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Abstract

Spatio-temporal trajectory representation learning plays a crucial role in various
urban applications such as transportation systems, urban planning, and environmen-
tal monitoring. Existing methods can be divided into single-view and multi-view
approaches, with the latter offering richer representations by integrating multiple
sources of spatio-temporal data. However, these methods often struggle to general-
ize across diverse urban scenes due to multi-city structural heterogeneity, which
arises from the disparities in road networks, grid layouts, and traffic regulations
across cities, and the amplified seesaw phenomenon, where optimizing for one
city, view, or task can degrade performance in others. These challenges hinder the
deployment of trajectory learning models across multiple cities, limiting their real-
world applicability. In this work, we propose SMARTraj2, a novel stable multi-city
adaptive method for multi-view spatio-temporal trajectory representation learning.
Specifically, we introduce a feature disentanglement module to separate domain-
invariant and domain-specific features, and a personalized gating mechanism to
dynamically stabilize the contributions of different views and tasks. Our approach
achieves superior generalization across heterogeneous urban scenes while maintain-
ing robust performance across multiple downstream tasks. Extensive experiments
on benchmark datasets demonstrate the effectiveness of SMARTraj2 in enhanc-
ing cross-city generalization and outperforming state-of-the-art methods. See our
project website at https://github.com/GestaltCogTeam/SMARTraj.

1 Introduction

Spatio-temporal trajectory representation learning is fundamental to a variety of urban applications,
including intelligent transportation systems [52, 28], urban planning [9, 46], and environmental
monitoring [18, 44]. The goal is to encode spatio-temporal data (e.g., GPS coordinates, road networks,
timestamps, and points of interest) into representations that capture the underlying patterns of urban
mobility, facilitating diverse downstream tasks such as anomaly detection [42, 41], clustering [43, 29],
and trajectory forecasting [48, 35].

Current methods can be divided into two subcategories: single-view and multi-view approaches.
Single-view methods leverage one specific type of spatial data, such as GPS trajectories [23, 20],
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road network routes [14, 13], or points of interest (POI) sequences [40, 30]. Although these methods
effectively capture patterns within respective modalities, their reliance on a single view inherently
limits ability to model the complex and multi-faceted nature of urban mobility. In contrast, multi-view
approaches [24, 33] aim to enhance representation richness by integrating multiple types of spatio-
temporal data, enabling a more comprehensive understanding of mobility behaviors. However, these
methods are often constrained to datasets from a single city, significantly limiting their generalization
capability to other urban scenes with distinct characteristics. Generalization across cities is crucial,
as urban scenes exhibit considerable diversity in geography, infrastructure, and human mobility
patterns. Methods lacking the ability to generalize across cities struggle to maintain robustness in
real-world applications, where models need to adapt to diverse and unseen urban contexts. Thus,
achieving generalization across cities is essential for stable and transferable spatio-temporal trajectory
representation learning.
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Figure 1: Existing multi-view spatio-temporal trajectory representation learning methods face critical
challenges in generalizing across cities, which is crucial for real-world applications with diverse
urban scenes: (1) multi-city structural heterogeneity, arising from disparities in urban layouts, and (2)
the amplified seesaw phenomenon, where performance trade-offs between cities, views, and tasks are
more pronounced.

To address this limitation, our goal is to enable spatio-temporal trajectory representation learning that
generalizes across diverse urban scenes, which requires capturing universal spatio-temporal patterns
shared across cities while also preserving city-specific characteristics to account for unique urban
features. To achieve this, we propose a novel multi-city adaptive method that leverages multi-view
spatio-temporal data to learn stable representations. However, realizing this goal introduces two
critical challenges:

The first challenge is multi-city structural heterogeneity. Urban scenes exhibit significant disparities
in structural layouts, such as road networks, grid partitions, and traffic regulations, which lead to
distinct spatio-temporal patterns across cities. These differences make it difficult to develop a model
that generalizes across diverse urban landscapes. Specifically, in multi-view settings, embedding
spaces for corresponding views (e.g., route and grid views) across cities are inherently disjoint. For
instance, road ID embeddings in one city operate in a different embedding space from those in
another city, and grid ID embeddings often encode distinct spatial structures. This lack of alignment
among embedding spaces prevents consistent representation learning, limiting the model’s ability to
generalize across cities.

The second challenge is the amplified seesaw phenomenon. In task-agnostic representation learning,
balancing performance across multiple downstream tasks is critical. However, this balance is
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inherently difficult in multi-view settings, where optimizing for one view often leads to performance
degradation in others due to the heterogeneous nature of data across views. The challenge becomes
even more complex in multi-city scenes. Specifically, multi-city, multi-view trajectory data introduces
additional heterogeneity, as each city exhibits unique data distributions and structural characteristics.
This amplifies the seesaw phenomenon, where improvements in performance for one city, view, or
task may disproportionately degrade performance in others. Furthermore, achieving generalization
while supporting multiple downstream tasks significantly complicates the learning process, making it
challenging to maintain stable performance across cities, views, and tasks.

To tackle these challenges, we introduce SMARTraj2, a Stable Multi-city Adaptive method for
Multi-view spatio-temporal Trajectory representation learning. To address the multi-city structural
heterogeneity, we design a feature disentanglement module that separates domain-invariant and
domain-specific features using orthogonality constraints, ensuring the model captures generalized
spatio-temporal patterns while preserving city-specific characteristics. This disentanglement allows
the model to adapt to new cities without losing critical information specific to the local urban structure.
To mitigate the amplified seesaw phenomenon, we develop a personalized gating mechanism that
dynamically adjusts the contributions of domain-invariant and domain-specific representations. The
gating mechanism operates at both city-level and trajectory-level, adapting the contributions for
different cities, views, and tasks. This ensures robust performance across cities while minimizing
degradation in any specific view or task. By integrating them, SMARTraj2 effectively stabilizes the
trade-offs among cities, views, and tasks, enabling generalization across heterogeneous urban scenes.

The contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work to highlight the importance of multi-city,
multi-view trajectory representation learning with a focus on generalization across diverse
urban scenes. To improve this, we propose a novel method, SMARTraj2, designed to learn
stable representations from heterogeneous spatio-temporal data.

• We design a feature disentanglement module to separate domain-invariant and domain-
specific representations, ensuring effective generalization while preserving city-specific
characteristics. Additionally, a personalized gating mechanism is introduced to dynamically
stabilize the contributions of different views and tasks, mitigating the amplified seesaw
phenomenon in multi-city, multi-task settings.

• Extensive experiments demonstrate the superior performance of SMARTraj2 compared to
state-of-the-art methods, validating its stability in handling heterogeneous spatio-temporal
data from various urban contexts.

2 Preliminaries

In this section, we introduce the fundamental concepts and formally define the problem addressed in
this paper.

Definition 1. (Trajectory). A trajectory T of length |T | is a sequence of spatial and temporal
data points, denoted as T = {(posi, ti)}

|T |
i=1, where posi represents the spatial location of the i-th

sampled point (e.g., road segment ID, grid cell index, or exact latitude and longitude), and ti is the
corresponding timestamp.

A trajectory can be represented in multiple ways, each capturing distinct spatial and contextual
aspects of the underlying movement. Specifically, a multi-view trajectory representation integrates
several spatial views, with each view offering unique insights into the underlying trajectory. These
views include:

• GPS View T p: A high-resolution view of the trajectory consisting of raw geographic
coordinates, i.e., posi = (lati, loni), where lati and loni are the exact latitude and longitude
of the i-th point.

• Route View T r: A structural view of the trajectory aligned with the road network, incor-
porating road segments and intersections, i.e., posi = vi, where vi is the ID of the road
segment associated with the i-th point.
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• Grid View T g: A macro-level view of the trajectory representing movements across a spatial
grid, which may be augmented with semantic information, such as points of interest (POIs).
Specifically, posi = gridi, where gridi is the index of the grid cell containing the i-th point.

Definition 2. (Multi-View Spatio-Temporal Trajectory Representation Learning). Given a multi-
view trajectory dataset T = {(T p

i , T
r
i , T

g
i )}

|T |
i=1, the objective of multi-view spatio-temporal trajectory

representation learning is to learn robust, task-agnostic representations for different views. These
representations should generalize across various downstream tasks, such as road label classification,
travel time estimation, and destination grid prediction.

Building on the previous definitions, we formally define the problem addressed in this paper.

Problem Statement. Let D = {D1, D2, · · · , D|D|} be a dataset consisting of multi-view trajectories
collected from multiple cities. For each city k, the dataset Dk is composed of multi-view trajectory
dataset Dk = {Ti}|Dk|

i=1 , where each trajectory Ti = (T p
i , T

r
i , T

g
i ) is a tuple containing the three

views, GPS view T p
i , route view T r

i , and grid view T g
i . The goal is to learn transferable trajectory

representations that integrate spatial information from these different views, while adapting to the
unique characteristics of each city. The learned representations should enable stable performance
across various downstream tasks by generalizing effectively across diverse urban scenes.

3 Method

In this section, we introduce the architecture of SMARTraj2, detailing its core components: the feature
disentanglement module and the personalized gating mechanism, designed to address the challenges
posed by multi-city structural heterogeneity and mitigate the amplified seesaw phenomenon often
observed in urban trajectory data.

3.1 Overview
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Figure 2: An overview of SMARTraj2, consisting of two main components: the feature disentangle-
ment module and the personalized gating mechanism.

As illustrated in Fig. 2, SMARTraj2 comprises two key modules: (1) the feature disentanglement
module separates domain-invariant and domain-specific features, utilizing orthogonality constraints
to ensure the model captures generalized spatio-temporal patterns while maintaining city-specific
characteristics. This disentanglement allows for flexible adaptation to new cities without losing
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essential local urban information. (2) the personalized gating mechanism dynamically adjusts the
contributions of domain-invariant and domain-specific features at both the city-level and trajectory-
level. This ensures robust performance across cities while minimizing performance degradation in
any specific view or task. This mechanism stabilizes the trade-offs between cities, views, and tasks,
thereby enabling generalization across heterogeneous urban scenes.

3.2 Feature Disentanglement Module

The feature disentanglement module focuses on capturing spatial and temporal dependencies across
multiple trajectory views, leveraging specialized encoders for each view. This module is pivotal for
disentangling domain-invariant and domain-specific features, thus addressing the multi-city structural
heterogeneity inherent in urban trajectory data.

For the GPS view, trajectories are first hierarchically segmented into sub-trajectories corresponding
to road segments or grid cells. The GPS encoder processes these segments as follows:

hp|r = GPSEncoder(T p|r, Bp|r)

hp|g = GPSEncoder(T p|g, Bp|g)
(1)

where hp|r and hp|g represent the encoded GPS trajectories aligned with road segments and grid cells,
respectively. The hierarchical structure involves encoding individual GPS points using a bidirectional
GRU, followed by encoding the resulting sub-trajectories, creating a two-level architecture. The
binary assignment matrices Bp|r and Bp|g indicate associations between GPS points and their
corresponding road segments or grid cells.

The route view incorporates spatial and temporal characteristics constrained by the road network and
traffic dynamics. A graph attention network updates road segment spatial embeddings zv based on
observed trajectories. Temporal features for each road segment tv combining discrete (e.g., day of the
week) and continuous (e.g., travel time) variables, are added to form the final segment representation
rv = zv + tv. A transformer-based architecture is then used to encode the dependencies between
road segments.

hr = RouteEncoder(T r, rv) (2)
where hr denotes the encoded route representation.

The grid view captures spatial relationships between grid cells, integrating semantic information from
Points of Interest (POIs) to reflect the functional attributes of different areas. A transformer-based
encoder models these dependencies:

hg = GridEncoder(T g, s(T g)) (3)

where hg is the grid trajectory representation, and s(T g) represents the semantic embedding computed
as a weighted sum of POI category embeddings within the grid cells.

Following the principles of transfer learning [16, 12, 5], we extract domain-invariant features Hi

using a shared-weight extractor V:
Hi = V(hp, hr, hg) (4)

This module captures features common across cities, fostering robustness in the model’s generalization
capabilities.

Apart from city invariant features, in the context of multi-city, the incorporation of city-specific
features significantly contributes to enhancing the performance and adaptability of models across dif-
ferent cities [32, 54, 37]. While domain-invariant features capture the shared underlying patterns and
knowledge among various domains, domain-specific features account for the unique characteristics
specific to individual domains. Consequently, the extraction of specific features from trajectories in
different cities becomes of paramount importance. To complement this, domain-specific features Hs

k
are captured for each city using individual extractors Mk, which are trained separately for each city:

Hs
k = Mk(hp, hr, hg), 1 ≤ k ≤ |D| (5)

There exists an orthogonality constraint between domain-specific and domain-invariant fea-
tures [55, 45, 3]. Building upon this constraint, our method integrates the difference loss Ldiff

via a soft subspace orthogonality constraint between domain-specific Hs
k and domain-invariant Hi
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representations of each city to encourage a clear separation between the features related to specific
domains and the features shared across domains.

Ldiff =

|D|∑
k=1

∥Hi⊤Hs
k∥

2

F (6)

where ∥ · ∥2F denotes the squared Frobenius norm.

3.3 Personalized Gating Mechanism

The personalized gating mechanism allows the model to inject city-level and trajectory-level specific
information into the embedding process, enabling dynamic adaptation.

For city-level adaptation, we generate city-specific gate scores based on city-side features, such as
average trajectory length and speed, using a two-layer feedforward network. Specifically, we inject
city-level specific personalized prior information into the embedding by using city-side features
E(F city) (e.g., trajectory speed and statistics of trajectory length) as the input. We concatenate hr

with the input E(F d), but without using gradient backpropagation, denoted as ∇/(·):

h′
r = max(0,W city(∇/(hr)∥E(F city)) + bcity) (7)

here, h′
r represents the intermediate feature vector. (·∥·) denotes the concatenate operation. After

crossing features with various prior information, we customize the generation of gate scores through
a sigmoid function and modulate the embeddings:

δcityr = γ · σ(W ′
cityh

′
r + b′city) (8)

σ(·) denotes the sigmoid function, which is used to generate gate vectors δr and limits the output
to [0, γ]. γ is the scaling factor that is set as 2. We perform the personalized transformation on
embedding hr without changing the original embedding layer, aligning features with different
importance for different cities. The gate scores modulate the embeddings:

hcity
r = δcityr ⊙ hr (9)

where ⊙ denotes the element-wise product.

For trajectory-level adaptation, we utilize features such as POI semantics at the start and end points to
further personalize the network layers. Trajectory-specific gate scores are computed by concatenating
the city-level gate scores with trajectory features:

h′′
r = max(0,W traj(∇/(hcity

r )∥E(F traj)) + btraj) (10)

we modify all DNN layer parameters by using trajectory-side features E(F traj) (e.g., the starting
and ending points’ POI semantic feature). We concat the hcity

r with the trajectory-side features
E(F traj) as the input. To avoid affecting the embedding updated in hcity

r , we perform the operation
of stop gradient ∇/(·) on hcity

r .

δtrajr = γ · σ(W ′
trajh

′′
r + b′traj) (11)

We use the element-wise product to double and squash the hidden contributions in layer of the
DNN, fully personalize DNN parameters, balancing with different sparsity for different trajecto-
ries, formulated as follows. This gate are applied to adjust DNN parameters, ensuring tailored
transformations:

htraj
r = δtrajr ⊙ hcity

r (12)

To further enhance representation learning, we employ two additional loss functions: the masked
language modeling loss LMLM , and the contrastive learning loss Lpair.

The masked language modeling loss randomly masks portions of the trajectory data, forcing the
model to predict masked elements and thereby learn generalized representations of the trajectory
views. Formally, this loss LMLM is defined as the negative log-likelihood of correctly predicting the
masked tokens:

LMLM = E(Tm)[− logP (Tm | T\m)] (13)
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The contrastive learning loss distinguishes positive trajectory pairs that represent the same underlying
trajectories across different views, from negative pairs that are randomly sampled.

Lpair =
∑

(i,j)∈P

log
exp(sim(Hi, Hj))∑

(i,k)∈N exp(sim(Hi, Hk))
(14)

The overall training objective integrates multiple loss functions to stabilize different components:

Ltotal = w1Ldiff + w2LMLM + w3Lpair (15)

where Ldiff , LMLM , and Lpair represent the difference loss (Eq.6), the masked language modeling
loss (Eq.13), and the contrastive learning loss (Eq.14). w1, w2, and w3 are hyperparameters introduced
to adjust relative weights between them. This loss function ensures that the model learns effective
representations, promoting both domain-invariant and domain-specific adaptability.

4 Experiments

To evaluate the performance of SMARTraj2, we conduct extensive experiments to answer the
following research questions:

• RQ1: How does SMARTraj2 compare to state-of-the-art trajectory representation learning
models? (Sec. 4.2)

• RQ2: What is the impact of pre-training on the effectiveness of SMARTraj2? (Sec. 4.3)

• RQ3: How does each component of SMARTraj2 contribute to its overall performance?
(Sec. 4.4)

• RQ4: How do hyperparameters influence the performance of SMARTraj2? (Sec. 4.5)

4.1 Experimental Setup

4.1.1 Datasets

We conduct experiments on two real-world trajectory datasets from Chengdu and Xi’an, provided by
DiDi Chuxing1, along with road network data from OpenStreetMap2. These datasets contain GPS
trajectories collected over 15 consecutive days in the central urban areas of both cities. The first 13
days are used for training, the 14th for validation, and the 15th for testing.

4.1.2 Downstream Tasks and Evaluation Metrics

To assess the generalization and effectiveness of the trajectory embeddings, we evaluate performance
across four distinct downstream tasks, consistent with prior studies [24, 51, 22, 25]. These tasks
encompass both fine-grained (e.g., destination grid prediction) and coarse-grained (e.g., road label
classification) aspects of trajectory modeling.

• Road Label Classification: classifies road segments into four categories: Primary, Secondary,
Tertiary, and Residential. Performance is measured using Micro-F1 and Macro-F1 scores.

• Travel Time Estimation: predicts the travel time of trajectories across all views. Performance
is evaluated using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) .

• Destination Road Prediction: predicts the destination road segment of a trajectory based on
its embedding derived from the route view. Performance is evaluated using top-k accuracy
metrics (Acc@k), which measure the proportion of times the correct destination road appears
within the top-k predictions.

• Destination Grid Prediction: predicts the destination grid cell of a trajectory, using its
embedding derived from the grid view. Performance is evaluated using Acc@k.

Due to space constraints, further experimental setup details are provided in Appendix B.1.
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Table 1: Overall Performance in Xi’an.

Method Road Label Travel Time Destination Road Destination Grid
Micro-F1 / Macro-F1 MAE / RMSE Acc@1 / Acc@5 Acc@1 / Acc@5

Random 0.4680 / 0.3087 120.9861 / 153.4056 0.6502 / 0.8035 ✕ / ✕
Word2vec 0.6525 / 0.6267 89.5472‡ / 122.3465 0.6415 / 0.8139 ✕ / ✕
Node2vec 0.4387 / 0.2938 91.5226 / 124.4122 0.6809 / 0.8116 ✕ / ✕

Transformer 0.4305 / 0.3645 91.3093 / 124.1358 0.6662 / 0.8426 ✕ / ✕
BERT 0.6780 / 0.6251 90.2442 / 123.2867 0.6898 / 0.851 ✕ / ✕
Toast 0.6251 / 0.6182 88.0744 / 116.7965 0.6743 / 0.7362 ✕ / ✕

JCLRNT 0.7445 / 0.7199 92.3900 / 125.5088 0.5504 / 0.7442 ✕ / ✕
START 0.4413 / 0.3575 118.0605 / 162.0801 0.6778 / 0.8072 ✕ / ✕
JGRM 0.7745‡ / 0.7622‡ 87.8708‡ / 119.9921‡ 0.7742 / 0.9063† ✕ / ✕

MVTraj 0.8290† / 0.8159† 54.9044† / 85.3847† 0.6904‡ / 0.855‡ 0.6630† / 0.8154†
SMARTraj2 0.8407 / 0.8298 35.0689 / 60.9156 0.7409† / 0.9069 0.6675 / 0.8392

* Bold denotes the best result, † and ‡ denotes the second and third best result.

4.2 Performance Comparison

Table 1 and Table 4 compare the performance of SMARTraj2 against various baseline methods on the
Chengdu and Xi’an datasets across multiple trajectory representation tasks.

SMARTraj2 consistently outperforms state-of-the-art baselines across evaluated tasks. Specifically,
in Chengdu, SMARTraj2 reduces MAE by 29.30% and RMSE by 23.75% in travel time estimation,
compared to MVTraj. A similar improvement is observed in Xi’an, highlighting the model’s ability
to generalize across cities with distinct mobility patterns.

Furthermore, unlike baselines that train independently on data from a single city per experiment,
SMARTraj2 is trained across multiple cities simultaneously, overcoming the structural heterogeneity
that limits baseline methods. This enables SMARTraj2 to remain stable in new urban environments
without requiring retraining from scratch. Additionally, the personalized gating mechanism dynami-
cally adjusts feature contributions across cities, alleviating the seesaw phenomenon, and ensuring
consistent and stable performance across diverse urban settings.

4.3 Model Analysis

We assess the impact of pre-training on model performance across two datasets: Chengdu (Fig. 3)
and Xi’an (Fig. 5). Specifically, we evaluate two distinct training paradigms:

• Pre-train: This corresponds to the original SMARTraj2, where self-supervised objectives
are first used to pre-train the trajectory encoder. The model is then fine-tuned on either the
travel time estimation task or the destination road prediction task .

• No Pre-train: This variant is trained in an end-to-end manner, where both the trajectory
encoder and the prediction head are randomly initialized and jointly optimized from scratch
using supervised task-specific labels.

We observe that our results consistently demonstrate that pre-training significantly improves model
effectiveness compared to training from scratch. We observe that pre-training not only accelerates
convergence but also reduces dependency on labeled data during fine-tuning, making the model more
robust to data scarcity.

4.4 Ablation Study

We conduct a comprehensive ablation study to evaluate the contribution of key components in our
method. Specifically, we examine the following model variants:

• w/o diff loss: Removes the difference loss Ldiff , which applies soft orthogonality constraints
to disentangle domain-invariant and domain-specific features.

1https://outreach.didichuxing.com/
2https://www.openstreetmap.org/
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Figure 3: Effect of Pre-training in Chengdu.

Table 2: Ablation Study in Xi’an.

Method Road Label Travel Time Destination Road Destination Grid
Micro-F1 / Macro-F1 MAE / RMSE Acc@1 / Acc@5 Acc@1 / Acc@5

SMARTraj2 0.8407 / 0.8298 35.0689 / 60.9156 0.7409 / 0.9069 0.6675 / 0.8392
w/o diff loss 0.8500 / 0.8366 44.8105 / 73.8862 0.6025 / 0.8125 0.4866 / 0.7119
w/o gating 0.8387 / 0.8279 40.3469 / 68.6216 0.6787 / 0.8478 0.5244 / 0.7200
w/o grid 0.8233 / 0.8186 72.6226 / 105.6123 0.6604 / 0.8402 ✕ / ✕
w/o GPS 0.7987 / 0.7832 73.2965 / 106.1142 0.5446 / 0.7667 0.4110 / 0.6351
w/o route ✕ / ✕ 74.5902 / 106.7897 0.5924 / 0.8049 0.4311 / 0.6636

w/o invariant+specific 0.7415 / 0.7268 56.5380 / 71.5127 0.4770 / 0.7001 0.2556 / 0.5315
w/o gating+specific 0.7637 / 0.7574 54.8681 / 84.8157 0.6300 / 0.8294 0.5466 / 0.7636

• w/o gating: Excludes the personalized gating mechanism, which injects city-level and
trajectory-level specific information, enabling adaptive feature modulation.

As shown in Table 2 and Table 5, both components contribute significantly to model performance.
Removing the difference loss (w/o diff loss) results in severe performance degradation, demonstrating
that Ldiff effectively separates domain-invariant and domain-specific information, enabling stable
spatio-temporal modeling across cities. Excluding the personalized gating mechanism (w/o gating)
also leads to notable performance drops, suggesting that gating plays a key role in dynamically
balancing the contributions of city-specific and global features.

Moreover, we conduct an ablation study to evaluate the model under limited-view settings. The
results below demonstrate that our method maintains reasonable performance even when only GPS
data is available.

4.5 Parameter Sensitivity

We perform a sensitivity analysis on key hyperparameters: the scaling factor γ (defined in Eq(8)) and
the weight ratio between w1 and w2 (defined in Eq(15)), where w1 and w2 are the weights for the
difference loss and masked language modeling loss, respectively. Results for travel time estimation
in Xi’an are presented in Fig. 4. Due to space limitations, additional results for destination road
prediction are provided in Appendix B.2.4, with consistent trends.

Fig. 4(a) illustrates that γ achieves optimal performance when set to 2. This factor controls the
output range of gate scores, which modulate the embeddings for different cities and trajectories.
Specifically, γ = 2 effectively balances the modulation by restricting the gate values to the range
[0, 2] and centering them around 1. Fig. 4(b) demonstrates that the best performance is attained when
the weight ratio w1 : w2 = 1. Ratios w1 : w2 < 1 weaken the orthogonality constraint, while ratios
w1 : w2 > 1 disrupt the balance between loss components, both leading to performance degradation.
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Figure 4: Parameter Sensitivity Analysis on Travel Time Estimation in Xi’an.

5 Conclusion

In this paper, we propose SMARTraj2, a novel method for multi-view spatio-temporal trajectory
representation learning that addresses the critical limitation of generalization across diverse urban
scenes. We identified two key challenges that hinder the performance of existing approaches:
multi-city structural heterogeneity, where cities exhibit significant differences in spatio-temporal
patterns, and the amplified seesaw phenomenon, which arises when balancing performance across
multiple cities, views, and tasks. To overcome these challenges, SMARTraj2 leverages a feature
disentanglement module to separate domain-invariant and domain-specific features, enabling the
model to capture generalized spatio-temporal patterns while preserving city-specific characteristics.
Additionally, a personalized gating mechanism dynamically adjusts the contributions of these features,
mitigating the seesaw effect and ensuring stable performance across diverse urban scenes. Extensive
experiments on real-world datasets show that SMARTraj2 consistently outperforms state-of-the-art
methods, demonstrating its ability to generalize effectively across cities with distinct mobility patterns,
and proving its robustness in real-world applications.

Limitation and Future Work. Although the proposed framework demonstrates strong adaptability
and performance across two representative cities (Chengdu and Xi’an), several limitations remain.
The model depends on multi-view urban data, and its performance may be influenced by missing
modalities or inconsistent data quality across cities. Future work will focus on developing robust
data fusion and modality-adaptive mechanisms, extending experiments to larger city networks (e.g.,
10+ cities) to validate scalability, and exploring efficient training and inference strategies such as
parameter sharing, model compression, and distributed learning.

Social Impact. The proposed framework has potential societal benefits in improving urban mobility
management, traffic forecasting, and resource allocation. However, it also raises important ethical
and privacy concerns, particularly when dealing with trajectory or location-based data. Individual
mobility traces may reveal sensitive information about users’ habits or identities, posing privacy risks
if mishandled. To mitigate these risks, strict data anonymization, aggregation, and de-identification
procedures should be enforced before model training. Additionally, data access should comply with
local data protection regulations and institutional review protocols.
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A Related Work

In this section, we first review existing research on trajectory representation learning, followed by an
exploration of transfer learning approaches in spatio-temporal domains.

A.1 Spatio-Temporal Trajectory Representation Learning

Spatio-temporal trajectory representation learning has garnered substantial attention due to its rel-
evance in various applications, including intelligent transportation systems [31, 28], urban plan-
ning [47, 46], and environmental monitoring [18, 44]. Existing approaches can be categorized into
task-specific and task-agnostic methods.

Task-specific methods are designed to optimize performance on a particular downstream task, such
as anomaly detection [42, 41], clustering [43, 29], and trajectory forecasting [34, 35]. These methods
typically optimize trajectory encoders with task-specific objectives, resulting in high performance for
the targeted application. However, their narrow focus limits their ability to generalize across diverse
tasks and makes them less efficient in real-world multi-task scenarios [1, 17].

Task-agnostic methods, on the other hand, aim to learn generalized representations that can be
applied across various downstream tasks. Many of these methods employ self-supervised learning
techniques [22, 8] to enable flexible generalization. These methods are further divided into single-
view and multi-view approaches. Single-view methods rely on a single spatial aspect of trajectory data,
such as raw GPS coordinates [21, 56], road network routes [50, 51], or POI sequences [40, 6]. While
these methods effectively capture patterns within the chosen view, they often fail to model the full
complexity of spatio-temporal data, particularly in diverse urban scenes. Multi-view methods [33, 24]
attempt to address this limitation by integrating multiple data sources, offering a richer and more
comprehensive understanding of movement patterns.

Despite these advancements, existing multi-view approaches are constrained to datasets from a
single city, significantly limiting their generalization capability to other urban scenes with distinct
characteristics. Our proposed SMARTraj2 method addresses this critical gap by focusing on general-
ization across cities. We disentangle domain-invariant and domain-specific representations, ensuring
effective generalization while preserving city-specific characteristics. Additionally, a personalized
gating mechanism is operated at both city-level and trajectory-level to dynamically stabilize the
contributions of different views and tasks, mitigating the amplified seesaw phenomenon.

A.2 Transfer Learning for Spatio-Temporal Trajectories

The concept of transfer learning has seen tremendous success in fields such as natural language
processing [4, 10, 38] and computer vision [11, 36, 2]. In the context of spatio-temporal trajectory
analysis, transfer learning has recently emerged as a promising direction to handle the complexities
inherent in this domain. These challenges include irregular sampling intervals, spatial heterogeneity,
and intricate temporal dependencies that require sophisticated models to generalize effectively across
diverse datasets.

Several studies have explored the application of transfer learning to spatio-temporal trajectory data.
For example, [56] maintains robust representation capabilities for GPS data with varying qualities,
effectively handling issues like noise, missing values, and inconsistent sampling rates. [53] partitions
cities into non-overlapping areas and trains across multiple cities to achieve universal spatio-temporal
prediction, excelling in few-shot and zero-shot tasks. [27] presents a generalizable deep learning
model for weather and climate science that can handle heterogeneous datasets across different
spatio-temporal dimensions.

However, existing transfer learning methods predominantly focus on single-view trajectory data (e.g.,
GPS or grid data), making them less effective for more complex scenarios involving multi-view
data. Our work addresses this gap by introducing a solution that operates in multi-city, multi-
view, and multi-task settings. The incorporation of multiple views exacerbates the challenges of
transfer learning, particularly with respect to the seesaw phenomenon, where performance trade-offs
between different views and tasks become more pronounced. Our method mitigates this issue by
dynamically adjusting the contribution of shared and domain-specific features using a personalized
gating mechanism, thereby stabilizing performance across cities, views, and tasks.
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B Technical Appendices and Supplementary Material

B.1 Experimental Setting

B.1.1 Details of Datasets

To facilitate a clearer comparison between the two datasets, we present key statistics in Table 3. These
statistics help highlight the differences in composition between the Chengdu and Xi’an datasets,
ensuring a comprehensive understanding of their characteristics.

For comparative purposes, our preprocessing steps are aligned with those used in prior studies [24, 33,
7, 25]. Specifically, to obtain route view trajectories T r, we apply a map-matching algorithm [49] to
convert raw GPS data into sequences of road segments, thereby producing road-network-constrained
trajectories in the route view. Additionally, to ensure the relevance of the data, we preprocess the
road network by filtering out segments that are not traversed by any trajectory. To obtain grid view
trajectories T g , we utilize Points of Interest (POI) data, collected from an external source3, to enhance
the semantic information of grid cells. Each grid cell’s semantic representation is normalized based
on the POIs it contains.

We further filter the trajectories to ensure data quality and consistency across experiments. Trajectories
must contain between 10 and 100 road segments, 10 and 100 grid cells, or 10 and 256 GPS points.
Any trajectories that do not meet these criteria are excluded from the dataset.

Each dataset consists of 13 distinct categories of points-of-interest (POI), representing a diverse
range of urban functions. These categories include Dining, Scenery, Public Facilities, Shopping,
Transportation, Education, Finance, Residential, Life Services, Sports, Healthcare, Government
Offices, and Accommodation Services. These categories are crucial for enriching the semantic
features of grid cells and offer a comprehensive representation of the urban scene.

Table 3: Datails of the Datasets

Datasets Chengdu Xi’an

Time Interval 3.07 3.10
Number of Nodes 6450 4996
Avg. Node Degree 5.08 4.75
Number of Edges 16398 11864
Avg. GPS Trajectory Length (m) 2829.16 2797.26
Avg. Route Trajectory Length 15.26 15.96
Avg. Road Travel Speed (m/s ) 6.91 6.22
Avg. Trajectory Travel Time (s) 426.31 467.47

B.1.2 Compared Methods

We compare SMARTraj2 against several baseline methods that employ self-supervised training
approaches and are designed for general-purpose trajectory representation learning, suitable for
multiple downstream tasks. These baselines offer a solid foundation for assessing the advantages of
our approach under consistent experimental conditions.

• Random: it initializes trajectory representations randomly, providing a reference for under-
standing the performance improvements achieved by more sophisticated models.

• Word2Vec [26]: it learns representations using the skip-gram model, which captures semantic
similarities between road segments by treating them as words in a sequence, based on co-
occurrence statistics within trajectories.

• Node2Vec [15]: it learns node representations in a graph via biased random walks, which
explore node neighborhoods to capture both local and global structural properties.

• Transformer [39]: it employs a self-attention mechanism to model complex dependencies in
sequential data.

3http://geodata.pku.edu.cn
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• BERT [10]: it is pre-trained to learn deep bidirectional representations by conditioning on
both left and right contexts at all layers.

• Toast [7]: it first pre-trains node embeddings using Node2Vec, then fine-tunes the represen-
tations with Transformer, incorporating auxiliary traffic context information.

• JCRLNT [25]: it employs separate graph and trajectory encoders, training the model on
three comparative tasks to refine the quality of the learned representations.

• START [19]: it introduces a trajectory encoder that incorporates travel semantics and tempo-
ral continuity, trained with two self-supervised tasks to improve trajectory representation
quality.

• JGRM [24]: it combines GPS trace data with route traces to model road network constraints,
capturing both spatial and temporal dynamics.

• MVTraj [33]: it captures multiple structural and semantic aspects of trajectory data from
three different spatial views, offering a rich and diverse representation suited for various
downstream tasks.

None of the baseline methods effectively tackle the challenge of multi-city structural heterogeneity, a
critical factor for generalization across urban scenes. Consequently, these methods fail to leverage
datasets that encompass multiple cities, and are instead trained on data from a single city per
experiment.

B.1.3 Detail of Evaluation Metrics

We employ a range of evaluation metrics to comprehensively compare the performance of different
methods across various tasks. These metrics are designed to capture different aspects of prediction
accuracy, from classification performance to regression error.

• Micro-F1: This metric aggregates the contributions of all classes into a single overall F1
value, providing a balance between precision and recall across the entire dataset. It is
calculated by summing the true positives (TP), false positives (FP), and false negatives (FN)
across all classes to derive the overall precision and recall.

Micro− F1 =
2× Precisionall ×Recallall
Precisionall +Recallall

This metric is useful when the dataset contains a large class imbalance, as it treats all
instances equally.

• Macro-F1: Unlike Micro-F1, Macro-F1 treats each class equally by calculating the F1 score
for each class independently and then averaging these scores:

Macro− F1 =
1

N

N∑
i=1

F1i

where F1i is the F1 score for the i-th class, and N is the total number of classes. Macro-F1
is particularly effective when dealing with imbalanced datasets, as it ensures that all classes
are equally represented in the final metric.

• Mean Absolute Error (MAE): MAE quantifies the average magnitude of the errors in a set
of predictions, providing a straightforward interpretation of the average error magnitude:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi is the true value, ŷi is the predicted value, and n is the total number of observations.
MAE is sensitive to small deviations and provides a clear measure of average prediction
accuracy.

• Root Mean Squared Error (RMSE): RMSE measures the square root of the average squared
differences between predicted and true values, emphasizing larger errors due to the squaring
of differences:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2
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This metric is useful for capturing the variance in prediction errors, with larger errors being
penalized more than smaller ones.

• Accuracy@k (Acc@k): This metric evaluates whether the true label appears in the top-k
predicted labels for each instance:

Acc@k =
1

n

n∑
i=1

I(yi ∈ ŷ
(k)
i )

where yi is the true label, ŷ(k)i represents the set of top-k predicted labels, and I(·) is an
indicator function returning 1 if the true label yi is within the top-k predictions, and 0
otherwise. Acc@k is particularly relevant in ranking and recommendation tasks, offering
insight into the effectiveness of the model in providing accurate top-k suggestions.

B.1.4 Implementation Details

Our evaluation follows a two-stage process to ensure robustness and fairness. In the first stage,
the encoder is pre-trained on a large set of unlabeled trajectory data (e.g., 50K trajectories from
the Chengdu dataset) to learn informative trajectory representations. In the second stage, a smaller
labeled subset (e.g., 12K labeled trajectories from the Chengdu dataset) is used to fine-tune the model
and train task-specific models for classification or regression. These task-specific models predict
outputs such as road labels, travel time, destination road segment IDs, or destination grid indices.

To optimize the model, we use the AdamW optimizer for both pre-training and fine-tuning. The
training process spans 70 epochs with a batch size of 64. The initial learning rate is set to 0.0001,
and we adopt a warm-up policy that linearly increases the learning rate during the first five epochs.
Afterward, a cosine annealing schedule is employed to gradually reduce the learning rate in the
subsequent epochs.

To enhance the model’s robustness, we introduce a masking mechanism during training. Specifically,
we apply a masking length of 2 with a probability of 20%.

B.2 Additional Experiments

B.2.1 Additional Performance Comparison

Table 4: Overall Performance in Chengdu .

Method Road Label Travel Time Destination Road Destination Grid
Micro-F1 / Macro-F1 MAE / RMSE Acc@1 / Acc@5 Acc@1 / Acc@5

Random 0.4363 / 0.3152 112.3310 / 141.6182 0.651 / 0.7795 ✕ / ✕
Word2vec 0.5857 / 0.5767 85.4754 / 113.8926 0.6093 / 0.7717 ✕ / ✕
Node2vec 0.5535 / 0.5306 85.9276 / 114.4905 0.604 / 0.7611 ✕ / ✕

Transformer 0.3753 / 0.3460 88.3027 / 117.2306 0.6297 / 0.7969 ✕ / ✕
BERT 0.5516 / 0.5363 86.8267 / 115.4532 0.5994 / 0.7755 ✕ / ✕
Toast 0.7145 / 0.6755 92.2311 / 125.6123 0.5966 / 0.773 ✕ / ✕

JCLRNT 0.6100 / 0.6037 90.9430 / 116.6238 0.5147 / 0.7953 ✕ / ✕
START 0.3526 / 0.1869 112.0348 / 148.3855 0.6872 / 0.7764 ✕ / ✕
JGRM 0.7198‡ / 0.7228‡ 82.8468‡ / 110.3405‡ 0.7304† / 0.873† ✕ / ✕

MVTraj 0.7206† / 0.7326† 48.5581† / 71.8248† 0.7021‡ / 0.8597‡ 0.7927† / 0.9105†
SMARTraj2 0.7461 / 0.7473 34.3311 / 54.7641 0.7395 / 0.881 0.8082 / 0.9289

* Bold denotes the best result, † and ‡ denotes the second and third best result.

Tab. 4 presents the ablation study results on the Chengdu dataset, which are consistent with those
obtained in Xi’an. The results demonstrate that each proposed component contributes significantly
to overall model performance. Moreover, the Chengdu results further validate the robustness and
stability of SMARTraj2 under varying urban conditions and data distributions.

B.2.2 Additional Model Analysis

Fig. 5 presents the model analysis results on the Xi’an dataset, which are consistent with those
observed in Chengdu. The results confirm that pre-training substantially enhances model performance.
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Figure 5: Effect of Pre-training in Xi’an.

Compared to training from scratch, the pre-trained model exhibits faster convergence and lower
prediction errors, highlighting the effectiveness of self-supervised trajectory representation learning.
Moreover, the performance gain remains stable even when the amount of labeled data is reduced,
demonstrating the model’s robustness and data efficiency in low-supervision scenarios.

B.2.3 Additional Ablation Study

Table 5: Ablation Study in Chengdu.

Method Road Label Travel Time Destination Road Destination Grid
Micro-F1 / Macro-F1 MAE / RMSE Acc@1 / Acc@5 Acc@1 / Acc@5

SMARTraj2 0.7461 / 0.7473 34.3311 / 54.7641 0.7395 / 0.8810 0.8082 / 0.9289
w/o diff loss 0.7320 / 0.7314 35.0011 / 57.7368 0.6006 / 0.7817 0.6777 / 0.8558
w/o gating 0.7378 / 0.7399 34.4141 / 55.7714 0.6037 / 0.7868 0.6796 / 0.8583

Tab. 5 presents the ablation study results on the Chengdu dataset, which are consistent with those
obtained in Xi’an. The results clearly demonstrate that both the difference loss (Ldiff ) and the
personalized gating mechanism play essential roles in the model’s performance. These findings
collectively validate the effectiveness and complementarity of both modules in enhancing the model’s
generalization capability.

We have also conducted additional ablation experiments where the model is trained using only data
from a single city, and compared it with the multi-city training setting. The results for Xi’an and
Chengdu are presented in Tab. 6.

Across all tasks and evaluation metrics, multi-city learning consistently outperforms single-city
training. This demonstrates that incorporating data from multiple cities enables the model to learn
more generalized and transferable patterns, leading to better performance even on individual city
tasks. These findings validate the effectiveness and necessity of multi-city learning.

Table 6: Ablation Study.

City Method Road Label Travel Time Destination Road Destination Grid
Micro-F1 / Macro-F1 MAE / RMSE Acc@1 / Acc@5 Acc@1 / Acc@5

Xi’an multi-city 0.8407 / 0.8298 35.0689 / 60.9156 0.7409 / 0.9069 0.6675 / 0.8392
single-city 0.8325 / 0.8144 47.7116 / 76.4029 0.6973 / 0.7915 0.6569 / 0.8133

Chengdu multi-city 0.7461 / 0.7473 34.3311 / 54.7641 0.7395 / 0.8810 0.8082 / 0.9289
single-city 0.7243 / 0.7273 43.6200 / 65.1772 0.7011 / 0.8610 0.7887 / 0.8991
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Figure 6: Parameter Sensitivity Analysis on Destination Road Prediction in Xi’an.

B.2.4 Additional Parameter Sensitivity

Fig. 6 presents the sensitivity analysis results for the destination road prediction task in Xi’an, which
are consistent with those obtained for travel time estimation. These consistent trends across tasks
further demonstrate the stability and robustness of the proposed model with respect to hyperparameter
choices.

B.2.5 Model Efficiency

Table 7: Efficiency Comparison on Xi’an.

Model Size Train Time Inference Time
(MBytes) (min/epoch) (milliseconds)

Random - - 0.374
Word2Vec 8.0 0.2 0.404
Node2Vec 7.6 0.2 0.328

Transformer 14 1.5 0.940
BERT 433 3.5 1.260
Toast 27 7.2 2.152

JCLRNT 13 1.3 0.792
START 94 17 4.700
JGRM 33 15 4.220

MVTraj 207 35 10.560

SMARTraj2 477 54 11.65

As shown in Tab. 7, while our method has a larger model size compared to some baselines, its
inference time remains within a practical range. These results suggest that our approach is feasible
for real-world deployment.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. Please see Abstract and Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
Please see Sec. 4.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides the full set of assumptions and a complete (and correct)
proof. Please see Sec. 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper. The code and data are also provided. Please see Abstract and Sec. B.1.4.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources (type of
compute workers, memory, time of execution) needed to reproduce the experiments. Please
see Abstract.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, does with the
NeurIPS Code of Ethics. Please see Abstract.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed. Please see Sec. 5.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse. Please see Abstract.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and are the license and terms of use explicitly mentioned and
properly respected. Please see Abstract.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve potential risks incurred by study participants.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, and does not impact the core
methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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