
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

VERLET FLOWS: EXACT-LIKELIHOOD INTEGRATORS
FOR FLOW-BASED GENERATIVE MODELS

Ezra Erives, Bowen Jing, Tommi Jaakkola
CSAIL, Massachusetts Institute of Technology
{erives,bjing}@mit.edu,tommi@csail.mit.edu

ABSTRACT

Approximations in computing model likelihoods with continuous normalizing
flows (CNFs) hinder the use of these models for importance sampling of Boltz-
mann distributions, where exact likelihoods are required. In this work, we present
Verlet flows, a class of CNFs on an augmented state-space inspired by symplectic
integrators from Hamiltonian dynamics. When used with carefully constructed
Taylor-Verlet integrators, Verlet flows provide exact-likelihood generative models
which generalize coupled flow architectures from a non-continuous setting while
imposing minimal expressivity constraints. On experiments over toy densities, we
demonstrate that the variance of the commonly used Hutchinson trace estimator
is unsuitable for importance sampling, whereas Verlet flows perform comparably
to full autograd trace computations while being significantly faster.

1 INTRODUCTION

Flow-based generative models—also called normalizing flows—parameterize maps from prior to
data distributions via invertible transformations. An exciting application of normalizing flows is in
learning the Boltzmann distributions of physical systems (Noé et al., 2019; Midgley et al., 2023;
Kim et al., 2024). At inference time, these Boltzmann generators provide model likelihoods which
can be used to reweigh samples towards the target energy with importance sampling. While nearly
all existing Boltzmann generators are built from composing invertible layers such as coupling layers
or splines, experiments on image domains suggest that continuous normalizing flows (CNFs)—
which can parameterize arbitrary vector fields mapping noise to data—are far more expressive than
their discrete counterparts (Chen et al., 2018; Grathwohl et al., 2018). Unfortunately, the exact
model likelihood of CNFs can only be accessed through expensive trace computations and numerical
integration, preventing their adoption in Boltzmann generators.

In this work, we propose Verlet flows, a flexible class of CNFs on an augmented state-space inspired
by symplectic integrators from Hamiltonian dynamics. Instead of parameterizing the flow γ with a
single neural network, Verlet flows instead parameterize the coefficients of the multivariate Taylor
expansions of γ in both the state-space and the augmenting space. We then introduce Taylor-Verlet
integrators, which exploit the splitting approximation from which many symplectic integrators are
derived to approximate the intractable time evolution of γ as the composition of the tractable time
evolutions of the Taylor expansion terms. At training time, Verlet flows are a subclass of CNFs, and
can be trained accordingly. At inference time, Taylor-Verlet integration enables theoretically-sound
importance sampling with exact likelihoods.

2 BACKGROUND

Discrete Normalizing Flows Given a source distribution π0 and target distribution π1, we wish
to learn an invertible, bijective transformation fθ which maps π0 to π1. Discrete normalizing flows
parameterize fθ as the composition fθ = fN

θ ◦ · · · ◦ f i
θ, from which log π1(fθ(x)) can be computed

using the change of variables formula and the log-determinants of the Jacobians of the individual
transformations f i

θ. Thus, significant effort has been dedicated to developing expressive, invertible
building blocks f i

θ whose Jacobians have tractable log-determinant. Successful approaches include
coupling-based flows, in which the dimensions of the state variable x are partitioned in two, and the

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

each half is used in turn to update the other half (Dinh et al., 2016; 2014; Müller et al., 2019; Durkan
et al., 2019), and autoregressive flows (Kingma et al., 2017; Papamakarios et al., 2018). Despite
these efforts, discrete normalizing flows have been shown to suffer from a lack of expressivity in
practice.

Continuous Normalizing Flows Continuous normalizing flows (CNFs) dispense with the discrete
layers of normalizing flows and instead learn a time-dependent vector field γ(x, t; θ), parameterized
by a neural network, which maps the source π0 to a target distribution π1 (Chen et al., 2018; Grath-
wohl et al., 2018). Model densities can be accessed by the continuous-time change of variables
formula given by

log π1(x1) = log π0(x0)−
∫ 1

0

Tr Jγ(xt, t; θ) dt, (1)

where xt = x0 +
∫ t

0
γ(xt, t; θ) dt, Tr denotes trace, and Jγ(xt, t; θ) = ∂γ(x,t;θ)

∂x |xt,t denotes the
Jacobian. Compared to discrete normalizing flows, CNFs are not constrained by invertibility or the
need for a tractable Jacobian, and therefore enjoy significantly greater expressivity.

While the trace TrJγ(xt, t; θ) appearing in the integrand of Equation 1 can be evaluated exactly with
automatic differentiation, this grows prohibitively expensive as the dimensionality of the data grows
large, as a linear number of backward-passes are required. In practice, the Hutchinson trace estima-
tor (Grathwohl et al., 2018) is used to provide a linear-time, unbiased estimator of the trace. While
cheaper, the variance of the Hutchinson estimator makes it unsuitable for importance sampling.

Symplectic Integrators and the Splitting Approximation Leap-frog integration is a numeric
method for integrating Newton’s equations of motion which involves alternatively updating q (po-
sition) and p (velocity) in an invertible manner not unlike augmented, coupled normalizing flows.1
Leap-frog integration is a special case of the more general family of symplectic integrators, designed
for the Hamiltonian flow γH (of which the equations of motion are a special case). Oftentimes the
Hamiltonian flow decomposes as γH = γq + γp, enabling the splitting approximation

φ(γH , τ) ≈ φ(γq, τ) ◦ φ(γp, τ) (2)

where φ(γ, τ) denotes the time evolution operator along the flow γ for a duration τ , and where
the terms on the right-hand side of Equation 2 are possibly tractable in a way that the left-hand
side is not. For example, the leap-frog integrator corresponds to analytic, invertible, and volume-
preserving φ(γ{q,p}, t), whereas the original evolution may satisfy none of these properties. While
Verlet flows, to be introduced in the next section, are not in general Hamiltonian, they similarly
exploit the splitting approximation. A more detailed exposition of symplectic integrators and the
splitting approximation can be found in Appendix A.

3 METHODS

3.1 VERLET FLOWS

We consider the problem of mapping a source distribution π̃0(q) on Rdq at time t = 0 to a target
distribution π̃1(q) on (Rdq) at time t = 1 by means of a time-dependent flow γ(x, t). We will
now augment this problem on the configuration-space Rdq by extending the distribution π̃0(q) to
π0(q, p) = π0(p|q)π̃0(q) and π̃1(q) to π1(q, p) = π1(p|q)π̃1(q) where both πi(p|q) are given by
N (p; 0, Idp

). In analogy with Hamiltonian dynamics, we will refer to the space M = Rdq+dp as
phase space.2

Observe that any analytic flow γ is given (at least locally) by a multivariate Taylor expansion of the
form

γ(x, t) =
d

dt

[
q
p

]
=

[
γq(q, p, t)
γp(q, p, t)

]
=

[
sq0(p, t) + sq1(p, t)

T q + · · ·
sp0(q, t) + sp1(q, t)

T p+ · · ·

]
=

[∑∞
k=0 s

q
k(p, t)(q

⊗k)∑∞
k=0 s

p
k(q, t)(p

⊗k)

]
(3)

for appropriate choices of functions sqi and spi , which we have identified in the last equality as (i, 1)-
tensors: multilinear maps which take in i copies of q ∈ TqRn and return a tangent vector. While

1Closely related to leap-frog integration is Verlet integration, from which our method derives its name.
2Note that we do not require that dq = dp.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

s
{q,p}
0 and s

{q,p}
1 can be thought of as vectors and matrices respectively, higher order terms do not

admit particularly intuitive interpretations. Whereas traditional CNFs commonly parameterize γθ
directly via a neural network, Verlet flows instead parameterize the coefficients s{q,p};θk with neural
networks, allowing for Verlet integration via the splitting approximation. By parameterizing all the
terms in the Taylor expansion, Verlet flows are in theory as expressive as CNFs parameterized as
γ(q, p, t; θ). However, in practice,we must truncate the series after some finite number of terms,
yielding the order N Verlet flow

γN (x, t; θ) :=

[∑N
k=0 s

q
k(p, t; θ)(q

⊗k)∑N
k=0 s

p
k(q, t; θ)(p

⊗k)

]
. (4)

In the next section, we examine how to obtain exact likelihoods from these truncated Verlet flows.

3.2 TAYLOR-VERLET INTEGRATORS

Denote by γq
k the flow given by

γq
k(x, t; θ) =

[
sqk(p, t; θ)(q

⊗k)
0

]
∈ TxM,

and define γp
k similarly.3 For any such flow γ′ on M , denote by φ‡(γ′, τ) the time evolution operator,

transporting a point x ∈ M along the flow γ′ for time τ . We denote by just φ the pseudo time
evolution operator given by φ(γ′, τ) : xt → xt +

∫ t+τ

t
γ′(xs, t) ds.4 Note that t is kept constant

throughout integration, an intentional choice which we shall see allows for a tractable closed form.
Although our Verlet flows are not Hamiltonian, the splitting approximation from Equation 11 can be
applied to Verlet flows to decompose the desired time evolution into simpler, analytic terms, yielding

φ‡(γ, τ) ≈ φ(γt, τ)◦φ(γp
N , τ)◦φ(γq

N , τ)◦φ(γp
N−1, τ)◦φ(γ

q
N−1, τ) · · ·φ(γ

p
0 , τ)◦φ(γ

q
0 , τ). (5)

Note here that the leftmost term of the right hand side is the time-update term φ(γt, τ). The key idea
is that Equation 5 approximates the generally intractable φ‡(γ, τ) as a composition of simpler,
tractable updates allowing for a closed-form, exact-likelihood integrator for Verlet flows.

The splitting approximation from Equation 5, together with closed-form expressions for the time
evolution operators and their log density updates (see Figure 1), yields an integration scheme specif-
ically tailored for Verlet flows, and which we shall refer to as a Taylor-Verlet integrator. Explicit
integrators for first order and higher order Verlet flows are presented in Appendix D. One important
element of the design space of Taylor-Verlet integration is the order of the terms within the splitting
approximation of Equation 5, and consequently, the order of updates performed during Verlet inte-
gration. We will refer to Taylor-Verlet integrators which follow the order of Equation 5 as standard
Taylor-Verlet integrators, and others as non-standard. While the remainder of this work focuses on
standard Taylor-Verlet integrators, the space of non-standard Taylor-Verlet integrators is rich and re-
quires further exploration. Certain coupling-based normalizing flow architectures, such as RealNVP
(Dinh et al., 2016) can be realized as the update steps of non-standard Taylor-Verlet integrators, as
is discussed in Appendix E.

3.3 CLOSED FORM AND DENSITY UPDATES FOR TIME EVOLUTION OPERATORS

For each pseudo time evolution operator φ(γk
{q,p}, τ), we compute its closed-form and the log-

determinant of its Jacobian. Together, these allow us to implement the integrator given by Equation
5. Results are summarized in the Table 1 for γq

k only, but analogous results hold for for γp
k as well.

Note that for terms of order k ≥ 2, and for the sake of tractability, we restrict our attention to sparse
tensors, denoted sk

{q,p}, for which only “on-diagonal” terms are non-zero so that sk{q,p}(q⊗k)

collapses to a simple dot product. We similarly use γ
{q,p}
k to denote the corresponding flows for

sparse, higher order terms. Full details and derivations can be found in Appendix C.

3When there is no risk of ambiguity, we drop the subscript and refer to γN simply by γ.
4Justification for use of the pseudo time evolution operator φ can be found in Appendix B.

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: A summary of closed-forms for the time evolution operators φ(γq
k; τ), and their corre-

sponding log density updates. Analogous results hold for for φ(γp
k ; τ) as well.

Flow γ Operator φ(γ, τ) Density Update log det |Jφ(γ, τ)|

γq
0

[
q
p

]
→

[
q + τsq0(p, t)

p

]
0

γq
1

[
q
p

]
→

[
exp(τsq1(p, t))q

p

]
Tr(τsq1(p, t))

γq
k, k > 1

[
q
p

]
→

[
(q◦(1−k) + τ(sqk)i(1− k))◦(

1
1−k)

p

] ∑
i

k
1−k

log
∣∣q1−k

i + τ(1− k)(sqk)i
∣∣− k log |qi|

4 EXPERIMENTS

Across all experiments in this section, and unless stated otherwise, we train an order-one Verlet flow
γθ, with coefficients s{q,p};θ0,1 parameterized as a three-layer architecture with 64 hidden units each,
as a continuous normalizing flow using likelihood-based loss. Non-Verlet integration is performed
numerically using a fourth-order Runge-Kutta solver for 100 steps.

Figure 1: The left graph shows estimates of the natural logarithm logZ (mean ± S.D.) as a function
of the number of samples. The right graph shown the time needed to make the computations in the
left graph. Both graphs use 100 integration steps.

Estimation of logZ Given an unnormalized density π̂, a common application of importance sam-
pling is to estimate the partition function Z =

∫
π̂(x) dx. Given a distribution πθ (hopefully close

to the unknown, normalized density π = π̂
Z), we obtain an unbiased estimate of Z via

Ex∼πθ

[
π̂(x)

πθ(x)

]
=

∫
Rd

[
π̂(x)

πθ(x)

]
πθ(x) dx =

∫
Rd

π̂(x) dx = Z. (6)

We train an order-one Verlet flow γθ targeting a trimodal Gaussian mixture in two-dimensional q-
space, and an isotropic Gaussian N (p1; 0, I2) in a two-dimensional p-space. We then perform and
time importance sampling using Equation 6 to estimate the natural logarithm logZ in two ways:
first numerically integrating γθ with a fourth-order Runge-Kutta solver and using automatic differ-
entiation to exactly compute the trace, and secondly using Taylor-Verlet integration. We find that
integrating γθ using a Taylor-Verlet integrator performs comparably to integrating numerically while
being significantly faster. Results are summarized in Figure 1.

The poor performance of the Hutchinson trace estimator can be seen in Figure 2, where we plot
a histogram of the logarithm log

[
π̂(x)
πθ(x)

]
of the importance weights for x ∼ πθ(x). The presence

of just a few positive outliers (to be expected given the variance of the trace estimator) skews the
resulting estimate of Z to be on the order of 1020 or larger.

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Figure 2: This histogram shows log importance weights for a trimodal GMM obtained by numeri-
cally integrating the Verlet flow γθ using the Hutchinson trace estimator for 100 integration steps.
Positive outliers render the Hutchinson trace estimator unusable for importance sampling.

5 CONCLUSION

In this work, we have presented Verlet flows, a class of CNFs in an augmented state space whose flow
γθ is parameterized via the coefficients of a multivariate Taylor expansion. The splitting approxi-
mation used by many symplectic integrators is adapted to construct exact-likelihood Taylor-Verlet
integrators, which enable comparable but faster performance to numeric integration using expensive,
autograd-based trace computation on tasks such as importance sampling.

6 ACKNOWLEDGEMENTS

We thank Gabriele Corso, Xiang Fu, Peter Holderrieth, Hannes Stärk, and Andrew Campbell for
helpful feedback and discussion over the course of the project. We also thank the anonymous re-
viewers for their helpful feedback and suggestions.

REFERENCES

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in neural information processing systems, 32, 2019.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Joseph C Kim, David Bloore, Karan Kapoor, Jun Feng, Ming-Hong Hao, and Mengdi Wang.
Scalable normalizing flows enable boltzmann generators for macromolecules. arXiv preprint
arXiv:2401.04246, 2024.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improving variational inference with inverse autoregressive flow, 2017.

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Laurence I Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Se (3) equivariant augmented coupling flows. arXiv preprint
arXiv:2308.10364, 2023.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural im-
portance sampling, 2019.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation, 2018.

Haruo Yoshida. Recent progress in the theory and application of symplectic integrators. In Quali-
tative and Quantitative Behaviour of Planetary Systems: Proceedings of the Third Alexander von
Humboldt Colloquium on Celestial Mechanics, pp. 27–43. Springer, 1993.

A HAMILTONIAN MECHANICS AND SYMPLECTIC INTEGRATORS ON
EUCLIDEAN SPACE

Given a mechanical system with configuration space Rd, we may define the phase space of the
system to be the cotangent bundle M = T ∗Rd ≃ R2d. Intuitively, phase space captures the intuitive
notion that understanding the state of M at a point in time requires knowledge of both the position
q ∈ Rd and the velocity, or momentum (assuming unit mass), p ∈ T ∗Rd.

A.1 HAMILTONIAN MECHANICS

Hamiltonian mechanics is a formulation of classical mechanics in which the equations of motion
are given by differential equations describing the flow along level curves of an energy function,
or Hamiltonian, H(q, p). Denote by X (M) the space of smooth vector fields on M . Then at the
point (q, p) ∈ M , the Hamiltonian flow γH ∈ X (M) is defined to be the unique vector field which
satisfies

γT
HΩγ′ = ∇H · γ′ (7)

for all γ′ ∈ X (M), and where

Ω =

[
0 Id
−Id 0

]
is the symplectic form5. Equation 7 implies γT

HΩ = ∇H, which yields

γH =
[
∂H
∂p −∂H

∂q

]T
. (8)

In other words, our state (q, p) evolves according to dq
dt = ∂H

∂p and dp
dt = −∂H

∂q .

A.2 PROPERTIES OF THE HAMILTONIAN FLOW γH

The time evolution φ‡(γH, τ) of γH satisfies two important properties: it conserves the Hamiltonian
H, and it conserves the symplectic form Ω.

Proposition A.1. The flow γH conserves the HamiltonianH.

Proof. This amounts to showing that d
dτ φ

‡(γH, τ)|τ=0 = 0, which follows immediately from∇H ·
γH = 0.

Proposition A.2. The flow γH preserves the symplectic form Ω.
5In our Euclidean context, a symplectic form is more generally any non-degenerate skew-symmetric bilinear

form Ω′ on phase space. However, it can be shown that there always exists a change of basis which satisfies
ΛΩ′Λ−1 = Ω, where Λ denotes the change of basis matrix. Thus, we will only consider Ω.

6

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Proof. Realizing Ω as the (equivalent) two-form
∑

i dqi∧dpi, the desired result amounts to showing
that the Lie derivative LγHΩ = 0. With Cartan’s formula, we find that

LγHΩ = d(ιγHΩ) + ιγHdΩ = d(ιγHΩ)

where d denotes the exterior derivative, and ι denotes the interior product. Here, we have used that
dΩ =

∑
i d(dqi ∧ dpi) = 0. Then we compute that

d(ιγHΩ) = d(ιγH

∑
i

dqi ∧ dpi)

= d

(∑
i

∂H
∂pi

dpi +
∂H
∂qi

dqi

)
= d(dH).

Since d2 = 0, LγH = d(dH) = 0, as desired.

Flows which preserve the symplectic form Ω are known as symplectomorphisms. Proposition A.2
implies that the time evolution of γH is a symplectomorphism.

A.3 SYMPLECTIC INTEGRATORS AND THE SPLITTING APPROXIMATION

We have seen that the time-evolution of γH is a symplectomorphism, and therefore preserves the
symplectic structure on the phase space M . In constructing numeric integrators for γH, it is therefore
desirable that our integrators are, if possible, themselves symplectomorphisms. In many cases, the
HamiltonianH decomposes as the sumH(q, p) = T (q)+V (p). Then, at the point z = (q, p) ∈M ,
we find that

γT =

[
∂T
∂p

−∂T
∂q

]
=

[
0
−∂T

∂q

]
∈ Tz(R2)

and

γV =

[
∂V
∂p

−∂V
∂q

]
=

[
∂V
∂p

0

]
∈ Tz(R2).

Thus, the flow decomposes as well to

γH =

[
∂H
∂p

−∂H
∂q

]
=

[
∂V
∂p

−∂T
∂q

]
=

[
0
−∂T

∂q

]
+

[
∂H
∂p

0

]
= γT + γV .

Observe now that the respective time evolution operators are tractable and are given by

φ‡(γT , τ) :

[
q
p

]
→
[
q + τ ∂T

∂p

p

]
and

φ‡(γV , τ) :

[
q
p

]
→
[

q
p− τ ∂T

∂q

]
.

Since γT and γV are Hamiltonian flows their time evolutions φ‡(γT , τ) and φ‡(γT , τ) are both
symplectomorphisms. As symplectomorphisms are closed under composition, it follows that that
φ‡(γT , τ) ◦ φ‡(γV , τ) is itself a symplectomorphism. We have thus arrived at the splitting approxi-
mation

φ‡(γH, τ) ≈ φ‡(γT , τ) ◦ φ‡(γV , τ). (9)

Equation 9 allows us to approximate the generally intractable, symplectic time evolution φ‡(γH, τ)
as the symplectic composition of two simpler, tractable time evolution operators. The integration
scheme given by Equation 9 is generally known as the symplectic Euler method.

So-called splitting methods make use of more general versions of the splitting approximation to
derive higher order, symplectic integrators. Using the same decomposition H(q, p) = T (q) +
V (p), and instead of considering the two-term approximation given by Equation 9, we may choose

7

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

coefficients {ci}Ni=0 and {di}Ni=0 with
∑

ci =
∑

di = 1 and consider the more general splitting
approximation

φ‡(γH, τ) ≈ φ‡(cNγT) ◦ φ‡(dNγV) ◦ · · · ◦ φ‡(c0γT) ◦ φ‡(d0γV). (10)

A more detailed exposition of higher order symplectic integrators can be found in (Yoshida, 1993).

B JUSTIFICATION FOR TREATING φ(γ, τ)’S AS TIME EVOLUTION
OPERATORS

In the following discussion, we will use xt = (qt, pt) for brevity. The splitting approximation from
Equation 5, which we recall below as

φ‡(γ, τ) ≈ φ(γt, τ) ◦ φ(γp
N , τ) ◦ φ(γq

N , τ) · · ·φ(γp
0 , τ) ◦ φ(γ

q
0 , τ). (11)

requires some clarification. Recall that while the true time evolution operator φ‡(γ, τ) is given by

φ‡(γ, τ) :

[
xt

t

]
→
[
xt +

∫ t+τ

t
γ(xu, u) du

t+ τ

]
, (12)

the pseudo time operator φ(γ, τ) is given by

φ(γ, τ) :

[
xt

t

]
→
[
xt +

∫ t+τ

t
γ(xu, t) du
t

]
, (13)

where t is kept-constant throughout the integration.

To make sense of the connection between φ‡ and φ, we will augment our phase-time space S =
Rdp+dq × R≥0 (within which our points (xt, t) live), with a new s-dimension, to obtain the space
S ′ = S × R≥0. Treating xt and t as the state variables xs and ts which evolve with s, the flow γq

k

(as a representative example) on Rdp+dq can be extended to a flow γ̂q
k on S given by

γ̂q
k(xs, ts) =

[
∂xs

∂s
∂ts
∂s

]
=

[
γq
k(xs, ts)

0

]
(14)

where the zero ts-component encodes the fact that the pseudo-time evolution φ(γq
k, τ) from Equa-

tion 13 does not change t. The big idea is then that this pseudo time evolution φ(γq
k, τ) can be

viewed as the projection of the (non-pseudo) s-evolution φ‡(γ̂q
k, τ), given by

φ‡(γ̂q
k, τ) :

[
xs

ts
s

]
→

xs +
∫ s+τ

s
γq
k(xu, tu) du

ts+τ

s+ τ

 , (15)

onto S. The equivalency follows from the fact that for γ̂q
k, ts+τ ′ = ts for τ ′ ∈ [0, τ]. A similar

statement can be made about the t-update γt from Equation 11.

Denoting by Proj : S ′ → S the projection onto S, we see that the splitting approximating using
pseudo-time operators from Equation 11 can be rewritten as the projection onto S of an analogous
splitting approximation using non-pseudo s-evolution operators, viz.,

Projφ‡(γ̂, τ) ≈ Proj
[
φ‡(γ̂t, τ) ◦ φ‡(γ̂p

N , τ) ◦ φ‡(γ̂q
N , τ) · · ·φ‡(γ̂p

0 , τ) ◦ φ‡(γ̂q
0 , τ)

]
. (16)

C DERIVATION OF TIME EVOLUTION OPERATORS AND THEIR JACOBIANS

Order Zero Terms. For order k = 0, recall that

γq
0(x) =

[
sq0(p, t)(q

⊗0)
0

]
=

[
sq0(p, t)

0

]
,

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

so that the operator φ(γ0
q , τ) is given by

φ(γq
0 , τ) :

[
q
p
t

]
→

[
q + τsq0(p, t)

p
t

]
(17)

with Jacobian Jq
0 given by

Jq
0 =

Idq τ(
∂sq0
∂p)T τ(

∂sq0
∂t)

T

0 Idp
0

0 0 1

 . (18)

The analysis for sp0 is nearly identical, and we omit it.

Order One Terms. For k = 1, we recall that

γq
1(x) =

sq1(p, t)(q⊗1)
0
0

 =

sq1(p, t)T q0
0

 . (19)

Then the time evolution operator φ(γq
1 , τ) is given by

φ(γq
1 , τ) :

[
q
p
t

]
→

[
exp(τsq1(p, t))q

p
t

]
(20)

and the Jacobian Jq
1 is simply given by

Jq
1 =

[
exp(τsq1(p, t)) · · · · · ·

0 Idp 0
0 0 1

]
(21)

Then log det(J1
q) = log det(exp(τa1(p, t))) = log exp(Tr(τa1(p, t))) = Tr(τa1(p, t)).

Sparse Higher Order Terms. For k > 1, we consider only sparse tensors given by the simple dot
product

sqk(q
⊗k) =

∑
i

(sqk)i q
k
i =

(
sqk(q

⊗k)
)T

q◦k

where q◦k denotes the element-wise k-th power of q. Then the q-component of time evolution
operator γq

k is given component-wise by an ODE of the form dq
dt = sqk(p, t)q

k, whose solution is
obtained in closed form via rearranging to the equivalent form∫ qt+τ

qt

1

sqk(p, t)
q−k dq =

∫ t+τ

t

dt = τ.

Then it follows that qt+τ is given component-wise by (q1−k
t,i + τsqk(p, t)i(1 − k))

1
1−k . Thus, the

operator φ(γq
k, τ) is given by

φ(γq
k, τ) :

[
q
p
t

]
→

(q◦(1−k) + τsqk(p, t)(1− k)
)◦(1

1−k)

p
t

 . (22)

The Jacobian is then given by

Jq
k =

diag
(
q−k

(
q◦(1−k) + τsqk(p, t)(1− k)

)◦(1
1−k−1)

)
· · · · · ·

0 Idp 0
0 0 1

 (23)

with log det |Jq
k | given by

log det diag

∣∣∣∣q◦−k
(
q◦(1−k) + τsqk(p, t)(1− k)

)◦(k
1−k)

∣∣∣∣ =∑
i

k

1− k
log |q1−k

i −τsqk(p, t)i(1−k)|−k log |qi|.

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

D EXPLICIT DESCRIPTIONS OF TAYLOR-VERLET INTEGRATORS

Taylor-Verlet integrators are constructed using the splitting approximation given in Equation 5 of an
order N Verlet flow γθ, which we recall below as

φ‡(γ, τ) ≈ φ(γt, τ) ◦ φ(γp
N , τ) ◦ φ(γq

N , τ) · · ·φ(γp
0 , τ) ◦ φ(γ

q
0 , τ). (24)

The standard Taylor-Verlet integrator of an order N Verlet flow γθ is given explicitly in Algorithm
1 below.

Algorithm 1 Integration of order N Verlet flow

1: procedure ORDERNVERLETINTEGRATE(q, p, t0, t1, steps, γθ, N)
2: τ ← t1−t0

steps , t← t0
3: ∆ log p = 0 ▷ Change in log density.
4: sq0, s

p
0, . . . s

q
N , spN ← γθ

5: while t < t1 do
6: k ← 0
7: while k ≤ N do
8: q ← φ(γq;θ

k , τ) ▷ q-update.
9: ∆ log p← ∆ log p− log detJφ(γq;θ

k , τ)

10: p← φ(γp;θ
k , τ) ▷ p-update.

11: ∆ log p← ∆ log p− log detJφ(γp;θ
k , τ)

12: k ← k + 1
13: t← t+ τ
14: return q, p,∆ log p

Closed-form expressions for the time evolution operators γq;θ
k , τ) and log density updates

log detJφ(γq;θ
k , τ) can be found in Table 1. Algorithm 2 details explicitly standard Taylor-Verlet

integration of an order one Verlet flow.

Algorithm 2 Integration of order one Verlet flow

1: procedure ORDERONEVERLETINTEGRATE(q, p, t0, t1, steps, γθ)
2: τ ← t1−t0

steps , t← t0
3: ∆ log p = 0 ▷ Change in log density.
4: sq0, s

p
0, s

q
1, s

p
1 ← γθ

5: while t < t1 do
6: q ← q + τsq0(p, t; θ), ▷ Apply equation 17
7: p← p+ τsp0(q, t; θ) ▷ Apply equation 17
8: q ← exp(τsq1(p, t; θ))q ▷ Apply equation 20
9: ∆ log p← ∆ log p− Tr(τsq1(p, t; θ)) ▷ Apply equation 23

10: p← exp(τsp1(q, t; θ))p ▷ Apply equation 20
11: ∆ log p← ∆ log p− Tr(τsp1(q, t; θ)) ▷ Apply equation 23
12: t← t+ τ
13: return q, p,∆ log p

E REALIZING COUPLING ARCHITECTURES AS VERLET INTEGRATORS

In this section, we will show that two coupling-based normalizing flow architectures - NICE (Dinh
et al. (2014)) and RealNVP (Dinh et al. (2016)) - can be realized as the Taylor-Verlet integrators
for zero and first order Verlet flows respectively. Specifically, for each such coupling layer archi-
tecture fθ, we may construct a Verlet flow γθ whose Taylor-Verlet integrator is given by successive
applications of fθ.

10

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Additive Coupling Layers The additive coupling layers of NICE involve updates of the form
fq
θ (q, p) = concat(q + tqθ(p), p),

fp
θ (q, p) = concat(q, p+ tpθ(q)).

Now consider the order zero Verlet flow γθ given by

yθ =
1

τ

[
t̃qθ(p, t)
t̃pθ(q, t)

]
,

where t̃qθ(x, t) ≜ tqθ(x) and t̃pθ(x, t) ≜ tpθ(x). Then the standard Taylor-Verlet integrator with step
size τ is given by the splitting approximation

φ‡(γθ, τ) ≈ φ(γt, τ) ◦ φ(γ0;θ
p , τ) ◦ φ(γ0;θ

q , τ)

with updates given by

φ(γ0;θ
q , τ) :

[
q
p

]
→
[
q + (τ)

(
1
τ t̃

q
θ(p, t)

)
p

]
=

[
q + tθ(p)

p

]
and

φ(γ0;θ
p , τ) :

[
q
p

]
→
[

q
p+ (τ)

(
1
τ t̃

p
θ(q, t)

)] = [q
p+ tθ(q)

]
.

Thus, fq
θ = φ(γ0;θ

q , τ) and fq
θ = φ(γ0;θ

q , τ).

RealNVP The coupling layers of RealNVP are of the form
fq
θ (q, p) = concat(q ⊙ exp(sqθ(p)) + tqθ(p), p),

fp
θ (q, p) = concat(q, p⊙ exp(spθ(q)) + tpθ(q).

Now consider the first order Verlet flow γθ given by

γθ =

[
t̃qθ + (s̃qθ)

T
q

t̃pθ + (s̃pθ)
T
p

]
,

where s̃qθ(p, t) :=
1
τ diag(sqθ(p)),

t̃qθ(p, t) :=
tqθ(p)

τ exp(τ s̃qθ(p))
,

and s̃pθ and t̃pθ are defined analogously. Then a non-standard Taylor-Verlet integrator is obtained from
the splitting approximation

φ‡(γθ, τ) ≈ φ(γt, τ) ◦ φ(γ1;θ
p , τ) ◦ φ(γ0;θ

p , τ) ◦ φ(γ1;θ
q , τ) ◦ φ(γ0;θ

q , τ)

where the order has been rearranged from that of Equation 5 to group together the γq and γp terms.
The time evolution operators φ(γ0;θ

q , τ) and φ(γ1;θ
q , τ) are given by

φ(γ0;θ
q , τ) :

[
q
p

]
→
[
q + τ t̃qθ(p, t)

p

]
=

[
q +

tqθ(p)

exp(τs̃qθ(p,t))

p

]
and

φ(γ1;θ
q , τ) :

[
q
p

]
→
[
exp(τ s̃qθ(p, t))

T q
p

]
.

So that the combined q-update φ(γ1;θ
q , τ) ◦ φ(γ0;θ

q , τ) is given by

φ(γ1;θ
q , τ) ◦ φ(γ0;θ

q , τ) :

[
q
p

]
→
[
exp(τ s̃qθ(p, t))

T q + tqθ(p)
p

]
=

[
exp(diag(sqθ(p))

T q + tqθ(p)
p

]
which reduces to[

q ⊙ exp(sqθ(p)) + tqθ(p)
p

]
= concat(q ⊙ exp(sqθ(p)) + tqθ(p), p) = fq

θ (q, p).

Thus, fq
θ (q, p) = φ(γ1;θ

q , τ) ◦ φ(γ0;θ
q , τ), and similarly, fp

θ (q, p) = φ(γ1;θ
p , τ) ◦ φ(γ0;θ

p , τ).

Strictly speaking, Taylor-Verlet integrators cannot be said to completely generalize these coupling-
based architectures because Verlet flows operate on a fixed, canonical partition of dimensions,
whereas coupling-based architectures commonly rely on different dimensional partitions in each
layer.

11

	Introduction
	Background
	Methods
	Verlet Flows
	Taylor-Verlet Integrators
	Closed Form and Density Updates for Time Evolution Operators

	Experiments
	Conclusion
	Acknowledgements
	Hamiltonian Mechanics and Symplectic Integrators on Euclidean Space
	Hamiltonian Mechanics
	Properties of the Hamiltonian Flow H
	Symplectic Integrators and the Splitting Approximation

	Justification for Treating (,)'s as Time Evolution Operators
	Derivation of Time Evolution Operators and Their Jacobians
	Explicit Descriptions of Taylor-Verlet Integrators
	Realizing Coupling Architectures as Verlet Integrators

