthews, 2002). The domain was
discretized with 48 grid-points, and timesteps were set to 1. The physical domain length X is the
critical parameter in the KS equation. The training dataset was computed for a range of X =
[5.6, 6.4, 7.2, 8, 8.8, 9.6, 10.4]. A sequence of 5000 steps was computed for each domain length.
The numerical solves and network training were performed in PyTorch (Paszke et al., 2019).

Neural Network Architectures: We use two architectures for learning tasks with the KS case: a
graph-based (GCN) and a convolutional network (CNN). Both networks follow a ResNet-like struc-
ture (He et al., 2016), have an additive skip connection from input to output, and are parameterized
in terms of their number of features per message-passing step or convolutional layer, respectively.
They receive 2 channels as input, a normalized domain size X and u, and produce a single chan-
nel, the updated u, as output. The GCN follows the hierarchical structure of directional Edge-Conv
graph nets Wang et al. (2019); Li et al. (2019) where each Edge-Conv block is comprised of two
message-passing layers with an additive skip connection. The message-passing concatenates node,
edge, and direction features, which are fed to an MLP that returns output node features. At a high
level, the GCN can be seen as the message-passing equivalent of a ResNet. These message passing
layers in the GCN and convolutional layers in the CNN are scaled in terms of whole ResBlocks,
i.e., two layers with a skip connection and leaky ReLU activation. In the following we denote the
number of blocks as network depth, and specify the network architectures with a tuple containing
(features, depth). The networks feature additional linear encoding and decoding layers for input and
output. The architectures for GCN and CNN were chosen such that the parameter count matches, as
listed in table 2.

For both GCN and CNN the smallest network size with a depth indicated by ”-” is a special case
using a single non-linear layer with the listed number of features. Hence, this represents the smallest
possible architecture for our chosen range of architectures, consisting of a linear encoding, one non-
linear layer followed by a linear decoding layer.

Network Training: Every network was trained for a total of 50000 iterations of batchsize 16. The
learning rate was initially set to 1× 10−4, and a learning rate decay of factor 0.9 was deployed after
every 2000 iterations during training. The KS systems was set up to quickly provide substantial
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Table 2: KS Network Architectures and Parameter Counts

Architecture: .5k* .5k 2k 33k .2M 1M

GCN (features, depth): (46,-) (9,1) (14,2) (31,8) (63,12) (126,16)
GCN Parameters: 511 518 2007 33,578 198,770 1,037,615

CNN (features, depth): (48,-) (8,1) (12,2) (26,8) (52,12) (104,16)
CNN Parameters: 481 481 1897 33125 196457 1042705

changes in terms of simulated states. As a consequence, short unrollments of m = 3 were suffi-
cient during training unless otherwise mentioned. For this unrollment number, no curriculum was
necessary.

For fairness across the different training variants the KS setup additionally keeps the number of
training data samples constant for ONE versus NOG and WIG. For the latter two, unrolling means
that more than one state over time is used for computing the learning gradient. Effectively, these
two methods see m times more samples than ONE for each training iteration. Hence, we increased
the batch size of ONE training by a factor of m. However, we found that this modification does not
result in an improved performance for ONE in practice.

For the tests shown in figure 6 of the main paper we varied the training data set size, reducing the
number of time steps in the training data set to 1000, while keeping the number of training iterations
constant. The largely unchanged overall performance indicates that the original data set could be
reduced in size without impeding the performance of the trained models.

Network Evaluation: We computed extra- and interpolative test sets for the domain length X .
The extrapolation uses X = [4.8, 11.2], whilst interpolation is done for X = [6.8, 9.2].

For our L2 results, we initialized autoregressive runs with 20 initial conditions for each X , accu-
mulated the L2 for sequences of 40 steps, and averaged over all extra- and interpolative cases. The
standard deviation is computed over the total set of tests. The time until decorrelation was calculated
by running an autoregressive inference sequence. The steps were counted until the cross-correlation
between the inferred state and the reference dropped below 0.8. The statistics of the reached step-
counts were gathered over all test cases, just like for the L2. The divergence time was defined as the
number of inference steps until L2 > 500. Again, statistics were gathered over all test cases.

C.2 UNSTEADY WAKE-FLOW CASE (WAKE)
Numerical data: The WAKE case uses numerical solutions of the incompressible Navier-Stokes
equations

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u,

∇ · u = 0,
(16)

with the two-dimensional velocity field u and pressure p. Simulations were run for a rectangular
domain with a 2:1 side aspect ratio, and a cylindrical obstacle with a diameter of LD = 0.1 placed
at (0.5, 0.5) with a constant bulk inflow velocity of U = 1. The Reynolds number is defined as
Re = ULD

ν . The ground truth data was simulated with operator splitting using a Chorin-projection
for pressure and second-order semi-Lagrangian advection Bridson (2015). The physical behavior
is varied with the Reynolds number by changing the viscosity of the fluid. The training data set
contains 300 time steps for six Reynolds numbers Re = [97.5, 195, 390, 781.25, 1562.5, 3125] at
resolution 256, 128. For learning tasks, these solutions are down-sampled by 4× to 64, 32. The
solver for the correction uses the same solver with a more diffusive first-order advection step. The
numerical solves and network training were performed in PyTorch (Paszke et al., 2019).

Neural Network Architectures: This test case employs fully-convolutional residual networks (He
et al., 2016). The architectures largely follow the KS setup: the neural networks have a ResNet
structure, contain an additive skip connection for the output, and use a certain number of ResBlocks
with a fixed number of features. The smallest network uses 1 ResBlock with 10 features, resulting
in 6282 trainable parameters. The medium-sized network has 10 ResBlocks with 16 features and
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66,178 parameters, while the large network has 20 blocks with 45 features resulting in more than 1
milllion (1,019,072) parameters.

Network Training and Evaluation: The networks were trained for three steps with 30000 itera-
tions each, using a batch size of 3 and a learning rate of 1×10−4. The training curriculum increases
the number of unrolled steps (parameter m of the main text) from m = 1, to m = 4 and then
m = 16. Each stage applies learning rate decay with a factor of 1/10.

L2 errors are computed and accumulated over 110 steps of simulation for 12 test cases with pre-
viously unseen Reynolds numbers: three interpolative ones Re = [2868.5, 2930, 2990] and nine
extrapolative Reynolds numbers Re = [3235, 3174, 3296, 3845, 3906, 3967, 4516.5, 4577.5].

C.3 KOLMOGOROV TURBULENCE (KOLM)
Numerical data: The two-dimensional Kolmogorov turbulence is governed by the incompressible
Navier-Stokes equations with an additive forcing term

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f ,

∇ · u = 0,
(17)

where u and p are velocity and pressure fields respectively. The additive forcing causes the formation
of a shear layer, whose instability onset develops into turbulence (Givental et al., 2009). The forcing
was set to f = [sin(kx ∗ y), 0]T with wavenumber kx = 6. The simulation used a second-order
semi-implicit PISO scheme (Issa, 1986). The physical domain size was set to Lx = Ly = 2π and
discretized by a 128× 128 grid. The timestep was set to ∆t = 0.005 for the high-resolution ground
truth dataset, which maintained a Courant number smaller than 0.5. The training dataset is based on
a Reynolds number variation of Re = [300, 400, 500, 700, 800, 900]. For each Reynolds number,
6000 frames were added to the dataset. The numerical solves and network training were performed
in Tensorflow (Abadi, 2016).

Neural Network Architectures: The KOLM networks are also based on ResNets. In each ResNet
block, data is processed through convolutions and added to a skip connection. In contrast to KS and
WAKE architectures, the number of features varies throughout the network. Four different network
sizes were deployed, details of which are listed in Table 3. The network sizes in the KOLM case
range from 32 thousand to 1 million.

Table 3: KOLM Network Architectures and Parameter Counts

Architecture # Parameters # ResNet Blocks Block-Features

CNN, 32k 32369 5 [8, 20, 30, 20, 8]
CNN, 0.1M 115803 7 [8, 16, 32, 64, 32, 16, 8]
CNN, 0.5M 461235 7 [16, 32, 64, 128, 64, 32, 16]
CNN, 1M 1084595 9 [16, 32, 64, 128, 128, 128, 64, 32, 16]

Network Training and Evaluation: A spatiotemporal downsampling of the ground truth data
formed the basis of the training trajectories. Thus, training operated on a 4× downsampled resolu-
tion with 4 times larger time-steps, i.e. 32 × 32 grid with ∆t = 0.02. The networks were trained
with a curriculum that incrementally increased the number of unrolled steps such that m = [1, 2, 4],
with an accompanying learning rate schedule of [10−4, 10−5, 10−6]. Additionally, a learning rate
decay with factor 0.9 after an epoch of 36 thousand iterations. For each m, 144 thousand iterations
were performed. The batch size was set to 1.

L2 errors are computed and accumulated over 250 steps of simulation for 5 test cases with previously
unseen Reynolds numbers: Re = 600 for interpolation and Re = 1000 for extrapolation.

C.4 AERO CASE

Numerical data: The governing equations for the transonic flow over a NACA0012 airfoil are
non-dimensionalized with the freestream variables (i.e., the density ρ∞, speed of sound a∞, and the
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chord length of the airfoil c), and can be expressed in tensor notation as

∂ρui

∂xi
= 0

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂τxixj

∂xj

∂(ρE + p)ui

∂xi
=

∂(−qi + ujτxixj)

∂xi

(18)

where the shear stress (with Stokes’ hypothesis) and heat flux terms are defined as

τxixj
= µ

M∞

Re∞
[(
∂ui

∂xj
+

∂uj

∂xi
)− 2

3

∂uk

∂xk
δij]

and
qxi = − µ

Pr

M∞

Re∞(γ − 1)

∂Θ

∂xi
.

Here, Reynolds number is defined as Re∞ = ρ∞
√

u2
∞ + v2∞c/µ∞; γ is the ratio of specific heats,

1.4 for air; the laminar viscosity µ is obtained by Sutherland’s law (the function of temperature), and
the turbulent viscosity µT is determined by turbulence models; laminar Prandtl number is constant,
i.e. Pr = 0.72. The relation between pressure p and total energy E is given by

p = (γ − 1)
[
ρE − 1

2
ρuiui

]
.

Note also that from the equation of state for a perfect gas, we have p = ρa2/γ and temperature
Θ = a2. As we perform 2D high-resolution quasi-direct numerical simulations, no turbulence
model is employed.

The finite-volume method numerically solves the equations using the open-source code CFL3D.
The mesh resolution 1024 × 256 is kept the same for cases, i.e. 256 grid cells in the wall-normal
direction, 320 grid cells in the wake, and 384 grid cells around the airfoil surface. The convective
terms are discretized with third-order upwind scheme, and viscous terms with a second-order central
difference.

An inflow/outflow boundary based on one-dimensional Riemann invariant is imposed at about 50c
away from the airfoil in the (x, y) plane. The grid stretching is employed to provide higher resolution
near the surface and in the wake region, and the minimal wall-normal grid spacing is 6 × 10−4 to
ensure y+n < 1.0. A no-slip adiabatic wall boundary condition is applied on the airfoil surface. The
non-dimensional time step is 0.008c/U∞.

In the transonic regime, airflow behavior becomes more complex due to the formation of shock
waves and supersonic and subsonic flow areas on the airfoil surfaces. When the Mach number is
below M = 0.77, the unsteadiness in the flowfield is mainly caused by the high-frequency vortex
shedding. At around M = 0.8, a series of compression waves coalesce to form a strong shock
wave, and the flow structures are dominated by alternately moving shock waves along the upper
and lower sides of the airfoil. For M > 0.88, the strong shock waves become stationary on both
surfaces. To cover all possible flow regimes, the samples in the training dataset are generated at
M = [0.75, 0.8, 0.825, 0.88, 0.9], and the test samples are performed at M = 0.725 and M =
0.775.

The snapshots are saved at every four simulation steps (i.e., dtsampling = 0.032c/U∞) and spatially
downsampled by 4x and 2x in the circumferential and wall-normal directions, respectively. In the
case of M = 0.85, there are 1000 snapshots; for other cases, there are 500 snapshots.
Neural Network Architectures: We implemented Attention U-Net (Oktay et al., 2018). It con-
sists of three encoder blocks, each progressively capturing features from the input image through
convolution and downsampling. Following the encoder blocks, there’s a bottleneck block for in-
formation compression with a higher number of channels. Subsequently, the architecture includes
three decoder blocks, which use skip connections to integrate features from both the bottleneck and
corresponding encoder blocks during the upscaling process. These decoder blocks gradually reduce
the number of channels, culminating in a 1x1 convolutional output layer that generates pixel-wise
predictions. We train networks of varying sizes by adjusting the number of features, as indicated in
Table 4. The training was performed in PyTorch (Paszke et al., 2019).
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Table 4: AERO Network Architectures and Parameter Counts

Architecture # Parameters Features in encoder & bottleneck blocks

UNet, 0.5m 511332 [16, 32, 64] [128]
UNet, 2.0m 2037956 [32, 64, 128] [256]
UNet, 8.1m 8137092 [64, 128, 256] [512]

Network Training and Evaluation: The model is trained with Adam and a mini-batch size of 5,
with training noise, for up to 500k iterations. A learning rate of 6 × 10−4 is used for the first 250k
iterations and then decays exponentially to 6× 10−5. The training curriculum increases the number
of unrolled steps from m = 1 to m = 4 and then m = 9.

L2 errors are computed and accumulated over 200 prediction steps (equivalent to 800 simulator
steps) of simulation for two test cases with previously unseen Mach numbers: M = 0.725 and
M = 0.775, corresponding to shock-free case and near-critical condition case.

D ADDITIONAL RESULTS

D.1 INTERPOLATION AND EXTRAPOLATION TESTS

Interpreting physical hyperparameters is necessary for models to generalize to extrapolative test
cases. We want to test whether extrapolation to new physical hyperparameters benefits from un-
rolling or long term gradients. In the main sections, all evaluations accumulated their results from
interpolative and extrapolative test cases. In this section, we explicitly differentiate between inter-
polation and extrapolation tests. Figures 13, 14, 15, and 16 compare the model performance on
interpolative and extrapolative test cases with respect to the physical parameters and depicts perfor-
mance relative to the ONE baseline for various model sizes. Overall accuracy is worse on the harder
extrapolative test cases. Similarly to the combined tests from the main section WIG performs best on
average, both on interpolative or extrapolative data. However, the long-term gradients introduced by
this method do not seem to explicitly favor inter- or extrapolation. Nonetheless, the positive aspects
of WIG training are not constrained to interpolation, but successfully carry over to extrapolation
cases.
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Figure 13: Comparison of L2 errors on interpolative and extrapolation test sets for GCNs on KS
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Figure 14: Comparison of L2 errors on interpolative and extrapolation test sets for CNNs on KS
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Figure 15: Comparison of L2 errors on interpolative and extrapolation test sets for WAKE

D.2 DATASET SIZES

Unrolling connects multiple dataset frames in one trajectory. This connectedness encodes the phys-
ical relation between subsequent frames that ultimately has to be learned by the neural network.
Given that unrolled setups observe more of these physical connections, one might expect that un-
rolling decreases the necessary dataset size. To test this hypothesis, we incrementally decreased the
amount of training data. The number of training iterations was kept constant throughout the process.
The models are then evaluated on our full test sets. Figure 17 compares the L2 for variations in the
training dataset size. A measurable difference in inference accuracy only appears for dataset sizes
smaller than X% of the original dataset. While the accuracy of WIG does indeed deteriorate slightly
later than NOG and especially ONE, this transition is confined to a small section of Y% dataset size.
In practice, training a setup in this narrow dataset margin is unlikely and thus not mentioned as a
strong benefit of unrolling.

D.3 BEST PERFORMING MODELS

Our error measurements relied on statistical evaluations, which in turn were based on multiple ran-
domized training runs. NOG and especially WIG showed clear benefits in these statistical evalua-
tions. However, we must also consider the computational cost of training (differentiable) unrolled
setups. Unrolling m steps with the NOG setup increases the computational cost of one training
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Figure 16: Comparison of L2 errors on interpolative and extrapolation test sets for KOLM

40% 10% 2% 0.5% 0.0125%
network size

2 × 10 1

3 × 10 1

2

KScorr
graphONE

NOG
WIG

Figure 17: Dataset size variations in percent of the full training set

iteration m-fold. Differentiable training in the WIG setup adds even more computations due to the
backpropagation through the solver. Consequently, training multiple models and selecting the best
might be a viable approach for ONE models, where training costs are lower. Thus, we evaluate the
best-performing models in a separate analysis. Figure 18 depicts the best inference L2 achieved by
a given model size, architecture, and learning setup. The best ONE models are on par with NOG or
WIG for some network sizes and architectures. However, in many other cases, the average unrolled
WIG setup still performs better or similar to the best ONE model. In light of the fact that these best
models were selected out of 8 (KOLM) or 20 (KS) training runs, training with unrolling is ultimately
more resource-efficient if best performance is sought. Thus, our recommendation of training with
NOG or WIG approaches persists.

D.4 EVALUATION METRICS

Our main evaluations used the L2 to quantify network accuracy. Since the L2 was also used as a
training loss, a good inference performance indicates a less pronounced data shift during inference
and stable gradients during training. This level of interpretability is not given for other metrics,
motivating the choice of L2 as the main test metric. Nevertheless, good performance on other
metrics, such as correlation, is desirable for learned simulators. The overall conclusions from the
main paper can similarly be deduced from these other metrics. Figure 19 depicts the time until
de-correlation between inference runs and the ground truth for the KS system. For all model sizes
and both network architectures, WIG achieves the longest inference rollouts until the de-correlation
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Figure 18: L2 errors of the best performing models; the outline in the background represent the
average accuracy

threshold is reached. Similarly to the observations on the L2 metric in Figure 4, NOG is the second
best option for small and medium-sized networks when it comes to correlation. This observation
again translates between the network architectures.
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Figure 19: Number of timesteps until the threshold is reached for de-correlation

In addition, we studied the time until divergence for the KS system. This metric sets a high thresh-
old of L2 > 500. At the same time, the solution state of a simulation ranges within |u| < 5. This
metric measures the time until the solution blows up, not whether there is a particular similarity to
the ground truth. As such, a large number of timesteps can be seen as a metric for the autoregressive
stability of the network. Figure 20 shows this evaluation for the KS system. The unrolled setups
excel at this metric. Unsurprisingly, mitigating the data shift by unrolling the training trajectory
stabilizes the inference runs. Through unrolling, the networks were trained on inference-like states.
The most stable models were trained with the WIG setup, whose long-term gradients further dis-
courage unphysical outputs that could lead to instabilities in long inference runs. For large networks,
their divergence time comes close to the upper threshold we evaluated, i.e. 1000 steps.
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Figure 20: Number of timesteps until the threshold is reached for divergence

D.5 ADDITIONAL ARCHITECTURE

We tested the generalization of our findings toward attention-gated U-nets (Oktay et al., 2018). The
implementation is a 1D version of the network used in the AERO cases introduced in Appendix C.4.
Crucially, it features attention gates in its skip connections allowing the network to efficiently mix
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Figure 21: Comparison of L2 errors for the U-Net architecture on the KS system

global and local structures in the output. The L2 errors of this architecture on the KS system are
visualized in Figure 21. The behavior of ONE, NOG, and WIG matches well with other architectures
(i.e. conv and graph nets) studied in the main section. We still observe the best performance with
fully differentiable WIG unrolling, while NOG offers slimmer benefits over ONE. We can conclude
that our observations regarding the positive effects of unrolling with and without gradients transfer
to attention-based networks.

E INFERENCE VISUALIZATIONS

This section visualizes typical inference trajectories on which our evaluations were based. Due to
the vast amount of trained models, only a very small subset of all models are visualized. The goal is
to contextualize the results from the main paper and previous appendix evaluations. The following
figures show various training modalities for a fixed initialization, which was randomly selected from
our trained models.
Figures 22 and 23 show the trajectory for a graph network in a correction task on the KS system.

Both visualizations are from the extrapolative test case with X = 4.8 and X = 11.2 respectively.
These characteristic numbers are outside of the lower and upper bounds of the training regime. The
figures show the difference from the target state as u− ũ. This error was evaluated for the full range
of model sizes as introduced in appendix C and listed in table 2. Figures 24 and 25 similarly display
the inference performance of a convolutional model. For both architectures, a clear trend of error
reduction is visible for increasing model sizes. At the same time, unrolling reduces errors for a fixed
size since NOG and WIG have smaller amplitudes.

Figure 22: Inference error trajectory visualization of the GCN correction on the KS system for
extrapolation on low X
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Figure 23: Inference error trajectory visualization of the GCN correction on the KS system for
extrapolation on high X

Figure 24: Inference error trajectory visualization of the CNN correction on the KS system for
extrapolation on low X

Figure 25: Inference error trajectory visualization of the CNN correction on the KS system for
extrapolation on high X
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For the KOLM system, we visualize the differences in the vorticity of the predicted state and the
ground truth vorticity as ω− ω̃ with ω = ∇×u. Again, a fixed initialization was randomly selected
from our trained models. The full range of network sizes, as listed in table 3, was visualized.
The Vorticity data of the inference frames after 250 steps are plotted next to the reference data in
figures 26 and 27 for intermediate and high Reynolds numbers respectively. Similarly, we show
interpolative test errors in figure 28 for Re=600 and extrapolative tests in figure 29 on Re=1000.

Figure 26: Inference vorticity after 250 steps of the CNN correction on the KOLM system for
interpolation on intermediate Re=600, reference data is shown in the left column

Figure 27: Inference vorticity after 250 steps of the CNN correction on the KOLM system for
extrapolation on high Re=1000, reference data is shown in the left column
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Figure 28: Inference error after 250 steps of the CNN correction on the KOLM system for interpo-
lation on intermediate Re=600, visualized as vorticity

Figure 29: Inference error after 250 steps of the CNN correction on the KOLM system for extrapo-
lation on high Re=1000, visualized as vorticity

F EVALUATION DATA

Herein, we provide the statistical data used to generate the figures in the main paper. The error
data shown is always gathered from evaluations on a combined test set from interpolative and ex-
trapolative cases, as described in appendix C. For each initial frame in the test set, a trajectory is
computed and errors with respect to the ground truth are accumulated, yielding one scalar error
value per trajectory. Means and standard deviations are now calculated across these trajectories on
a per-model-size and per-training-modality basis. Thus, the tables show these statistics for various
model sizes, which are listed for the KS system in table 2, for the wake system in section C.2, for
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the KOLM case in table 3, and for the AERO case in table 4. We denote the mean with an overline,
e.g. as ONE, and the standard deviation as σ. Additionally, we perform a one-sided Welch’s t-test
to the statistical significance of the empirical tests and their resulting distributions. For distributions
with different means and standard deviations, Welch (1947) defines a t-test as

t =
|X1 −X2|√
σ2
1

M1
+

σ2
2

M2

. (19)

This holds for two distributions with mean Xi, standard deviation σi, and sample sizes Mi. The
p-value for a one-sided significance test is then computed as

p = Pr(T ≤ t|H0), (20)

giving us the probability that the null-hypotheses (i.e. both distributions are identical) is true.

The differences in the studied training modalities are statistically significant for smaller network
setups. As model sizes increase, the distribution of trained models becomes more similar. Our
heavily overparameterized networks (e.g. 1.0M parameters for 48 degree of freedom KS system)
all show highly accurate and stable predictions (see divergence time metric, Figure 20 Appendix C).
Based on the theoretical considerations above, this means that the attractor of the learned dynamics
is closely aligned with the ground truth system. These setups thus display less data shift and the
benefits of unrolling are reduced. When these conditions in the overparameterized regime are met,
NOG models are at a disadvantage due to their mismatch between gradients and loss landscape.
However, these heavily oversized architectures are not practically relevant for scientific computing
due to their weak scaling compared to numerical approaches. This evaluation confirms that for
relevant, small to medium sized networks our results are statistically significant and hence that
conclusions can be drawn.

The tables relate to the figures as follows:

• Figure 4 visualizes tables 5, 7, 8
• Figure 6 visualizes tables 13, 14, 15
• Figure 7 visualizes table 16
• Figure 9 visualizes tables 10, 11, 9
• Figure 11 visualizes tables 17, 18
• Figure 12 visualizes table 12

Table 5: Correction GCN L2 errors on the KS system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

0.5k* 2.67063 2.07773 1.32860 0.61222 0.62611 0.09505 0.00220 0.00000
0.5k 3.42429 2.01830 1.15905 2.00918 0.81870 0.24652 0.00310 0.00001
2k 2.05080 1.53242 0.77671 1.58849 1.07397 0.20318 0.11706 0.00051
33k 0.42879 0.39406 0.33274 0.10139 0.11152 0.10516 0.15465 0.00278
0.2M 0.18810 0.20359 0.16093 0.04164 0.04815 0.05224 0.14164 0.03843
1M 0.12671 0.16176 0.12054 0.01942 0.03265 0.02622 0.00010 0.20174
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Table 6: Correction CNN L2 errors on the KS system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

0.5k* 2.79276 1.82674 1.36738 0.53627 0.33042 0.18318 0.00000 0.00000
0.5k 2.04899 1.77093 1.32922 0.76169 0.47778 0.46564 0.08736 0.00045
2k 1.04701 0.97612 0.80260 0.16266 0.10389 0.08582 0.05436 0.00000
33k 0.39871 0.42818 0.34545 0.08113 0.08503 0.05931 0.13464 0.01148
0.2M 0.23991 0.22823 0.19139 0.06584 0.05224 0.03468 0.26910 0.00296
1M 0.12554 0.16273 0.09885 0.01664 0.06723 0.01865 0.01067 0.00001
2M 0.09592 0.09519 0.07090 0.01241 0.01160 0.00889 0.42393 0.00000

Table 7: Correction CNN L2 errors on the WAKE system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

6.3k 0.12045 0.07038 0.05515 0.02353 0.01374 0.00990 0.00001 0.00000
67k 0.07641 0.04430 0.03663 0.03321 0.01106 0.00568 0.00476 0.00076
1M 0.03389 0.02575 0.02496 0.00724 0.00733 0.00717 0.01120 0.00632

Table 8: Correction CNN L2 errors on the KOLM system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

32k 0.04097 0.04140 0.03645 0.00833 0.00506 0.00398 0.45147 0.09404
0.1M 0.03064 0.02576 0.02504 0.00344 0.00511 0.00242 0.02090 0.00104
0.5Mk 0.01635 0.01394 0.01420 0.00172 0.00144 0.00201 0.00444 0.01878
1M 0.01046 0.00859 0.00820 0.00084 0.00110 0.00122 0.00093 0.00035

Table 9: Prediction CNN L2 errors on the WAKE system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

6.3k 2307.82003 0.12045 0.11758 4614.57276 0.01364 0.01212 0.06560 0.06560
67k 0.15232 0.06248 0.06518 0.06279 0.00593 0.00545 0.00014 0.00018
1M 0.03336 0.03540 0.02791 0.00261 0.01500 0.00084 0.33794 0.00000

Table 10: Prediction GCN L2 errors on the KS system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

0.5k* 7.98357 11.63567 10.23652 2.75299 1.57462 2.53653 0.00000 0.00526
0.5k 18.06462 5.10212 9.51381 5.02841 3.35803 4.80894 0.00000 0.00000
2k 10.41816 2.89637 5.62151 5.18653 0.92519 2.53810 0.00000 0.00033
33k 4.16912 1.44542 1.77320 2.10251 0.10168 0.68453 0.00000 0.00001
0.2M 1.13015 0.91450 0.79421 0.05839 0.08480 0.07173 0.00000 0.00000
1M 0.88423 0.81924 0.71090 0.05668 0.06682 0.07325 0.00101 0.00000

Table 11: Prediction CNN L2 errors on the KS system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG) pNOG
ONE pWIG

ONE

0.5k* 19.87167 13.16589 17.09354 0.60110 2.18501 1.16960 0.00000 0.00000
0.5k 6.63006 4.37441 6.78108 3.99266 2.30527 2.03592 0.01744 0.44051
2k 2.51767 2.34324 2.73029 0.47555 0.34352 0.97282 0.09577 0.19269
33k 1.38413 1.49134 1.38093 0.18477 0.20430 0.15411 0.04493 0.47643
0.2M 1.02191 0.97444 0.87086 0.18962 0.12227 0.05520 0.17634 0.00075
1M 0.76798 0.85323 0.64513 0.06914 0.12842 0.04222 0.00638 0.00000
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Table 12: Prediction Unet L2 errors on the AERO system

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG)

0.5M 0.05046 0.03143 0.02975 0.01302 0.00420 0.00221
2M 0.03302 0.02815 0.02829 0.00251 0.00090 0.00106
8M 0.02892 0.02392 0.02388 0.00505 0.00153 0.00204

Table 13: Correction CNN L2 errors on KS system for multiple unrollings

NOG WIG σ(NOG) σ(WIG)

m=2 0.34026 0.33344 0.06799 0.07425
m=3 0.33358 0.32817 0.07953 0.05533
m=4 0.32845 0.31876 0.06794 0.05780
m=5 0.36300 0.29802 0.06534 0.06446
m=6 0.34506 0.29201 0.05682 0.06101
m=8 0.36041 0.28614 0.04762 0.04553
m=10 0.39730 0.28358 0.07861 0.06345
m=12 3.30768 0.26729 8.65391 0.07201
m=14 inf 0.25408 0.00000 0.06418
m=16 inf 0.24387 0.00000 0.05274
m=18 inf 0.25749 0.00000 0.05718
m=20 inf 3.46048 0.00000 9.12454

Table 14: Correction CNN L2 errors on KOLM system for multiple curriculums

NOG WIG σ(NOG) σ(WIG)

1-2-4 0.03064 0.01635 0.00344 0.00172
2-2-4 0.01046 0.04140 0.00084 0.00506
4-4-4 0.02576 0.01394 0.00511 0.00144

Table 15: Correction CNN L2 errors on KOLM system when trained without learning rate schedules

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG)

32k 0.04860 0.04563 0.05165 0.00651 0.00528 0.00626
0.1M 0.03478 0.03701 0.03708 0.00271 0.00689 0.00433
0.5M 0.03090 0.02827 0.03057 0.00267 0.00320 0.00332
1M 0.02935 0.02244 0.02635 0.00965 0.00398 0.00394

Table 16: Correction CNN L2 errors on KS system for gradient stopping variants

m=6 m=6init w=1 w=2 v=1 v=2

WIG 0.388526 0.281911 0.374733 0.396608 0.441374 0.407062
σ(WIG) 0.092057 0.050417 0.097563 0.102014 0.156538 0.101093
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Table 17: GCN L2 errors on KS system when transitioning from prediction to correction

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG)

10% 1.46963 1.15836 1.04210 0.27693 0.09666 0.15044
20% 1.22752 1.06870 0.92173 0.16561 0.11952 0.05283
30% 1.05448 1.13224 0.93338 0.17234 0.18949 0.10398
40% 0.98373 0.92035 0.77333 0.16078 0.12198 0.09403
50% 0.83278 0.78407 0.75527 0.11489 0.12352 0.11875
60% 0.73871 0.70152 0.61906 0.14414 0.09365 0.06889
70% 0.65280 0.61808 0.46474 0.10726 0.09699 0.07094
80% 0.46519 0.42852 0.39318 0.10353 0.10320 0.13866
90% 0.26651 0.15659 0.18686 0.09774 0.01506 0.06874

Table 18: CNN L2 errors on KS system when transitioning from prediction to correction

ONE NOG WIG σ(ONE) σ(NOG) σ(WIG)

10% 1.08743 1.07423 1.00705 0.10005 0.08438 0.09433
20% 0.98619 0.97025 0.85021 0.12132 0.10936 0.07485
30% 0.89545 0.87275 0.82945 0.07255 0.10187 0.07454
40% 0.81295 0.81708 0.72305 0.13808 0.10260 0.06438
50% 0.70735 0.71738 0.66283 0.09532 0.08907 0.07525
60% 0.55892 0.60302 0.55926 0.12181 0.10013 0.05164
70% 0.45414 0.45675 0.48273 0.12301 0.11392 0.12604
80% 0.33173 0.28746 0.31830 0.08661 0.06363 0.07834
90% 0.14203 0.11449 0.12929 0.02205 0.01993 0.04566
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