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ABSTRACT

Self-supervised contrastive learning (CL) has achieved remarkable empirical suc-
cess, often producing representations that rival supervised pre-training on down-
stream tasks. Recent theory explains this by showing that the CL loss closely ap-
proximates a supervised surrogate, Negatives-Only Supervised Contrastive Learn-
ing (NSCL) loss, as the number of classes grows. Yet this loss-level similarity
leaves an open question: Do CL and NSCL also remain aligned at the representa-
tion level throughout training, not just in their objectives?
We address this by analyzing the representation alignment of CL and NSCL models
trained under shared randomness (same initialization, batches, and augmentations).
First, we show that their induced representations remain similar: specifically, we
prove that the similarity matrices of CL and NSCL stay close under realistic condi-
tions. Our bounds provide high-probability guarantees on alignment metrics such
as centered kernel alignment (CKA) and representational similarity analysis (RSA),
and they clarify how alignment improves with more classes, higher temperatures,
and its dependence on batch size. In contrast, we demonstrate that parameter-space
coupling is inherently unstable: divergence between CL and NSCL weights can
grow exponentially with training time.
Finally, we validate these predictions empirically, showing that CL–NSCL align-
ment strengthens with scale and temperature, and that NSCL tracks CL more
closely than other supervised objectives. This positions NSCL as a principled
bridge between self-supervised and supervised learning.

1 INTRODUCTION

Self-supervised learning (SSL) has become the dominant approach for extracting transferable repre-
sentations from large-scale unlabeled data. By leveraging training signals derived directly from the
data, SSL methods avoid costly annotation while producing features that generalize across modalities,
from vision (Chen et al., 2020; He et al., 2020; Zbontar et al., 2021; He et al., 2022; Oquab et al., 2024)
to language (Gao et al., 2021; Reimers & Gurevych, 2019), speech (Schneider et al., 2019; Baevski
et al., 2020; Hsu et al., 2021; Baevski et al., 2022), and vision–language (Radford et al., 2021; Jia
et al., 2021; Zhai et al., 2023; Tschannen et al., 2025). Among SSL approaches, contrastive learning
(CL) has been particularly successful: methods such as SimCLR (Chen et al., 2020), MoCo (He et al.,
2020; Chen et al., 2021b), and CPC (van den Oord et al., 2019) train encoders by pulling together
augmented views of the same input while pushing apart other samples. This simple principle has
yielded state-of-the-art performance, often rivaling or surpassing supervised pre-training.

Despite this empirical success, a central puzzle remains: why does CL recover features so well aligned
with semantic class boundaries? CL models often support nearly supervised-level downstream perfor-
mance (Amir et al., 2022; Ben-Shaul et al., 2023; Weng et al., 2025), suggesting that supervision is
somehow implicit in the objective. Recent theoretical progress sheds light on this: Luthra et al. (2025)
showed that the CL objective closely approximates a supervised variant, Negatives-Only Supervised
Contrastive Learning (NSCL), where same-class samples are excluded from the denominator. Their
analysis established that the CL–NSCL losses converge as the number of classes grows, and further
characterized the geometry of NSCL minimizers and their linear probe performance. These results
indicate that CL carries a supervised-like signal at the loss level.

Yet this view leaves a crucial question unresolved:
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Do contrastive and supervised contrastive models remain
aligned throughout training, not just at the level of their objectives?
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Figure 1: Comparison of learning dynamics for CL and NSCL models.
(a) Weight space vectors show divergent paths (85.7◦ apart). (b) In contrast,
representation space vectors for a target class show high alignment (27.8◦

apart). (c) This is confirmed over training epochs, where representational
similarity (CKA, RSA) remains high while the weight gap increases (see figure
details in App. B).

Loss-level similarity does
not guarantee that opti-
mization paths coincide.
In principle, differences
in curvature, gradient
noise, or learning rate
schedules could amplify
small loss discrepancies,
causing stochastic gradient
descent (SGD) trajecto-
ries to diverge. Thus, it
remains unclear whether
CL merely converges to a
solution similar to NSCL,
or whether their parameter
and representations remain
coupled across training. While some preliminary empirical results (Grigg et al., 2021) provide
evidence that supervised and self-supervised models learn fairly well-aligned representations
geometrically, it is not clear to what extent this alignment holds, under what conditions it arises, and
what factors control the alignment between the two regimes.

Contributions. In this work, we theoretically and systematically study the alignment between CL
and NSCL under shared randomness (same initialization, mini-batches, and augmentations):

• From drift to metrics. The similarity control yields explicit, high-probability lower bounds
on linear CKA and RSA at every epoch, showing that CL and NSCL representations remain
nontrivially aligned and that the certified alignment tightens as C and B grow and as τ increases
(Cors. 1–2). For completeness, we also bound parameter drift under β-smoothness (Thm. 2), which
can grow exponentially even when representations remain aligned.

• Conceptual contribution. Our results provide a conceptual framework for what CL optimizes
during training. We (i) identify NSCL as the supervised objective whose representations and
training trajectories are most tightly coupled to those of CL—without claiming that NSCL is the
strongest supervised baseline in terms of top-1 accuracy—and (ii) shift the focus from guarantees on
downstream classification accuracy to geometric alignment between supervised and self-supervised
representations. Whereas prior work shows that minimizing self-supervised losses can yield good
downstream classifiers under generative assumptions (e.g., (Arora et al., 2019; Tosh et al., 2021;
Saunshi et al., 2022; Awasthi et al., 2022; HaoChen & Ma, 2023)), our analysis instead characterizes
when CL and NSCL induce similar similarity structures, a perspective that is particularly relevant
for tasks that depend on representation geometry, such as interpretability and image segmentation.

• Empirical validation. We validate our theory with experiments on CIFAR-10/100, Tiny-ImageNet,
mini-ImageNet, and ImageNet-1K. We find that (i) CL–NSCL alignment strengthens with more
classes and higher temperatures as well as correlates with the bound’s dependence on the batch
size; and (ii) NSCL aligns with CL more strongly than other supervised learning methods (such as
cross-entropy minimization and supervised contrastive learning (SCL) (Khosla et al., 2020)).

2 RELATED WORK

A large body of work has sought to explain the success of contrastive learning (CL) from different
perspectives. Early accounts linked CL to mutual information maximization between views of
the same input (Bachman et al., 2019), though subsequent analyses showed that enforcing mutual
information constraints too strongly can degrade downstream performance (McAllester & Stratos,
2020; Tschannen et al., 2020). A different line of work formalizes CL in terms of alignment and
uniformity properties of the representation space (Wang & Isola, 2020; Wang & Liu, 2021; Chen
et al., 2021a), capturing how positives concentrate while negatives spread across the sphere. These
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geometric criteria, while intuitive, do not fully explain how samples from different semantic classes
are organized under CL training.

To address this, several papers have studied the ability of CL to recover latent clusters and semantic
structures (Arora et al., 2019; Tosh et al., 2021; Zimmermann et al., 2021; Ash et al., 2022; Nozawa &
Sato, 2021; HaoChen et al., 2021; 2022; Shen et al., 2022; Wang et al., 2022; Awasthi et al., 2022; Bao
et al., 2022). Most of these results rely on restrictive assumptions, such as conditional independence
of augmentations given cluster identity (Arora et al., 2019; Tosh et al., 2021; Saunshi et al., 2022;
Awasthi et al., 2022). To weaken such assumptions, HaoChen & Ma (2023) proposed analyzing
spectral contrastive objectives that encourage cluster preservation without requiring augmentation
connectivity, while Parulekar et al. (2023) showed that InfoNCE itself learns cluster-preserving
embeddings when the hypothesis class is capacity-limited.

Another perspective comes from linking CL to supervised learning. For instance, Balestriero &
LeCun (2024) showed that in linear models, self-supervised objectives such as VicReg coincide with
supervised quadratic losses. In addition, Luthra et al. (2025) established an explicit coupling between
the InfoNCE contrastive loss and a supervised variant that removes positives from the denominator. In
contrast to prior results, these bounds are label-agnostic, architecture-independent, and hold uniformly
throughout optimization. In a related vein, Lee (2025) formulate self-supervised contrastive learning
as an approximation to supervised prototype-based objectives, deriving a balanced contrastive loss
closely related to InfoNCE. On the representation-level alignment side, Grigg et al. (2021) provided
empirical evidence that supervised and self-supervised trained models learn fairly geometrically
aligned representations.

Beyond clustering and supervision, other theoretical studies have examined different aspects of CL:
feature learning dynamics in linear and shallow nonlinear networks (Tian, 2022; Ji et al., 2023; Wen
& Li, 2021; Tian, 2023), the role and optimality of augmentations (Tian et al., 2020; Feigin et al.,
2025), the projection head (Gupta et al., 2022; Gui et al., 2023; Xue et al., 2024; Ouyang et al.,
2025), sample complexity (Alon et al., 2024), and strategies to reduce batch-size requirements (Yuan
et al., 2022). Finally, several works explore connections between contrastive and non-contrastive
SSL paradigms (Wei et al., 2021; Balestriero & LeCun, 2022; Lee et al., 2021; Garrido et al., 2023;
Shwartz-Ziv et al., 2023).

3 PROBLEM SETUP

We work with a dataset S = {(xi, yi)}Ni=1 ⊂ X × [C] (with C classes), where [C] = {1, . . . , C}
and each class c contributes nc examples. Here, N =

∑
c nc is the total number of samples and

let πc = nc/N . An encoder fw : X → Rd with parameters w ∈ Rp maps inputs to embeddings.
Similarity is measured by a bounded function sim : Rd ×Rd → [−1, 1]; throughout our experiments
we use cosine similarity on ℓ2-normalized embeddings, sim(u, v) = ⟨u, v⟩/(∥u∥∥v∥).
Data augmentations are modeled by a Markov kernel α(· |x) on X : given x, we draw an independent
view x′ ∼ α(x). Unless stated otherwise, augmentation draws are independent across samples, across
repeated views of the same sample, and across training steps. We write x′

i ∼ α(xi) for a single view
and (x

(1)
i , x

(2)
i )

i.i.d.∼ α(xi) for two views of the same input.

Fix a batch size B ∈ N. A batch is a multiset B = {(xi, x
′
i, yi)}Bi=1 sampled with replacement from

S, with independent augmentations x′
i ∼ α(xi). For each element in the batch, define zi := fw(xi)

and z′i := fw(x
′
i). For any anchor triple (xi, x

′
i, yi) ∈ B, define the per-anchor CL loss and the CL

batch loss as

ℓCL
i (w;B) := − log

exp
(
sim(zi, z

′
i)/τ

)
B∑

t=1
t̸=i

exp
(
sim(zi, zt)/τ

)
+ exp

(
sim(zi, z

′
t)/τ

) ,

ℓ̄CL
B (w) :=

1

B

B∑
i=1

ℓCL
i (w;B) .

For the same realized batch B, define the negative index set I−i := {j ∈ {1, . . . , B} : yj ̸= yi} and
the corresponding negative subset B−

i := {(xj , x
′
j , yj) : j ∈ I−i }. The NSCL per-anchor and batch
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losses are

ℓNSCL
i (w;B−

i ) := − log
exp

(
sim(zi, z

′
i)/τ

)∑
j∈I−i

[
exp

(
sim(zi, zj)/τ

)
+ exp

(
sim(zi, z

′
j)/τ

)] ,

ℓ̄NSCL
B (w) :=

1

B

B∑
i=1

ℓNSCL
i (w;B−

i ) .

Prior work (Luthra et al., 2025) shows that the CL–NSCL loss gap is uniformly O(1/C), but what we
ultimately care about is whether the embeddings align. To quantify representation similarity we use
linear Centered Kernel Alignment (CKA) and Representation Similarity Analysis (RSA) (Kornblith
et al., 2019; Kriegeskorte et al., 2008) defined on cosine-similarity matrices: for N common inputs
with embeddings Z = {zi}Ni=1 and Z ′ = {z′i}Ni=1, let Σ(Z)ij = cos(zi, zj) and H = I − 1

N 11⊤;
linear CKA is

CKA(Z,Z ′) =
⟨HΣ(Z)H, HΣ(Z ′)H⟩F

∥HΣ(Z)H∥F ∥HΣ(Z ′)H∥F
,

and RSA is the Pearson correlation between the (upper–triangular) off–diagonal entries of the
dissimilarity matrices RDM(Z) = 11⊤ − Σ(Z) and RDM(Z ′) = 11⊤ − Σ(Z ′):

RSA(Z,Z ′) = Corr (vec△(RDM(Z)), vec△(RDM(Z ′))) ,

where vec△ stacks the upper–triangular entries (i < j) column-wise.

This raises the following question: Beyond a small objective gap, does training CL and NSCL
actually lead to similar representations (e.g., high CKA/RSA)?

In the spirit of Thm. 1 of Luthra et al. (2025), we prove that when two runs use shared randomness
(same initialization, mini-batches, and augmentations), the per-step gradient mismatch is uniformly
bounded (Lem. 7). Similarly, we show that the CL and NSCL similarity matrices remain close
throughout training (Thm. 1), which yields explicit CKA/RSA lower bounds (Cors. 1-2).

4 THEORY

We examine how contrastive learning (CL) and negatives-only supervised contrastive learning (NSCL)
co-evolve when initialized identically and trained with the same mini-batches and augmentations.
While one might first attempt to study their trajectories in parameter space, such an approach quickly
breaks down: without strong assumptions on the loss landscape (e.g., convexity or strong convexity),
small reparameterizations can distort distances, and nonconvex dynamics cause parameter drift to
grow uncontrollably over time (see App. C). For this reason, we set weight-space coupling aside and
turn instead to the aspect that directly shapes downstream behavior—the representations—analyzing
their alignment in similarity space.

4.1 COUPLING IN REPRESENTATION (SIMILARITY) SPACE

Let Σt ∈ [−1, 1]N×N denote the pairwise similarity matrix of a fixed reference set at step t (cosine
similarity of normalized embeddings; diagonals are 1). We analyze the coupled evolution of the
CL and NSCL similarities, ΣCL

t , and ΣNSCL
t ∈ [−1, 1]N×N under identical mini-batches and

augmentations. This representation-space view is invariant to reparameterization and directly tracks
representational geometry.

Surrogate similarity dynamics. To make the analysis explicit, we work with a “similarity-descent”
surrogate that updates only those entries touched by the current batch. For a realized mini-batch
Bt = {(xj , x

′
j , yj)}Bj=1 (with x′

j ∼ α(xj)), let ℓ̄CL
Bt

(Σ) and ℓ̄NSCL
Bt

(Σ) be the usual InfoNCE-type
losses written as functions of the relevant similarity entries (with temperature τ > 0). Define the
batch-gradient maps

GCL
t := ∇Σ ℓ̄CL

Bt

(
ΣCL

t

)
, GNSCL

t := ∇Σ ℓ̄NSCL
Bt

(
ΣNSCL

t

)
,

setting all untouched entries to zero. The surrogate updates are

ΣCL
t+1 = ΣCL

t − ηt G
CL
t , ΣNSCL

t+1 = ΣNSCL
t − ηt G

NSCL
t , (1)

4
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with shared initialization and shared randomness (same Bt and augmentations).

In App. D we show that these surrogate dynamics faithfully track the similarity evolution induced by
parameter-space SGD. Intuitively, for the similarity map Σ(w) and corresponding batch loss ℓ̄(w)
(either for CL or NSCL), one SGD step wt+1 = wt − ηt∇w ℓ̄(wt) induces Σ(wt+1) − Σ(wt) =
− ηtPtGt + Rt, Gt := ∇Σℓ̄

(
Σ(wt)

)
, Pt := JtJ

⊤
t , Jt := ∂Σ/∂w|wt

, up to a second-order
remainder Rt. Under the regularity assumptions ∥J(w)∥2→2 ≤ LΣ and a quadratic Taylor bound on
Σ(w+∆w), together with bounded gradients and a learning-rate schedule with bounded

∑
t ηt/(τ

2B)

and
∑

t η
2
t , App. D shows that the induced trajectory Σ̂t := Σ(wt) and the similarity-descent

trajectory remain uniformly close. In particular, for small step sizes, sufficiently large batch B, and
moderate temperature τ , parameter-space SGD moves similarities almost as if we performed gradient
descent directly in similarity space, so the surrogate dynamics faithfully track the evolution of CL
and NSCL representations. We now formalize the coupling bound.

Additional notation for high–probability factors. Fix a training horizon T ∈ N, a confidence

level δ ∈ (0, 1), and a temperature τ > 0. For later use, define ϵB,δ :=

√
1
2B log

(
TB
δ

)
and

∆π,δ(B; τ) :=
2 e2/τ (πmax+ϵB,δ)

1−πmax−ϵB,δ
(where πmax = maxc πc), and assume ϵB,δ < 1 − 1

C so the
denominator is positive.

Theorem 1 (Similarity-space coupling). Fix B, T ∈ N, δ ∈ (0, 1), and temperature τ > 0. Consider
the coupled similarity-descent recursions equation 1 for CL and NSCL with shared initialization
and shared mini-batches/augmentations. Then, with probability at least 1− δ over the draws of the
mini-batches and augmentations, for any stepsizes (ηt)T−1

t=0 ,

∥∥ΣCL
T − ΣNSCL

T

∥∥
F

≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ). (2)

The above bound makes explicit how standard CL design choices control the discrepancy between CL
and NSCL in similarity space. In particular, both the prefactor and the exponential term in equation 2
are monotone in the usual hyperparameters, so that regimes in which CL “behaves like” NSCL
correspond precisely to regimes where the right-hand side of equation 2 is small. First, assuming
balanced classes, a larger number of classes C reduces the 1/C contribution inside ∆π,δ(B; τ), hence
decreasing the overall bound and shrinking the CL–NSCL gap. Second, increasing the batch size
B simultaneously reduces the concentration error ϵB,δ and the factor 1/

√
B, and also shrinks the

coefficient 1
2τ2B in the exponential, all of which act to decrease the right-hand side of equation 2

(see Fig. 5(d)). Third, increasing the temperature τ reduces the factors 1
τ and 1

τ2 appearing in the
prefactor and exponent, again decreasing the upper bound in equation 2, consistent with the empirical
trend in Fig. 4 that higher temperatures bring CL closer to NSCL. Finally, smaller learning rates ηt
(or, more generally, a smaller total step size

∑
t ηt) reduce both the prefactor 1

τ
√
B

∑
t ηt and the

exponent exp
(

1
2τ2B

∑
t ηt

)
, so more conservative optimization schedules yield a tighter coupling

between CL and NSCL (see Fig. 5). Overall, Thm. 1 shows that large batches, high temperatures,
and small effective step sizes—are precisely the regimes in which the similarity dynamics of CL and
NSCL nearly align.

As a final note, the result in Thm. 1 is stated in terms of similarity descent, whereas in practice we
use gradient descent on the network’s trainable parameters. To obtain an explicit bound on the gap
between the CL and NSCL similarity matrices under standard parameter-space stochastic gradient
descent, we can combine Thm. 1 with twice the bound in equation 9, applying that bound once to CL
and once to NSCL.

From similarity drift to CKA/RSA guarantees. We translate the high-probability control on the
similarity drift from Thm. 1, into bounds on two standard representational metrics.

CKA. Recall from Sec. 3 that linear CKA (Kornblith et al., 2019) is the normalized Frobenius
inner product between centered similarity matrices. H := I − 1

N 11⊤ be the centering projector and
define centered Gram matrices KCL

T := HΣCL
T H and KNSCL

T := HΣNSCL
T H . The (linear) CKA

at step T is CKAT =
⟨KCL

T ,KNSCL
T ⟩F

∥KCL
T ∥F ∥KNSCL

T ∥F
∈ [0, 1]. Because ∥HXH∥F ≤ ∥X∥F , any bound on

5
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∥ΣCL
T − ΣNSCL

T ∥F controls ∥KCL
T −KNSCL

T ∥F . For convenience, introduce the relative deviation

ρT :=
∥KCL

T −KNSCL
T ∥F

∥KCL
T ∥F

.

Corollary 1 (CKA lower bound). In the setting of Thm. 1. Assume ∥KCL
T ∥F > 0. With probability

at least 1− δ,

CKAT ≥ 1− ρT
1 + ρT

, ρT ≤
exp

(
1

2τ2B

∑T−1
t=0 ηt

)
1

τ
√
B

(∑T−1
t=0 ηt

)
∆π,δ(B; τ)

∥KCL
T ∥F

.

RSA. Recall from Sec. 3 that RSA (Kriegeskorte et al., 2008) is the Pearson correlation between the
off-diagonal entries of representational dissimilarity matrices (RDMs). Let M =

(
N
2

)
and define off-

diagonal RDM vectors aT , bT ∈ RM by aT (u, v) = 1−ΣCL
T (u, v) and bT (u, v) = 1−ΣNSCL

T (u, v)
for u < v. Write σD,T > 0 for the empirical standard deviation of the entries of aT . The RSA score
is the Pearson correlation RSAT = Corr(aT , bT ). Zeroing the diagonal does not increase Frobenius
norms, so ∥bT − aT ∥2 ≤ ∥ΣNSCL

T − ΣCL
T ∥F . It will be useful to measure the relative discrepancy

rT := ∥bT−aT ∥2√
M σD,T

.

Corollary 2 (RSA lower bound). In the setting of Thm. 1. Assume σD,T > 0. With probability at
least 1− δ,

RSAT ≥ 1− rT
1 + rT

, rT ≤
exp

(
1

2τ2B

∑T−1
t=0 ηt

)
1

τ
√
B

(∑T−1
t=0 ηt

)
∆π,δ(B; τ)

√
M σD,T

.

These results complement the parameter–space analysis. While parameter trajectories may diverge
exponentially (in the non-convex setting), the induced similarities—and hence representational
metrics such as CKA and RSA—remain tightly controlled by class count, batch size, learning rate,
and temperature τ . The key quantity is the similarity–matrix drift ∥ΣCL

T − ΣNSCL
T ∥F , which Thm. 1

bounds in two stabilizing ways.

First, the exponential factor is moderated by the 1
τ2B term in the exponent. Unlike parameter space,

where the growth rate scales with β, the “instability rate” in similarity space is only 1
2τ2B and is

therefore negligible for typical batch sizes (e.g., B ≈ 102–103).

Second, the prefactor 1
τ
√
B

(∑
t ηt

)
∆π,δ(B; τ) decreases rapidly with batch size and class count

(note ∆π,δ(B; τ) shrinks with smaller πmax and grows with smaller τ through e2/τ ). In practical
regimes (C ∼ 103, B ∼ 102–103), this prefactor is small, making the total Frobenius gap negligible
relative to the scale of the similarity matrices.

Together, these effects yield high–probability guarantees CKAT ≥ (1− ρT )/(1+ ρT ) and RSAT ≥
(1−rT )/(1+rT ) with ρT , rT ≪ 1 in realistic conditions. Thus, even if parameters drift, the induced
representations evolve in a coupled and stable manner—consistent with empirical findings that CL
and NSCL remain closely aligned in practice.

Proof idea. We begin with a high–probability batch–composition guarantee (Cor. 3): with prob-
ability at least 1 − δ, every anchor’s denominator contains the expected proportion of negatives
up to an ϵB,δ fluctuation. This rules out positive–heavy batches that would otherwise cause the
NSCL renormalization to deviate substantially from CL. Conditioning on this event, the CL–NSCL
batch–gradient gap decomposes into (i) a reweighting error, bounded in total variation by ∆π,δ(B; τ)
(Lem. 6), and (ii) a stability term from the dependence on the current similarities, controlled by the

1
2τ2B –Lipschitzness of the batch–gradient map in Frobenius norm (Lem. 2 at temperature τ ). Using
block–orthogonality across anchors (Lem. 1), the reweighting contributions combine in quadrature,
giving the per–step estimate (Lem. 8),∥∥GCL

t (ΣCL
t )−GNSCL

t (ΣNSCL
t )

∥∥
F

≤ 1

τ
· ∆π,δ(B; τ)√

B
+

1

2τ2B

∥∥ΣCL
t − ΣNSCL

t

∥∥
F
.

Consequently, the similarity drift satisfies the recurrence∥∥ΣCL
t+1 − ΣNSCL

t+1

∥∥
F

≤
(
1 +

ηt
2τ2B

)∥∥ΣCL
t − ΣNSCL

t

∥∥
F

+ ηt
1

τ
· ∆π,δ(B; τ)√

B
,
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CIFAR-10 CIFAR-100 Mini-ImageNet Tiny-ImageNet

NCCC LP NCCC LP NCCC LP NCCC LP

CL 88.37 90.16 54.62 65.65 60.78 65.30 40.59 44.61
NSCL 94.47 94.09 60.14 68.38 63.92 72.60 40.76 45.79
SCL 94.93 94.67 64.06 69.52 74.78 76.00 48.63 48.73
CE 92.97 93.39 67.35 68.04 75.20 74.00 48.28 52.57

Table 1: Nearest Class-Center Classifier (NCCC) and Linear Probe (LP) test accuracies (%). We
report the accuracies against the all-way classification task in each dataset. The models (also used in
Fig. 2) were pre-trained on their respective datasets.

where the first term propagates existing error and the second injects the new discrepancy introduced
at step t. Unrolling this recurrence (discrete Grönwall) yields

∥ΣCL
T − ΣNSCL

T ∥F ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ).

Finally, centering contracts Frobenius norms, so this control transfers directly to the centered Gram
matrices, and applying standard (1− ρ)/(1+ ρ) and (1− r)/(1+ r) comparisons yields the claimed
CKA/RSA lower bounds.

5 EXPERIMENTS

Datasets and augmentations. We experiment with the following standard vision classification
datasets - CIFAR10 and CIFAR100 (Krizhevsky, 2009), Mini-ImageNet (Vinyals et al., 2016),
Tiny-ImageNet (Han, 2020), and ImageNet-1K (Deng et al., 2009). (See App. B for details.)

Methods, architectures, and optimizers. For all our experiments, we have followed the Sim-
CLR (Chen et al., 2020) algorithm. We use a ResNet-50 (He et al., 2016) encoder with a width-
multiplier factor of 1. The projection head follows a standard two-layer MLP architecture composed
of: Linear(2048 → 2048) → ReLU → Linear(2048 → 128). For cross-entropy training,
we attach an additional classification head Linear(128 → C) where C is the number of classes.

For contrastive learning, we use the DCL loss that avoids positive-negative coupling during train-
ing (Yeh et al., 2022). For supervised learning, we use the following variants: Supervised Contrastive
Loss (Khosla et al., 2020), Negatives-Only Supervised Contrastive Loss (Luthra et al., 2025), and
Cross-Entropy Loss (Shannon, 1948). To minimize the loss, we adopt the LARS optimizer (You et al.,
2017) which has been shown in (Chen et al., 2020) to be effective for training with large batch sizes.
For LARS, we set the momentum to 0.9 and the weight decay to 1e−6. All experiments are carried
out with a batch size of B = 1024. The base learning rate is scaled with batch size as 0.3 · ⌊B/256⌋,
following standard practice (Chen et al., 2020). We employ a warm-up phase (Goyal et al., 2017)
for the first 10 epochs, followed by a cosine learning rate schedule without restarts (Loshchilov &
Hutter, 2016) for the remaining epochs. All models were trained on a single node with one 94 GB
NVIDIA H100 GPU.

Evaluation metrics. To quantitatively measure the alignment between the learned representation
spaces of different models, we monitor linear CKA and RSA (check Sec. 3 for details) during training.
Both CKA and RSA range from 0 to 1, where 1 indicates identical similarity structures. To manage
the significant memory requirements of N ×N matrices (Gram matrices for CKA, RDMs for RSA),
we use a memory-efficient, chunk-wise computation strategy.

5.1 EXPERIMENTAL RESULTS

Alignment analysis as a function of epochs. To understand how representational similarity
evolves, we trained a model with a CL objective and monitored its alignment (via CKA/RSA) against
supervised models trained with NSCL, CE, and SCL. We find that NSCL consistently achieves the
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Figure 2: Alignment during training. We train ResNet-50 models with decoupled CL, SCL, NSCL,
and CE. For the first 1,000 epochs, the CL-trained model is substantially more aligned with the
NSCL-trained model than with the others. However, alignment declines when training continues
much longer.
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Figure 3: CL–NSCL alignment (linear CKA) increases with the number of training classes.
The heatmaps show the linear CKA between CL and NSCL models. We visualize alignment on the
training (top row, green) and test (bottom row, purple) sets. The y-axis indicates the number of classes
(N ) used for training, and the x-axis represents the training epoch. While alignment is consistently
higher for larger N , it also tends to decrease as training progresses for any fixed N .

highest alignment with CL throughout training across multiple datasets compared to CE and SCL
(see Fig. 2). For example, after 1k epochs on Tiny-ImageNet, the CL-NSCL alignment reaches a
CKA of 0.87, in contrast to just 0.043 for CL-SCL.

Intuitively, these alignment patterns follow from how each loss shapes representation geometry. All
three methods incentivize neural collapse (Papyan et al., 2020; Han et al., 2022; Zhou et al., 2022;
Lu & Steinerberger, 2022; Dang et al., 2024; Graf et al., 2021; Awasthi et al., 2022; Gill et al.,
2023; Kini et al., 2024; Luthra et al., 2025), but differ in how directly and how quickly they drive
it. NSCL is structurally closest to CL: both attract a single positive toward an anchor and repel
negatives, primarily enforcing instance-level discrimination and thus inducing similar geometry. SCL,
by contrast, imposes a stronger class-level constraint, explicitly pulling together augmentations of
same-class samples and pushing apart different-class samples, which rapidly reduces intra-class
variance and forms tight class clusters that depart from CL’s instance-level structure. Cross-entropy
(CE) lies between these extremes, promoting collapse more indirectly via error minimization with
regularization. In the self-supervised setting, CL representations need not collapse as tightly as
supervised ones, since they are learned without labels. As training enters the 10–100-epoch range,
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Figure 4: Higher τ increases the CL-NSCL alignment. The plots show RSA (top row) and
CKA (bottom row) over 300 epochs. We trained CL and NSCL models with varying temperatures
(τ ∈ {0.1, 0.5, 1.0}) on four datasets. Across all datasets, a higher temperature τ = 1.0 (shown in
purple) evidently results in the highest alignment.

SCL and CE move closer to the neural collapse regime, while NSCL continues to mimic the CL
label-free optimization for a longer duration, producing the evolving alignment dynamics in Fig. 2.

For completeness, along with CKA and RSA, we also report downstream performance via Nearest
Class Center Classifier (Galanti et al., 2022) and Linear Probe accuracies in Tab. 1.

Validating Thm. 1 as a function of class count. Thm. 1 predicts that using more classes yields
stronger CL–NSCL alignment. We test this via C ′-way training: for each C ′ ∈ [2, C], we train CL
and NSCL on random C ′-class subsets for 1,000 epochs (except 100 epochs for IM-1K). As shown
in Fig. 3, representation similarity (RSA/CKA) increases with C ′ across all datasets.

Effect of temperature on alignment. As per Thm. 1 and Cors. 1-2, CL-NSCL alignment improves
with higher values of temperature (τ ). We empirically verify this claim by training CL and NSCL
models for 300 epochs, over three different values of τ ∈ {0.1, 0.5, 1.0}. Both models–CL and
NSCL–are trained with same τ in each run. As shown in Fig. 4, models trained with τ = 1.0 achieve
higher alignment compared to models trained with lower temperatures.

Effect of batch size on alignment. Thm. 1 links alignment to a bound that may rise or fall with
B depending on how the learning rate scales. To investigate this, we vary η with B across four
cases: η = 0.3B

256 , η = 0.3
√
B

256 , η = 0.3
4√
B

256 , and η = 0.3. Under O(B) scaling, CL–NSCL alignment
decreases as B grows, matching the theorem’s implication for that scaling; for the other three cases,
alignment increases with B, again consistent with the bound under those dependencies (see Fig. 5).

Weight-space coupling. We next study whether the observed alignment between representations
of contrastive and supervised models is also reflected directly in their parameters. For this, we
measure the average weight difference between a contrastive model and two supervised counterparts

as follows:
∑

l

∥wl
CL−W l

sup∥F

0.5 (∥wl
CL∥F+∥wl

sup∥F )
where wl

CL and wl
sup are weights corresponding to lth layer of

self-supervised and supervised models respectively, and ∥ · ∥F denotes Frobenius norm. As we show
in Fig. 6, for each dataset, we observe a significant divergence in weight space: both supervised
models (NSCL and SCL) increasingly separate from the contrastive model as training progresses.

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Conclusions. We studied the dynamic alignment between contrastive learning (CL) and its super-
vised counterpart (NSCL). By analyzing coupled SGD under shared randomness, we showed that
while parameter-space trajectories may diverge exponentially, representation-space dynamics are far
more stable: the similarity matrices induced by CL and NSCL remain close throughout training. This
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Figure 5: Effect of batch size with scaled learning rates. We trained CL, and NSCL models for 300
epochs with varying batch-sizes (B ∈ {256, 512, 1024}). For each experiment, the learning rate η is
scaled as a function of batch-size, as mentioned under each panel. For instance, the results shown in
panel (b) use a learning rate of η = 0.3
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Figure 6: Weight-space alignment quickly deteriorates. Using the same ResNet-50 instances as
in Fig. 2, we plot the average weight gap between CL and the supervised models (NSCL and SCL)
across training epochs. Both supervised variants diverge from the CL model, with SCL showing a
wider separation.

yields high-probability lower bounds on alignment metrics such as CKA and RSA, directly certifying
representational coupling. Empirically, our experiments confirmed these trends across datasets and
architectures. Together, our results highlight that the implicit supervised signal in CL is not confined
to its loss function but extends throughout the entire optimization trajectory.

Limitations. Our theoretical bounds are structurally informative but not expected to be tight in
large-scale or long-horizon regimes. As is common in machine learning theory, the guarantees are
conservative worst-case bounds derived from uniform high-probability arguments, favoring generality
over numerical sharpness. Many influential results in optimization and stability theory for deep
learning similarly rely on loose worst-case analyses—e.g., (Bousquet & Elisseeff, 2002; Hardt et al.,
2016; Mou et al., 2018; Kuzborskij & Lampert, 2017)—yet still provide useful conceptual guidance.
In our setting, without additional structural assumptions (such as stronger curvature or smoothness
conditions), one cannot generally expect qualitatively sharper dependence than the scaled exponential
factors appearing in Thm. 1 and equation 9. Thus, while in practice the bounds are quite loose, they
achieve their intended goal of identifying which parameters govern the CL–NSCL similarity gap and
explaining how this gap scales with them.

Future directions. We view our results as a first step toward a more refined theory of self-supervised
alignment. Future work could (i) derive tighter constants by exploiting data-dependent structure rather
than worst-case bounds, and (ii) extend the framework to other SSL paradigms (e.g., non-contrastive
methods). Improving these guarantees while retaining their stability properties would provide an
even stronger theoretical bridge between supervised and self-supervised learning.
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7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets used in this work
(CIFAR-10/100, Tiny-ImageNet, and Mini-ImageNet) are publicly available, and we describe the data
processing and augmentation pipelines in Section 3 and App. B. The theoretical results are supported
by detailed proofs in App. C, D, E, where all assumptions are explicitly stated. Experimental
details, including architectures, optimizers, hyperparameters, and training schedules, are reported in
Section 3, with additional clarifications in the appendix. To facilitate further verification, we provide
an anonymous code repository in the supplementary material that contains implementations of the
CL, NSCL, and baseline objectives, along with scripts to reproduce all figures and tables in the
paper. Together, these resources are intended to make both the theoretical and empirical findings fully
reproducible.
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A LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely as an assistive tool for improving the clarity and
presentation of the manuscript (e.g., editing grammar, refining phrasing). All technical content,
including theoretical derivations, proofs, experimental design, and analysis, was developed entirely by
the authors. No parts of the paper were written or ideated by an LLM in a way that would constitute
substantive scientific contribution, and no LLM was used to generate or fabricate results.

B ADDITIONAL EXPERIMENTS

Datasets and augmentations. CIFAR10 and CIFAR100 both consist of 50000 training images and
10000 validation images with 10 classes and 100 classes, respectively, uniformly distributed across
the dataset, i.e., CIFAR10 has 5000 samples per class and CIFAR100 has 500 samples per class.
Mini-ImageNet also has 5000 test images on top of 50000 train and 10000 validation images, with
100 of 1000 classes from ImageNet-1k (Deng et al., 2009) (at the original resolution). Tiny-ImageNet
contains 100000 images downsampled to 64× 64, with total 200 classes from IM-1K. Each class has
500 training, 50 validation, and 50 test images.

We use standard augmentations as proposed in SimCLR (Chen et al., 2020). For experiments on
Mini-ImageNet, we use the following pipeline: random resized cropping to 224 × 224, random
horizontal flipping, color jittering (brightness, contrast, saturation: 0.8; hue: 0.2), random grayscale
conversion (p = 0.2), and Gaussian blur (applied with probability 0.1 using a 3 × 3 kernel and
σ = 1.5). For Tiny-ImageNet, we drop saturation to 0.4 and hue to 0.1 due to low resolution images.
For CIFAR datasets, we adopt a similar pipeline with appropriately scaled parameters. The crop size
is adjusted to 32× 32, and the color jitter parameters are scaled to saturation 0.4, and hue 0.1.

B.1 EXPERIMENTS WITH THE VIT ARCHITECTURE

To further support the claims made in the main text, we reproduce the experiment from Fig. 2
using the ViT-Base architecture (Dosovitskiy et al., 2021). Throughout these experiments, we
use the same training hyperparameters and augmentations for each dataset as in the ResNet-50
experiments. As shown in Fig. 7, the alignment between CL and supervised models exhibits the
same qualitative trends observed for the ResNet-50 architecture in Fig. 2, demonstrating that the
relationship between training dynamics and representational alignment is consistent across both
convolutional and transformer-based models.

In addition, we repeat the experiments in Figs. 4 and 5 for the ViT-Base architecture. The correspond-
ing results, shown in Figs. 8 and 9, closely match those obtained with ResNet-50, further reinforcing
the robustness of our findings across architectures.

B.2 EFFECT OF NUMBER OF CLASSES ON ALIGNMENT

In addition to the linear CKA results reported in the main text (Fig. 3), we also evaluate representa-
tional similarity using RSA. The corresponding RSA values are presented in Fig. 10, providing a
complementary perspective on alignment across varying numbers of classes. In addition, we also
reproduced the results with RSA for the ViT models (Fig. 11).

B.3 PERFORMANCE-ALIGNMENT TRADEOFF

The bound in Thm. 1 predicts that alignment increases with larger τ . Moreover, when ηt = O(B),
it suggests that alignment should decrease as B grows, whereas under ηt = O(B1/4) it instead
predicts higher alignment for larger B. In this experiment, we examine whether higher alignment in
fact corresponds to more similar downstream accuracies. Specifically, in Figs. 12–13 we vary the
parameters τ and B (respectively) and plot the gap between the accuracies of the CL and NSCL
models against their RSA alignment values. To obtain the accuracy measures, we perform full-shot
linear probing on both the CL- and NSCL-trained models and report their test accuracies. As can be
seen from the results, we consistently observe that higher alignment corresponds to a smaller gap
between the accuracy rates of the CL- and NSCL-trained models. This suggests that the alignment
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Figure 7: Alignment during training for ViT. We train ViT-base model with CL, NSCL, SCL and
CE objectives. The alignment between CL and supervised models follow similar trends as shown for
ResNet-50 in Fig. 2.
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Figure 8: Effect of the temperature (τ ) on CL–NSCL alignment. We train ViT-Base models with
decoupled CL and NSCL objectives using different temperature values τ . All models are trained for
300 epochs. Across all datasets, alignment consistently increases as τ becomes larger.

between CL and NSCL models translates into concrete predictions about how close the models are in
their performance. For completeness, we summarize these accuracy values in Tab. 2.

CIFAR-100 Mini-ImageNet Tiny-ImageNet

τ = 0.1 τ = 0.5 τ = 1.0 τ = 0.1 τ = 0.5 τ = 1.0 τ = 0.1 τ = 0.5 τ = 1.0

CL 65.18 61.62 58.60 70.30 70.55 68.21 44.50 40.41 35.40
NSCL 68.25 62.44 59.02 73.93 71.88 67.76 46.51 39.95 35.29

Table 2: Linear Probe (LP) test accuracies (%) for varying τ . We train CL and NSCL ResNet-50
models for 300 epochs, and observe that the accuracy gap decreases with higher alignment between
CL and NSCL models (also shown in Fig. 12).

B.4 EXPERIMENTS WITH CLASS-IMBALANCED DATA
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Figure 9: Effect of batch size (B) on CL-NSCL alignment. We follow the same learning-rate
scaling strategy as for ResNet-50. The alignment trends observed when varying the batch size are
similar to those for ResNet-50.
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Figure 10: CL–NSCL alignment (RSA) increases with the number of training classes. See
Sec. 5.1 and Fig. 3 for experimental details.

Since our theory is tighter for relatively balanced classes, but does not require perfectly balanced data,
we also evaluate it on the SVHN dataset (Netzer et al., 2011), which is well known for its pronounced
class imbalance. In Fig. 14, we plot the RSA and CKA metrics between coupled CL and NSCL
models trained for 300 epochs. The training hyperparameters and the data augmentations are the
same as in our CIFAR-100 experiments to facilitate a direct comparison.

Despite the class imbalance in SVHN, we observe that the alignment between the two models is
consistently high—indeed, it is even stronger than what we typically obtain after 1,000 epochs on
CIFAR-100, which has the same number of classes. This finding suggests that substantial class
imbalance does not hinder strong representational alignment from emerging between coupled CL
and NSCL models, and further supports the robustness of our theoretical predictions beyond the
approximately balanced setting.

B.5 ATTENTION MAPS ALIGNMENT

Methodology. To analyze the self-attention maps from the frozen Vision Transformer encoder, we
look into the Multi-Head Self-Attention (MHSA) mechanism of the final transformer layer (L = 12
for ViT-Base).
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Figure 11: CL–NSCL alignment (RSA) increases with the number of training classes for ViT-
Base models. The alignment increases with number of classes, and is consistent with trends observed
for ResNet-50 models.
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Figure 12: Performance vs. alignment over varying temperatures. (Top) The gap between the
linear probe accuracies of CL and NSCL ResNet-50 models (trained for 300 epochs) decreases
as their alignment increases with higher temperature (τ) values. (Bottom) Although the accuracy
gap between CL and NSCL models is correlated with the alignment of their representations, higher
alignment does not necessarily imply better downstream performance, as performance remains
sensitive to the choice of hyperparameters.

Let A ∈ RH×N×N denote the attention weights, where H is the number of heads and N is the
number of tokens. We first average weights across all attention heads. We then extract the row
corresponding to [CLS] token, specifically focusing on its attention to N − 1 image patch tokens.
This vector is reshaped into a 2D grid (14× 14 for ViT-Base) to match the spatial arrangement of
image patches. Finally, we upscale the low-resolution grid to original image resolution, normalize it
to the range [0, 1], and overlay on the input image.

Analysis. To quantify the structural similarity between representations of ViT models trained
with decoupled CL and supervised objectives, we calculate the cosine similarity between their
attention maps. As shown in Fig. 15, we track this metric across training epochs and show that NSCL
consistently maintains the highest alignment with DCL compared to NSCL and CE. To strengthen
our argument, we further visually illustrate this alignment in Fig. 16. The qualitative analysis align
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Figure 13: Performance vs. alignment over varying batch sizes. The gap between the linear probe
accuracies of CL and NSCL ResNet-50 models (trained for 300 epochs) varies systematically with
the batch size (B) and their RSA alignment: when training with ηt = O(B), larger batch sizes tend
to reduce alignment and increase the accuracy gap, whereas with ηt = O(B1/4) larger batch sizes
tend to increase alignment and reduce the gap.
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Figure 14: CL-NSCL alignment for class-imbalanced data. We train ResNet-50 models on
SVHN (Netzer et al., 2011) with decoupled CL and NSCL objectives to analyse alignment when the
classes are not uniformly distributed. The RSA and CKA values are comparable to class-balanced
datasets (shown in Fig. 2- 7).

with cosine similarity trends, confirming that NSCL preserves the spatial attention structure of CL
more faithfully than other supervised methods.

B.6 FIG. 1 METHODOLOGY

We explain how to generate the plots comparing alignment in weight-space and representation-space.
The two plots on the left visualize the direction of learning for each model. Each vector represents
the change in model’s state from initialization (epoch 0) to epoch 1000.

Model states. We consider CL and NSCL models trained on CIFAR100, corresponding to epoch 0
and epoch 1000-a total of four models.

Weight space. This plot shows how the raw parameters evolve during training. For all four
models, we first flatten all the weights into a massive vector which gives us four points in a very
high dimensional space (order of 107). To visualize these points, we perform Principal Component
Analysis (PCA) on all four vectors combined and fit them to a 3D space. This creates a shared 3D
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Figure 15: Alignment in attention maps. We evaluate cosine similarity between attention maps of
decoupled CL and supervised models, and observe similar trends as for RSA/CKA values. NSCL
remains the most aligned hinting at a deeper structural similarity between representations of CL and
NSCL models.

coordinate system. We transform all four points into this space and we get p0CL, p
1000
CL , p0NSCL, p

1000
NSCL.

Using these points, we create two vectors: (vCL, vNSCL), and create polar plot using the final vectors
and the calculated angle between them (85.7◦).

Representation space. This plot shows how model’s alignment for a specific class evolved. We
pick one class from our dataset (CIFAR100) and randomly sample 100 images. We use the same
samples for all four models to extract their corresponding features, say Z ∈ R100×d, where d is the
projection dimension. We concatenate total 400 representations (100 from each model) and perform
PCA to learn a shared 3D coordinate system. The representations are transformed to this shared
space (R100×d → R100×3) and averaged to a single 3D point for each model. Just like before, a polar
plot is created using the vectors and angle between them (27.8◦).

Similarity metrics. We report RSA and CKA values computed between DCL and NSCL models
trained on CIFAR100. Additionally, we show their average weight gap as detailed in Sec. 5.1. It is
evident that models stay aligned in representation space but diverge in weight space.

B.7 MODEL MERGING

In addition to our main analysis, we also conduct a simple experiment that merges models directly in
representation space. Specifically, we interpolate between the learned embeddings of a CL encoder
trained on the full dataset and an NSCL encoder trained on only 30% of the dataset. This merged
representation already surpasses both the full-data CL model and the small-data NSCL model,
reinforcing that NSCL and CL remain geometrically compatible in practice.

Concretely, given an input x, let fCL(x) and fNSCL30
(x) denote the representations from the CL

encoder and the NSCL encoder trained on 30% of the dataset, respectively. We merge them via
simple linear interpolation:

fmerged(x) = αfCL(x) + (1− α)fNSCL30
(x).

We then perform NCCC and LP evaluations using the same 30% subset from the training split and
report accuracy on the full mini-ImageNet test split in Fig. 17.

As shown in the figure, for all values of α the merged model outperforms the NSCL baseline, and for
α ∈ [0.7, 1) it also outperforms the CL baseline on the mini-ImageNet downstream classification
task. This suggests that the CL and NSCL representations are well aligned, making it possible to
effectively merge them directly in representation space.

C PARAMETER-SPACE COUPLING

To complement the analysis in Sec. 4, we compare the two trajectories in parameter space. Let
et = ∥wCL

t −wNSCL
t ∥ denote the parameter drift at step t. We would like to bound it as a function of

the number of training iterations, batch size, and learning rate scheduling. We use classic techniques
that can be found at (Bousquet & Elisseeff, 2002; Hardt et al., 2016; Mou et al., 2018; Kuzborskij &
Lampert, 2017).
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Input DCL NSCL SCL CE

Figure 16: Visualization of attention maps. We visualize the self-attention of the [CLS] token from
the last layer of the frozen ViT encoder. Beyond a high cosine similarity between attention maps,
these visualizations reveal strong structural similarity between CL and NSCL.
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Figure 17: Model merging in representation space: We report NCCC and LP scores on mini-
ImageNet using CL encoder trained on full dataset and NSCL encoder trained on 30% of the dataset.
The performance gains obtained using merged representations illustrate the compatibility of CL and
NSCL models and further support our main finding that CL and NSCL maintain closely aligned
embedding geometries throughout training.

Optimization. In order to isolate the effect of the loss, we optimize both objectives (CL and NSCL)
with standard mini-batch SGD under a single coupled protocol: at step t we draw a batch Bt =
{(xj , x

′
j , yj)}Bj=1 with replacement, where each x′

j ∼ α(xj) (e.g., random crop/resize, horizontal
flip, color jitter, Gaussian blur); we average per-anchor terms to form either ℓ̄CL

Bt
(w) or ℓ̄NS

Bt
(w)

using cosine similarity (optionally temperature-scaled), hence bounded in [−1, 1]; and we update
wt+1 = wt − ηt∇ℓ̄Bt

(wt) with prescribed ηt > 0. We then run two coupled SGD trajectories from
the same initialization wCL

0 = wNSCL
0 that share the same batches and augmentations (Bt)

T−1
t=0 and

differ only by NSCL’s exclusion of same-class negatives:

wCL
t+1 = wCL

t − ηt ∇ℓ̄CL
Bt

(
wCL

t

)
, wNSCL

t+1 = wNSCL
t − ηt ∇ℓ̄NSCL

Bt

(
wNSCL

t

)
, t = 0, . . . , T − 1.

Throughout the analysis, we make standard assumptions on the smoothness of the loss functions and
the scale of gradients.

Assumptions. To control the dynamics, we impose two standard conditions on the geometry of the
batch objectives and the scale of pairwise gradients.
Assumption 1 (Uniform smoothness). For every batch B, the functions w 7→ ℓ̄CL

B (w) and w 7→
ℓ̄NSCL
B (w) are β-smooth with the same constant β > 0:

∥∇ϕ(w)−∇ϕ(v)∥ ≤ β ∥w − v∥ for all v, w ∈ Rp, ϕ ∈ {ℓ̄CL
B , ℓ̄NSCL

B }.
Assumption 2 (Bounded pairwise gradients). There exists G > 0, independent of B and t, such that
for all w and all pairs (u, v) appearing in any denominator term,

∥∇w sim (fw(u), fw(v))∥ ≤ G.

We quantify drift between the coupled trajectories under shared randomness in the nonconvex β-
smooth regime. Throughout, the only data-dependent term is ∆π,δ(B; τ), which decreases with more
classes and larger batches.
Theorem 2. Fix B, T ∈ N, δ ∈ (0, 1), and temperature τ > 0. Suppose Assumptions 1–2 hold.
Then, with probability at least 1− δ,

eT ≤ G

β τ
∆π,δ(B; τ)

(
exp

(
β

T−1∑
t=0

ηt

)
− 1

)
.

The bound scales linearly with G and ∆π,δ(B; τ), but crucially it is amplified by the exponential
factor exp(β

∑
t ηt). Unless the step sizes are aggressively annealed, this term grows rapidly with
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training time. Even though ∆π,δ(B; τ) improves with C and B (e.g., for C=1000, B=512, δ=0.01,
we obtain ∆π,δ(B; τ) ≈ 0.01 so that the reweightings of the steps differ by about one percent), the
exponential accumulation can still overwhelm this small per-step gap.

In other words, parameter-space coupling guarantees only that the two runs do not drift apart too
quickly in weight space. But because the weights may follow very different trajectories even
when representations remain similar, this control is too weak to yield meaningful statements about
representational alignment. This motivates our next step: shifting the analysis to similarity space,
where we can obtain bounds that remain stable throughout training and translate directly into
guarantees on metrics such as CKA and RSA.

Proof idea. With high probability over batches (Cor. 3), every anchor’s denominator is dominated by
negatives up to ϵB,δ fluctuations. This keeps the (temperature–τ ) softmax reweighting gap between
CL and NSCL small. In particular, Lem. 7 shows that the per-batch parameter gradients differ
uniformly as ∥∥∇ℓ̄CL

Bt
(w)−∇ℓ̄NSCL

Bt
(w)

∥∥ ≤ G

τ
∆π,δ(B; τ).

By β-smoothness of each batch loss, each step can expand distances by at most a factor (1 + βηt).
Combining this smoothness expansion with the uniform gradient-gap bound yields the following
recurrence:

et+1 ≤ (1 + βηt) et + ηt
G

τ
∆π,δ(B; τ),

where the first term propagates the previous error (with amplification controlled by curvature), and
the second injects the new discrepancy introduced by the CL–NSCL gap at temperature τ .

Unrolling over T steps and applying the discrete Grönwall inequality gives the exponential-type
bound

eT ≤ G

β τ
∆π,δ(B; τ)

(
exp

(
β

T−1∑
t=0

ηt

)
− 1

)
.

Thus, cumulative drift scales with the reweighting gap and is amplified exponentially with the total
step size; smaller τ tightens the softmax and increases the constants (via both 1/τ and e2/τ inside
∆π,δ), so keeping

∑
t ηt moderate is especially important.

D WHY GRADIENT DESCENT IN SIMILARITY SPACE IS A FAITHFUL
SURROGATE

We now explain why running gradient descent directly in similarity space closely tracks the dynamics
induced by gradient descent in parameter space.

When parameters move from wt to wt+1, the induced change in the similarity matrix can be approxi-
mated by a linear expansion:

Σ(wt+1)− Σ(wt) ≈ Jt(wt+1 − wt), Jt := J(wt), (3)

where J(w) := ∂Σ/∂w is the Jacobian. The error in this expansion, denoted Rt, is quadratic in the
step size:

Σ(wt+1)− Σ(wt) = Jt(wt+1 − wt) +Rt. (4)

By the chain rule, the gradient in parameter space can be written as follows:

∇w ℓ̄(wt) = J⊤
t ∇Σℓ̄(Σ(wt)) = J⊤

t Ĝt,

where Ĝt := ∇Σℓ̄(Σ(wt)). Substituting this into the update rule gives

Σ(wt+1)− Σ(wt) = −ηt PtĜt +Rt, Pt := JtJ
⊤
t ⪰ 0. (5)

Thus, parameter descent acts like similarity descent, but with a preconditioning matrix Pt, plus the
remainder Rt.

Assume there exist constants LΣ,MΣ > 0 such that

∥J(w)∥2→2 ≤ LΣ, ∥Σ(w +∆w)− Σ(w)− J(w)∆w∥F ≤ MΣ

2
∥∆w∥22.
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Then ∥Pt∥2→2 ≤ L2
Σ and, with ∆wt := −ηt∇w ℓ̄(wt),

∥Rt∥F ≤ MΣ

2
η2t ∥∇w ℓ̄(wt)∥22 =:

MΣ

2
η2tΞt. (6)

Let Σ̂t := Σ(wt) be the similarity trajectory induced by parameter descent. Define Σ̃t as the trajectory
of explicit similarity descent:

Σ̃t+1 = Σ̃t − ηtG̃t, G̃t := ∇Σℓ̄(Σ̃t),

with Σ̂0 = Σ̃0. Let Et := ∥Σ̂t − Σ̃t∥F and CΣ := supt ∥Pt − I∥2→2 ≤ L2
Σ + 1. Using equation 5,

adding and subtracting −ηtĜt, and applying the temperature–τ bounds equation 11 and equation 6,
one obtains

Et+1 ≤
(
1 +

ηt
2τ2B

)
Et + ηtCΣ∥Ĝt∥F +

MΣ

2
η2tΞt. (7)

Unrolling this recursion from E0 = 0 and using
∏

u(1 + αu) ≤ exp(
∑

u αu) yields

∥Σ̂T − Σ̃T ∥F ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

)[
CΣ

T−1∑
t=0

ηt∥Ĝt∥F +
MΣ

2

T−1∑
t=0

η2tΞt

]
. (8)

By bounding ∥Ĝt∥F via equation 13, namely ∥Ĝt∥F ≤ 1
τ

√
2
B , this simplifies to

∥Σ̂T − Σ̃T ∥F ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

)[√
2CΣ

τ
√
B

T−1∑
t=0

ηt +
MΣ

2

T−1∑
t=0

η2tΞt

]
. (9)

To understand when this bound is conceptually reasonable, suppose ∥∇w ℓ̄(wt)∥2 ≤ G for all t,
so that Ξt ≤ G2. The right-hand side of equation 9 is then controlled by two quantities: the
cumulative step size

∑
t ηt, which appears both inside the exponential and in the linear prefactor

(
√
2CΣ/(τ

√
B))

∑
t ηt, and the term

∑
t η

2
t .

A simple sufficient regime is to assume that
∑T−1

t=0 ηt ≤ c1τ
2B and

∑T−1
t=0 η2t ≤ c2 for fixed

constants c1, c2 independent of T . Under these conditions, the exponential factor is bounded
by exp

(
(1/(2τ2B))

∑
t ηt

)
≤ exp(c1/2), the linear prefactor by (

√
2CΣ/(τ

√
B))

∑
t ηt ≤√

2CΣ c1 τ
√
B (a fixed constant for given (τ,B) and moderate c1), and the quadratic remainder by

(MΣ/2)
∑

t η
2
tΞt ≤ (MΣ/2)G

2c2. In particular, when
∑

t ηt/(τ
2B) and

∑
t η

2
t are both bounded

by constants independent of T , the bound guarantees that ∥Σ̂T − Σ̃T ∥F remains controlled (and
small whenever CΣ,MΣ, G are moderate).

To summarize, the similarity and parameter trajectories stay close whenever the normalized cumulative
step size

∑
t ηt/(τ

2B) is bounded and the learning-rate schedule is sufficiently decaying so that∑
t η

2
t remains bounded. For a fixed learning-rate schedule, a large batch size B and moderate

temperature τ act as stabilizing factors via the 1/(τ
√
B) dependence in equation 9, while very small

τ or extremely large, non-decaying step sizes can make the coupling poor, as reflected by the bound.

E TECHNICAL TOOLS AND PROOFS

E.1 NOTATION AND BASIC SOFTMAX FACTS

Let S = {(xi, yi)}Ni=1 be dataset with C classes (each class c has nc points, with
∑C

c=1 nc = N ,
and we do not assume the nc are equal). For parameters w, let zi = fw(xi) and define the bounded
similarity matrix

Σ(w)ij := sim
(
zi, zj

)
∈ [−1, 1].

At step t, draw a mini-batch Bt = {(xjs , x
′
js
, yjs)}Bs=1 with replacement, using independent augmen-

tations x′
js

∼ α(xjs). For an anchor i ∈ {j1, . . . , jB}, let Di be its denominator index set, and let
Dneg

i := {k ∈ Di : yk ̸= yi} (and similarly Dpos
i ) denote the subset restricted to negatives (e.g., in

two-view SimCLR, Di consists of all 2B views except the anchor itself).
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Define the anchor’s logit vector si(w) :=
(
Σ(w)i,k

)
k∈Di

and the corresponding softmax distributions
with temperature τ > 0 (default 1):

pi = softmax
(
si(w)/τ

)
, qi = softmax

(
(si(w))Dneg

i
/τ

)
.

Let i′ denote the positive (augmented) index for anchor i.

For contrastive learning (CL) and negatives-only supervised contrastive learning (NSCL), the per-
anchor and batch losses are

ℓCL
i (si) = − log pi,i′ , ℓNSCL

i (si) = − log qi,i′ ,

ℓ̄CL
Bt

=
1

B

∑
i∈{j1,...,jB}

ℓCL
i (si), ℓ̄NSCL

Bt
=

1

B

∑
i∈{j1,...,jB}

ℓNSCL
i (si).

Since Σ(w)ij ∈ [−1, 1], each exponential term inside the softmax lies in

exp
(
Σ(w)ij/τ

)
∈ [e−1/τ , e1/τ ],

a fact used below to control softmax mass ratios.

Lemma 1 (Anchor-block orthogonality). Fix a step t and batch Bt. For each anchor i ∈ Bt, let Di

be the set of indices appearing in i’s denominator and define the per-anchor gradient gi ∈ RIt by

gi := ∇siℓi placed on the coordinates {(i, k) : k ∈ Di} ⊂ It,

with zeros elsewhere (here It is the set of all coordinates touched at step t). If i ̸= j, then gi and gj
have disjoint supports, and hence

⟨gi, gj⟩F = 0.

Consequently, for the batch gradient G = 1
B

∑
i∈Bt

gi,

∥G∥2F =
1

B2

∑
i∈Bt

∥gi∥2F . (10)

Proof. By construction, gi is supported only on coordinates {(i, k) : k ∈ Di}, while gj is supported
only on {(j, k) : k ∈ Dj}. For i ̸= j these sets are disjoint, so every coordinatewise product is zero,
yielding ⟨gi, gj⟩F = 0. Expanding the square for G,

∥G∥2F =
〈 1

B

∑
i

gi,
1

B

∑
j

gj

〉
F

=
1

B2

∑
i

∥gi∥2F +
1

B2

∑
i ̸=j

⟨gi, gj⟩F =
1

B2

∑
i

∥gi∥2F ,

where the cross terms vanish by orthogonality.

Lemma 2 (Softmax Hessian and gradient Lipschitzness). Fix a step t and batch Bt. Let It be the
set of coordinates (i, k) that appear in any anchor’s denominator at step t, and view ℓ̄Bt (either
CL or NSCL) as a function of the restricted similarity entries Σ ∈ RIt . For each anchor i, write
si = {Σ(i, k) : (i, k) ∈ It} and pi = softmax(si/τ). Then:

∇2
siℓi(si) =

1

τ2
J(si), J(si) := Diag(pi)− pip

⊤
i ,

∥∥∇2ℓ̄Bt
(Σ)

∥∥
2→2

≤ 1

2τ2B
.

Consequently, for all Σ, Σ̃ ∈ RIt ,∥∥∇Σℓ̄Bt(Σ)−∇Σℓ̄Bt(Σ̃)
∥∥
F

≤ 1

2τ2B
∥Σ− Σ̃∥F . (11)

Proof. With temperature τ > 0, for an anchor i we have pi = softmax(si/τ) and

∇siℓi(si) =
1

τ
(pi − ei′) =⇒ ∇2

siℓi(si) =
1

τ2
∇sipi =

1

τ2
J(si),
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where J(si) := Diag(pi)− pip
⊤
i . Bound ∥J(si)∥2→2 via the infinity norm:

∥J(si)∥2→2 ≤ ∥J(si)∥∞
= max

r

∑
ℓ

|Jrℓ|

= max
r

(
pi,r(1− pi,r) +

∑
ℓ̸=r

pi,rpi,ℓ

)
= max

r
2pi,r(1− pi,r) ≤ 1

2 ,

since x(1− x) ≤ 1/4 for x ∈ [0, 1].

The batch loss is an average over anchors, so its Hessian is block-diagonal across anchors with a
prefactor 1/B:

∇2ℓ̄Bt
(Σ) =

1

B
blkdiag

(
1
τ2 J(si)

)
i∈Bt

=
1

τ2B
blkdiag

(
J(si)

)
i∈Bt

.

Hence ∥∥∇2ℓ̄Bt(Σ)
∥∥
2→2

=
1

τ2B
max

i
∥J(si)∥2→2 ≤ 1

2τ2B
.

By the mean-value (integral) form for vector fields,

∇Σℓ̄Bt
(Σ)−∇Σℓ̄Bt

(Σ̃) =

∫ 1

0

∇2ℓ̄Bt

(
Σ̃ + θ(Σ− Σ̃)

)
[Σ− Σ̃] dθ,

and therefore∥∥∇Σℓ̄Bt(Σ)−∇Σℓ̄Bt(Σ̃)
∥∥
F

≤ sup
θ∈[0,1]

∥∥∇2ℓ̄Bt(Σθ)
∥∥
2→2

∥Σ− Σ̃∥F ≤ 1

2τ2B
∥Σ− Σ̃∥F ,

as claimed.

Lemma 3 (Per-anchor gradient norm and batch average). For an anchor i, let si be the vector of
logits in its denominator and pi = softmax(si/τ). Let i′ denote the (unique) positive index (for
NSCL, if i′ is not in the denominator, set pi,i′ := 0 in the display below). Then

∥∇siℓi∥22 =
1

τ2

[
(1− pi,i′)

2 +
∑
k ̸=i′

p2i,k

]
≤ 2

τ2
, (12)

hence ∥∇siℓi∥2 ≤
√
2/τ . Moreover, by block orthogonality across anchors,∥∥∥ 1

B

∑
i∈Bt

∇siℓi

∥∥∥2
F

=
1

B2

∑
i∈Bt

∥∇siℓi∥22 ≤ 2

τ2B
=⇒

∥∥∥ 1

B

∑
i∈Bt

∇siℓi

∥∥∥
F

≤ 1

τ

√
2

B
. (13)

Proof. For CL, the loss is − log pi,i′ with pi = softmax(si/τ). By the standard softmax–cross-
entropy derivative with temperature,

∇siℓi =
1

τ
(pi − ei′),

so

∥∇siℓi∥22 =
1

τ2

(1− pi,i′)
2 +

∑
k ̸=i′

p2i,k

 ≤ 1

τ2

(1− pi,i′)
2 +

(∑
k ̸=i′

pi,k

)2

 =
2

τ2
(1−pi,i′)

2 ≤ 2

τ2
,

since pi is a probability vector and
∑

k ̸=i′ pi,k = 1− pi,i′ .

For NSCL, two cases. If i′ ∈ Di, the same computation applies (the target index is present), hence
the same bound holds. If i′ /∈ Di (negatives-only denominator), then the loss is − log qi,i′ with
qi = softmax

(
(si)D¬

i
/τ

)
supported only on D¬

i , and

∇siℓi =
1

τ
qi on Dneg

i (and 0 on Dpos
i ),

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

so
∥∇siℓi∥22 =

1

τ2

∑
j∈D¬

i

q2i,j ≤ 1

τ2

( ∑
j∈D¬

i

qi,j

)2

=
1

τ2
≤ 2

τ2
.

Thus in all cases ∥∇siℓi∥2 ≤
√
2/τ , establishing equation 12.

For the batch bound equation 13, gradients from different anchors have disjoint supports over
coordinates {(i, k) : k ∈ Di}, so they are orthogonal in Frobenius inner product (Lem. 1). Therefore,∥∥∥ 1

B

∑
i∈Bt

∇siℓi

∥∥∥2
F
=

1

B2

∑
i∈Bt

∥∇siℓi∥22 ≤ 1

B2
·B · 2

τ2
=

2

τ2B
,

which also implies
∥∥ 1
B

∑
i∈Bt

∇siℓi
∥∥
F
≤ 1

τ

√
2/B.

Lemma 4 (Bounded logits imply bounded softmax masses). Fix a step t and an anchor i. Suppose
all active logits satisfy Σ(i, k) ∈ [−1, 1]. For any index subset S in the anchor’s denominator, define

ZS :=
∑
k∈S

exp
(
Σ(i, k)/τ

)
with temperature τ > 0.

Then
|S| e−1/τ ≤ ZS ≤ |S| e1/τ .

In particular, if Spos and Sneg are the positive and negative index sets with sizes npos and nneg, and
Zpos := ZSpos

, Zneg := ZSneg
, then

npos e
−1/τ ≤ Zpos ≤ npos e

1/τ , nneg e
−1/τ ≤ Zneg ≤ nneg e

1/τ ,

and hence
Zpos

Zneg
≤ e2/τ

npos

nneg
and

Zpos

Zneg
≥ e−2/τ npos

nneg
.

Proof. Since Σ(i, k) ∈ [−1, 1], we have exp(Σ(i, k)/τ) ∈ [e−1/τ , e1/τ ] for every active k. Sum-
ming over k ∈ S yields |S| e−1/τ ≤ ZS ≤ |S| e1/τ . Apply this with S = Spos and S = Sneg and
take ratios to obtain the stated bounds.

E.2 HIGH-PROBABILITY BATCH COMPOSITION

Fix T,B ∈ N and ϵ > 0. For step t and anchor i ∈ Bt, let Y (i)
t,s = 1{yjs ̸= yi} for s = 1, . . . , B.

Lemma 5 (Batch-composition event). For a population with C classes and class priors πc = nc/N ,
the Y

(i)
t,s are i.i.d. Bernoulli with mean 1− πyi

. For any ϵ > 0,

P

[
∃(t, i) : 1

B

B∑
s=1

Y
(i)
t,s < 1− πyi

− ϵ

]
≤ TB e−2Bϵ2 .

Equivalently, with probability ≥ 1−TB e−2Bϵ2 , every anchor sees at least B(1− πyi
− ϵ) negatives.

Proof. Fix any step t and anchor i. Because batches are drawn with replacement from a population
with class priors πc = nc/N , for each position s ∈ {1, . . . , B} the indicator Y (i)

t,s = 1{yjs ̸= yi} is

Bernoulli with mean E[Y (i)
t,s ] = 1− πyi

, and {Y (i)
t,s }Bs=1 are i.i.d. across s. By Hoeffding’s inequality,

for any ϵ > 0,

P

[
1

B

B∑
s=1

Y
(i)
t,s < 1− πyi

− ϵ

]
= P

[
1

B

B∑
s=1

(
Y

(i)
t,s − EY (i)

t,s

)
< −ϵ

]
≤ exp(−2Bϵ2).

There are at most TB anchor–step pairs (t, i) over t = 0, . . . , T −1 and i ∈ Bt. A union bound gives

P

[
∃(t, i) : 1

B

B∑
s=1

Y
(i)
t,s < 1− πyi

− ϵ

]
≤ TB e−2Bϵ2 .

Equivalently, with probability at least 1 − TB e−2Bϵ2 , every anchor in every step has at least
B(1− πyi − ϵ) negatives in its denominator.
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Corollary 3. For δ ∈ (0, 1), set ϵB,δ :=
√

1
2B log(TB

δ ) and let πc = nc/N be the class priors
and πmax := maxc∈[C] πc. With probability ≥ 1− δ, every anchor i has at least B(1− πyi

− ϵB,δ)
negatives and at most B(πyi

+ ϵB,δ) positives in its denominator. In particular,

|Dneg
i | ≥ B

(
1− πmax − ϵB,δ

)
, |Dpos

i | ≤ B
(
πmax + ϵB,δ

)
.

Using bounded logits, the ratio of total positive to negative softmax mass (at temperature τ > 0)
satisfies, for all anchors and steps,

Zpos
i

Zneg
i

≤
e2/τ

(
πmax + ϵB,δ

)
1− πmax − ϵB,δ

= 1
2 ∆π,δ(B; τ), (14)

where

∆π,δ(B; τ) =
2 e2/τ

(
πmax + ϵB,δ

)
1− πmax − ϵB,δ

.

Proof. Set ϵ = ϵB,δ :=
√

1
2B log(TB

δ ) and ∆π,δ(B; τ) :=
2 e2/τ

(
πmax+ϵB,δ

)
1−πmax−ϵB,δ

. Apply Lem. 5 with
this ϵ: with probability at least 1− δ, for every step t and every anchor i,

|Dneg
i | ≥ B

(
1− πyi

− ϵB,δ

)
, |Dpos

i | ≤ B
(
πyi

+ ϵB,δ

)
.

In particular,

|Dneg
i | ≥ B

(
1− πmax − ϵB,δ

)
, |Dpos

i | ≤ B
(
πmax + ϵB,δ

)
.

In two-view SimCLR, each sampled point contributes two denominator entries, so the denominator
contains at least 2|Dneg

i | negative entries and at most 2|Dpos
i | positive entries; the factor 2 cancels in

the ratio below.

Because similarities are bounded in [−1, 1], each logit lies in [−1, 1] and hence each exponential
term at temperature τ lies in [e−1/τ , e1/τ ]. Therefore, for any anchor and step,

Zpos
i ≤ e1/τ · (2|Dpos

i |), Zneg
i ≥ e−1/τ · (2|Dneg

i |),

and thus
Zpos
i

Zneg
i

≤ e2/τ
|Dpos

i |
|Dneg

i |
≤

e2/τ
(
πmax + ϵB,δ

)
1− πmax − ϵB,δ

= 1
2 ∆π,δ(B; τ).

The bound is meaningful whenever ϵB,δ < 1− πmax so that the denominator is positive. This proves
the corollary.

Lemma 6 (Per-anchor reweighting gap). On the event of Cor. 3, let p be the CL softmax (temperature
τ > 0) over an anchor’s full denominator, and q the NSCL softmax (same τ ) that removes same-class
entries and renormalizes over negatives. Then

∥p− q∥1 ≤ ∆π,δ(B; τ), ∥p− q∥2 ≤ ∥p− q∥1 ≤ ∆π,δ(B; τ).

Proof. Fix an anchor i and let Dpos
i , Dneg

i be its positive and negative index sets in the CL denomi-
nator. Write sk := Σ(i, k) and define

Zpos
i :=

∑
k∈Dpos

i

exp
(
sk/τ

)
, Zneg

i :=
∑

j∈Dneg
i

exp
(
sj/τ

)
, α :=

Zpos
i

Zpos
i + Zneg

i

.

Let p be the CL softmax on Dpos
i ∪Dneg

i and let q be the NSCL softmax that zeros positive entries
and renormalizes on negatives: q(k) = 0 for k ∈ Dpos

i and q(j) = p(j)/(1−α) for j ∈ Dneg
i . Then

∥p− q∥1 =
∑

k∈Dpos
i

pk +
∑

j∈Dneg
i

∣∣∣pj − pj
1− α

∣∣∣ = α+ (1− α)
α

1− α
= 2α ≤ 2Zpos

i

Zneg
i

.

On the high-probability event of Cor. 3, since s ∈ [−1, 1] ⇒ exp(s/τ) ∈ [e−1/τ , e1/τ ],

Zpos
i ≤ e1/τ |Dpos

i |, Zneg
i ≥ e−1/τ |Dneg

i |.
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Moreover, by Cor. 3,

|Dpos
i | ≤ 2B

(
πmax + ϵB,δ

)
, |Dneg

i | ≥ 2B
(
1− πmax − ϵB,δ

)
,

(each sampled point contributes two keys, so the factor 2 cancels in the ratio). Hence

2Zpos
i

Zneg
i

≤ 2 e2/τ
|Dpos

i |
|Dneg

i |
≤

2 e2/τ
(
πmax + ϵB,δ

)
1− πmax − ϵB,δ

= ∆π,δ(B; τ).

Therefore ∥p− q∥1 ≤ ∆π,δ(B; τ). Finally, ∥p− q∥2 ≤ ∥p− q∥1 yields the second claim.

E.3 PARAMETER-SPACE COUPLING: SUPPORTING LEMMAS AND PROOFS

Lemma 7 (Per-batch parameter-gradient gap). On the event of Cor. 3, for any step t and any w,∥∥∇ℓ̄CL
Bt

(w)−∇ℓ̄NSCL
Bt

(w)
∥∥ ≤ G

τ
∆π,δ(B; τ).

Proof. Fix t and w. For an anchor i ∈ Bt, let Di be its denominator index set, split as Di =
posi ∪ negi, where posi collects all same-class indices (including the designated positive i′) and
negi the rest. Write the logits sik = Σ(i, k), the CL softmax pik = exp(sik/τ)

/∑
ℓ∈Di

exp(siℓ/τ),
and the NSCL softmax over negatives qij = pij/(1− αi) for j ∈ negi, with qk = 0 for k ∈ posi,
where αi :=

∑
k∈posi

pik. Define vik := ∇wsik = ∇w sim
(
fw(xi), fw(xk)

)
; by Assumption 2,

∥vik∥ ≤ G for all (i, k).

For the per-anchor losses,

∇wℓ
CL
i,Bt

=
1

τ

( ∑
k∈Di

pik vik − vii′
)
, ∇wℓ

NSCL
i,Bt

=
1

τ

( ∑
j∈negi

qij vij − vii′
)
.

Hence the per-anchor gradient difference is

∆gi := ∇wℓ
CL
i,Bt

−∇wℓ
NSCL
i,Bt

=
1

τ


∑

k∈posi

pik vik︸ ︷︷ ︸
(A)

+
∑

j∈negi

(pij − qij) vij︸ ︷︷ ︸
(B)

 .

By the triangle inequality and ∥vik∥ ≤ G,

∥∆gi∥ ≤ G

τ

( ∑
k∈posi

pik +
∑

j∈negi

|pij − qij |
)
.

Since qij = pij/(1− αi) for j ∈ negi,∑
j∈negi

|pij − qij | =
∑

j∈negi

pij
αi

1− αi
= αi.

Therefore ∥∆gi∥ ≤ G
τ (αi + αi) = 2G

τ αi. Writing ri :=
Zpos

Zneg
with Zpos =∑

k∈posi
exp(sik/τ), Zneg =

∑
j∈negi

exp(sij/τ), we have αi =
ri

1+ri
, hence 2αi =

2ri
1+ri

≤ 2ri,
so

∥∆gi∥ ≤ 2G

τ

Zpos

Zneg
.

On the high-probability event of Cor. 3, for every anchor

Zpos

Zneg
≤

e2/τ
(
πmax + ϵB,δ

)
1− πmax − ϵB,δ

= 1
2 ∆π,δ(B; τ),

so ∥∆gi∥ ≤ G
τ ∆π,δ(B; τ) for all anchors i.
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Finally, the batch gradients are averages over anchors:

∇ℓ̄CL
Bt

−∇ℓ̄NSCL
Bt

=
1

B

∑
i∈Bt

∆gi,

hence ∥∥∇ℓ̄CL
Bt

−∇ℓ̄NSCL
Bt

∥∥ ≤ 1

B

∑
i∈Bt

∥∆gi∥ ≤ 1

B

∑
i∈Bt

G

τ
∆π,δ(B; τ) =

G

τ
∆π,δ(B; τ).

Theorem 2. Fix B, T ∈ N, δ ∈ (0, 1), and temperature τ > 0. Suppose Assumptions 1–2 hold.
Then, with probability at least 1− δ,

eT ≤ G

β τ
∆π,δ(B; τ)

(
exp

(
β

T−1∑
t=0

ηt

)
− 1

)
.

Proof. Let ΦCL
t (w) := ℓ̄CL

Bt
(w) and ΦNSCL

t (w) := ℓ̄NSCL
Bt

(w). Assume each ΦCL
t is β-smooth. Set

et := ∥wCL
t − wNSCL

t ∥.

Write

et+1 =
∥∥wCL

t+1 − wNSCL
t+1

∥∥ =
∥∥Tt(w

CL
t )−

(
wNSCL

t − ηt ∇ΦNSCL
t (wNSCL

t )
)∥∥

≤ ∥Tt(w
CL
t )− Tt(w

NSCL
t )∥︸ ︷︷ ︸

(I)

+ ηt ∥∇ΦCL
t (wNSCL

t )−∇ΦNSCL
t (wNSCL

t )∥︸ ︷︷ ︸
(II)

.

Bounding (I). Using the integral Hessian representation,

∇ΦCL
t (u)−∇ΦCL

t (v) = Ht(v, u) (u− v), Ht(v, u) :=

∫ 1

0

∇2ΦCL
t (v + τ(u− v)) dτ,

and β-smoothness gives ∥Ht(v, u)∥2→2 ≤ β. Hence

∥Tt(u)− Tt(v)∥ = ∥(I − ηtHt(v, u))(u− v)∥
≤

∥∥I − ηtHt(v, u)
∥∥
2→2

∥u− v∥
≤ (1 + ηtβ) ∥u− v∥.

Thus, (I) ≤ (1 + ηtβ) et.

Bounding (II). On the high-probability event of Cor. 3, Lem. 7 yields

(II) ≤ G

τ
∆π,δ(B; τ).

Combining the bounds,

et+1 ≤ (1 + ηtβ) et + ηt
G

τ
∆π,δ(B; τ). (15)

Iterating equation 15 from e0 = 0 gives

eT ≤
T−1∑
t=0

ηt
G

τ
∆π,δ(B; τ)

T−1∏
s=t+1

(1 + ηsβ) ≤ G

τ
∆π,δ(B; τ)

T−1∑
t=0

ηt exp
(
β

T−1∑
s=t+1

ηs

)
,

where we used 1 + x ≤ ex. Let Sk :=
∑T−1

s=k ηs so that St = ηt + St+1. Then for each t,

ηt exp(βSt+1) ≤ 1

β

(
exp(βSt)− exp(βSt+1)

)
,

since eβηt − 1 ≥ βηt. Summing over t = 0, . . . , T − 1 telescopes to

eT ≤ G

βτ
∆π,δ(B; τ)

(
exp

(
β

T−1∑
t=0

ηt

)
− 1

)
.

This holds with probability at least 1− δ.
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E.4 SIMILARITY-SPACE ANALYSIS AND COUPLING

Lemma 8 (Per-step gradient gap in similarity space). On the event of Cor. 3, for any step t,∥∥GCL
t (ΣCL

t )−GNSCL
t (ΣNSCL

t )
∥∥
F

≤ 1

τ
· ∆π,δ(B; τ)√

B︸ ︷︷ ︸
reweighting (block-orth.)

+
1

2τ2B

∥∥ΣCL
t − ΣNSCL

t

∥∥
F︸ ︷︷ ︸

Lipschitz in Σ

.

Proof. Add and subtract GNSCL
t (ΣCL

t ) and apply the triangle inequality:∥∥GCL
t (ΣCL

t )−GNSCL
t (ΣNSCL

t )
∥∥
F

≤
∥∥GCL

t (ΣCL
t )−GNSCL

t (ΣCL
t )

∥∥
F︸ ︷︷ ︸

(A)

+
∥∥GNSCL

t (ΣCL
t )−GNSCL

t (ΣNSCL
t )

∥∥
F︸ ︷︷ ︸

(B)

. (16)

Term (B): Lipschitz in Σ. By the temperature-τ softmax–Hessian bound equation 11,

(B) ≤ 1

2τ2B
∥ΣCL

t − ΣNSCL
t ∥F .

Term (A): reweighting gap at fixed ΣCL
t . Decompose the batch gradient into anchor blocks:

G◦
t (Σ) =

1

B

∑
i∈Bt

g◦t,i(Σ), ◦ ∈ {CL,NSCL},

where each g◦t,i has support only on the coordinates of anchor i. For anchor i, with temperature τ ,
gCL
t,i (Σ

CL
t ) = (1/τ)(pi − ei′), gNSCL

t,i (ΣCL
t ) = (1/τ)(qi − ei′), so gCL

t,i (Σ
CL
t ) − gNSCL

t,i (ΣCL
t ) =

(1/τ)(pi − qi) on that block. By block orthogonality (Lem. 1),

(A) =
1

B

∥∥∥∑
i∈Bt

1

τ
(pi − qi)

∥∥∥
F

=
1

τB

√∑
i∈Bt

∥pi − qi∥22.

On the event of Cor. 3, Lem. 6 gives ∥pi − qi∥2 ≤ ∆π,δ(B; τ) for every anchor, hence

(A) ≤ 1

τB

√
B∆π,δ(B; τ)2 =

1

τ
· ∆π,δ(B; τ)√

B
.

Combining the bounds on (A) and (B) yields the claim.

Theorem 1 (Similarity-space coupling). Fix B, T ∈ N, δ ∈ (0, 1), and temperature τ > 0. Consider
the coupled similarity-descent recursions equation 1 for CL and NSCL with shared initialization
and shared mini-batches/augmentations. Then, with probability at least 1− δ over the draws of the
mini-batches and augmentations, for any stepsizes (ηt)T−1

t=0 ,

∥∥ΣCL
T − ΣNSCL

T

∥∥
F

≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ). (2)

Proof. Condition on the event of Cor. 3 (which holds with probability at least 1 − δ). Let Dt :=
∥ΣCL

t − ΣNSCL
t ∥F . From the coupled updates equation 1,

ΣCL
t+1 − ΣNSCL

t+1 =
(
ΣCL

t − ΣNSCL
t

)
− ηt

(
GCL

t (ΣCL
t )−GNSCL

t (ΣNSCL
t )

)
,

hence
Dt+1 ≤ Dt + ηt

∥∥GCL
t (ΣCL

t )−GNSCL
t (ΣNSCL

t )
∥∥
F
.

Add and subtract GNSCL
t (ΣCL

t ) and apply Lem. 8 (reweighting gap + Lipschitz with temperature τ ):∥∥GCL
t (ΣCL

t )−GNSCL
t (ΣNSCL

t )
∥∥
F

≤ 1

τ
· ∆π,δ(B; τ)√

B
+

1

2τ2B
Dt.
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Therefore,

Dt+1 ≤
(
1 +

ηt
2τ2B

)
Dt + ηt

1

τ
· ∆π,δ(B; τ)√

B
.

Let αt :=
ηt

2τ2B and γt := ηt
∆π,δ(B;τ)

τ
√
B

. With D0 = 0 (shared initialization), the discrete Grönwal-
l/product form gives

DT ≤
T−1∑
s=0

γs

T−1∏
u=s+1

(1 + αu) ≤ exp
(T−1∑
u=0

αu

) T−1∑
s=0

γs,

using
∏

u(1 + αu) ≤ exp(
∑

u αu). Substituting αt, γt yields

DT ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ),

as desired.

Consequences for CKA and RSA.
Corollary 1 (CKA lower bound). In the setting of Thm. 1. Assume ∥KCL

T ∥F > 0. With probability
at least 1− δ,

CKAT ≥ 1− ρT
1 + ρT

, ρT ≤
exp

(
1

2τ2B

∑T−1
t=0 ηt

)
1

τ
√
B

(∑T−1
t=0 ηt

)
∆π,δ(B; τ)

∥KCL
T ∥F

.

Proof. Let AT := ∥KCL
T ∥F > 0 and ∆K,T := ∥KCL

T −KNSCL
T ∥F , where all norms are Frobenius.

Then
⟨KCL

T ,KNSCL
T ⟩ =

〈
KCL

T , KCL
T + (KNSCL

T −KCL
T )

〉
= ∥KCL

T ∥2F +
〈
KCL

T , KNSCL
T −KCL

T

〉
≥ A2

T −AT ∆K,T ,
(17)

by Cauchy–Schwarz. By the triangle inequality, ∥KNSCL
T ∥F ≤ AT +∆K,T . Hence

CKAT =
⟨KCL

T ,KNSCL
T ⟩

∥KCL
T ∥F ∥KNSCL

T ∥F
≥ A2

T −AT∆K,T

AT (AT +∆K,T )
=

1−∆K,T /AT

1 + ∆K,T /AT
.

Next, K◦
T = HΣ◦

TH with the centering projector H = I − 1
N 11⊤, so ∆K,T = ∥H(ΣCL

T −
ΣNSCL

T )H∥F ≤ ∥ΣCL
T − ΣNSCL

T ∥F because ∥H∥2→2 = 1. By Thm. 1, with probability at least
1− δ,

∥ΣCL
T − ΣNSCL

T ∥F ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ).

Combining the last two equations yields the lower bound on CKAT with probability at least 1−δ.

Corollary 2 (RSA lower bound). In the setting of Thm. 1. Assume σD,T > 0. With probability at
least 1− δ,

RSAT ≥ 1− rT
1 + rT

, rT ≤
exp

(
1

2τ2B

∑T−1
t=0 ηt

)
1

τ
√
B

(∑T−1
t=0 ηt

)
∆π,δ(B; τ)

√
M σD,T

.

Proof. Let M =
(
N
2

)
and let C := I − 1

M 11⊤ be the centering projector in RM . Write ac := CaT
and bc := CbT . Then

RSAT =
⟨ac, bc⟩

∥ac∥2 ∥bc∥2
.

For any nonzero u and any v in an inner-product space,

⟨u, v⟩ = ⟨u, u+ (v − u)⟩ = ∥u∥22 + ⟨u, v − u⟩ ≥ ∥u∥22 − ∥u∥2 ∥v − u∥2,
and ∥v∥2 ≤ ∥u∥2 + ∥v − u∥2. Therefore,

⟨u, v⟩
∥u∥2 ∥v∥2

≥ 1− ∥v − u∥2/∥u∥2
1 + ∥v − u∥2/∥u∥2

.
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Apply this with u = ac and v = bc to obtain

RSAT ≥ 1− ∥bc − ac∥2/∥ac∥2
1 + ∥bc − ac∥2/∥ac∥2

.

Since C is an orthogonal projector, ∥bc − ac∥2 = ∥C(bT − aT )∥2 ≤ ∥bT − aT ∥2. By construction
of the RDM vectors,

bT − aT = − vec
(
off

(
ΣNSCL

T − ΣCL
T

))
,

so ∥bT −aT ∥2 = ∥off(ΣNSCL
T −ΣCL

T )∥F ≤ ∥ΣNSCL
T −ΣCL

T ∥F . Finally, by Thm. 1, with probability
at least 1− δ,

∥ΣNSCL
T − ΣCL

T ∥F ≤ exp
( 1

2τ2B

T−1∑
t=0

ηt

) 1

τ
√
B

(T−1∑
t=0

ηt

)
∆π,δ(B; τ).

Combining the last three displays yields the stated (1 − r)/(1 + r) lower bound on RSAT after
substituting ∥ac∥2 =

√
M σD,T .
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