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Abstract

Reversible architectures have been shown to be capable of performing on par with1

their non-reversible architectures, being applied in deep learning for memory sav-2

ings and generative modeling. In this work, we show how reversible architectures3

can solve challenges in parallelizing deep model training. We introduce PETRA,4

a novel alternative to backpropagation for parallelizing gradient computations.5

PETRA facilitates effective model parallelism by enabling stages (i.e., a set of6

layers) to compute independently on different devices, while only needing to com-7

municate activations and gradients between each other. By decoupling the forward8

and backward passes and keeping a single updated version of the parameters, the9

need for weight stashing is also removed. We develop a custom autograd-like10

training framework for PETRA, and we demonstrate its effectiveness on CIFAR-11

10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to12

backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.13

1 Introduction14

First-order methods using stochastic gradients computed via backpropagation on mini-batches are the15

de-facto standard for computing parameter updates in Deep Neural Networks [25]. As datasets and16

models continue to grow [1] there is an urgent need for memory-efficient and scalable parallelization17

of deep learning training across multiple workers. Data parallelism via mini-batches [25] has been18

widely adopted in deep learning frameworks [26]. This approach computes gradients across model19

replicas distributed among workers, yet it requires frequent synchronization to aggregate gradients,20

leading to high communication costs, as well as substantial memory redundancy. Furthermore, with21

the increasing size and scale of models exceeding that of the growth of on-device memory, the22

forward and backward passes now often exceed a single device’s memory capacity [35]. To further23

address these issues, methods have attempted to mitigate this memory overhead and to parallelize24

the sequential backpropagation steps themselves across devices, while computing exact gradients.25

Techniques like optimizer sharding [34], tensor parallelism [36], activation checkpointing [6], or26

pipelining [15], have been deployed individually or combined, leading for instance to the development27

of 3D parallelism [37], a popular methodology which improves the efficiency of the backpropagation28

implementation. On the other hand, the fundamental inefficiency underlying the parallelization of29

backpropagation has not been addressed by these methods.30

However, the use of exact gradient restricts algorithmic choices and parallel implementations, as31

highlighted by [20]. For instance, backpropagation is backward locked: the inputs of each layer32

must be propagated through the network and preserved until an error signal is retropropagated to the33

layer of origin. This requirement enforces a synchronous dependency among subsequent layers and34

requires them to systematically store intermediary activations, potentially impeding overall resource35

efficiency as workers must wait for each other to continue their computations and release memory36

used for activations. To unlock the potential of backpropagation, inexact backpropagation procedures37
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Figure 1: Comparison of PETRA with standard backpropagation. This approach splits the
stages of a model and decouples their forward and backward passes, resulting in a sixfold increase in
parallelization speed in this example.

have been proposed. These procedures are generally conceptualized within the context of model38

parallelism, where a neural network is split into stages that can process their activations in parallel,39

potentially on multiple devices. For example, some methods use outdated parameters or activations,40

such as double-buffered pipelining [14] or delayed gradient approaches [44]. However, these methods41

introduce significant memory overhead due to the use of ad hoc buffers for activations, parameters,42

or both. Following an opposite direction, local learning methods [33, 4], which estimate inexact43

gradients via a local auxiliary neural network, pave the way to parallel gradient computations but44

often lead to unrecoverable performance drops [11]. This underscores the need for a robust alternative45

to backpropagation, with limited memory overhead.46

In this work, we introduce PETRA (Parallel End-to-End Training with Reversible Architectures),47

a novel method designed to parallelize gradient computations within reversible architectures with48

minimal computational overhead. Reversible architectures are an ideal candidate for this task,49

as they can significantly reduce memory overhead during standard backpropagation with limited50

communication costs. Furthermore, reversibility is a minor requirement, as many studies have51

demonstrated that standard architectures can be adapted into reversible ones without any performance52

drops [12, 19, 29, 22]. By allowing parameters to evolve in parallel and by computing an approximate53

inversion during backward, we propose an effective alternative to backpropagation which allows54

high model parallelism with a constant communication overhead and no additional buffers. In fact,55

for a constant increase in communication overhead, PETRA achieves a linear speedup compared to56

standard backpropagation with respect to the number J of stages the network is split into. We illustrate57

our approach in Fig. 1, by contrasting the evolution of PETRA with a standard backpropagation pass.58

Contributions. Our contributions are as follows: (1) We introduce PETRA, a streamlined approach59

for parallelizing the training of reversible architectures. This method leverages a delayed, approximate60

inversion of activations during the backward pass, allowing for enhanced computational efficiency. (2)61

Our technique significantly reduces memory overhead by minimizing the necessity to store extensive62

computational graphs. (3) It enables the parallelization of forward and backward pass computations63

across multiple devices, effectively distributing the workload and reducing training time. (4) We64

validate the efficacy of PETRA through rigorous testing on benchmark datasets such as CIFAR-10,65

ImageNet-32, and ImageNet, where it demonstrates robust performance with minimal impact on66

accuracy. (5) Additionally, we provide a flexible reimplementation of the autograd system in PyTorch,67

specifically tailored for our experimental setup, which we make available to the research community.68

2 Related work69

Reversible architectures. Reversible DNNs are composed of layers that are invertible, meaning70

that the input of a layer can be computed from its output. This approach allows to avoid the need to71

store intermediary activations during the forward pass by reconstructing them progressively during72

the backward pass [12], at the cost of an extra computation per layer. Invertible networks further73

improve this method by removing dimensionality reduction steps such as downsamplings, making74
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the networks fully invertible [18]. Reversibility is not restricted to a type of architecture or tasks75

and has been extensively used for generative models [9], for ResNets [12], and Transformers [29].76

However, as far as we know, reversible architectures have never been used to enhance parallelization77

capabilities.78

Alternatives to backpropagation. Multiple alternatives to backpropagation have been proposed79

previously to improve over its computational efficiency. For instance, DNI [20] is the first to mention80

the backpropagation inefficiency and its inherent synchronization locks. However, they address81

those locks with a method non-competitive with simple baselines. Local (or greedy) learning [33, 3]82

propose to use layerwise losses to decouple the training of layers, allowing them to train in parallel83

[5]. Local learning in videos [28] notably uses the similarity between successive temporal features84

to remove buffer memory. However, the difference in training dynamics between local training and85

backpropagation still limits such approaches [11, 38].86

Pipeline parallelism. Pipelining encompasses a range of model parallel techniques that divide the87

components of a network into stages that compute in parallel, while avoiding idle workers. Initially88

popularized by [15], a batch of data is divided into micro-batches that are processed independently at89

each stage. Although more efficient pipelining schedules have been proposed [10], notably to mitigate90

the peak memory overhead, keeping an exact batch gradient computation requires leaving a bubble of91

idle workers. By alternating one forward and one backward pass for each worker, PipeDream [31]92

can allow to get rid of idleness bubbles, but at the expense of introducing staleness in the gradients93

used. [32] mitigates this staleness to only one optimization step by accumulating gradients, thus also94

reducing the parameter memory overhead to only two versions of the parameters. Nevertheless, these95

approaches still suffer from a quadratic activation memory overhead with regard to the number of96

stages, as micro-batch activations pile up in buffers, especially for early layers. Some implementations97

propose to limit this overhead by combining activation checkpointing [6] with pipelining [21, 27],98

although the memory overhead still scales with the number of stages.99

Delayed gradient. By allowing stale gradients in the update process, these previous methods100

provide the context for our approach. Delayed gradient optimization methods are model parallel101

techniques that aim to decouple and process layers in parallel during backpropagation. In these102

approaches, delays occur stage-wise: the backward pass may be computed with outdated parameters103

or activations compared to the forward pass. For instance, [16] proposes a feature replay approach,104

where a forward pass first stores intermediary activations, which are then "replayed" to compute the105

backward pass in parallel. This method still requires heavy synchronization between layers, yielding106

a lock on computations. In [42] and [43], stale gradients are computed from older parameter versions107

differing from the parameters used during the update. This staleness can be mitigated: [43] ’shrinks’108

the gradient by the delay value, but more advanced techniques also exist [41, 23]. Still, these methods109

are limited like previous pipelining methods by their memory overhead as the computational graph110

is fully stored. A first step to reduce this, as proposed in Diversely Stale Parameters (DSP) [40],111

PipeMare [41] and [23], is to keep a single set of parameters and approximate the gradients computed112

during the backward pass with the updated parameters, which differ from the ones used in the forward113

pass. This requires, like in activation checkpointing, an additional reconstruction of the computational114

graph. Furthermore, the quadratic activation memory overhead still limits the scalability of these115

methods for a large number of stages.116

3 Method117

3.1 Standard backpropagation118

We consider a DNN composed of J stages (e.g., a layer or a set of layers). An input x0 is propagated119

through the network, recursively defined by120

xj ≜ Fj(xj−1, θj) , (1)

where Fj is the j-th stage parameterized by θj . The backpropagation algorithm is the ubiquitous121

algorithm to compute parameter gradients. First, an input is propagated through the network with122

a forward pass, while storing its intermediate activations. A scalar loss L is then deduced from the123

corresponding output xJ . Parameter gradients are then computed during the backward pass by taking124
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Figure 2: Differences between the residual block of a ResNet and its reversible counterpart. (a)
Forward of a residual block. (b) Forward and (c) Reverse forward of a reversible residual block. For
reversible blocks, similarly to [12], the input xj is doubled in size and split equally into {x1

j , x
2
j}

along the channel dimension. The function Fj includes a skip-connection while F̃j does not.

advantage of the chain rule: starting from the last stage with δJ = ∇xJ
L, the gradients with regard125

to the activations are given by126

δj ≜ ∇xj−1
L = ∂xFj(xj−1, θj)

Tδj+1 , (2)
and the gradients with regard to the parameters are defined as127

∆j ≜ ∇θjL = ∂θFj(xj−1, θj)
Tδj+1 . (3)

Note that these computations follow a synchronous and sequential order. The parameters θj can then128

be updated given their gradient estimate ∆j , using any optimizer.129

3.2 Reversible architectures130

We focus on the reversible neural networks presented in [12], although our method is not dependent131

on this architecture. In practice, only a few stages which do not preserve feature dimensionality132

are not reversible and correspond to the downsampling blocks in the ResNet. Fig. 2 highlights133

how reversible residual blocks Fj differ from their standard counterpart. The input is split into two134

equal-size inputs, along the channel dimension, that are propagated forward according to Fig. 2b135

using an ad-hoc operator F̃j . It can be reconstructed by reverse propagating the output according to136

Fig. 2c, by subtracting the output of F̃j rather than adding it like in the previous forward.137

Reversible stages. In order to compute the exact gradients during the backpropagation phase, each138

reversible stage needs to retrieve its output from the stage above. We note F−1
j the reverse stage139

function, which reconstructs the input from the output. We recursively apply the reconstruction to the140

final activation xJ , such that141

[
xj−1

δj

]
=

[
F−1
j (xj , θj)

∂xFj(F
−1
j (xj , θj), θj)

Tδj+1

]
. (4)

Note that reconstructing the input in our procedure is computationally equivalent to recomputing the142

activations in activation checkpointing, meaning it is equivalent to a single forward pass. Thus, this143

augmented backward procedure is equivalent to one regular forward call and backward call. However,144

one should observe that since the input xj−1 must be sent to the reversible stages, this doubles the145

cost of backward communications.146

Non-reversible stages. In practice, a reversible architecture includes layers that reduce dimension-147

ality for computational efficiency, which thus correspond to non-invertible functions. For those very148

few stages, we employ a buffer mechanism to store activations and, like activation checkpointing,149

we recompute the computational graph with a forward pass during the backward pass. Note that150

this would not be the case for invertible (i.e., bijective) architectures [18], which use an invertible151

downsampling.152

4



Table 1: Comparisons with other methods in an ideal setting for one stage. We compare several
methods to compute a gradient estimate in a model parallel setting. Here, J is the total number of
stages while j is the stage index. For the sake of simplicity, we assume that a backward pass requires
approximately 2 times more FLOPs than a forward pass. Full Graph indicates that it is required to
store the full computational graph of a local forward pass. With a limited increase in communication
volume and FLOPs, PETRA requires the least storage of all methods while being linearly faster than
backpropagation. We assume that the forward and backward passes can be executed in parallel for
PETRA or delayed gradients, making the backward pass responsible for most of the computation
time in parallelizable approaches.

Storage Comm. FLOPs Mean time
Methods Activations Params. Volume per batch

Backpropagation Full Graph (FG) 1 1 3J 3J

Reversible backprop. [12] 0 1 4 4J 4J

Delayed gradients [42] 2(J − j)× FG 2(J−j)
k 1 3J 2

+ Checkpointing [40] 2(J − j) 1 1 4J 3

PETRA (ours) 0 1 4 4J 3

3.3 A parallelizable approach: PETRA153

As with any model parallel training technique, PETRA requires to partition the network architecture154

into stages Fj that are distributed across distinct devices. Each device j needs only to communicate155

with its neighboring devices j − 1 and j + 1. The pseudo-code in Alg. 1 details the operations156

performed by each device, and the whole algorithm execution can be summarized as follows. The first157

device sequentially accesses mini-batches, initiating the data propagation process. When receiving its158

input xt
j−1 from the previous stage, each stage processes it in forward mode and passes it to the next159

stage, until the final stage is reached. The final stage evaluates the loss and computes the gradients160

with regard to its input and parameters, thus initiating the backward process, which is performed in161

parallel of the forward process. In it, each stage processes the input and its associated gradient from162

the next stage. This means first reconstructing the computational graph, either while reconstructing163

the input x̃t
j−1 for reversible stages or with a forward pass as in activation checkpointing otherwise.164

Then, the parameter gradient approximation ∆t+1
j and the input gradient are computed before passing165

the latter to the previous stage. For intermediary reversible stages, this translates into the following166

equations, where t corresponds to the current time step of the training,167 

xt+1
j = Fj(x

t
j−1, θ

t
j)

x̃t+1
j−1 = F−1

j (x̃t
j , θ

t
j)

δt+1
j = ∂xFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

∆t+1
j = ∂θFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

θt+1
j = Optimizertj(θ

t
j ,∆

t+1
j ) .

(5)

Note that this complete set of equations effectively decouples communications, computations, and168

parameter updates between independent devices. Indeed, reversible stages are able to operate without169

maintaining any state between the forward and corresponding backward phase by simply avoiding170

weight stashing, similarly to [40], and by reversing the output into the input during the backward171

phase, removing the need for an input buffer. As parameters are updated between the forward and172

backward phases, the reversible stage produces an approximate input reconstruction, thus evaluating173

gradients with an approximate set of inputs and parameters during the backward phase. We illustrate174

in Fig. 3 the mechanism of PETRA compared to standard delayed gradient approaches that rely on175

additional buffers [44, 42].176

Complexity analysis. We now discuss the benefits of our method, which are summarized in Tab. 1.177

In this discussion, we assume a homogeneous setting in which almost identical stages are distributed178

across J devices uniformly. First, we consider the backpropagation setting, assuming a model179
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Figure 3: Comparison of our PETRA method to a standard Delayed Gradient method [42]. By
avoiding weight stashing and reversing the output into the input during the backward phase, we are
able to fully decouple the forward and backward phases in all reversible stages, with no memory
overhead, compared to standard delayed gradient approaches.

parallelism strategy: a standard backpropagation pass requires storing locally both the parameters and180

the computational graph and due to the update lock of backpropagation [20], requires synchronization181

between subsequent layers which impede the speed of computations. Standard Delayed Gradients182

strategies as implemented in [44, 42] allow to unlock this barrier, but they require buffers for storing183

both the computational graph and parameters which can become impractical when using large models.184

In [40], an activation checkpointing strategy removes the need for storing parameters, yet it requires185

a small computational overhead of 33% (assuming a backward pass is approximatively two times186

slower than a forward pass, see Fig. 6 of [17] and [30]). To avoid storing activations, we rely on187

reversible architectures [12] which increases the amount of forward communications by a factor of 2188

and backward communication by a factor of 4 – activations sizes double and one has to pass both189

activations and gradients at the same time during backward. None of the aforementioned methods190

scale with the depth J : PETRA combines all the advantages of the previous methods, allowing an191

efficient parallelization, while leading to a limited overhead in computations and communications.192

4 Numerical experiments193

4.1 Classification accuracy194

We now describe our experimental setup on CIFAR-10 [24], ImageNet-32 [7], and ImageNet [8].195

Experimental setup. All our experiments use a standard SGD optimizer with a Nesterov momen-196

tum factor of 0.9. We train all models for 300 epochs on CIFAR-10 and 90 epochs on ImageNet32197

and ImageNet. We apply standard data augmentation, including horizontal flip, random cropping,198

and standard normalization but we do not follow the more involved training settings of [39], which199

potentially leads to higher accuracy. We perform a warm-up of 5 epochs where the learning rate200

linearly increases from 0 to 0.1, following [13]. Then, the learning rate is decayed by a factor of 0.1201

at epochs 30, 60, and 80 for ImageNet32 and ImageNet – it is decayed at epochs 150 and 225 for202

CIFAR-10. We use a weight decay of 5e-4 for CIFAR-10 and 1e-4 for ImageNet32 and ImageNet. As203

suggested in [13], we do not apply weight decay on the batch norm learnable parameters and biases204

of affine and convolutional layers. For our standard backpropagation experiments, we follow the205

standard practice and use a batch size of 128 on ImageNet32 and CIFAR-10, and 256 on ImageNet32.206

However, we made a few adaptations to train our models with PETRA. As suggested by [42, 43], we207

employ an accumulation factor k and a batch size of 64, which allows to reduce the effective staleness208

during training: in this case, k batches of data must be successively processed before updating the209

parameters of a stage (see Alg. 1). Such gradient accumulation however also increases the effective210

batch size, and we apply the training recipe used in [13] to adjust the learning rate; note that we use211

the average of the accumulated gradients instead of the sum. The base learning rate is thus given by212

the formula lr = 0.1 64k
256 , with k the accumulation factor.213
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Algorithm 1 Worker perspective for training in parallel with PETRA, on a stage j, assuming
initialized parameters θj and time step t, as well as an accumulation factor k > 1.

1: In parallel on the j-th stage, 1 ≤ j < J , perform:
2: Forward Communications and Computations:
3: If j = 1 then
4: x0 ← Readdataset
5: Else
6: xj−1 ←Wait and Receive from j−1

7: If stage j is not reversible :
8: Bufferj ← xj

9: xj ← Fj(xj−1, θj)
10: Send to j+1(xj)
11: Backward Communications and Computations:
12: (x̃j , δj+1)←Wait and Receive from j+1

13: If stage j is reversible:
14: x̃j−1 ← F−1

j (x̃j , θj) and keep computational graph in memory
15: Else :
16: x̃j−1 ← Bufferj
17: xj ← Fj(x̃j−1, θj) to recompute the computational graph
18: δj ← ∂xFj(x̃j−1, θj)

T δj+1

19: ∆j ← ∆j +
1
k∂θFj(x̃j−1, θj)

T δj+1

20: If t mod k = 0 then:
21: Update parameters θj with ∆j

22: ∆j ← 0
23: t← t+ 1
24: Send to j−1(xj , δj)
25:
26: In parallel on the final stage J , perform:
27: xJ−1 ←Wait and Receive from J−1

28: L ← FJ(xJ−1, θJ)
29: δJ ← ∇xJ

L
30: ∆J ← ∆J + 1

k∇θJL
31: If t mod k = 0 then:
32: Update parameters θJ with ∆J

33: ∆J ← 0
34: t← t+ 1
35: Send to J−1(xJ−1, δJ)

Model adaptations. For designing our RevNet architectures, we adopt a methodology similar214

to [12]: the number of channels in each stage is multiplied by 2 to account for the second data215

stream according to Fig. 2. However, as the stage function F̃j operates only on one of the two216

streams, the number of parameters stays almost the same between a residual block and its revertible217

counterpart. Consequently, the DNNs are split to preserve each residual block, resulting in 10 stages218

for RevNet18, and 18 stages for RevNet34 and RevNet50; thus varying the level of staleness between219

configurations. On CIFAR-10, the input layer uses 3x3 convolutions instead of 7x7 convolutions and220

does not perform max-pooling. The running statistics of batch normalization layers are updated when221

recomputing the activations during the backward pass and are then used during model evaluation –222

the running statistics are not updated during the forward pass.223

Performance comparison. Tab. 2 reports our numerical accuracy on several vision datasets,224

comparing a backpropagation performance from an official PyTorch implementation of ResNets225

(the numbers can be found as v1 of https://pytorch.org/hub/pytorch_vision_resnet/),226

for our own implementation of ResNets and RevNets in our custom computational framework, and227

our proposed method, PETRA. For PETRA, we report the best classification accuracy after the last228

learning rate drop, using the best value (picked on the training set) of accumulation steps within229

{1, 2, 4, 8, 16, 32}. Our CIFAR-10 accuracies are averaged over 3 runs, with a variance smaller than230

7

https://pytorch.org/hub/pytorch_vision_resnet/


Table 2: Classification accuracies using our PETRA method with RevNets, compared to standard
backpropagation on ResNets and RevNets on CIFAR-10, ImageNet32, and ImageNet. Our method
delivers competitive results with backpropagation, even on ImageNet.

Method Model Param. count CIFAR-10 ImNet32 ImNet
Backprop ResNet18 (PyTorch) 11.7M - - 69.8
Backprop ResNet18 (Ours) 11.7M 95.0 54.0 70.8
Backprop RevNet18 (Ours) 12.2M 94.9 54.6 70.8
PETRA RevNet18 (Ours) 12.2M 94.9 54.6 71.0

Backprop ResNet34 (PyTorch) 21.8M - - 73.3
Backprop ResNet34 (Ours) 21.8M 95.5 56.5 74.0
Backprop RevNet34 (Ours) 22.3M 95.3 56.4 73.2
PETRA RevNet34 (Ours) 22.3M 94.8 56.1 73.5

Backprop ResNet50 (PyTorch) 25.6M - - 76.1
Backprop ResNet50 (Ours) 25.6M 94.8 58.8 75.6
Backprop RevNet50 (Ours) 30.4M 95.2 59.7 75.4
PETRA RevNet50 (Ours) 30.4M 94.5 59.6 74.8

0.1. We observe that while our reversible models have about the same parameter count, they all231

perform in the same range of accuracy as their non-reversible counterparts. Only the RevNet-50232

leads to a small drop in accuracy on ImageNet of about 0.6%: using different downsampling layers233

removes this gap at the expense of a substantial increase in the parameter count (30.4M to 50M).234

However, we decided not to include this result for the sake of comparison with respect to the original235

ResNets.236

Impact of the accumulation k. We test the impact of the accumulation on a RevNet-18 trained237

via PETRA for various values of accumulations with k spanning {1, 2, 4, 8, 16, 32} on the ImageNet238

dataset. Fig. 4 indicates that our method can benefit from large accumulation factors, with the239

well-known trade-off of large batches mentioned in [13]. Increasing the accumulation factor reduces240

the effective staleness during training, and closes the performance gap with standard backpropagation241

with perfect matching for k = 32. This confirms that this large-batch training recipe derived for242

synchronous data parallelism is also particularly suited for our model parallel approach.243

4.2 Technical details244

A note on the implementation. We shortly describe our implementation details. We base our245

method on PyTorch [2], although we require significant modifications to the Autograd framework246

in order to manage delayed first-order quantities consistently with PETRA. We rely heavily on247

the Vector Jacobian Product of PyTorch to compute gradients during the backward pass of each248

stage, but other backends could be used. The backward pass for reversible stages only necessitates a249

reconstruction step and a backward step – a naive implementation would use a reconstruction step,250

followed by a forward and a backward step. This is because we only need the output gradient as well251

as the computational graph of F̃j to compute the input and parameter gradients at line 12 and 13 of252

Alg. 1, which can be obtained during the input reconstruction phase. For non-reversible stages, we253

reconstruct the computational graph with a forward pass on the input retrieved from the buffer during254

the backward pass. Our models can run on a single A100, 80GB.255

Memory benefits and training time. To better understand the advantage of our method compared256

to other delayed gradient approaches [14, 40, 23], we emphasize the practical memory savings257

associated with different methods in Tab. 3. We estimate the memory needed in gigabytes, as the258

sum of the model size, the input buffer size, and the parameter buffer size, while excluding the input259

buffer size of the first stage, which corresponds to retrievable dataset inputs. We do not include the260

effect of gradient accumulation since it depends on the value of k and only affects the length of261

the parameter buffer, which is small in our case, i.e., we use k = 1. Note that the batch size also262

affects the memory savings, and we set it to 64 for consistency with Tab. 2. Storing both inputs263

and parameters into a buffer corresponds to the PipeDream approach [14]. Only storing inputs into264
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Figure 4: Validation accuracy of PETRA and backpropagation for a various number of accu-
mulation steps, for a RevNet18 trained on ImageNet with k ∈ {1, 2, 4, 8, 16, 32}. The validation
accuracies are averaged over the last 10 epochs. As the number of accumulation steps increases, the
effective staleness in PETRA decreases, closing the gap with standard backpropagation.

Table 3: Memory savings for RevNet50 on ImageNet with our method for different configura-
tions. We indicate the use of memory buffers for inputs or parameters. The savings are computed
with respect to the first configuration, where inputs and buffers are stored. Our method achieves
54.3% memory reduction over the base configuration of Delayed Gradients.

Buffer Memory (GB) Saving (%)
Input Params.
√ √

44.5 0.0√ × 43.6 2.0
× √

21.2 52.3
× × 20.3 54.3

buffers would correspond to the approach in [40, 23]. The third and fourth lines are only applicable265

to reversible architectures as they do not store the input into buffers. As can be seen, the input buffer266

has the biggest impact on the total memory needed, being responsible for 52.3% of the memory267

footprint. Dropping the parameter buffer in PETRA pushes the memory savings further to 54.3% for268

a RevNet50 on ImageNet. Note that non-reversible stages account for the majority of total memory269

use, meaning that savings would be much higher for fully invertible architectures.270

5 Conclusion271

In this work, we introduce PETRA, a novel model parallel training technique for reversible ar-272

chitectures which is a novel promising alternative to backpropagation. It achieves a significant273

parallelization with a limited overhead compared to standard backpropagation or other competitive274

alternatives to end-to-end training, like delayed gradients approaches. Our method has the potential275

to achieve linear speedup compared to standard backpropagation and allows reversible layers to276

operate without any parameter or activation buffers, effectively decoupling the forward and backward277

phases. Despite using an approximate delayed gradient estimate, our method delivers competitive278

performances compared to standard backpropagation on standard computer vision datasets.279

In future work, we aim to implement and optimize PETRA for Large Language Models (LLMs),280

with a first baseline being Reformers [22], invertible transformers that have been shown to scale. This281

will validate PETRA’s effectiveness and robustness, solidifying its potential as a cutting-edge training282

technique.283
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Question: Do the main claims made in the abstract and introduction accurately reflect the403
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Answer: [Yes]405
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accuracy and ablations in Sec. 4.407
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Question: Does the paper discuss the limitations of the work performed by the authors?409
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Justification: We discuss it along with our experimental results in Sec. 4.2.411
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Answer: [Yes]428
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