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Abstract
Spectral graph learning builds upon two founda-
tions: Graph Fourier basis as its theoretical corner-
stone, with polynomial approximation to enable
practical implementation. While this framework
has led to numerous successful designs, we ar-
gue that its effectiveness might stem from mecha-
nisms different from its preconceived theoretical
foundations.

In this paper, we identify two fundamental issues
that challenge our current understanding: (1) The
graph Fourier basis U1 faces too many questions
to truly serve its intended role, particularly in pre-
serving its semantic properties of Fourier analysis;
(2) The limitations preventing expressive filters
are not merely practical constraints, but funda-
mental barriers that naturally protect stability and
generalization.

Importantly, the two issues entangle with each
other. The second obscured the first: the natu-
ral avoidance of complex filters has prevented us
from fully confronting the questions about U’s
role as a Fourier basis. This observation leads to
our position: the effectiveness of spectral GNNs
relies less on Graph Fourier basis than originally
conceived, or, in other words, spectral GNNs
might not be so spectral. The position leads us
to at least two potential research interests: to in-
corporate a more semantically meaningful graph
dictionary other than U, and to re-examine the
theoretical role of the introduced polynomial tech-
niques.

1. Introduction
Spectral Graph Neural Networks (Spectral GNNs) represent
a niche yet vibrant branch within the broader field of Graph

1Gaoling School of Articial Intelligence, Renmin University of
China. Correspondence to: Zhewei Wei <zhewei@ruc.edu.cn>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Eigenvectors of the normalized graph Laplacian.

Figure 1. Organization of our position paper.

Neural Networks (GNNs). With lightweight parameters and
simple architectures, Spectral GNNs have proven highly
effective in node classification tasks. The appeal of this re-
search branch stems from the underlying signal processing
theory and polynomial fitting techniques. These methodolo-
gies and concepts not only hold a prominent place in current
research trends but also have the potential to flow into ad-
vanced technologies like Kolmogorov–Arnold Networks
(KAN) (Liu et al., 2024b; Bozorgasl & Chen, 2024; Liu
et al., 2024a), and networks using Fourier features (Wang
et al., 2021), thereby driving further innovation within these
fields.

However, as spectral GNNs evolve and find applications in
diverse scenarios, we identify two fundamental issues that
challenge our understanding of their success (Figure 1):

• The questionable but widely-accepted Fourier ba-
sis. Do graph Laplacian eigenvectors truly serve as
a Fourier basis? While the mathematical formalism
can be systematically carried over, the semantic prop-
erties that make Fourier analysis powerful may not be
preserved in this transition.

• The inherent limitations in the filtering polynomial.
Why must we stay far from expressive filters despite
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their theoretical appeal? The limitations preventing
complex filters are not merely practical constraints, but
fundamental barriers that naturally protect stability and
generalization.

Most importantly, these two issues are not independent: the
second issue naturally obscures the first. The inherent
stability and generalization limitations of an ‘expressive’
filter have prevented us from fully confronting the questions
about U’s role as a Fourier basis.

In this paper, we identify and systematically examine these
issues. For issue 1, we trace how the mathematical analo-
gies were established, review concerns raised in previous
literature, present experimental findings that question this
analogy, and specifically, reflect on how this questionable
belief has persisted. For issue 2, we demonstrate that com-
plex filters inherently undermine stability and generalization.
Our analysis considers both the stability of filter layers and
GNN architectures, as well as the generalization behavior in
two distinct scenarios. These findings lead to our position:
the effectiveness of spectral GNNs relies less on Graph
Fourier basis than originally conceived. This suggests
that we need to re-examine the working mechanisms of spec-
tral GNNs, potentially leading to (1) better understanding
of how the polynomial techniques boost graph learning, and
(2) designs that better align with a graph signal processing
theoretical motivation.

2. Background
This section introduces the development of spectral graph
learning. We want the reader to identify the two fundamental
roots in Fig. 1 that form the basis of our position. We also
introduce two basic graph learning settings, which are two
scenarios in the sensitivity and generalization analysis of
Section 4. Basic notations are introduced along the way,
with a glossary table in Appendix A.

2.1. Background of Spectral Graph Learning

Graph. A graph G = (V, E ,W) consists of a node set
V , an edge set E , and edge weights W . The connectivity
pattern can be represented by an adjacency matrix A, or its
normalized version P̂. A vector x ∈ Rn can be viewed as a
graph signal, with x → P̂x represents a propagation of x on
the graph. Another more important matrix we will use is the
normalized Laplacian matrix L̂, whose eigen-decomposition
plays a crucial role in spectral graph learning.

Graph learning. Graph Neural Networks (GNNs) can be
categorized into three main approaches based on their design
philosophy in utilizing the underlying structural information.
In spatial domain models (Kipf & Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2017; Chen et al., 2020; Xu
et al., 2018), graph structure serves as a medium for informa-

Table 1. Analogies between classical and graph domain concepts.
A detailed version with concept dependencies and clear explana-
tions of each notation is provided in Appendix B.
Concept Classical Domain Graph Domain

Gradient ∇ : C1(Rn)
→ (C0(Rn))n

∇G : R|V| → R|E|

Divergence div : (C1(Rn))n

→ C0(Rn)
divG : R|E| → R|V|

Laplacian ∆ = div · ∇ L = D−A

Laplacian
Eigen
Equation

∆ϕ = λϕ Lv = λv

Fourier
Basis {ei2πkx}k∈Z {vk}|V|

k=1

Fourier
Transform

f̂(k) =∫
R f(x)e

−i2πkx dx

f̂(k) =∑|V|
i=1 f(i)v

∗
k(i)

Inverse
Fourier
Transform

f(x) =
∑

k∈Z
f̂(k)ei2πkx

f(i) =∑|V|
k=1 f̂(k)vk(i)

Convolution (f ∗ h)(x) =
∫
R f(y)

h(x− y)dy
(f ∗ h)G =

∑|V|
k=1

ĥ(λk)f̂(k)vk

tion propagation, where each layer intuitively corresponds to
the process of neighbor features propagating to and influenc-
ing central nodes. Matrix function approaches view graphs
as inputs to matrix functions (Maron et al., 2018; Keriven &
Peyré, 2019), focusing on learning functions that are both
invariant or equivariant to node ordering and expressive.
Spectral approaches, which we focus on in this work, pro-
vide a more theoretical perspective by incorporating ideas
from graph signal processing.

Graph signal processing background. Graph Signal
Processing (GSP), rooted in spectral graph theory and clas-
sical signal processing took shape as a formal framework
in the 2010s (Hammond et al., 2009; Shuman et al., 2013a;
Sandryhaila & Moura, 2013; 2014) . It primarily aims to
extend classical signal processing techniques to irregular
graph-structured data, including filtering, compression, de-
noising, windowed Fourier transforms, and wavelets, among
others.

In Table 1, we systematically summarize key analogies
between classical and graph-based signal processing. At its
core is the Graph Fourier Transform (GFT), which is built
upon the eigenvectors of the normalized Laplacian matrix
L̂ = I − P̂ = UΛU⊤. The eigenvectors {ui}ni=1 serve
as atomic components of the graph Fourier basis, playing
the same role as the complex exponentials {ei2πkx}k∈Z in
classical Fourier analysis.

Basic spectral GNNs and spectral filtering. Spectral
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Table 2. From Graph Fourier Transform to Polynomial Filters.
Operation Matrix Form

Graph Fourier Transform x̂ = U⊤x

Spectral Modulation x̂∗ = diag{θ0, θ1, . . . , θn−1}x̂

Graph Convolution x∗ = Udiag{θ0, θ1, . . . , θn−1}U⊤x

Polynomial
Approximation θi ≈ h(λi) =

∑K
k=0 αkgk(λi)

Matrix Polynomial Form x∗ =
∑K

k=0 αkgk(L̂)x

GNNs was first introduced by Bruna et al. (2013) in image
processing as a counterpart for spatial networks, and then
extended to general graph domains (Henaff et al., 2015).
To incorporate GSP into neural networks, node features
X ∈ Rn×d are viewed as d channels of graph signals.
{θi}ni=1 in table 1 (the third row) become learnable parame-
ters, often with a small fraction of low-frequency eigenvec-
tors preserved. Such a layer is called a spectral filter.

Notice that we move quickly through the spectral GNNs
to provide readers with a high-level overview. For a more
detailed treatment of this part, we refer readers to the back-
ground by Guo & Wei (2023b).

Polynomial filters: the de facto formula for spectral
GNNs. While spectral filtering requires expensive eigen-
decomposition, expressing filters as polynomials hα(λ) =∑K

k=0 αkgk(λ) enables efficient computation: h(L̂)x =∑K
k=0 αkgk(L̂)x. Table 2 shows the step-by-step deriva-

tion from Graph Fourier Transform to polynomial filters,
which forms the de facto formula for spectral GNNs. Note
that as K goes high, g is expressive enough to approxi-
mate any {θi}ni=1 under mild assumptions (Wang & Zhang,
2022).

Recent years have witnessed a surge of research focusing
on enhancing the effectiveness of spectral GNNs through
various polynomial techniques. These techniques include
Chebyshev approximation (Defferrard et al., 2016; Kipf &
Welling, 2017) and interpolation (He et al., 2022), Bernstein
basis (He et al., 2021), Jacobi polynomial bases (Wang &
Zhang, 2022), and Newton interpolation (Xu et al., 2024),
among others. Additionally, advanced methods utilizing
algebraic techniques such as the three-term recurrence re-
lations and Krylov subspace methods (Guo & Wei, 2023b;
Huang et al., 2024) have also been proposed. These spectral
GNNs show state-of-the-art results on node classification
tasks, and are capable of running on large graphs as Pa-
pers100M (Hu et al., 2020).

Other spectral models. A few spectral GNN variants
lie outside the scope of Table 2. (i) Some approaches di-
rectly use decomposed eigenvectors or eigenbasis, target-
ing small graphs or settings with partial spectral informa-

tion (Lim et al., 2022; Geisler et al., 2024; Martirosyan et al.,
2025). (ii) Some parameterize h with (complex) rational
functions (Bianchi et al., 2021; Levie et al., 2018; Li et al.,
2025), instead of polynomials. (iii) Some works emphasize
the combination of spectral and spatial mechanisms (Geisler
et al., 2024; Guo et al., 2024; Guo & Wei, 2023a). These
models fall outside our main analysis—we focus on filters
of the form h(L̂)x, and Section 4 is devoted to that—but
they illustrate how extensively the Graph Fourier basis is
attempted to be utilized. Our analysis in the next section
will question this usage.

2.2. Inductive and Transductive Graph Learning Tasks

In Appendix C, we introduce the inductive and transductive
learning settings in graph learning, using graph classification
and node classification tasks, respectively. Spectral filtering
layers are integrated into the models. In Section 4, we
will analyze how a ‘complex’ spectral polynomial filter
can affect the stability and generalization of GNNs under
inductive and transductive settings.

3. On the Validity of the Graph Fourier Basis
The first part of our position paper is to critically examine
the validity of treating U as a graph Fourier basis.

We begin by pointing out the explicit or implicit assump-
tions held by spectral graph learning researchers that graph
Fourier basis inherits similar semantics (i.e., the global os-
cillatory patterns of different frequencies) as the continu-
ous Fourier basis. After carefully examining the concepts’
migration process between the continuous and discrete do-
mains, we find that such an assumption is not self-evident
and warrants careful scrutiny.

Then, we find that the concern has been raised by experts
in graph signal processing, compressive sensing, and mani-
fold, and present experimental evidence that visualizes these
phenomena in empirical graphs.

Finally, as a position paper, we explore the origins of our
unreliable assumptions with a historical perspective, iden-
tifying key sources that have shaped our understanding of
graph Fourier bases. Through this comprehensive examina-
tion, we aim to uncover the gaps between formal derivations
and the actual semantic properties of graph signals.

3.1. The Concern

Fourier bases were initially proposed for their invariance
under the Laplacian operator, which proved advantageous
for solving equations (O’Connor & Robertson, 1997). How-
ever, in spectral graph learning’s narrative, as given in the
background section, {ui}i∈[1,n] serve more as a dictionary
of atoms (Shuman et al., 2013b; Zhang et al., 2012; Thanou
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(a) Freq Id: 0 (b) Freq Id: 1 (c) Freq Id: 2 (d) Freq Id: 0 (e) Freq Id: 20 (f) Freq Id: 40

(g) Freq Id: -1 (h) Freq Id: -2 (i) Freq Id: -3 (j) Freq Id: 540 (k) Freq Id: 580 (l) Freq Id: 600

Figure 2. Visualization of low and high frequency eigenvectors on horse and sphere meshes. More plots are provided in Appendix E.
(1) Colors represent the discretized values of eigenvectors, with the silver color representing the zero values. (2) Top: low-frequency
eigenvectors; Bottom: high-frequency eigenvectors. Left: eigenvectors on horse mesh. Right: eigenvectors on sphere mesh. (3) For the
horse mesh graph, low-frequency eigenvectors exhibit smooth, global patterns while the high-frequency signal bases, all with large silver
regions, vanish on most of the vertices, exhibiting more localized patterns. (4) High-frequency eigenvectors exhibit more ‘fourier’ patterns
on the ‘regularized’ sphere mesh graph than on the horse graph.

et al., 2014). It is natural to say, atoms that form a dictionary
are expected to have “semantic” meanings (Bolinger, 1965;
Ding et al., 2017).

Implicitly or explicitly, when adopting the graph Fourier
basis, an assumption is that {ui}ni=1 possess semantics anal-
ogous to the continuous Fourier basis: each frequency com-
ponent is expected to exhibit distinct oscillatory patterns
that span the entire domain. This assumption is particularly
evident when researchers are considering the heterophily
degrees of graphs (Zhu et al., 2021; Luan et al., 2021; He
et al., 2021; Luan et al., 2022; Zheng et al., 2022)—for
heterophilic graphs, high-frequency atoms are regarded as
crucial for fitting target signals that require rapid oscilla-
tions across edges, and it forms the motivation of most
spectral graph learning works.

However, it is worth pausing to examine whether such a
semantic assumption undoubtfully holds. In Appendix B,
we systematically trace the analogies between concepts in
the continuous domain and the graph domain. One can
readily observe that, despite the systematic mathematical
derivation being carried over, fundamental discrepancies
exist. To name a few, graph gradients, which is defined
as differences along discrete edges, is clearly different from
the continuous gradients; and when migrating divergence,
there are discrete numbers of directions defined upon edges.
As these fundamental differences cascade, it is unrealistic to
expect the semantic properties of continuous Fourier bases
to be preserved in their graph counterparts.

This discrepancy likely originates from its borrowing from
manifold definitions (Chung, 1997), where the graph Lapla-
cian was derived from manifold studies. The distinction

between general graphs and those generated from mani-
folds may lead to inherent differences, a concern that has
been emphatically highlighted by manifold experts (Belkin
& Niyogi, 2008). 2

3.2. Previous discussions

Though neglected in the context of recent spectral graph
learning, the doubtful semantic role of graph Fourier basis
has been discussed or noted in several works, and the were
examined in several aspects.

Localization. Localization is the phenomenon that the
energy of some graph Fourier basis vector concentrate a
small subset of vertices, which is contrary to the expected
global oscillatory patterns of Fourier basis. Shuman et al.
(2013b) noted this phenomenon primarily due to McGraw
& Menzinger (2008)’s study on the synchronizability of
oscillator networks, and found that it is different from the-
oretical analysis on random settings. When generalizing
windowed Fourier analysis to graphs, Shuman et al. (2013b)
emphasized that “the existence of localized eigenvectors can
limit the degree to which our intuition from classical time-
frequency analysis extends to localized vertex-frequency
analysis of signals on graphs”.

Compressibility. In comressive sensing, Zhu & Rabbat
(2012) highlighted the lack of theoretical analysis on when
graph Laplacian eigenbases can be considered as Fourier
transforms3. They assessed the “meaningfulness” of graph

2We will further explore this issue in the next section.
3Note: We quote their original statement here: “... none of the

works applying graph Fourier basis provides a detailed theoretical
analysis for when and why the graph Laplacian eigenbases can be
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Fourier atoms through compressibility, which means that
the signal can be represented efficiently using comparably
fewer eigenvectors. They concluded that the meaningfulness
of graph Fourier atoms is determined by two conditions: the
target signal’s total variance should be small on the graph,
and the graph’s eigenvalue distribution should be (generally)
increasing.

Concerns from manifold researchers. Belkin & Niyogi
(2008) cautioned that “viewing graphs as proxies for man-
ifolds and applying manifold-inspired methods” has “few
theoretical results” supporting its validity. Instead, how
graph is generated from the underlying manifold is critical.
This highlights that our generalization and utilization of
Laplacian and its eigenvectors from manifolds to general
graphs might lead to discrepancies. As cited by Zhang et al.
(2012), Karni & Gotsman (2000) mentioned when compress-
ing mesh data using graph Fourier basis, “the coordinates of
a (sampled) vertex are very close to the average coordinates
of its neighbors.” This suggests that practitioners in graphics
assume certain generation process of the underlying graph
before applying graph Fourier bases, especially how the
graph is sampled from a manifold.

3.3. Experimental Evidence

Following in discussion of Shuman et al. (2013b), we exam-
ine the localization phenomenon in empirical graphs.

Visualization on meshes. In our experiment, we explore
the semantic properties of graph Fourier bases by visualizing
eigenvectors at different frequencies (see Figure 2 and more
plots in Appendix E). We selected horse4 and sphere meshes
as subjects, representing less-irregular and more-regular
graph structures, respectively.

As shown in the figures, low-frequency eigenvectors on
the horse mesh exhibit smooth, global patterns, while high-
frequency eigenvectors concentrate on smaller subsets of
vertices, displaying more localized patterns, which is con-
sistent with the findings previously cited from Shuman et al.
(2013b). It is also worth noting that, on the regularized
sphere mesh, high-frequency eigenvectors exhibit more pro-
nounced “Fourier” patterns, indicating that special highly-
symmetric graph’s structure significantly influences the be-
havior of eigenvectors.

Measurement of localization on empirical graphs. We
follow McGraw & Menzinger (2008) to evaluate the lo-
calization of normalized and unnormalized eigenvectors
on Cora dataset (Yang et al., 2016; Sen et al., 2008) by
loc(ui) =

∑
j∈[1,n] u

4
i,j . As shown in Figure 3, experi-

regarded as the Fourier transform of graphs.”
4Note: The horse mesh is downloaded from

https://sites.cc.gatech.edu/projects/large_
models/horse.html.

Figure 3. Localization of eigenvectors in Cora dataset. Blue color
indicates highly-concentrated signal. (1). The top row represents
eigenvectors from the normalized Laplacian, while the bottom
row shows those from the unnormalized Laplacian. Within each
row, the left side displays the first 30 eigenvectors (low-frequency),
and the right side shows the last 30 eigenvectors (high-frequency).
(2) High-frequency eigenvectors exhibit significant localization,
which is partially alleviated by normalizing the Laplacian.

ments on Cora dataset exhibit significant localization phe-
nomenon on high-frequency eigenvectors, which is partially
alleviated by normalizing the Laplacian.

3.4. Origins of the Unreliable Assumptions

As a position paper, we want to take a step deeper to explore
the origins of such an unreliable assumption, which has
motivated a bunch of works, but remains questionable. In
below, we discuss several sources that shape our preconcep-
tion about graph Fourier bases.

Our misunderstanding primarily arises from two cogni-
tive biases: (1) the tendency to overgeneralize well-
established properties in low-frequency eigenvectors to
higher-frequency ones, and to extend characteristics from
specific, well-studied graphs to more general graph struc-
tures; and (2) the significant influence these “special” cases
have on the research community. In the following sections,
we will explore these biases further to uncover their impli-
cations on our assumptions about graph Fourier bases.

Source 1: Well-understood and widely-used low-
frequency eigenvectors.

The first source of our belief comes from the theoreti-
cally well-understood and widely-used properties of low-
frequency Laplacian eigenvectors. These properties indi-
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cate that low-frequency eigenvectors can reflect the global
community structure of the graph, as the global oscillation
patterns of the first several Fourier basis. Such analogy in
the low-frequency part might lead us to over-generalize this
property to higher-frequency eigenvectors.

There are two well-known theorems that provide theoretical
support for the soundness of using low-frequency eigenvec-
tors to reflect the global community structure of the graph.
Cheeger’s inequality provides a lower bound of the second
smallest eigenvalue of the Laplacian, and the eigenvector
u2 can reflect the global community structure of the graph.
The result can be extended to other low-frequency eigenvec-
tors (Lee et al., 2014). Nodal domain theorem indicates
that the number of nodal domains, which is the maximal
connected subgraphs where uk does not change sign, is at
most k, and there exists at least one eigenvector correspond-
ing to λk that has exactly k nodal domains. We put more
concrete statements of these two theorems in Appendix F.

Von Luxburg (2007), from the perspective of relaxing the
hard minimum cut problem, also derived the use of Lapla-
cian eigenvectors in spectral clustering. Subsequently, con-
vergence properties of spectral clustering based on specific
graph generation assumptions were also provided (Tang &
Priebe, 2018).

In practice, low-frequency eigenvectors are often used in
various applications including graph drawing (Koren, 2003),
and dimension reduction (Belkin & Niyogi, 2003), com-
puter vision (Zhao et al., 2007), and even finance data anal-
ysis (Maslov, 2001). These applications make extensive
use of the properties of low-frequency Laplacian eigenvec-
tors, particularly their ability to reflect global structures and
smooth transitions, which closely resemble the character-
istics of low-frequency Fourier bases. This has led us to a
tendency to overgeneralize these properties.

Source 2: Special graphs with well-behaved (high-
frequency) eigenvectors.

Another source that strongly reinforces our intuition about
graph Fourier bases comes from the study of some special
graphs, where all eigenvectors, including high-frequency
ones, do possess clear semantic meanings and oscillatory
patterns. This can be observed in our earlier visualization of
eigenvectors on the sphere mesh, which exhibits more regu-
lar patterns due to its highly symmetric structure. Among
these ‘regular’ graphs, ring graphs (cycle graph) and path
graphs shape the most common intuition about graph Fourier
bases, as Shuman et al. (2013b) pointed out. Their Lapla-
cian eigenvectors are perfectly the Discrete Fourier Trans-
form and Discrete Cosine Transform matrices (check Theo-
rem.F.4 in Appendix F). Besides, for grid graphs, Hamming
graphs and hypercube graphs, as the Cartesian product of
special graphs, their properties are in some sense inherited

(Theorem.F.5). Specifically, the eigenvectors of hypercube
graphs are known as Hamming code. Other examples in-
clude Johnson graph, and Cayley graph5.

Impact in fitness landscapes researches. Why have
these special graphs exerted such a profound influence on
our understanding of graph Fourier bases? The profound
influence of these special graphs, particularly their whole-
spectra eigenvector properties, stems from a research in-
terests in the study of fitness landscapes (Stadler, 1996;
Reidys & Stadler, 2002), related to physics, engineering
and optimization theory, where the solution spaces are often
models as a special graph. For example, the landscape of a
p-spin glass system (Binder & Young, 1986) is modeled as a
hypercube graph Qn

2 , where each node represents a possible
spin configuration, and edges connect configurations that
differ by one single spin flip. Another example is the land-
scape of the traveling salesman problem (TSP), where each
node represents a possible tour, and edges connect tours that
differ by a single edge swap. In these models, the eigenvec-
tors of all frequencies exhibit clear ‘energy’ interpretations.
The use of high-frequency Laplacian eigenvectors to analyze
these landscapes has profoundly influenced our perception
of high-frequency Laplacian eigenvectors in general graphs.

Impact in computer graphics. In addition, high-
frequency Fourier bases have also been applied early in
graphics (Taubin, 1995; Karni & Gotsman, 2000). They
also noticed that fixed regular bases are beneficial for com-
putation (Karni & Gotsman, 2001).

Conclusion. In summary, the combination of the afore-
mentioned theoretically solid and widely influential special
cases, along with our lack of careful consideration of the
context of the theoretical derivations, together with the huge
computational convenience of such Fourier bases when com-
bined with polynomials, has led us to accept a concept that
is not entirely solid.

4. On The Stability and Generalization
Barriers to Expressive Spectral Filtering

In the following, we illustrate that, a complex and expres-
sive enough polynomial that fully utilizes the graph Fourier
bases would bring poor stability and generalization. As a
result, we need to use “mild” filter polynomials, and the
graph Fourier bases, mixed together, are hindered from be-
ing utilized as fundamental frequency signals.

5Note: The graphs mentioned here are note independent of
each other. For example, the hypercube graph is a special case
of Hamming graph, grid graph is a Cartesian product of path
graphs, and Hamming graph Qn

α is an n-fold Cartesian product of
complete graph Kα.
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4.1. The Concern

Let us consider what an “ideal” spectral filter would look
like. Specifically, let x ∈ Rn and y ∈ Rn be the input
signal and a target. For i ∈ [n], the ideal response for the
i-th simple eigenvalue λi is ci = u⊤

i y/u
⊤
i x, where ui is

the eigenvector of the eigenvalue λi
6. Theoretically, we

seek a filter that can satisfy h(λi) = ci, ∀i ∈ [n] (Wang
& Zhang, 2022).

Such a filter would allow us to modulate each frequency
component independently, similar to classical Fourier anal-
ysis. However, this ideal filter would lead to numerous
issues. To see this, we visualize one ‘ideal’ filter in Figure 4
by plotting the values of ideal responses for each eigenvalue.
Components with near-zero projections u⊤

i x is excluded.

Figure 4. Visualization of an ideal spectral filter. Left: The original
plot; Right: With values over 100 cut off. The graph is from Cora
dataset. The original signal x is derived by applying PCA for
dimensionality reduction on the raw features, while the target y is
obtained by reducing the one-hot ground-truth labels.

As we have mentioned, an ideal filter should interpolate all
these points {(λi, ci)}ni=1. Thus, such a filer h will face the
following issues. (1) Large maximum value of h. It can
be observed from Figure 4 that there exist several points
with large response. Since h should interpolate all these
points, its maximum value maxλ∈[0,2] h(λ) is large. (2)
Large Lipschitz constant of h. From Figure 4, we see
that in order to correctly interpolate these points, the values
of h should change dramatically in some intervals (or h
is “sharp”). (3) Large order would be needed for h to
interpolate these points. In the next section, we demonstrate
that both these three issues affect the stability of the filter h
and eventually hurt its generalization ability.

4.2. Stability of Polynomial Filter

Let us first analyze the stability of a polynomial filter h
by measuring the difference in its output hα(L̂)x before
and after perturbing the node features x and the normalized
Laplacian matrix L̂. For simplicity, we stipulate that the
polynomial bases are the monomial bases, that is, hα(λ) =∑K

k=0 αkλ
k. Denote by x′ and L̂′ be the node features and

6For multiple eigenvalues, the ideal response corresponds to
how much should be scaled on the eigenspace. Although in experi-
ments, we consider the case for multiple eigenvalues, we describe
only the case of simple eigenvalues for simplicity.

the normalized Laplacian matrix after perturbing, our goal
is to analyze the term ∥hα(L̂)x− hα(L̂

′)x′∥. Suppose that
∥x′∥ ≤ cX , we have

∥hα(L̂)x− hα(L̂
′)x′∥

=∥hα(L̂)x− hα(L̂)x
′ + hα(L̂)x

′ − hα(L̂
′)x′∥

≤∥hα(L̂)∥∥x− x′∥+ ∥hα(L̂)− hα(L̂
′)∥∥x′∥

≤
(

sup
λ∈[0,2]

hα(λ)

)
∥x− x′∥+ cX∥hα(L̂)− hα(L̂

′)∥.

Feature perturbation sensitivity and h’s largest response.
The above equation shows that the difference in output can
be bounded by two terms. The first term composes the
difference in node features before and after perturbations
∥x− x′∥ and the maximum value of the graph filter h over
interval [0, 2]. The second term consists of the constant cX
and the difference in normalized Laplacian matrix before
and after perturbations ∥hα(L̂)−hα(L̂

′)∥. For the first term,
we conclude that the maximum value of the polynomial filter
h on [0, 2] positively affects the stability of h. To guarantee
that the polynomial filter h is stable, we should restrict its
range on [0, 2].

Graph structure perturbation sensitivity and h’s Lip-
schitz constant. Now we analyze the term ∥hα(L̂) −
hα(L̂

′)∥ by using properties of the filter h. Before moving
on, we introduce the definition of Lipschitz continuity.
Definition 4.1 (Lipschitz Continuous). Let h : [0, 2] → R.
We say h is C-Lipschitz if |hα(λ1)−hα(λ2)| ≤ C|λ1−λ2|
holds for any λ1, λ2 ∈ [0, 2].

Notice that C = supλ∈[0,2] |h′(λ)| if h is differential on
[0, 2]. Therefore, the constant C depicts the flatness of the
curve hα(λ)−y = 0 with λ ∈ [0, 2]. Now we are in a place
to see the connection between the Lipschitz constant C and
the the graph structure perturbation term ∥hα(L̂)−hα(L̂

′)∥.

Theorem 4.2 (Gama et al., 2020, Theorem 2). Let L̂ =
UΛU⊤ be the eigenvalue decomposition of L̂. Define E =
L̂′−L̂ as the error matrix. Suppose that E is symmetric and
thus its eigenvalue decomposition is given by E = VBV⊤.
Define δ = (∥V −U∥2 + 1)2 − 1. Suppose that ∥E∥ ≤ ε
and h is C-Lipschitz, then we have

∥hα(L̂
′)− hα(L̂)∥ ≤ C(1 + δ

√
n)ε+O(ε2). (1)

Remark 4.3. δ represents the eigenvectors misalignment
between the normalized graph Laplacian matrix L̂ and the
error matrix E, as revealed in (Gama et al., 2020). No-
tice that there exists a difference between Theorem 4.2 and
Theorem 1 in (Gama et al., 2020): they analyze the ad-
jacent matrix perturbation ∥hα(A) − hα(A

′)∥ while we
analyze the normalized graph Laplacian matrix perturbation
∥hα(L̂

′)− hα(L̂)∥. Although the results are different, the
proof process is the same as theirs.
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Theorem 4.2 shows that the graph structure perturbation
term ∥hα(L̂) − hα(L̂

′)∥ can be further upper bounded by
the Lipschitz constant C. A large value of C implies a larger
upper bound of the graph structure perturbation term and
thus results in the polynomial filter h being unstable, that is,
applying perturbations on the graph structure may cause a
drastic change in the output hα(L̂)x.

Graph structure perturbation and h’s Order. Notice
that Theorem 4.2 requires the error matrix E to have a eigen-
value decomposition, which could not be satisfied under
some scenarios. To this end, we adopt another technique in-
troduced by Kenlay et al. (2020) to provide an upper bound
for the graph structure perturbation term ∥hα(L̂)−hα(L̂

′)∥.
The derived result is as follows.

Theorem 4.4 (Kenlay et al., 2020, Theorem 2). Define
E = L̂′ − L̂ as the error matrix, and α̃ = (α1, . . . , αK) as
the vector of polynomial coefficients for all terms expect for
the constant term. Suppose that ∥E∥ ≤ ε, for K ≥ 2 we
have

∥hα(L̂
′)− hα(L̂)∥ ≤ ∥α̃∥1

8
(K2 − 1)

(
2(K + 1)

K − 1

)K

ε.

Remark 4.5. The bound we present in Theorem 4.4 is
slightly different from the one in Theorem 2 from (Ken-
lay et al., 2020). The reason of this difference is that the
polynomial filter is defined as hα(L̂) =

∑K
k=0 αk(L̂− I)k

in (Kenlay et al., 2020), while we define the polynomial
filter as hα(L̂) =

∑K
k=0 αkL̂

k. Although the definitions
are different, the proof process is the same as theirs.

Notice that Theorem 4.4 requires neither h is C-Lipschitz
continuous nor E is symmetric, which makes it cover more
general cases than Theorem 4.2. Theorem 4.4 shows that the
graph structure perturbation term ∥hα(L̂) − hα(L̂

′)∥ can
be upper bounded by the norm of polynomial coefficients
and a function of K. Clearly, this function of K grows
as the increase of K, which indicates that a higher order
of the polynomial filter h lead to a larger upper bound of
the graph structure perturbation term and thus making h be
unstable. Notice that a larger value of K may also has a
larger Lipschitz constant C. Thus, Theorem 4.2 and Theo-
rem 4.4 convey the same insight that increasing the order K
results decreases the stability upper bound of h. Later we
will see that a large value of K may also result in the poor
generalization of the spectral GNN with filter h.

4.3. Generalization of Spectral GNNs

In previous sections we have provided detail analysis on the
stability of a polynomial filter h by incorporating its property.
Existing studies have shown that stability can be associated
with a number of quantities that measure the performance
of a learning model, such as generalization (Shalev-Shwartz
et al., 2010) or robustness (Guo et al., 2023). Now, we

proceed on the network generalization and focus on two
kinds of tasks: inductive graph classification and transduc-
tive node classification tasks, which are representative and
widely adopted in various real-world application scenarios.

Effects from magnitude of coefficients on inductive gen-
eralization. To build connection between stability and
generalization, we need to introduce a metric to measure
the difference between two distinct graphs. In their seminal
work, Chuang & Jegelka (2022) introduced a novel tree
mover’s distance (TMD) to measure the difference between
two distinct graphs. Briefly, each node is represented by a
depth-L computation tree, TMD over two graphs is then the
optimal transport cost matching two multisets of node-trees,
and the tree-distance (TD) when calculating OT is defined
recursively by solving an OT problem between their chil-
dren down to the leaves. However, their definition can only
assign identical weights to all neighbors in all layers. To
remedy this issue, we propose the following modified tree
mover’s distance.

Definition 4.6 (Modified Tree Distance). The modified tree
distance between two trees Ta with root ra and Tb with root
rb is defined as

TD(Ta, Tb) =

{
OTTD(ρ(T #

ra , T
#
rb
)) if L > 1∥∥∥ xra

d∗(ra)
− xrb

d∗(rb)

∥∥∥ otherwise
. (2)

Remark 4.7. Our main modification lies in the definition of
d∗(u): d∗(u) = 1 if u is the root of a tree T , and otherwise
d∗(u) = deg(p(u)) · d∗(p(u)), where p(u) is the parent
of u and deg(u) is the degree of u. Other notations align
those in Definition 4 in (Chuang & Jegelka, 2022) and we
refer readers to Appendix D for more detail. Different from
Definition 4 in (Chuang & Jegelka, 2022), we do not need
to compare the roots in Definition 4.6, since the adjacent
matrix A dose not include self-loops in our definition.

Accordingly, we present a modified definition of tree
mover’s distance that is inherited from Definition 5 in
(Chuang & Jegelka, 2022) (see Definition D.4 for more
detail). Now we are in a place to analyze the Lipschiz
constant of the following spectral GNN7.

hα(G, w) = ϕ

(
n∑

i=1

[hα(D
−1A)σ(σ(X̃aW1)W2)]i,:

)
.

Theorem 4.8. Suppose that the activation function σ(·) is
Kσ-Lipschitz and the graph readout function ϕ(·) is Kϕ-

7We use D−1A instead of P̂ or L̂ as the message passing
matrix in this section. Note that D−1A, known as random-walk
Laplacian, has the same eigenvalues as P̂, and is also popular in
applications (Shuman et al., 2013a).
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Lipschitz. Then we have

∥hα(Ga;w)− hα(Gb;w)∥

≤c2WKϕK
2
σ

(
max

k
|αk|

)( K∑
k=0

TMDk+1(Ga,Gb)

)
.

(3)

Next, we discuss how to use this result to establish a gen-
eralization bound for spectral GNN on the inductive node
classification task. Following Chuang & Jegelka (2022), we
consider the learning scenario that the distribution of train-
ing data points and test data points are different. Suppose
that the data points in training are sampled from µS . Let µT

be the distribution of test data points and ℓ : W ×Z → R+,
the expected risk on distribution µS and µT are defined as
RS(w) = Ez∼µS

[ℓ(w, z)] and RT = Ez∼µT
[ℓ(w, z)], re-

spectively. Now we are in a place to establish a upper bound
for RT (w) − RS(w) that depicts how well the model per-
form on unseen data points drawn from another distribution
µT . By combining Theorem D.5 and Theorem 1 in (Shen
et al., 2018), we obtain the following result.

Theorem 4.9 (Shen et al., 2018, Theorem 1). For any spec-
tral GNN h(·;w) ∈ HW , we have

RT (w) ≤RS(w) + 2KW1(µS , µT )

+ inf
w′∈W

[RS(w
′) +RT (w

′)],
(4)

where K is the Lipschitz constant of h(·;w) and
W1(µS , µT ) is the domain discrepancy defined as

W1(µS , µT )

= inf
µ∈Π(µS ,µT )

∫ K∑
k=0

TMDk+1(Ga,Gb)dµ(Ga,Gb).

By Eq. (3), the Lipschitz constant in Eq. (4) is K =
c2WKϕK

2
σ maxk |αk|. Therefore, we conclude that a small

value of the magnitude of the polynomial coefficients make
the spectral GNN be stable and have better out-of-domain
generalization performance.

Effects from order of polynomial and norm of coef-
ficients on transductive generalization. Now let us
now turn to the transductive learning setting. In Theo-
rem F.6, we shows that the transductive generalization gap
Rtest(w, π) − Rtrain(w, π) can be upper bounded by two
terms L1 and L2. Notice that the first term L1 grows with
the increase of K since ∥L̂k∥ > 0 for any k = 0, . . . ,K.
Therefore, using a higher order polynomial filter increase
the term L1. However, we could not conclude that increas-
ing the order K lead to a larger upper bound, as we are not
sure whether the second term L2 increases or decreases as
K increases. Besides, the second term reflect the effect of
polynomial filters’ coefficients on generalization. Notice

that ∥hα(L̂)∥∞ ≤
∑K

k=0 |α|k∥L̂k∥∞. If the absolute value
of some coefficients are larger, the upper bound of L2 will
be large and thus implies that the spectral GNN may have a
larger transductive generalization gap (Tang & Liu, 2023).
Interestingly, these findings are the same as that obtained
from Theorem 4.4, although the derivation of these two the-
orems are different. To summarize, the sufficient conditions
for a polynomial filter hα to be stable and have small trans-
ductive generalization gap is that both its order K and the
norm of its coefficients ∥α∥∞ are small.

4.4. Entanglement with the first issue

“There is a tradeoff between expressiveness and generaliz-
ability.” This sounds a bit like a cliché, but in the context of
spectral GNNs, it exhbits a particularly strong meaning. For
example, since we have to avoid large Lipschitz constant,
while spectral GNNs were designed to perform frequency-
specific modulations, in practical polynomial filters, mod-
ulating one frequency component inevitably affects how
its “neighbors” are modulated (since there are |V| eigenval-
ues in the range of [0, 2]). This behavior fundamentally
differs from classical Fourier analysis, where frequency
components can be manipulated independently. It hinders
the ability of spectral GNNs to perform frequency-specific
modulations, but from another angle, the natural avoidance
of complex filters prevented us from fully confronting the
questions about U’s role as a Fourier basis.

5. Conclusion
In this position paper, we critically analyze the foundational
assumptions of spectral graph neural networks, challeng-
ing the conventional understanding of spectral GNNs, thus
providing new perspectives and directions for the future
development of spectral GNNs.

6. Alternative Views
As introduced in the background and concern sections (Sec-
tion 2 and 3.1), the whole development trajectory of spectral
GNNs is primarily built upon the use of a dictionary known
as the graph Fourier basis. As we have reviewed in Sec-
tion 3.2, concerns about this dictionary have been discussed
in other fields, but overlooked by practitioners of spectral
GNNs. For this reason, we consider the default use of this
dictionary as our alternative view.
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A. Notations

Table 3. Summation of notations in this paper.

Notation Description
G = (V, E ,W) Undirected, connected graph with edge weights W
n Number of nodes in G
D Degree matrix of G
A Unnormalized adjacency matrix of G
P̂ An symmetric-normalized adjacency matrix of G, i.e., P̂ = D−1/2AD−1/2

L Graph Laplacian matrix of G, i.e., L = D−A

L̂ Normalized Laplacian matrix of G, i.e., L̂ = I− P̂

U Eigenvectors of L̂ and P̂

λi The i-th eigenvalue of L̂, corresponding to ui

µi The i-th eigenvalue of P̂. µi = 1− λi

Λ Eigenvalues of L̂, i.e., Λ = diag(λ1, λ2, · · · , λn)

x Input signal on one channel
X ∈ Rn×d Input signals on d channels
Z ∈ Rn×d Filtered signals
h(·) Filtering function
h(L)x, Filtering operation on signal x.

{gk(·)}Kk=0 A polynomial basis of truncated order K
{αk}Kk=0 Coefficients above a basis. i.e. h(λ) ≈

∑K
k=0 αkgk(λ)

hα(·) Polynomial filter with coefficients α over the applied basis, i.e. hα(·) =∑K
k=0 αkgk(·).

X̃ ∈ Rn×d̃ Original node features.
L̂′ Laplacian of the perturbed matrix for sensitivity analysis
x′ Perturbed node feature (one dimension) for sensitivity analysis
E Error matrix, i.e., L̂′ − L̂
ε Upper bound of error, i.e., ∥E∥ ≤ ε
δ Eigenvector misalignment, i.e., (∥U−V∥2 + 1)2 − 1
cX maximum norm of both vanilla and perturbed node features
C Lipschitz constant of filter h

m Number of training nodes in transductive setting
u Number of test nodes in transductive setting
w Set of overall parameter of a model
Rtrain(w, π) Transductive training error of the model with parameter w under partition π
Rtest(w, π) Transductive test error of the model parameter w under partition π
TMD(·, ·) Modified Tree mover’s distance of depth L between two graphs
σ Activation function
ϕ Graph readout function
Kσ Lipschitz constant of activation function σ
Kϕ Lipschitz constant of graph readout function ϕ
µS Distribution of the graphs for training in inductive learning
µT Distribution of the graphs for test in inductive learning

B. Analogies
B.1. Migration of Concepts to Graph Fourier Transformation

This appendix outlines the transition of graph Fourier transformation from classical signal processing.
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Table 4 presents corresponding concepts between continuous and discrete domains, including gradient, divergence, Laplacian,
and Fourier basis, leading to graph Fourier transformation and convolution in Table 5. Additional details are provided
subsequently.

Notice that though we focus on unnormalized Laplacian here, the migration of concepts is also applicable to normalized
Laplacian by simply weighting the two vertices of each edge in the graph gradient by their degrees.

Table 4. Concept Migrations From Gradient to Fourier Basis.
No. Prereq. Classical Concept Graph Domain Concept

(1) - Gradient
∇ : C1(Rn) → (C0(Rn))n

Graph Gradient
∇G : R|V| → R|E|

(2) - Divergence
div : (C1(Rn))n → C0(Rn)

Graph Divergence
divG : R|E| → R|V|

(3) (1,2) Laplacian
∆ = div · ∇

Graph Laplacian
L = D−A

(4) (3) Laplacian Eigen Equation
∆ϕ = λϕ

Graph Laplacian Eigen Equation
Lv = λv

(5) (4) Fourier Basis
{ei2πkx}k∈Z

Graph Fourier Basis
{vk}|V|

k=1

Table 5. Concept Migration of Fourier Transforms and Convolutions.

No. Prereq. Classical Concept Graph Domain Concept

(6) (5)
Fourier Transform
f̂(k) =

∫
R f(x)e

−i2πkxdx

Graph Fourier Transform
f̂(k) =

∑|V|
i=1 f(i)v

∗
k(i)

(7) (6)
Inverse Fourier Transform
f(x) =

∑
k∈Z f̂(k)e

i2πkx

Inverse Graph Fourier Transform
f(i) =

∑|V|
k=1 f̂(k)vk(i)

(8) (6,7)
Convolution
(f ∗ h)(x) =

∫
R f(y)h(x− y)dy

Graph Convolution
(f ∗ h)G =

∑|V|
k=1 ĥ(λk)f̂(k)vk

B.2. Detailed Descriptions

(1). Gradients:

• Classical Gradient: ∇ : C1(Rn) → (C0(Rn))n, maps a scalar field to a vector field, measuring the change rates
of the scalar field along each coordinate direction at every point. Here, C1(Rn) is the space of once continuously
differentiable scalar fields on Rn, and (C0(Rn))n denotes n-dimensional vector fields with continuous components.

• Graph Gradient: ∇G : R|V| → R|E|, maps a signal on vertex domain to the edge domain by taking difference
between the nodal domain signal values at the endpoints of each edge. For vertex i, the local gradient [∇Gf ]i is

defined as
[{

∂f
∂e

∣∣∣
i

}
e∈E s.t. e=(i,j) for some j∈V

]
, where for each edge e = (i, j), (∇Gf)(i,j) =

∂f
∂e

∣∣∣
i
:= f(j)− f(i)
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(Shuman et al., 2013a, Section II.E). The correspondence with the classical gradient arises because, in a graph,
each edge plays the role of a coordinate direction in Rn along which partial derivatives are taken.

(2). Divergence:

• Classical Divergence: div : (C1(Rn))n → C0(Rn), maps a vector field to a scalar field. For a vector field
F, div(F) =

∑n
i=1

∂Fi

∂xi
, measuring how much the vector field spreads out (positive divergence) or converges

(negative divergence) at every point.
• Graph Divergence: divG : R|E| → R|V|, maps a signal on edge domain to the vertex domain. For each vertex i,

divG(F)(i) =
∑

j∈N (i)(Fi,j − Fj,i), where F ∈ R|E| is an edge signal.

(3). Laplacian:

• Classical Laplacian Operator: ∆ : C2(Rn) → C0(Rn), maps a twice-differentiable scalar field to a scalar field as
the divergence of the gradient. The notation is ∆f := div (∇f), and is also denoted by ∆f = ∇ · ∇f .

• Graph Laplacian: L. Migrating the definition of Laplacian operator as the divergence of the gradient, we
have that the for a nodal domain signal f and a given a vertex i, (Lf)i should be (divG∇Gf)i, where we first
compute the gradient (∇Gf)(i,j) = f(j)− f(i) and then divG(∇Gf)(i) =

∑
j∈N (i)((∇Gf)(i,j) − (∇Gf)(j,i)) =∑

j∈N (i)((f(j)−f(i))− (f(i)−f(j))) = 2 ·
∑

j∈N (i)(f(j)−f(i)). Up to this point, when expressed in matrix
form, the Laplacian operator should be written as 2A− 2D. But ultimately, for scaling and sign convention, we
use the definition L := − 1

2 (divG∇Gf) = D−A. We refer readers to (Fu et al., 2022) for an illustrative example.

(4). Eigenfunctions and Eigenvectors:

• (Classical) Eigenfunction of Operator T : {ϕ}, where Tϕ = λϕ and ϕ ∈ C2(Rn).
• (Graph) Eigenvector of Matrix T: {v} , where Tv = λv and v ∈ R|V|.

(5). Fourier Basis:

• Classical Fourier Basis: {ei2πkx}k∈Z, solutions to the eigen equation of the Laplacian operator.

• Graph Fourier Basis: {vk}|V|
k=1, solutions to the eigen equation of the graph Laplacian.

C. Graph Learning Settings: the Inductive and Transductive
We introduce the inductive and transductive learning settings in graph learning, using graph classification and node
classification tasks, respectively. Spectral filtering layers are integrated into the models. We will analyze how a ‘complex’
spectral filter can affect the stability and generalization of polynomial spectral GNNs in Section 4.

Inductive graph classification. In this task, we are provided a set of data points {zi}nG
i=1, and each of them zi = (Gi, yi) is

composed of a graph Gi = (Vi, Ei) and a unique associated label yi. Our goal is to train a GNN model with these data points,
which is able to predict the label of a new coming data point. Notice that this is an inductive task since the test data points
are unseen during training. For the graph G = (V, E) from each data point z, each node v ∈ V contains a d̃-dimensional
feature and we denote it as x̃ ∈ Rd̃. The input features of the graph G is then defined as X̃ = [x̃⊤

1 ; . . . ; x̃
⊤
n ] ∈ Rn×d̃, where

n = |V| is the total number of nodes in G. Let ϕ : Rd̃ → R and σ(·) be the graph readout function and activation function,
respectively. For a spectral GNN polynomial with filter hα, using G as input, its output is given by

h(G;w) = ϕ

( n∑
i=1

[hα(L̂)σ(σ(X̃W1)W2)]i,:

)
, (5)

where W1,W2 ∈ Rd̃×d̃ are learnable weight matrices. A ∈ {0, 1}n×n and D ∈ Rn×n are the adjacent matrix and degree
matrix of graph G, respectively. We use w = [vec[W1]; vec[W2];α0; . . . ;αK ] to denote the collection of all learnable
parameters. Let W be the space of parameter, then the hypothesis space can be represented as HW = {h(·;w) : w ∈ W}.

The message passing matrix in (5) is sometimes given in other ways. Specifically, we use D−1A in theoretical analysis.
This is because D−1A has the same eigenvalues as P̂ ≡ I− L̂ and is also popular in applications (Shuman et al., 2013a).
Then the spectral GNN is given by

h(G;w) = ϕ

( n∑
i=1

[hα(D
−1A)σ(σ(X̃W1)W2)]i,:

)
. (6)
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Transductive node classification. In this task, we are provided a fixed graph where only partial nodes are labeled. Our
goal is to train a GNN model with this graph to make prediction for those unlabeled ones. Concretely, denote by G = (V, E)
the fixed graph. Each node v ∈ V comprises features x̃ ∈ Rd and an unique associated label y ∈ Y , which is treated as a
data point z = (x̃, y). Then, the input features of this graph is represented as X̃ = [x̃⊤

1 ; . . . ; x̃
⊤
n ], where n = |V| is the total

number of nodes in G. Let m and u := n−m be the number of training and test nodes, respectively. The training and test
in this learning task is generated by a random partition over the full nodes. Specifically, by continuously sample without
replacement from {1, . . . , n} and place the obtained elements into a sequence π = (π1, . . . , πn), the training and test set
are denoted as {zπi}mi=1 and {zπi}ni=m+1, respectively. After that, we feed all node features {x̃i}ni=1, the graph structure E ,
and labels of nodes in training set {yπi}mi=1 to the model, and requires it to predict the labels of the rest nodes. Notice that
this is a transductive task since the features of test data points are visible during training. Let σ(·) be the activation function.
For a spectral GNN polynomial with filter hα, using G as input, we denote its output by

h(G;w) = Softmax(hα(L̂)σ(σ(X̃W1)W2)), (7)

where W1 ∈ Rd̃×d′
,W2 ∈ Rd′×|Y| are learnable weight matrices. Here, w = [vec[W1]; vec[W2];α0; . . . ;αK ] is the

collection of all learnable parameters. Let W be parameter space and ℓ : W × (Rd̃ × Y) → R+ be the loss function,
the transductive training and test error are accordingly defined as Rtrain(w, π) =

1
m

∑m
i=1 ℓ(w, zπi) and Rtest(w, π) =

1
u

∑n
i=m+1 ℓ(w, zπi

), respectively.

D. Proof
We first analyze the stability of this spectral GNN by measuring the difference in its output ŷ of two different input graphs G
and G′. To this end, we need to define a specific metric to measure the discrepancy between two graph G and G′. Chuang &
Jegelka (2022) recently introduce a novel definition of such metric named “tree move distance” and demonstrate that it
can well describe the stability and generalization of GNN. To introduce the definition of tree move distance, we need two
prerequisite concepts: computational tree and blank tree augmentation.

Definition D.1 (Chuang & Jegelka, 2022, Definition 1). Let G = (V, E) be a given graph. For each node v ∈ V , denote by
TL
v the depth-L computation tree of v, which is defined as follows: (1) T 1

v = v; (2) for 2 ≤ l ≤ L, for each node ṽ at the
(l − 1)-th level of TL

v , find all neighbor nodes N (ṽ) of ṽ in the graph G and connect them with ṽ as its leaf nodes. The
multiset of depth-L computation trees induced by G is defined as T #,L

G = {{TL
v }}v∈V .

Definition D.2 (Chuang & Jegelka, 2022, Definition 2 and Definition 3). Define T0 as a blank tree that contains only the
root node, whose feature is the zero vector 0. Then, Tn

0 is the multiset containing n blank trees. For two multisets of trees
T #
G and T #

G′ , define ρ as the function that augments (TG , TG′) with blank trees:

ρ : (T #
G , T #

G′ ) 7→
(
T #
G

⋃
T max(n,0)
0 , T #

G′

⋃
T max(−n,0)
0

)
,

where n = |T #
G′ | − |T #

G |.

Clearly, the leaf nodes of any node ṽ from a computation tree TL
v are its neighbor nodes N (ṽ) in the graph G. Also, the

number of elements in the multiset T #,L
G equals to the number of nodes in G. The role of ρ is to ensure that the multisets

T #
G and T #

G′ have an equal number of elements, which is helpful since we need to compute the earth mover’s distance
between two multisets later.

Before moving on, let us review the definition of the earth mover’s distance. Denote by X# = {{xi}}ni=1 and Y# =
{{yi}}ni=1 two multisets containing n elements, and C ∈ Rn×n the cost matrix defined as Cij = d(xi, yj), where d(·, ·) is
a predefined distance. The earth mover’s distance is the solution of the following OT problem:

OTd(X ,Y) = min
T∈Γ(X,Y )

∑
i,j

CijTij ,

Γ(X ,Y) = {γ ∈ Rn×n
+ : γ1n = γ⊤1n = 1n},

(8)

where T ∈ Rn×n
+ is the transportation plan. 1n is a n-dimensional all-ones vector. Now we introduce another necessary

notation that will be used in the proof later. Denote by T a tree with root r. For any node u ∈ T such that u ̸= r, we use
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p(u) to denote its parent node. Let deg(u) be the degree of any non-leaf node u ∈ T , we define a function d∗(·) that map
each node u ∈ T into N:

d∗(u) =

{
1 if u = r

deg(p(u)) · d∗(p(u)) otherwise
. (9)

Clearly, d∗(u) is the product of the degrees of the nodes along the shortest path from u to the root r. Particularly, if
u = r, we have d(u) = 1. With this notation, we introduce the the concept of modified tree distance, which is inspired by
Definition 4 in (Chuang & Jegelka, 2022) and it measures the discrepancy between two computation trees.

Definition D.3 (Modified Tree Distance). The tree distance between two trees Ta with root ra and Tb with root rb is

TD(Ta, Tb) =

{
OTTD(ρ(T #

ra , T
#
rb )) if L > 1∥∥∥ xra

d∗(ra)
− xrb

d∗(rb)

∥∥∥ otherwise
, (10)

where L = max(Depth(Ta),Depth(Tb)). The features of ra and rb are denoted by xra and xrb , respectively. T #
v represents the

multisets of computation trees whose root are the descendants of v.

Based on the tree distance, we present the modified definition of tree mover’s distance, which is inherited from Definition 5
in (Chuang & Jegelka, 2022).

Definition D.4 (Modified Tree Mover’s Distance). For two graphs Ga, Gb and L ≥ 1, the tree mover’s distance between Ga

and Gb is defined as

TMDL(Ga,Gb) = OTTD(ρ(T #,L
Ga

, T #,L
Gb

)), (11)

where T #,L
Ga

and T #,L
Gb

are multisets of depth-L computation trees of graphs Ga and Gb, respectively.

With this definition, we analyze the Lipschitz constant of a spectral GNN with polynomial filter hα, as shown in the
following theorem.

Theorem D.5. Suppose that the activation function σ(·) is Kσ-Lipschitz and the graph readout function ϕ(·) is Kϕ-Lipschitz.
For a spectral GNN with output given by Eq. (6), we have

∥hα(Ga;w)− hα(Gb;w)∥ ≤ ∥W1∥∥W2∥KϕK
2
σ

(
K∑

k=0

|αk| · TMDk+1(Ga,Gb)

)
, (12)

where W1,W2 are the weight matrices, and α0, . . . , αK are polynomial coefficients.

Theorem D.5 shows that the difference in output of a spectral GNN on two graphs can be upper bounded by the summation
of the tree mover’s distance between them, ranging from order 0 to K. Also, the upper bound includes the norm of weight
matrices and polynomial coefficients, which reflects how these learnable parameters affect the stability of this spectral
GNN. Notice that the analysis in (Chuang & Jegelka, 2022) does not consider these learnable parameters. Moreover, it is
shown in (Chuang & Jegelka, 2022) that the tree mover’s distance is a pseudometric. Following their proof process, it is
easy to verify that the tree mover’s distance we presented in Eq. (11) is also a pseudometric. Therefore, the summation∑K

k=0 TMDk+1(·, ·) is also a pseudometric. Suppose that ∥W1∥, ∥W2∥ ≤ cW , we can rewrite Eq. (12) as

∥hα(Ga;w)− hα(Gb;w)∥ ≤ c2WKϕK
2
σ

(
max

k
|αk|

)( K∑
k=0

TMDk+1(Ga,Gb)

)
. (13)

Therefore, the Lipschitz constant of a spectral GNN given by Eq. (6) is (c2WKϕK
2
σ maxk |αk|)/dmin under the pseudometric∑K

k=0 TMDk+1(·, ·). This result indicates that a large absolute value of the coefficients maxk |αk| lead to a larger upper
bound and thus could make the prediction of GNN being unstable. This finding is in accordance with that of Theorem 4.4,
although the (pseudo)metric used to measure the discrepancy of input graphs are different.
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D.1. Proof of Theorem D.5

Recall that the output of the spectral GNN on graphs Ga,Gb are

hα(Ga, w) = ϕ

(
na∑
i=1

[hα(D
−1
a Aa)σ(σ(X̃aW1)W2)]i,:

)
,

hα(Gb, w) = ϕ

(
nb∑
i=1

[hα(D
−1
b Ab)σ(σ(X̃bW1)W2)]i,:

)
,

(14)

where L̂a and L̂b are the graph Laplacian matrix of Ga and Gb. Also, X̃a and X̃b are the input features of Ga and Gb. Let us
define Z

(0)
a = σ(σ(X̃aW1)W2) and Z

(0)
b = σ(σ(X̃bW1)W2), then Eq. (14) can be rewritten as

hα(Ga, w) = ϕ

(
na∑
i=1

hα(D
−1
a Aa)Z

(0)
a,i,:

)
= ϕ

(
n∑

i=1

K∑
k=0

αk(D
−1
a Aa)

kZ
(0)
a,i,:

)
,

hα(Gb, w) = ϕ

(
nb∑
i=1

hα(D
−1
b Ab)Z

(0)
b,i,:

)
= ϕ

(
n∑

i=1

K∑
k=0

αk(D
−1
b Ab)

kZ
(0)
b,i,:

)
.

(15)

Therefore, the difference in outputs can be upper-bounded by

∥hα(Ga, w)− hα(Gb, w)∥ =

∥∥∥∥∥ϕ
(

na∑
i=1

K∑
k=0

αk(D
−1
a Aa)

kZ
(0)
a,i,:

)
− ϕ

(
nb∑
i=1

K∑
k=0

αk(D
−1
b Ab)

kZ
(0)
b,i,:

)∥∥∥∥∥
≤Kϕ

∥∥∥∥∥
na∑
i=1

K∑
k=0

αk(D
−1
a Aa)

kZ
(0)
a,i,: −

nb∑
i=1

K∑
k=0

αk(D
−1
b Ab)

kZ
(0)
b,i,:

∥∥∥∥∥
=Kϕ

∥∥∥∥∥
K∑

k=0

αk

(
na∑
i=1

(D−1
a Aa)

kZ
(0)
a,i,: −

nb∑
i=1

(D−1
b Ab)

kZ
(0)
b,i,:

)∥∥∥∥∥
≤Kϕ

K∑
k=0

|αk|

∥∥∥∥∥
na∑
i=1

(D−1
a Aa)

kZ
(0)
a,i,: −

nb∑
i=1

(D−1
b Ab)

kZ
(0)
b,i,:

∥∥∥∥∥ .

(16)

For any k ∈ [K], define

∆k =

∥∥∥∥∥
na∑
i=1

(D−1
a Aa)

kZ
(0)
a,i,: −

nb∑
i=1

(D−1
b Ab)

kZ
(0)
b,i,:

∥∥∥∥∥ , (17)

now it is sufficient to provide an upper bound for ∆k. Let Va and Vb be the node sets of Ga and Gb. Denote by Vρ
a

and Vρ
b two multisets of nodes after blank tree augmentation, that is, (Vρ

a ,V
ρ
b ) = ρ(Va,Vb). Then, the embedding sets

{(D−1
a Aa)

kZ
(0)
a,i,:}

na
i=1 can be represented as {z(k)i }i∈Va

. Similarly, we have {(D−1
b Ab)

kZ
(0)
b,i,:}

nb
i=1 = {z(k)i }i∈Vb

. Let
T (K,Vρ

aV
ρ
b ) be the transport plan that aligns two multisets Vρ

a and Vρ
b , then we have

∆K =

∥∥∥∥∥
na∑
i=1

(D−1
a Aa)

KZ
(0)
a,i,: −

nb∑
i=1

(D−1
b Ab)

KZ
(0)
b,i,:

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i∈Va

z
(K)
i −

∑
j∈Vb

z
(K)
j

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈Vρ
a ,j∈Vρ

b

T
(K,Vρ

aV
ρ
b )

i,j

(
z
(K)
i − z

(K)
j

)∥∥∥∥∥∥
≤

∑
i∈Vρ

a ,j∈Vρ
b

T
(K,Vρ

aV
ρ
b )

i,j

∥∥∥z(K)
i − z

(K)
j

∥∥∥ .
(18)

Next, we establish a concrete formulation for the embedding z(K). Notice that the embedding z(K) is obtained from the
following message passing rules:

z(l)v =
∑

u∈N (v)

z
(l−1)
u

dv
, ℓ = 1, . . . ,K, z(0)v = σ(σ(X̃vW1)W2). (19)
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Then we have∑
i1∈Vρ

a ,j1∈Vρ
b

T
(K,Vρ

aV
ρ
b )

i1,j1

∥∥∥z(K)
i1

− z
(K)
j1

∥∥∥
=

∑
i1∈Vρ

a ,j1∈Vρ
b

T
(K,Vρ

aV
ρ
b )

i1,j1

∥∥∥∥∥∥
∑

i2∈N (i1)

z
(K−1)
i2

di1
−

∑
j2∈N (j1)

z
(K−1)
j2

dj1

∥∥∥∥∥∥
=

∑
i1∈Vρ

a ,j1∈Vρ
b b

T
(K,Vρ

aV
ρ
b )

i1,j1

∥∥∥∥∥∥
∑

i2∈Nρ(i1),j2∈Nρ(j1)

T
(K−1,Nρ(i1)Nρ(j1))
i2,j2

(
z
(K−1)
i2

di1
−

z
(K−1)
j2

dj1

)∥∥∥∥∥∥
≤

∑
i1∈Vρ

a ,j1∈Vρ
b b

T
(K,Vρ

aV
ρ
b )

i1,j1

∑
i2∈Nρ(i1),j2∈Nρ(j1)

T
(K−1,Nρ(i1)Nρ(j1))
i2,j2

∥∥∥∥∥z
(K−1)
i2

di1
−

z
(K−1)
j2

dj1

∥∥∥∥∥
=

∑
i1∈Vρ

a ,j1∈Vρ
b b

T
(K,Vρ

aV
ρ
b )

i1,j1

∑
i2∈Nρ(i1),j2∈Nρ(j1)

T
(K−1,Nρ(i1)Nρ(j1))
i2,j2

∥∥∥∥∥∥
∑

i3∈N (i2)

z
(K−2)
i3

di1di2
−

∑
j3∈N (j2)

z
(K−2)
j2

dj1dj2

∥∥∥∥∥∥
=

∑
i1∈Vρ

a ,j1∈Vρ
b b

T
(K,Vρ

aV
ρ
b )

i1,j1

∑
i2∈Nρ(i1),j2∈Nρ(j1)

T
(K−1,Nρ(i1)Nρ(j1))
i2,j2

·

∥∥∥∥∥∥
∑

i3∈Nρ(i2),j3∈Nρ(j2)

T
(K−2,Nρ(i2)Nρ(j2))
i3,j3

(
z
(K−2)
i3

di1di2
−

z
(K−2)
j3

dj1dj2

)∥∥∥∥∥∥
≤

∑
i1∈Vρ

a ,j1∈Vρ
b b

T
(K,Vρ

aV
ρ
b )

i1,j1

∑
i2∈Nρ(i1),j2∈Nρ(j1)

T
(K−1,Nρ(i1)Nρ(j1))
i2,j2

·
∑

i3∈Nρ(i2),j3∈Nρ(j2)

T
(K−2,Nρ(i2)Nρ(j2))
i3,j3

∥∥∥∥∥z
(K−2)
i3

di1di2
−

z
(K−2)
j3

dj1dj2

∥∥∥∥∥ .
By recursively expand the rest terms, we have∑

i∈Vρ
a ,j∈Vρ

b

T
(K,Vρ

aV
ρ
b )

i,j

∥∥∥z(K)
i − z

(K)
j

∥∥∥
≤

∑
i1∈Vρ

a ,j1∈Vρ
b

T
(K,Vρ

aV
ρ
b )

i,j · · ·
∑

iK+1∈Nρ(iK),jK+1∈Nρ(jK)

T
(0,Nρ(iK)Nρ(jK))
iK+1,jK+1

∥∥∥∥∥ z
(0)
iK+1∏K
k=1 dik

−
z
(0)
jk+1∏K

k=1 djk

∥∥∥∥∥
≤∥W1∥∥W2∥K2

σ

∑
i1∈Vρ

a ,j1∈Vρ
b

T
(K,Vρ

aV
ρ
b )

i,j · · ·
∑

iK+1∈Nρ(iK),jK+1∈Nρ(jK)

T
(0,Nρ(iK)Nρ(jK))
iK+1,jK+1

∥∥∥∥∥ X̃iK+1∏K
k=1 dik

−
X̃jk+1∏K
k=1 djk

∥∥∥∥∥
=∥W1∥∥W2∥K2

σTMDK+1(Ga,Gb).
(20)

By the same way, we have
∆k ≤ ∥W1∥∥W2∥K2

σTMDk+1(Ga,Gb), k = 1, . . . ,K. (21)

Combining Eq. (16) and Eq. (21) we have

∥hα(Ga, w)− hα(Gb, w)∥ ≤ ∥W1∥∥W2∥KϕK
2
σ

K∑
k=0

|αk|TMDK+1(Ga,Gb). (22)

This finishes the proof. It is worth mentioning that we can derive similar upper bound for the difference of node-level output
∥hα(vi, w) − hα(vj , w)∥, where vi, i ∈ [na] and vj , j ∈ [nb] are nodes from Ga and Gb, respectively. The definitions of
hα(vi, w) and hα(vj , w) are as follows

hα(vi, w) = [hα(D
−1
a Aa)σ(σ(X̃aW1)W2)]i,:,

hα(vj , w) = [hα(D
−1
b Ab)σ(σ(X̃bW1)W2)]j,:.

(23)
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By the same way, we have

∥hα(vi, w)− hα(vj , w)∥ ≤ ∥W1∥∥W2K
2
σ

K∑
k=0

|αk|OTTD(ρ(T #,k+1
vi , T #,k+1

vj )). (24)

E. Additional Eigenvector Visualizations
E.1. Horse Mesh Eigenvectors

(a) Freq Id: 0 (b) Freq Id: 1 (c) Freq Id: 2 (d) Freq Id: 3

(e) Freq Id: 4 (f) Freq Id: 5 (g) Freq Id: 6 (h) Freq Id: 7

Figure 5. Low-frequency eigenvectors on horse mesh (first 8). Note the smooth, global patterns that vary gradually across the mesh.

(a) Freq Id: -1 (b) Freq Id: -2 (c) Freq Id: -3 (d) Freq Id: -4

(e) Freq Id: -5 (f) Freq Id: -6 (g) Freq Id: -7 (h) Freq Id: -8

Figure 6. High-frequency eigenvectors on horse mesh (last 8). Note the localized behavior and concentration of energy in small regions.
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E.2. Sphere Mesh Eigenvectors

(a) Freq Id: 0 (b) Freq Id: 20 (c) Freq Id: 40 (d) Freq Id: 60

(e) Freq Id: 80 (f) Freq Id: 100 (g) Freq Id: 120 (h) Freq Id: 140

Figure 7. Low-frequency eigenvectors on sphere mesh (selected). Note the smooth, global patterns similar to spherical harmonics.

(a) Freq Id: 500 (b) Freq Id: 520 (c) Freq Id: 540 (d) Freq Id: 560

(e) Freq Id: 580 (f) Freq Id: 600 (g) Freq Id: 620 (h) Freq Id: 640

Figure 8. High-frequency eigenvectors on sphere mesh (selected). Note the highly localized patterns.

F. Theorems
F.1. Theorems in Section 3.4

The following theorems provide supports that low-frequency Laplacian eigenvectors and Laplacian eigenvectors on special
graphs indeed possess “semantic interpretability”.

Cheeger’s inequality leads to the conclusion that λ2 reflects the graph’s connectivity, and the eigenvector u2 can reflect the
global community structure of the graph.

Theorem F.1 (Cheeger’s Inequality (Chung, 1996)). λ2 is related to the Cheeger’s constant of h(G) by: λ2

2 ≤ h(G) ≤
√
2λ2,

where h(G) = minS⊂V
|E(S,S̄)|

d|S| , and E(S, S̄) denotes the set of edges between S and its complement, d is the degree, |S|
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is the size of S.

Remark F.2. (1).The selected partition (S/Ŝ) relies on u2 by sorting {u2,i}Ni=1 . (2).The theorem extends to other low-
frequency eigenvectors (Lee et al., 2014).

Another strong theoretical result is the Nodal Domain Theorem.

Theorem F.3 (Nodal Domain Theorem (Davies et al., 2000)). The number of nodal domains of uk, i.e., the maximal
connected subgraphs where uk does not change sign, satisfies: the number of nodal domains of uk is at most k. Furthermore,
there exists at least one eigenvector corresponding to λk that has exactly k nodal domains.

The following theorem gives the eigenvectors of path and cycle graphs.

Theorem F.4 (Path and Cycle Graph Eigenvectors). For a path graph with n vertices, one possible choice of orthonormal

eigenvectors is: uk(n) =
√

2
n cos(πk(n−0.5)

n ), k = 1, ..., n− 1. For a cycle graph with n vertices, the eigenvectors form

the DFT matrix columns: uk = 1√
n
[1, ωk, ω2k, ..., ω(n−1)k]T , ω = e2πi/n.

The following theorem gives the eigenvectors of the Cartesian product of graphs.

Theorem F.5 (Eigenvectors of Cartesian Product of Graphs). Let G1 and G2 be two graphs with adjacency matrices A1 and
A2, respectively. Denote their Cartesian product’s adjacency matrix as A□. If λ1 and λ2 are eigenvalues of A1 and A2

with eigenvectors x1 and x2, then λ1 + λ2 is an eigenvalue of A□ with eigenvector x1 ⊗ x2.

F.2. Theorem in Section 4.5

The following result gives the upper bound for the transductive generalization gap.

Theorem F.6 (Tang & Liu, 2023, Proposition 4.15). Suppose that xi ≤ cX holds for any i ∈ [n]. For a spectral GNN with
output given by Eq. (7), let w0 be its initial parameter and WR = {w : ∥w − w0∥ ≤ R} be the parameter space. Suppose
that ∥W1∥, ∥W2∥ ≤ cW hols for any w ∈ W , and the activation function σ(·) is Kσ-Lipschitz. For any δ ∈ (0, 1), with
probability as least 1− δ over the randomness of π, we have

Rtest(w, π)−Rtrain(w, π) = O

(
(m+ u)

3
2R
√
L2
1 + L2

2

mu

)
,

where

L1 =
√
2cXc2WK2

σ

(
K∑

k=0

∥L̂k∥∞

) 1
2

, L2 = 2cXcWK2
σ∥hα(L̂)∥∞. (25)
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