
Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Benjamin Bergner 1 2 † * Andrii Skliar 2 * Amelie Royer 2 ‡ Tijmen Blankevoort 2 ‡ Yuki Asano 2 3

Babak Ehteshami Bejnordi 2

Abstract
Large language models (LLMs) are widely used
for text generation, but their size and reliance
on autoregressive decoding increase deployment
costs and latency. We propose a hybrid approach
that combines different-sized language models
to improve efficiency while maintaining perfor-
mance. Our method uses a pretrained LLM to
encode prompt tokens in parallel, guiding a small
language model (SLM) to generate responses
more efficiently. By combining encoder-decoder
LLMs with encoder-decoder and decoder-only
SLMs, we achieve up to 4× speedup with minor
performance penalties of 1− 2% for translation
and summarization tasks compared to the LLM.

1. Introduction
The recent widespread adoption of LLMs has enabled a
variety of applications in the field of natural language gen-
eration (NLG), from machine translation (Wu et al., 2016)
and code completion (Chen et al., 2021) to general-purpose
chatbots (OpenAI, 2023). Their performance is a function
of compute, dataset size and parameter count (Kaplan et al.,
2020), with emerging abilities becoming apparent only at
larger scales (Chowdhery et al., 2023; Wei et al., 2022).
These findings have led to the increased popularity of large
models, both in decoder-only (Touvron et al., 2023a) and
encoder-decoder networks (Chung et al., 2022).As this race
to scale intensifies, LLMs are becoming more challenging
to deploy, especially in light of compute and latency require-
ments of edge devices, which translate into higher costs for
providers and end users alike (Chen et al., 2023b).

LLMs in NLG operate in two phases: (1) First, encod-
ing the user prompt (e.g., Translate into German:
I love you), followed by (2) decoding of the response

*Equal contribution †Work done as an intern at Qualcomm AI
Research. ‡Work was completed while employed at Qualcomm AI
Research. 1Hasso Plattner Institute for Digital Engineering, Uni-
versity of Potsdam 2Qualcomm AI Research, Amsterdam; Qual-
comm AI Research is an initiative of Qualcomm Technologies,
Inc. 3QUVA Lab, University of Amsterdam. Correspondence to:
Andrii Skliar <askliar@qti.qualcomm.com>.

Work presented at the ES-FoMo II Workshop at ICML 2024, Vienna,
Austria. Copyright 2024 by the author(s).

Fast autoregressive
decoding

LLM SLM

Representation

Input prompt Output token

I think I write

Figure 1. LLM-to-SLM: A large language model (LLM) computes
a high-quality representation of the prompt to condition a small lan-
guage model (SLM), which then efficiently decodes the response
while maintaining high performance close to the LLM.

(Ich liebe dich). In many cases, such as translation
or summarization, the prompt is known in advance and can
be processed efficiently in parallel. However, the response
is usually generated in an autoregressive manner (Radford
et al., 2018; Zarrieß et al., 2021): The LLM must be called
for each token to be generated, which requires loading all
its weight matrices and the KV cache. As a result, decoding
becomes bound to the memory bandwidth of the accelera-
tor, which eventually leads to high inference latency as the
length of the response grows (Pope et al., 2023).

Following this observation, we propose a hybrid approach
that targets to reduce the cost of autoregressive decoding
by distributing prompt encoding and response generation
over two unequally sized networks (Figure 1). Our method,
called LLM-to-SLM, involves a single forward pass with
an LLM to compute a high-quality representation of the
prompt. Following a learnable projection, this representa-
tion is used to guide a more efficient, small language model
(SLM) to perform autoregressive generation. To evaluate
the efficacy of our proposed LLM-to-SLM method, we com-
bine networks from different families and present results on
multiple benchmarks. We observe speedups of up to 4.2×
compared to the LLM, outperforming the SLM by a large
margin, while approaching the performance of the LLM in
machine translation and summarization.

2. Related Work
Reducing the overall inference cost of LLMs has gained
significant interest in recent years. While traditional tech-
niques, e.g. in model compression (Frantar & Alistarh,
2023; Dettmers et al., 2022) and parallel decoding (Fu et al.,
2023; Ning et al., 2023), are still active areas of research, re-
cent developments show a pivot towards hybrid approaches
that combine models of different sizes for fast decoding.

1

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Specifically, Chen et al. (2023b) propose a language model
cascade, where cheaper models are invoked first and thus
perform the bulk of computation. In contrast, Jiang et al.
(2023) recycle the representation of the LLM by passing it
to a smaller model that predicts the subsequent token more
efficiently. Speculative decoding methods repeatedly call
the SLM to generate a draft that is then validated in parallel
by the LLM (Chen et al., 2023a; Leviathan et al., 2023;
Kim et al., 2023). Medusa (Cai et al., 2023) attaches heads
on top of the LLM to predict multiple tokens in parallel
without employing an explicit draft model. Concurrent
to this work, S et al. (2024) propose generating blocks of
tokens with an SLM before feeding them into an LLM,
which then generates features used for improved generation
of the next block.

Despite these promising developments, exploiting the dis-
crepancy between fast prompt encoding and slow response
generation remains underexplored. In contrast to related
works, the LLM in our method is only called once and
the SLM is conditioned on its representation. This makes
LLM-to-SLM attractive for hybrid inference settings, where
the prompt can be processed by a high-performance server
while decoding is performed on an edge device.

3. LLM-to-SLM

Tokenized prompt
+ Target or predictionTokenized prompt

e.g., T5 Large

LLM
Encoder

Projector

Embedding

Representation

+

Response

e.g., T5 Small,
GPT2SLM

Encoder-decoder
or Decoder-only

Figure 2. Architecture details. A frozen LLM encoder integrates
projected representations into either a trainable encoder-decoder
or a decoder-only SLM.

It is well known that model capacity and overparametriza-
tion play a crucial factor in model performance (Kaplan
et al., 2020; Hoffmann et al., 2022). Following this in-
sight, the core idea of LLM-to-SLM is to compensate for
the low parameter count of an SLM by conditioning its
next token prediction on a high-quality representation of the
prompt given by an LLM. Figure 2 presents an overview
of our method: First, the LLM encoder fξ computes a
high-quality representation of the prompt. The projector
qϕ then adapts and projects this representation to the SLM
embedding space. Finally, the SLM gθ takes the projected
representation and the prompt as input and generates the

output tokens in an autoregressive manner. Crucially, the
parameter count of the SLM is significantly smaller than the
LLM (8− 16× in our experiments), leading to faster gen-
eration as only the SLM performs autoregressive decoding.
In the remainder of this section, we formalize decoding in
LLM-to-SLM, describe its individual components, and fur-
ther explain how the representations of the LLM are injected
into both encoder-decoder and decoder-only SLMs.

3.1. Fast autoregressive decoding
Given a prompt X = [x1, . . . , xm] and an encoder-decoder
LLM, autoregressive decoding models the output Y =
[y1, . . . , yn] in a causal manner:

p(Y |X) =

n∏
i=1

gξ(yi|y<i, fξ(x1:m)), (1)

where fξ and gξ refer to the LLM encoder and decoder.
Generating the complete sequence Y thus requires n costly
forward passes to the LLM decoder gξ. Furthermore, these
calls can not be parallelized as we need to first sample the
token yi to estimate the probability distribution over the
i + 1-th token. Instead, we propose to delegate the costly
autoregressive decoding calls to a smaller language model,
while preserving the encoder capacity:

p(Y |X) =

n∏
i=1

gθ(yi|y<i, x1:m, qϕ(fξ(x1:m))). (2)

The LLM is now only called once to provide an encoding of
the input prompt to the SLM. Therefore, as the number of
autoregressive steps n increases, the runtime of our method
converges to the original runtime of the SLM.

3.2. Architecture
LLM Encoder. The LLM encoder fξ : X 7→ H processes
a prompt X of length m into a high-quality representation
H ∈ Rm×dl . Training LLMs requires substantial resources,
so we freeze the LLM during fine-tuning and use pretrained
encoder-decoder models, omitting the decoder. This enables
efficient training by precomputing prompt representations.
Using last layer features from the encoder is straightforward,
unlike decoder-only models where it is more challenging to
identify a good prompt encoding point (see Appendix D).

Projector. The projector qϕ : H 7→ Z aligns LLM and
SLM representations. It converts high-dimensional features
H ∈ Rm×dl into a lower-dimensional representation Z ∈
Rm×ds , which can be directly fused with SLM embeddings.
We found a small MLP: Linear(dl, ds) → ReLU →
Linear(ds, ds) trained from scratch to be effective for
this alignment.

SLM. The SLM gθ : (X,Z) 7→ Ŷ maps the tokenized
input X and the projected representation Z to the response

2

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Ŷ of length n. We use pretrained networks as SLMs and
fine-tune them, as they have not yet been trained to process
high-capacity encodings. We experiment with learning from
both ground truth data and LLM-generated sequences.

3.3. Conditioning the SLM
We incorporate LLM representations early into the SLM,
which allows us to leverage both encoder-decoder and
decoder-only SLMs. Specifically, we add the projected
LLM representation Z to the SLM prompt embedding EX ,
resulting in the modulated representation Z + EX (see Ap-
pendix C.2 for a comparison with other integration methods).
Importantly, note that the LLM and SLM may use different
tokenizers and vocabularies, leading to different sequence
lengths. To align the sequences, the SLM reuses the tok-
enizer and a copy of the embedding matrix from the LLM.
Furthermore, two new linear layers are inserted: (1) an em-
bedding projection layer mapping from the LLM feature
dimension dl to the SLM space ds and (2) a new head layer
mapping to the LLM vocabulary.

4. Experiments
In this section, we intend to answer the following question:
What is the comparative performance and runtime of our
proposed LLM-to-SLM method in relation to LLM and
SLM alone? We evaluate LLM-to-SLM on machine transla-
tion and summarization, report its computational efficiency
and compare our method to speculative decoding and PEFT
methods. We provide further details about the experimental
setup and additional results in Appendix C.

4.1. Machine Translation
We report results for English to German, French, and Ro-
manian translations using WMT14 (Bojar et al., 2014) for
En-Fr/De and WMT16 for En-Ro (Bojar et al., 2016). T5
Large serves as the LLM encoder, and T5 Small, T5 1.1
Small, and GPT2 as the SLMs. T5 Small and GPT2 are
16× and 8× smaller than T5 Large. T5 Large and T5 Small
are pretrained for translation, while T5 1.1 Small is trained
on the C4 dataset. The prompt format is “translate
English to *target-language*:”. All models
are trained for 50k iterations, except for T5 Large, which is
applied in a zero-shot manner. We use our LLM to generate
training labels and report BLEU scores in Table 1.

T5 Large averages a BLEU score of 31.94. T5 Small per-
forms 2 BLEU points worse, and non-pretrained SLMs
(T5 1.1 Small and GPT2) perform over 3 BLEU points
worse. Our LLM-to-SLM variants close this gap, with T5
Large→T5 Small scoring 31.54 on average. Gains are
more pronounced with non-pretrained networks, e.g., T5
Large→T5 1.1 Small scores 2.5 points higher than T5 1.1
Small. Notably, T5 Large→GPT2 also shows significant
improvements with minimal runtime trade-offs.

Model En-Fr En-De En-Ro Avg. Time

T5 Large (zero-shot) 39.53 29.10 27.19 31.94 61.5

T5 Small 37.16 26.47 26.15 29.93 14.2
T5 1.1 Small 34.85 24.55 25.25 28.22 18.4
GPT2 35.67 25.53 24.70 28.63 19.7

T5 Large→T5 Small 39.22 28.36 27.04 31.54 14.8
T5 Large→T5 1.1 Small 38.21 27.42 26.54 30.72 19.1
T5 Large→GPT2 39.01 28.27 25.86 31.05 20.7

Table 1. BLEU scores for machine translation. LLM-to-SLM mod-
els approach the performance of the LLM.

4.2. Summarization
We assess the performance of LLM-to-SLM for summariza-
tion on CNN/Daily Mail (Hermann et al., 2015), using T5
Large as the LLM and GPT2 as the SLM. T5 Large is pre-
trained for summarization. Following Raffel et al. (2020),
the input prompt is prefixed with ”summarize:”. All
models are fine-tuned for 25k iterations on the training set
and evaluated on the test split. Unlike translation, we train
directly from ground-truth labels, as this method performs
better than using LLM-generated labels. ROUGE scores
and runtimes are reported in Table 2.

Model R-1 R-2 R-L Avg. Time

T5 Large (zero-shot) 40.07 18.84 28.82 29.07 61.5

GPT2 XL (zero-shot) 29.34 8.27 26.58 21.40 78.6
GPT2 XL 40.47 19.09 28.90 29.49 78.6
GPT2 38.58 17.56 27.36 27.83 19.7

T5 Large→GPT2 40.22 18.64 28.80 29.22 20.7

Table 2. ROUGE scores (abbreviated with R-) on CNN/Daily Mail.
GPT2 XL (zero-shot) results are from Radford et al. (2019).

GPT2 scores 1.24 ROUGE points lower than T5 Large.
However, T5 Large→GPT2 slightly exceeds T5 Large’s
score and achieves a 3× speedup. Notably, T5 Large→
GPT2 performs comparably to a fully fine-tuned GPT2 XL
model, with a decoder that is 17× smaller.

4.3. Tiny SLMs
We explore the limits of LLM-to-SLM by scaling down
the SLM to a minimum. Specifically, we use T5 Large →
GPT2 in the machine translation scenario and truncate the
upper layers of GPT2, leading to SLMs with d ∈ 1, 2, 4
layers, having 8M, 15M, and 29M parameters, respectively.
As shown in Figure 3 (right), our LLM-to-SLM models
significantly outperform the corresponding SLM baselines
while maintaining nearly the same runtime. Notably, T5
Large → GPT2 with d = 4 outperforms GPT2 and is more
than twice as fast. As the size of the SLM decreases, the
performance gap between the LLM and the SLM, and thus
our method, increases. However, we observe even larger
performance gains of LLM-to-SLM over the SLM alone in
this setting. For example, T5 Large → GPT2 with d = 1

3

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

20 30 40 50 60

Runtime per single token [ms]

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

B
LE

U
 s

co
re

 (a
vg

.) T5 Large GPT2

T5 Large T5 1.1 Small

T5 Large T5 Small

GPT2

T5 Small

T5 1.1 Small

T5 Large

T5 Base

T5 Small

4.16x speedup
Machine translation

LLM SLM
Finetuned baselines
Zero-shot baselines

20 30 40 50 60 70 80

Runtime per single token [ms]

22

24

26

28

30

R
O

U
G

E
 s

co
re

 (a
vg

.) T5 Large GPT2 GPT2 XL

GPT2
T5 Large

GPT2 XL

2.97x speedup
Summarization

LLM SLM
Finetuned baselines
Zero-shot baselines

0 10 20 30 40 50 60

Runtime per single token [ms]

10

15

20

25

30

B
LE

U
 s

co
re

 (a
vg

.)

T5 Large GPT2
T5 Large GPT2 d = 4

T5 Large GPT2 d = 2

T5 Large GPT2 d = 1

GPT2

GPT2 d = 4

GPT2 d = 2

GPT2 d = 1

T5 Large2.97x speedup
Machine translation

LLM SLM
Finetuned baselines
Zero-shot baselines

Figure 3. Performance-runtime trade-off curves for various models for machine translation (left) and summarization (middle) tasks.
Results of LLM-to-SLM when truncating SLMs to 1, 2, and 4 layers (right).

performs about 10 BLEU points better than the SLM.

4.4. Computational Efficiency
We show runtimes for each task in Tables 1 and 2 and
performance-runtime trade-off curves in Figure 3. In ma-
chine translation, T5 Large→T5 Small is over 4× faster
than T5 Large with minimal performance loss. Summariza-
tion shows a similar gain with around a 3× speedup. Fig-
ure 3 illustrates that LLM-to-SLM variants are only slightly
slower than the SLM but perform significantly better. Fur-
ther insights into generation length, runtime, and FLOPs are
in Appendix E, showing that LLM-to-SLM approaches the
computational efficiency of the SLM.

4.5. Speculative decoding
While our empirical evaluations on translation and summa-
rization indicate that LLM-to-SLM can achieve comparable
performance to the LLM, such behaviour is generally not
guaranteed. Speculative decoding (SD), on the other hand,
guarantees to match the distribution of the LLM, albeit at the
cost of invoking the LLM multiple times (Chen et al., 2023a).
In Table 3, we report results comparing our method to SD
in translation (English to French, greedy decoding). Our
method (T5 Large → T5 Small) shows similar performance
to SD and the LLM, but a much larger speedup (4.15×
compared to 1.53× in SD) since our method requires only
a single call to the LLM.

Method Score Time

T5 Large (zero-shot) 38.9 61.5
T5 Small 35.1 14.2

SD (T5 Large, T5 Small) 38.9 40.3
T5 Large → T5 Small 38.5 14.8

Table 3. Comparison of BLEU scores and runtime in ms/token
between LLM-to-SLM and speculative decoding for English to
French translation. Notation: SD (target model, draft model).

Model WMT CNN/DM

Prompt tuning (Lester et al., 2021) 25.06 19.52
Prefix tuning (Li & Liang, 2021) 24.93 21.64
LoRA (Hu et al., 2021) 26.36 22.35

LLM-to-SLM (ours) 30.27 24.13

Table 4. PEFT results using fixed T5 Small for translation and
GPT2 for summarization. Average BLEU scores are reported for
WMT and average ROUGE scores for CNN/DM. In our method,
T5 Small and GPT2 are conditioned on T5 Large representations.

4.6. Parameter-efficient fine-tuning
Our method shares similarities with PEFT methods. Soft
prompt tuning prepends learnable tokens to the prompt em-
bedding, while we add LLM representations element-wise
to the SLM’s prompt embedding, a form of conditional
prompting. In Table 4, we compare our method with PEFT
by freezing the SLM and training only the projector. PEFT
hyperparameters are adjusted to match the total parameter
count of our projector (see Appendix C.1 for details). The
results show that our method outperforms all PEFT meth-
ods in both summarization and translation, indicating that
conditioning on the LLM improves performance over non-
conditional approaches. Additional PEFT results for a more
limited training regime are in Appendix C.3.

5. Conclusion
In this work, we introduced LLM-to-SLM, a novel hybrid
framework designed to accelerate autoregressive decoding
by strategically combining an LLM with an SLM. This ap-
proach takes advantage of parallel prompt encoding by the
LLM and efficient response generation by the SLM. Specif-
ically, the LLM first encodes a prompt into a high-quality
representation, which is then used to condition the SLM
for efficient yet accurate decoding. Our evaluations on vari-
ous benchmarks have shown that LLM-to-SLM can achieve
significant speed improvements, providing 3 − 4× faster
generation with only minimal losses in predictive perfor-
mance — about 1− 2% for translation and summarization
compared to using an LLM alone.

4

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

References
Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P.,

et al. Findings of the 2014 workshop on statistical ma-
chine translation. In Proceedings of the ninth workshop
on statistical machine translation, pp. 12–58, 2014.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Had-
dow, B., Huck, M., Yepes, A. J., Koehn, P., Logacheva,
V., Monz, C., et al. Findings of the 2016 conference
on machine translation (wmt16). In First conference on
machine translation, pp. 131–198. Association for Com-
putational Linguistics, 2016.

Brown, T., Mann, B., Ryder, N., Subbiah, M., and
Kaplan, J. D. e. a. Language models are few-shot
learners. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa:
Simple framework for accelerating llm generation with
multiple decoding heads, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use
large language models while reducing cost and improving
performance. arXiv preprint arXiv:2305.05176, 2023b.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
LLM.int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. 2023.

Fu, Y., Bailis, P., Stoica, I., and Zhang, H. Break-
ing the sequential dependency of llm infer-
ence using lookahead decoding, November
2023. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556,
2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jiang, Y., He, Q., Zhuang, X., Wu, Z., Wang, K., Zhao,
W., and Yang, G. Recyclegpt: An autoregressive lan-
guage model with recyclable module. arXiv preprint
arXiv:2308.03421, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kim, S., Mangalam, K., Malik, J., Mahoney, M. W., Gho-
lami, A., and Keutzer, K. Big little transformer decoder.
arXiv preprint arXiv:2302.07863, 2023.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

5

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Ning, X., Lin, Z., Zhou, Z., Yang, H., and Wang, Y.
Skeleton-of-thought: Large language models can do par-
allel decoding. arXiv preprint arXiv:2307.15337, 2023.

OpenAI. Gpt-4 technical report, 2023.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Post, M. A call for clarity in reporting BLEU scores.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186–191, Belgium,
Brussels, October 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/
anthology/W18-6319.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

S, A. P., Nair, P. A., Samaga, Y., Boyd, T., Kumar, S., Jain,
P., and Netrapalli, P. Tandem transformers for inference
efficient llms, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Zarrieß, S., Voigt, H., and Schüz, S. Decoding methods in
neural language generation: a survey. Information, 12(9):
355, 2021.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

6

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Appendix

A. Ethical considerations
Our proposed approach poses risks similar to existing works on language models (Brown et al., 2020; Touvron et al.,
2023b). However, as our approach proposes a way of enhancing models in the low-computation regime, it might be used for
improving edge device capabilities. Since edge devices range from mobile phones to surveillance tools, our approach could
be both beneficial if used properly and harmful for the broader society if misused.

B. Limitations
One limitation of our method is that the LLM is only used once to encode the prompt. However, it is foreseeable that
the LLM could be used more frequently in more challenging tasks to guide the planning of the response, ideally through
dynamic invocations where required. Another limitation of this work is our focus on encoder-decoder LLMs. We discuss
this design decision in Section 3.2 and provide preliminary results for decoder-only models as LLMs within our framework
in Appendix D, finding that the performance strongly depends on the layer from which the LLM features are extracted.
Further investigation is required to see how decoder-only features can be used in the LLM-to-SLM setting. Finally, we
only used LLMs, which are relatively small compared to the largest decoder-only LLMs such as GPT4, Llama 2 or OPT
(OpenAI, 2023; Touvron et al., 2023b; Zhang et al., 2022). This is mainly due to the fact that most of the largest models are
decoder-only and, as mentioned previously, further study into incorporating decoder-only models as LLMs is needed in our
LLM-to-SLM framework. Investigating the impact of using such large models is an important future research direction.

C. Further results and ablations
C.1. Experimental setup

Setup. The networks used in our experiments are listed in Table 5. We employ various pretrained models and architectures
and denote combinations as LLM→SLM. We make use of a T5 encoder as LLM, and employ T5 encoder-decoder and
GPT2 decoder-only models as SLMs: In this setting, the LLM has 8− 16× more parameters than the SLMs. Since the LLM
remains frozen in our method, we rely on a well-performing LLM pre-trained for the respective tasks. For generation, we
use beam search (beam width of 4, length penalty of 0.6). We report task-specific performance metrics: SacreBLEU (Post,
2018) for translation and ROUGE (Lin, 2004) for summarization. Furthermore, we report runtimes per single generated
token (in milliseconds). These are calculated from generating a total of 100 tokens with a prompt length of also 100 tokens
on an NVIDIA V100 GPU.

Model Params

E
nc

-D
ec T5 Small† (Raffel et al., 2020) 44M (19M/25M)

T5 1.1 Small† (Raffel et al., 2020) 44M (19M/25M)
T5 Large∗ (Chung et al., 2022) 737M (302M, 402M)

D
ec

-o
nl

y GPT2† (Radford et al., 2019) 86M
GPT2 [1,2,4]-Layers† [8M, 15M, 29M]
GPT2 XL (Radford et al., 2019) 1.5B

Table 5. Model variants used in the experiments. Sizes are rounded, excluding embedding and head parameters. Encoder/decoder sizes
are shown in parentheses. Symbols ∗ and † denote models that we use in our method as LLMs and SLMs, respectively.

Training. All models are trained with an effective batch size of 128, cross-entropy loss, AdamW optimizer (Loshchilov &
Hutter, 2017) with weight decay of 0.1, learning rate of 0.001 with linear warmup (Goyal et al., 2017) for 10% of the total
number of iterations, followed by cosine learning rate decay to 0 (Loshchilov & Hutter, 2016) and a linear learning rate
warmup (Goyal et al., 2017) for 10% of the total number of iterations is used. We rely on Huggingface’s transformers (Wolf
et al., 2019) for training and generation. In all of our preliminary experiments, we have found all results to be stable using a
limited number of training steps. As conducting multiple runs for a large number of iterations would be very costly, we
report single run numbers throughout the paper. Details on computational resources used for training and evaluation are
specified in Table 6.

7

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

Task Model type GPU Num GPUs Batch size per GPU Num iterations

Translation SLM V100 1 16 50kLLM→SLM

Summarization
SLM

V100 1 16 25kLLM→SLM
LLM 8 8 5k

Table 6. Computational resources and training details. Note that only a single LLM model, GPT2 XL for summarization, was trained. All
evaluations were performed on a single GPU.

PEFT hyperparameters. Table 7 shows the hyperparameters for the prompt tuning, prefix tuning, and LoRA methods
considered in the parameter-efficient fine-tuning experiments in our paper.

PEFT method Hyperparameter GPT2 T5 Small

Prompt tuning # prompt tokens 200 1024

Prefix tuning # prefix tokens 256 1024
project. hidden size 64 64

LoRA
Rank 40 24
α 64 32
Dropout 0.1 0.1

Table 7. Hyperparameters for prompt tuning, prefix tuning and LoRA.

C.2. Ablation study

Embedding addition vs. replacement. Instead of adding projected LLM representations to SLM embeddings, we can
alternatively replace the SLM embeddings of the prompt with the projected LLM encoding. Table 8 shows results comparing
these feature fusion strategies for machine translation, indicating that addition and replacing perform on par with each other.

LLM vs. SLM tokenizer. When replacing the SLM embedding of the prompt with the projected LLM encoding, the
tokenizer of the SLM can be applied even if its vocabulary is different from that of the LLM tokenizer. In this case, the
additional embedding down-projection and head layers can also be omitted. In T5 Large→GPT2 for machine translation,
we found that using the LLM tokenizer performs better by 0.45 BLEU points (average across all languages), which could be
due to the fact that the vocabulary of the T5 tokenizer also covers non-English languages.

Model GT
+

GT
×

Gen.
+

Gen.
×

T5 Large→T5 Small 30.83 30.86 31.54 31.47
T5 Large→GPT2 29.68 29.71 31.05 30.83

Table 8. Ablation of training signal and fusion operator, reporting average BLEU scores for translation across languages. GT: Ground
truth labels, Gen.: Labels generated by T5 Large, ×: Replacement, +: Addition

Ground truth vs. LLM-generated labels. In translation, we found that using labels generated by the LLM for training
performs up to 1 BLEU point better than using ground truth labels (Table 8). However, we point out that this is not
generally the case. For summarization, the average ROUGE score is 0.44 points better when training with ground truth
labels compared to LLM-generated labels.

C.3. Limited-data PEFT

In our ablation study on PEFT techniques (see Section 4.6), we utilize a relatively large number of training examples
(> 20k). On the other hand, often smaller datasets are used for (parameter-efficient) fine-tuning. In Table 9, we show

8

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

extended results covering a limited training regime, exemplary for translation (English to French). Specifically, we limit the
training set to 20k examples and fine-tune for 20 epochs, corresponding to approximately 3k iterations. We compare this
setting to full training as used in the main paper, i.e., 50k iterations on 6.4M examples.

Method Full training Limited training

Prompt tuning 36.02 30.59
Prefix tuning 35.43 30.07
LoRA 36.70 32.38

LLM→ SLM (ours) 39.35 36.89

Table 9. Comparison of full and limited training for translation (English to French)

Our LLM-to-SLM outperforms all other PEFT methods also in the limited training regime. However, to achieve a
performance close to that of the LLM, it is beneficial to use a training setting similar to that of the LLM.

D. Decoder-only models as LLM
Compared to encoder-decoder based LLMs, where the last layer representation of the encoder serves as a straightforward
prompt encoding point, in a decoder-only model there is no specific layer that can be explicitly identified as the encoded
representation of the prompt. We thus experiment with extracting representations from different layers of the LLM before
passing it to the projector and subsequently to the SLM. In Table 10, we show results for the summarization task, using
a fine-tuned GPT2 XL as the LLM and a smaller GPT2 as the SLM (see Table 5 for parameter counts). Surprisingly, we
observe that the performance deteriorates with the depth of the LLM. Although LLM-to-SLM performs slightly better than
the SLM alone by using very early layer representations of GPT2 XL, our model based on an encoder-decoder LLM, T5
Large→GPT2, performs considerably better (avg. ROUGE score of 29.22, see also Table 2).

Model R-1 R-2 R-L Avg.

GPT2 XL 40.47 19.09 28.90 29.49
GPT2 38.58 17.56 27.36 27.83

GPT2 XL→GPT2 (layer 0) 39.16 17.71 27.43 28.10
GPT2 XL→GPT2 (layer 1) 39.05 17.63 27.40 28.03
GPT2 XL→GPT2 (layer 4) 36.66 16.46 25.64 26.25
GPT2 XL→GPT2 (layer 8) 33.27 14.03 23.24 23.51
GPT2 XL→GPT2 (all layers) 37.69 16.72 26.41 26.94

Table 10. ROUGE scores (abbreviated with R-) on CNN/Daily Mail using GPT2 XL as LLM. Layer 0 refers to the initial embedding layer.

E. Computational efficiency for varying generation lengths
In the main text, we report runtimes for a fixed generation length of 100 tokens. In Figure 4, we report additional runtimes
for varying generation lengths and a fixed prompt length of 100. It shows that our method is only slightly slower than the
SLM and that our framework can also be useful for short generation lengths. In Figure 5, we compare FLOPs between LLM,
SLM and our LLM-to-SLM for different generation lengths. Similar to the runtime metric, the FLOPs count of our method
shows a similar slope as the FLOPs count of the SLM.

9

Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding

0 200 400 600 800 1000
Number of tokens generated

0

10

20

30

40

50

60

R
un

tim
e

[s
]

Runtime efficiency
T5 Large T5 Small
T5 Large
T5 Small

Figure 4. Runtime for LLM, SLM and LLM → SLM with varying generation lengths.

0 200 400 600 800 1000
Number of tokens generated

0

200

400

600

800

G
FL

O
P

s

FLOPs efficiency
T5 Large T5 Small
T5 Large
T5 Small

Figure 5. FLOPs for LLM, SLM and LLM → SLM with varying generation lengths.

10

