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Abstract001

Didactics research explores what instructional002
strategies yield the best learning outcomes in003
expert-led explanatory dialogues on complex004
concepts. In the paper at hand, we address005
this question by annotating a dataset of dia-006
logues that foster scientific understanding, cat-007
egorized across five levels of the explainee’s008
knowledge. Our extended dataset, ReWIRED,009
features span-level annotations for teaching-010
related explanatory acts. Furthermore, we as-011
sess language models of varying sizes on their012
ability to label teaching acts, uncovering that013
fine-tuning is necessary for modeling the task,014
especially GPT-4o-mini with structured predic-015
tion profits from that. Finally, we leverage and016
extend a set of quality metrics for instructional017
explanations, by involving annotators to esti-018
mate the relevance and impact of each metric019
across the five knowledge levels. We then apply020
the metrics to our newly annotated dialogues021
and expand it into a prompt-based framework,022
enhancing its applicability and scope. Our find-023
ings reveal a strong alignment between the qual-024
ity metrics and the knowledge levels, with ex-025
pert explanations in our dataset frequently re-026
flecting established best teaching practices.027

1 Introduction028

Large language models (LLMs) have notably ad-029

vanced the integration of artificial intelligence (AI)030

into human-computer interaction and its applica-031

tion to specific domains. This development impacts032

the field of explainable artificial intelligence (XAI),033

particularly the generation of natural language ex-034

planations. For explanations, XAI can draw on035

existing research from various disciplines, includ-036

ing philosophy, cognitive psychology, and social037

psychology (Miller, 2019). Insights from the field038

of education can provide valuable guidance for de-039

veloping explanatory dialogues between explainers040

and explainees. Conversely, AI has the potential to041

contribute significantly to educational practices.042

Figure 1: After acquiring span-level dialogue annota-
tions from education domain experts, we conduct ex-
periments to evaluate LLMs’ performance in predicting
teaching act-related labels across various output formats.
Human and LLM-based qualitative evaluation at each
level provides deeper insights into model capabilities.

The perception of AI’s role in education is di- 043

verse and depends on the educators’ familiarity 044

with it (Kasinidou et al., 2024). A growing body of 045

research explores methodologies for effectively in- 046

corporating AI technologies into educational frame- 047

works for various tasks, including the quality as- 048

sessment of explainees’ answers (Carpenter et al., 049

2024) as well as their cognitive engagement (Mc- 050

Clure et al., 2024). In contrast, Feldhus et al. (2024) 051

concentrated on the explainer side of the dialogue, 052

providing span labels of teaching acts in dialogues 053

between an expert in a given field and different ex- 054

plainees (ranging from laypersons to colleagues). 055
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In this work, we study the quality of the expla-056

nations provided by explainers in dialogues. Build-057

ing on the annotation scheme of Feldhus et al.058

(2024), we annotate the WIRED dataset presented059

by Wachsmuth and Alshomary (2022) with the help060

of teaching expert annotators. We double the size061

of the original dataset by adding 65 dialogues on062

13 new topics released later (§3). We argue that063

span-labeling is preferable to classification for our064

dataset, because it enables the precise annotation of065

instructional segments within dialogues, preserving066

contextual dependencies and allowing for overlap-067

ping or nested teaching strategies.068

Building on this newly annotated dataset, we069

evaluate the performance of language models such070

as BERT (Devlin et al., 2019) and LLMs including071

GPT-4o (OpenAI, 2023) and Gemini (Reid et al.,072

2024) in predicting teaching acts (§4). The re-073

sults reveal that LLM performance on such a span-074

labeling task is highly sensitive to requested output075

formats: We find that structured prediction with076

JSON output from LLMs poses challenges for post-077

processing, but they can be mitigated by few-shot078

demonstrations, improving consistency and per-079

formance. However, alternative output-structuring080

approaches based on inline tagging and code gen-081

eration (Paolini et al., 2021; Sainz et al., 2024)082

achieve significantly better outcomes, particularly083

for complex teaching acts. Notably, when fine-084

tuned on a subset of the data, BERT outperforms085

the LLMs across most classes, and a GPT-4o-mini086

fine-tuned on inline tagging excels across the board,087

highlighting the importance of controlled setups for088

span-labeling applications.089

To assess the quality of expert-led explanations,090

we refine a set of automated quality metrics in-091

troduced in literature with human validation and092

extension to include LLMs “as a judge” in the eval-093

uation process. The metrics evaluate characteristics094

that enhance the quality of instructional explana-095

tions when present in a dialogue (§5). The metrics096

fall into two categories: functional, which assess097

the presence of various teaching acts within a di-098

alogue, and form-based, which analyze linguistic099

features such as syntactic and lexical complexity.100

We validate our test suite with expert annotators101

who assess the presence and contribution of all102

quality metrics within each dialogue. Additionally,103

we extend the existing metrics with prompt-based104

metrics, following the methodology of Rooein et al.105

(2024). Our findings show that metrics that were106

previously difficult to capture in an automated way107

align well with the five explainee knowledge levels 108

when using our new prompt-based variants. 109

Altogether, our four main contributions are: 110

• The extension of an existing dataset by fur- 111

ther explanatory dialogues and by expert span- 112

level annotations of teaching acts; 113

• The empirical evaluation of the ability of lan- 114

guage models to label the teaching acts within 115

the newly proposed ReWIRED dataset; 116

• The validation of various metrics for dialogi- 117

cal explanation quality with annotators to as- 118

sess their relevance and impact across differ- 119

ent levels of expertise; 120

• The employment of a prompt-based evalua- 121

tion framework which broadens the scope and 122

usability of the instructional quality metrics, 123

facilitating their use in diverse scenarios. 124

An overview of our contributions and workflow 125

can be seen in Figure 1. 126

2 Background and related work 127

Instructional explanations are intended to transfer 128

knowledge by introducing a new cognitive frame- 129

work for understanding a concept or performing a 130

task, bridging the gap between a knowledgeable 131

individual and someone lacking that understand- 132

ing. In science education, such explanations are 133

considered both a fundamental activity and a goal 134

of scientific practice, aimed at systematically ad- 135

dressing “how” and “why” questions (Kulgemeyer, 136

2018). The authors highlight the separation of two 137

interpretations for the term explanation: One is 138

an explanation seen as activity, whose goal is to 139

“engender understanding” between an explanation 140

holder and an explainee; the other is a more philo- 141

sophical understanding explanation, as that which 142

connects explanans and explanandum (Zhu and 143

Rudzicz, 2023). Although most studies concerning 144

explainability have focused on the latter (Miller, 145

2019), we see the former as the most important 146

definition, as it directly relates to the contextual set- 147

ting of explanation. Among explanation types, we 148

concern ourselves with instructional explanations, 149

a concept from didactics that means “to convey a 150

procedure or model of how to interpret the world 151

between two interlocutors” (Kulgemeyer, 2018). 152

Teaching models are structured approaches de- 153

signed to guide educators in planning lessons more 154

effectively, aligning them with psychological learn- 155

ing principles to enhance student outcomes. They 156

are related but different from learning models, 157
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which in turn seek to explain how learning happens158

in the mind of the students. While there have been159

attempts at unifying multiple teaching and learning160

models (explaining how learning happens in the161

mind of the students) (Oser and Baeriswyl, 2002),162

many remain sceptical about the feasibility (Al-163

lensworth et al., 2008). Boston (2012) abstracted164

the differences and used broad definitions of the165

processes, leading to positive outcomes but fail-166

ing to evaluate low-level, dialogical components167

of teaching. Teaching processes are here repre-168

sented in the form of teaching acts (Table 1, Ta-169

ble 4) and as explanation quality metrics (Table 5).170

In the former case, we investigate if language mod-171

els can capture the distinctions, while in the latter,172

we conduct an analysis of their correlation to the173

knowledge levels of the explainees.174

Existing dialogue datasets such as CIMA175

(Stasaski et al., 2020), TSCC-2 (Caines et al.,176

2022), and NCTE (Demszky and Hill, 2023), focus177

on surface-level interaction between teachers and178

students. Our work is closest to Wachsmuth and179

Alshomary (2022), who annotated a conversation180

corpus with dialogue acts and explanation moves.181

More recently, Alshomary et al. (2024) introduced182

a corpus of explanatory dialogues sourced from183

Reddit. Their annotation schema closely mirrors184

that of Wachsmuth and Alshomary (2022), provid-185

ing a comparative analysis in terms of dialogue and186

explanation moves, as well as dialogue act flow,187

with the WIRED dataset.188

AI/LLMs in education Recent advancements189

in leveraging large language models (LLMs) have190

shown significant potential in educational contexts.191

Carpenter et al. (2024) investigate using LLMs to192

evaluate the correctness of explanations provided193

by undergraduate computer science students. Mc-194

Clure et al. (2024) explore LLMs as tools for clas-195

sifying cognitive engagement levels. Wang et al.196

(2024) and Jurenka et al. (2024) introduce collab-197

orative human-AI systems that provide educators198

with expert-like guidance during tutoring sessions,199

facilitating the identification and reinforcement of200

effective pedagogical strategies while discouraging201

less effective ones.202

Evaluation of dialogues and instructional ex-203

planations While automatic metrics have been204

proposed for the quality of discourse and expla-205

nation (McNamara et al., 2014; Demszky et al.,206

2021; Schuff et al., 2023), research has recently207

Teaching Act T. Mdl.
T01: Assess Prior Knowledge CB, UT
Checking what the student knows before starting a lesson
T02: Lesson Proposal UT
Proposing the steps that will be taken during the lesson
T03: Active Experience CB, UT
Providing the student with puzzle/question to explore;
(Student:) Interacting with a mental concept
T04: Reflection PS
Finding gaps in knowledge or inconsistencies;
Asking questions about the experience or concept
T05: Knowledge Statement PS
Stating the concept(s) being taught via rules or facts
T06: Comparison UT
Considering similarities and differences between
the main concept and other related topics or facts
T07: Generalization CB, PS
Exploring how the concept applies to new scenarios,
experiences and situations outside of the lesson topic
T08: Test Understanding CB
Finding out if the concept previously established
was received correctly and is properly understood
T09: Engagement Management
Maintaining the classroom context to facilitate effective
teaching, creating rapport between teacher and student

Table 1: Teaching acts in the ReWIRED dataset (with
descriptions and their connection to a teaching model
from didactics: Teaching as problem solving (PS), teach-
ing as concept building (CB) (Krabbe et al., 2015),
and unified teaching choreographies (UT) (Oser and
Baeriswyl, 2002).

been focussing on LLM-based evaluation. Mehri 208

and Eskénazi (2020) propose reference-free quality 209

metrics to evaluate dialogues automatically on both 210

turn and dialogue levels. Rooein et al. (2024) assess 211

difficulty and readability of texts in various levels 212

with static (automated) and prompt-based metrics. 213

Xu et al. (2024) assess high-level instruction qual- 214

ity using LLMs and stress that these perform on par 215

with human raters for straightforward, discrete vari- 216

ables requiring little inference, but they struggled 217

with analyzing complex teaching practices. 218

3 The ReWIRED dataset 219

In this section, we present our ReWIRED dataset, 220

an extension of an existing corpus that we propose 221

to study the instructional strategies in explaining 222

dialogues. In the following, we detail the source 223

data as well as the annotation scheme and process. 224

3.1 Source data: Explanation dialogues 225

We build on the WIRED corpus (Wachsmuth and 226

Alshomary, 2022), which consists of instructional 227

explanatory dialogues retrieved from the 5-Levels 228

video series1. The edited video clips demonstrate 229

how an expert explains (mostly) STEM topics to 230

individuals of varying knowledge levels: (1) child, 231

1https://www.wired.com/video/series/5-levels
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# Topic # Topic
1 Music harmony 14 Memory
2 Blockchain 15 Zero-knowledge

proofs
3 Virtual reality 16 Black holes
4 Connectome 17 Quantum computing
5 Black holes 18 Quantum sensing
6 Lasers 19 Fractals
7 Sleep science 20 Internet
8 Dimensions 21 Moravecs Paradox
9 Gravity 22 Infinity
10 Computer hacking 23 Algorithms
11 Nanotechnology 24 Nuclear fusion
12 Origami 25 Time
13 Machine learning 26 Chess

Table 2: Topics in ReWIRED. 14-26 (yellow) are tran-
scripts that were not part of the original WIRED dataset
(Wachsmuth and Alshomary, 2022). The topic “black
holes” is explained in two different videos, resulting
in the duplicate (5, 16). Chess (26) applies distinctive
knowledge levels (novice, intermediate, FIDE master,
Grandmaster, and AI expert), as educational background
doesn’t imply a player’s capability.

(2) teenager, (3) undergraduate college student, (4)232

graduate student, (5) colleague (another expert).233

However, after the publication of the WIRED234

corpus, more clips came up in the video series. In235

our extension, ReWIRED, we incorporated all of236

them, doubling the original number data instances.237

In total, our dataset contains 130 transcripts from238

26 topics across the five knowledge levels. Table 2239

gives an overview of the topics covered.240

3.2 Annotation Scheme: Teaching acts241

We extend the dialogues by new span-level anno-242

tations of nine teaching acts, a dimension initially243

proposed by Feldhus et al. (2024). Table 1 lists244

the definitions of the teaching acts. Leveraging245

finer semantic granularity to teaching models in246

comparison to DAMSL (Core and Allen, 1997)247

and ISO 24617-2 (Bunt et al., 2012), the annota-248

tion framework we follow is similar to the CMA249

schema (Del-Bosque-Trevino et al., 2021), with250

further task-specific refinements.251

We recruit real-world educational experts to in-252

corporate domain-expert annotations in order to253

improve annotation quality and validity, particu-254

larly in modelling speaker interaction under instruc-255

tional settings. Our four annotators are graduates256

with a Master of Education or similar, and with257

in-classroom teaching experience. They were paid258

at least the minimum wage in conformance with259

the standards of our host institutions’ regions.260

Figure 2: ReWIRED inter-annotator agreements for act
on token level. For better visibility, we scale-adjust the
colors by np.log1p(. . .)3. Each cell shows the number
of tokens for which annotators (dis)agreed on a label in
a pairwise comparison. The bottom row with green and
red highlights show the Fleiss’ κ per teaching act.

T05: Knowledge statement

T06: Comparison (pink) and T07: Generalization (azure)

Figure 3: An example of a turn given labeled as different
teaching acts by the two expert annotators.

3.3 Annotation Process: Span Labeling 261

The full ReWIRED dataset is split into two frac- 262

tions, each annotated by two out of four recruited 263

expert annotators. As a post-processing step, we 264

interpreted the inherited token-level annotations as 265

a non-expert annotator and then consolidated all 266

three annotations to yield the gold labels. Using 267

three sets of annotations allows us to reduce the pos- 268

sibility of bias, especially in cases where two expert 269

annotators disagree. The span-labeling task was 270

performed on LABEL STUDIO (Tkachenko et al., 271

2020-2024), yielding an inter-annotator agreement 272

of Fleiss’ κ = 0.44. Figure 2 plots the respective 273

agreement of the nine teaching act labels. An ex- 274

ample is provided in Figure 3 to demonstrate how 275

expert annotators could possibly disagree with each 276

other on labeling a dialogue turn. Figure 4 shows 277

the resulting distribution of teaching acts in our 278

ReWIRED dataset. 279
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Figure 4: Distribution of teaching acts in ReWIRED
across the five knowledge levels.

For quality evaluation, the annotators were280

also asked to evaluate instructional explanation281

categories with respect to the measurements of282

IXQUISITE (§5). Provided with respective descrip-283

tions, the annotators were asked to assess (a) pres-284

ence and (b) contribution of each measurement on285

a 3-point Likert scale. This follow-up quality evalu-286

ation subsequent to span-labeling aimed to capture287

the views of educational experts across knowledge288

levels on the explanatory dialogues under the pro-289

posed framework. We discuss the outcome of this290

evaluation in Section 5.291

4 Experiments: Sequence-labeling acts292

To evaluate language models on detecting acts293

across act dimensions, we conduct experiments on294

span-labeling for ReWIRED, comparing the per-295

formance of a fine-tuned masked language model296

assigning token-level labels with that of LLMs. As297

a baseline, we follow Wachsmuth and Alshomary298

(2022) and evaluate BERT (Devlin et al., 2019)299

for token-level classification with 5-fold cross-300

validation, since the number of transcripts is not301

large enough to define partitions. We provide de-302

tails on models in Appendix D.303

We then frame the span-labeling task of the an-304

notated labels (Table 1) in the ReWIRED dataset305

as a structured prediction task and analyze the306

capabilities of the following proprietary LLMs:307

GPT-4o (OpenAI, 2023), Gemini 1.5 Flash, and308

Gemini 1.5 Pro (Reid et al., 2024). In addi-309

tion, we fine-tune GPT-4o-mini with 5-fold cross-310

validation (same setup as BERT, but with DPO,311

learning rate multiplier = 1.8, epochs = 3). We312

compare the following prompting approaches:313

• JSON-type structured object prediction (Ta-314

vanaei et al., 2024; Wu et al., 2024); 315

• TANL-style structured prediction of inline tags 316

(Paolini et al., 2021); 317

• GoLLIE-style information extraction using an- 318

notation guidelines (Sainz et al., 2024) 319

with the details further provided in Appendix E. 320

4.1 Results and discussion 321

The results for span-level act prediction (Table 3) 322

reveal that the task remains rather challenging for 323

LLMs, when they are not fine-tuned on the task. 324

However, task performance could be significantly 325

altered under the influence of the three prompting 326

methods. First of all, we find the prompt design 327

eliciting structured prediction in form of JSON ob- 328

jects to cause major problems for post-processing. 329

The problematic output can nevertheless be mit- 330

igated by providing more context via few-shot 331

demonstrations eliciting in-context learning: When 332

including three previous dialogue turns and their 333

gold labels, the predictions become more consis- 334

tently structured (1.06% invalid JSONs by GPT-4o) 335

and could achieve a noticeably higher performance. 336

These findings reflect challenges reported by con- 337

current related works applying LLMs to dialogue 338

tasks (Zhao et al., 2023) and span-labeling tasks 339

(Ziems et al., 2024; Wang et al., 2023), and the 340

difficulties of applying them to teaching settings 341

(Wang and Demszky, 2023; Macina et al., 2023). 342

The outcomes of our experiments further high- 343

light the impact of requested output format, as 344

changing the structured prediction setup to TANL 345

(bracketed tagging) or GoLLIE (coding guidelines) 346

could almost double the performance of GPT-4o 347

and Gemini 1.5 across all nine teaching acts. Al- 348

though the more straightforward TANL approach 349

already yields consistent improvements leaving 350

only T03 (Active Experience) and T08 (Test Under- 351

standing) slightly behind, the GoLLIE prompting 352

method sees >80% micro-F1 for the majority label 353

(T05: Knowledge Statement). While Gemini 1.5 354

performs best with the TANL approach, it could 355

not use the GoLLIE paradigm well. GPT-4o’s gen- 356

erations are on a similar level between the two best 357

prompting paradigms. 358

BERT, on the other hand, easily outperformed 359

most LLMs used for inference across almost every 360

single act. The stark difference can be attributed to 361

the importance of fine-tuning and the constraint to 362

predict one of the nine acts. 363

In our final set of experiments involving the 364

fine-tuning of GPT-4o-mini with 5-fold cross- 365
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Teaching acts T01 T02 T03 T04 T05 T06 T07 T08 T09 Macro-F1 Span Al.

BERT FT 80.68 % 72.15 % 87.93 % 83.07 % 90.18 % 81.57 % 83.75 % 82.53 % 80.31 % 84.17 % –

GPT-4o JSON 35.69 % 49.38 % 39.80 % 34.60 % 66.36 % 38.76 % 39.34 % 29.19 % 42.72 % 41.76 % 36.75 %
GPT-4o TANL 66.69 % 70.39 % 63.61 % 80.22 % 84.91 % 75.10 % 75.29 % 61.96 % 70.26 % 72.05 % 68.21 %

GPT-4o GoLLIE 71.39 % 67.26 % 72.83 % 78.99 % 82.70 % 79.11 % 78.05 % 71.66 % 67.07 % 74.34 % 73.54 %

Gemini 1.5 F TANL 53.39 % 71.65 % 77.76 % 85.86 % 86.13 % 81.88 % 83.73 % 63.04 % 74.83 % 75.36 % 74.09 %
Gemini 1.5 F GoLLIE 46.17 % 45.95 % 59.33 % 69.39 % 72.82 % 64.41 % 65.47 % 47.84 % 49.89 % 57.92 % 58.80 %

Gemini 1.5 P TANL 67.11 % 74.00 % 79.97 % 79.45 % 87.18 % 81.35 % 82.03 % 53.70 % 77.51 % 75.71 % 69.81 %
Gemini 1.5 P GoLLIE 46.25 % 30.56 % 53.60 % 63.00 % 70.56 % 47.44 % 49.23 % 24.88 % 48.60 % 48.23 % 49.53 %

GPT-4o-mini FT TANL 93.64 % 97.98 % 95.23 % 99.30 % 98.90 % 99.03 % 98.64 % 97.00 % 97.28 % 97.44 % 94.63 %
GPT-4o-mini FT GoLLIE 98.54 % 98.57 % 99.11 % 98.87 % 99.56 % 98.14 % 100.0 % 99.67 % 98.91 % 99.04 % 95.49 %

Table 3: Language models evaluated on the tasks of sequence-labeling teaching acts within dialogue turns from our
ReWIRED dataset. Percentages under each of the acts show micro-F1 scores in a 3-shot or fine-tuning (FT) setting.
Span Alignment (last column) refers to how well the spans extracted by LLMs align with human-annotated spans.

validation, we can report that the gap between366

LLMs and BERT is non-existent, as fine-tuning367

can lead to further advances making it consis-368

tently annotate the teaching acts with up to 99.04%369

Macro-F1 (GoLLIE) and 95.49% of spans cor-370

rectly matched with human ground truth. For span-371

labeling tasks, we recommend practitioners to em-372

ploy fine-tuning instead of few-shot prompting.373

5 The IXQuisite test suite374

Considering the interactive nature of dialogues,375

it is often challenging for human-free evaluation376

paradigms to cover criteria such as participation377

and engagement (Adiwardana et al., 2020) or cap-378

ture conversational flow as perceived by human379

speakers (Deriu et al., 2021). In an attempt to map380

the linguistic features in dialogue form to the effi-381

ciency of explanations, Feldhus et al. (2024) intro-382

duced a didactic research-based test suite, with the383

name IXQUISITE. This test suite includes seven2384

teaching-act-related metrics that assess the func-385

tional content of explanations and seven additional386

metrics that evaluate the form of explanations. The387

metrics and their respective descriptions and refer-388

ences to their origins in the literature are presented389

in Table 4 and Table 5.390

5.1 Human validation391

First, to validate the alignment between our pro-392

posed metrics, hypotheses about their scores393

among the dialogues, and expert perception, we394

instructed our annotators to assess their presence395

and contribution in each dialogue they annotated.396

After completing each dialogue annotation (§3.2),397

they were asked to assess the presence of these met-398

2In the original work, explanation-act annotations were
also considered; since we do not have them in this work, we
omit the metric of remedial explanations of our experiments.

rics in the dialogue and how much they contribute 399

to the explanation being suitable for the level of 400

knowledge of the explainee. The annotators were 401

provided with the descriptions in Tables 4 and 5 402

to ensure consistent evaluations across the dataset. 403

The annotators had to assess each metric’s presence 404

and contribution, choosing between non present, 405

partially present or fully present. The results of the 406

annotators’ assessment for the metrics’ presence in 407

the dataset are summarized in Figure 5a. 408

Our analysis indicates that the presence of 409

the metrics, particularly function-oriented ones, 410

strongly correlates with the five evaluation lev- 411

els. This finding underscores the alignment of 412

these metrics with the hierarchical framework of 413

dialogue quality assessment. Interestingly, met- 414

rics such as adaptation, readability, and coherence 415

demonstrated a uniform distribution of importance 416

across the five levels, suggesting that these aspects 417

are critical regardless of the specific level of quality 418

of the dialogue. This observation may imply that 419

these metrics are fundamental for explanatory dia- 420

logue evaluation, maintaining their relevance even 421

as other aspects vary across levels. 422

5.2 Static evaluation on the dataset 423

Next, we directly applied the IXQUISITE metrics 424

to our dataset’s expert-annotated version. We use 425

the automated, or static, metrics defined in Feldhus 426

et al. (2024). Since our dataset lacks specific dia- 427

logue and explanation annotations, we excluded the 428

remedial explanations metric from this evaluation 429

and relied solely on T08 for the check for under- 430

standing category. For the function-related metrics, 431

the number of tokens within each class represented 432

in the metric is divided by the total number of to- 433

kens in the dialogue. Normalization is also applied 434

to minimal explanations, lexical complexity, syn- 435
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IXQUISITE: Function metrics

Abbr. Category Description Origin Static metric
PK Check for prior

knowledge
The teacher inquires the student about prior knowledge,
background, or what their interests might be

Kulgemeyer and Schecker (2009),
Leinhardt and Steele (2005)

T01

MI Mindfulness of com-
mon misconceptions

The teacher addresses common misconceptions Wittwer et al. (2010), Andrews et al.
(2011)

T04

RE Rule-example struc-
ture

The teacher states the abstract form of the concept
being taught. Then, the teacher gives some examples
to assist in understanding

Tomlinson and Hunt (1971) T05 → T03

ER Example-rule struc-
ture

For procedural knowledge, the teacher first provides
examples and then derives the general rule from them

Champagne et al. (1982) T03 → T05

EA Example/Analogy
connection

The teacher explains how parts of the analogy/example
relate to the concept being explored

Ogborn et al. (1996), Valle and
Callanan (2006)

T06

UN Check for understanding The teacher tests the understanding of the student Webb et al. (1995) T08

Table 4: Explanation and teaching acts-related measures in IXQUISITE for instructional explanation quality based on
occurrences of classes from our annotation schema.

IXQUISITE: Form metrics

Abbr. Category Description Origin Static metric

ME Minimal explana-
tions

Low cognitive load, e.g. avoid redundancies (ver-
bosity) such as introducing named entities

Black et al. (1986) Frequency of named entities

LC Lexical complex-
ity

The level of difficulty associated with any given
word form by a particular individual or group

Kim et al. (2016) Frequency of difficult words

SD Synonym density Children are proven better aligned with consistent
terminology; experts allow more synonyms

Wittwer and Ihme (2014) Frequency of synonyms for the n
terms most connected to the topic

TM Correlation to
teaching model

Correlation of teaching act order to prescribed
teaching models

Oser and Baeriswyl (2002),
Krabbe et al. (2015)

Edit distance between T01-T08
(asc.) and actual occurrences

AD Adaptation The teacher incorporates prior knowledge, miscon-
ceptions and interests and uses analogies

Wittwer et al. (2010) Inverse frequency of synonyms in
the text

RL Readability level Indicator of how difficult a passage is to understand Crossley et al. (2017) Flesch-Kincaid Grade level

CO Coherence How sentences relate to each other to create a log-
ical and meaningful flow for the reader or listener

Lehman and Schraw (2002),
Duffy et al. (1986)

Frequency of conjunctions and
linking language

Table 5: Categories for instructional explanation quality and associated numerical measures in IXQUISITE.

onym density, and coherence. The results of this436

analysis are presented in Figure 5b. Our findings437

indicate that form-related metrics demonstrate a438

stronger correlation with the five predefined levels439

of knowledge, though the relationship is not per-440

fectly linear. On the other hand, functional metrics441

related to teaching acts in our dataset only partially442

correlate with the five levels (see PK).443

5.3 Prompt-based evaluation444

Building on and inspired by the work of Rooein445

et al. (2024) on assessing readability across vary-446

ing knowledge levels using static and prompt-based447

metrics, we extend this approach by formulating448

the metrics in the IXQUISITE suite as evaluative449

questions posed to a language model (specifically450

GPT-4o). Instead of designing closed-ended ques-451

tions, we prompt GPT-4o to evaluate each metric on452

a scale from 0 to 10. For instance, rather than ask-453

ing “Does the explainer inquire about prior knowl-454

edge?”, we reframe the question as “On a scale455

from 0 to 10, how well does the explainer inquire 456

about prior knowledge?”. This approach facilitates 457

the collection of more fine-grained results compa- 458

rable to those provided by our human annotators. 459

We present the outcomes of the prompt-based 460

evaluation for function-related metrics (Table 4) in 461

Figure 5c. The results for the form-related metrics 462

(Table 5) can be found in Appendix F. We observe 463

that function-related metrics exhibit the strongest 464

correlation with the five levels of knowledge. No- 465

tably, the results obtained from prompt-based func- 466

tional metrics align closely with human evaluations 467

of the presence of each metric within individual 468

dialogues, as there is greater variance across knowl- 469

edge levels - typically showing a higher score range 470

for lower knowledge levels than for the higher ones. 471

This suggests that, while automated evaluation suf- 472

fices for form-based metrics, capturing variation in 473

functional metrics across dialogue levels requires 474

prompt-based LLM evaluation. 475

7



(a) Annotators assessment on presence of each metric in IXQUISITE for in each level.

(b) IXQUISITE metrics: Static evaluation of our dataset.

(c) IXQUISITE function-related metrics: prompt-based evaluation of the five levels in the dataset.

Figure 5: IXQUISITE results.

6 Conclusion476

In this paper, we have presented a dataset of ex-477

planatory instructional dialogues in one-to-one tu-478

torial sessions, dubbed ReWIRED. In particular,479

we have extended the WIRED dataset (Wachsmuth480

and Alshomary, 2022), doubling the number of dia-481

logues and adding span-level annotations of teach-482

ing acts reflecting practices according to teaching483

models in didactics literature. Our dataset has been484

annotated by teaching experts, with consolidated485

labels comparable to those of Feldhus et al. (2024).486

With the annotated dataset, we have probed into487

the span-labeling task to classify teaching acts, con-488

ducting experiments on several language models of489

different sizes. The results disclosed that LLMs, in-490

cluding GPT-4o and Gemini, fall behind controlled491

setups with fine-tuning on a much smaller BERT or492

a GPT-4o-mini in reliably detecting teaching acts.493

Our findings inform future steps in operationalizing494

pedagogical theory for tutorial dialogues in NLP. 495

They indicate that the IXQUISITE suite of metrics 496

for assessing quality events in instructional expla- 497

nations effectively captures the varying knowledge 498

levels of the explainees. These metrics foster future 499

work on automatically generating individualized 500

and domain-specific explanations, contributing to 501

the field of XAI and enhancing user experience. 502

Limitations 503

We acknowledge that, despite our annotators’ high 504

expertise in the field of education, some teach- 505

ing acts seem not as easily distinguishable as the 506

other act dimensions, resulting in a relatively low 507

inter-annotator agreement. However, the single 508

aggregation-based Fleiss’ κ score might be too su- 509

perficial to capture the complexity behind. Ulti- 510

mately, the annotation variations also convey the 511

subjectivity of teaching-related explanations, fol- 512

8



lowing the idea that human label variation should513

be encouraged (Plank, 2022).514

Further limitations include that a portion of the515

test suite relies on human annotation, which may516

introduce inconsistencies. Replicating or extending517

the test suite might be difficult without a reliable518

teaching act prediction model. Also, the dataset we519

present is extracted from videos—audio and visual520

elements not present in the transcription. The effi-521

cacy of our approach may vary depending on the522

complexity and diversity of the multimodal inputs,523

if present. Last but not least, the generalizability of524

our findings may be constrained by the narrow do-525

main of dialogues examined, limiting extrapolation526

to broader conversational contexts.527

Ethical statement528

We do not see immediate ethical concerns regard-529

ing research and development. The data included in530

the corpus are readily available from WIRED Web531

resources. Following the ACM Code of Ethics (1.2,532

1.6), all participants consented to be recorded as533

far as perceivable from the WIRED web resources,534

which are free to use for research purposes. The535

two annotators in our study were recruited over536

online platforms (LinkedIn, university forum). The537

annotation of each dialogue took an annotator an538

average of 10 minutes; depending on their work-539

load, the annotation duration was between 12 and540

20 hours. In our view, the provided prediction mod-541

els target dimensions of dialogue turns that are not542

prone to misuse for ethically doubtful applications.543
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Appendix895

A Annotation instructions896

To annotators, we provided examples from Ap-897

pendix B as well as further delineations of the acts898

with examples and descriptions of how to differen-899

tiate between them. We also provided a screencast900

with instructions on how to use LABEL STUDIO901

and walk-through examples for each act. This will902

be published with the camera-ready version. The 903

introductory text shown to all annotators before 904

watching the recording and accessing LABEL STU- 905

DIO is the following (unformatted version): 906

Your objective is annotating linguistic information
about the multi-layered objectives each person per-
forms when communicating. The dataset is com-
prised of transcribed conversations in which an ex-
pert in a field explains some concept to multiple peo-
ple at varying levels of education: child, teenager,
undergraduate, graduate and expert.
Your task as an annotator will be, given a transcript
of one of these conversations, to use a highlighting
tool to mark which “acts” are present in different
parts of the text. These acts highlight some unspo-
ken objectives present in the text. For example, the
text “Do you understand that?” could be said to
have both an objective of asking a yes/no question
and checking for understanding.
Some of these will be straightforward to label and
say “that is clearly the intention behind that sen-
tence”, while some will be a bit more complicated.
We often have many intentions behind what we say,
and we account for that by letting you tag any seg-
ment of text with as many labels as you see fit, even
none at all.
Your annotation task is about labeling the aforemen-
tioned objectives from the perspective of Teaching
Acts, which focus on conversation mechanics in
terms of lesson planning and didactics.

907

B Examples for acts 908

Figure 6 shows examples from ReWIRED for each 909

of the acts as provided to the annotators. 910

C Label distributions 911

Figure 7 shows the number of distinct acts per dia- 912

logue turn as per annotated. 913

D Models 914

Table 6 lists how the models in §4 were employed. 915

We used the following GPUs: A100, RTXA6000, 916

RTX3080. For the BERT fine-tuning, we reinitial- 917

ized the BERT model for token classification at the 918

start of every fold (k = 5) and used a batch size 919

of 4, an AdamW optimizer with a learning rate of 920

5 ∗ 10−6, epsilon of 1 ∗ 10−8, and warmup. 921

E Prompt design 922

Figure 8 and Figure 9 depict the prompts used with 923

LLMs such as GPT-4o to produce the predictions 924

whose evaluation is shown in Table 3. For few-shot 925

demonstrations, we first presented the three preced- 926

ing turns of the same dialogue (or from the end of 927
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Model name #Params URL Training times Inference times
BERT 110M https://huggingface.co/

bert-base-uncased
13 hours <1 hour

GPT-4o-mini
(fine-tuned)

? https://platform.openai.com/docs/
guides/fine-tuning

6 hours 6 hours

GPT-4o ? https://platform.openai.com/docs/
api-reference/chat

n.a. 9 hours

Gemini 1.5 ? https://ai.google.dev/gemini-api/docs n.a. 11 hours

Table 6: Language models with parameter counts, training times, inference times, and API costs.

last dialogue if the turn in question is at the start928

of a dialogue) and their corresponding gold spans929

(in the format required by the respective prompting930

paradigm) just as we elicit it from the model in931

the zero-shot setup. Figure 10 and Figure 11 show932

the results from GoLLIE and TANL prompts for933

Gemini 1.5 Pro and GPT-4o, respectively.934

F IXQuisite: additional information935

F.1 Annotator’s assessment of contribution of936

metrics in each level937

Besides validating the presence of each IXQUISITE938

metric in every dialogue, annotators were addition-939

ally asked to assess their importance/contribution,940

especially in regards to the level of knowledge of941

the explainee. Figure 12 shows the annotator’s as-942

sessment of the importance/contribution of each943

metric at each level.944

F.2 Form metrics: prompt-based evaluation945

sFigure 13 presents the results of the prompt-based946

evaluation of the form metrics in the dataset. The947

results do not exhibit a clear correlation with the948

five levels, predominantly falling within the range949

of 0.8 to 0.9. This may be attributed to the formu-950

lation of the prompts.0.9. This might be related to951

the way the prompts were formulated.952

F.3 Prompt-based metric questions953

Table 7 shows the metrics formulated as questions954

for prompt-based evaluation of the explanatory di-955

alogues in the ReWIRED dataset according to the956

IXQUISITE test suite.957

Abbr. On a scale from 0 to 10...

PK ... how well does the explainer inquire about prior
knowledge?

MI ... how well does the explainer deal with common
misconceptions?

RE ... how well does the explainer state the abstract
form of a statement and then some example to assist
understanding?

ER ... how well does the explainer provide examples
prior to deriving a rule?

EA ... how well does the explainer explain ... how parts
of the analogy/example relate to the concept being
explored?

UN ... how well does the explainer check the understand-
ing of the student?

ME ... how appropriate is the cognitive load for the ex-
plainee’s level?

LC ... how appropriate is the lexical complexity for the
explainee’s level?

SD ... how appropriate is the amount of synonyms and
technical language used for the explainee’s level?

AD ... how well-adapted is the content of the dialogue to
the explainee?

RG ... how appropriate is the readability level for the
explainee’s level?

CO ... how appropriate is the number of conjuction and
subordination for the explainee’s level?

TM ... how coherent is the text for the explainee’s level?"

Table 7: IXQUISITE metrics formulated as questions for
prompt-based dialogue evaluation.

13

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat
https://ai.google.dev/gemini-api/docs


(a) T01: Assess Prior Knowledge (b) T02: Lesson Proposal

(c) T03: Active Experience (d) T04: Reflection

(e) T05: Knowledge Statement (f) T06: Comparison

(g) T07: Generalization
(h) T05: Knowledge Statement (blue) and T08: Test Under-
standing (vermilion)

(i) T09: Engagement Management

Figure 6: Examples for teaching acts T01-T09.
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Figure 7: Number of unique teaching acts per turn in
ReWIRED. The bar chart reveals that more than half of
all dialogue turns in ReWIRED contain more than one
distinct teaching act.
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1 # Example label mapping (dialogue acts)
2 ReWIRED_ta_str_2_int = {
3 'T01 - Assess Prior Knowledge': 1,
4 'T02 - Lesson Proposal': 2,
5 'T03 - Active Experience': 3,
6 'T04 - Reflection': 4,
7 'T05 - Knowledge Statement': 5,
8 'T06 - Comparison': 6,
9 'T07 - Generalization': 7,

10 'T08 - Test Understanding': 8,
11 'T09 - Engagement Management': 9,
12 'T10 - Other Act': 0
13 }
14 label_schema = ("The label schema consists of the following 10 classes:\n* " + "\n*

".join(list(ReWIRED_ta_str_2_int.keys())) + "\n")↪→

Figure 8: Label schema.

1 system_prompt = (f"You are an expert annotator. ")
2 read_instruction = (f"Here is one turn from a dialogue between an explainer and a {student_role}

on the topic of {topic}:\n{turn_text}\n")↪→
3

4 task_instruction_JSON = ("Please extract the spans from the turn and assign a label to each of
the spans. It is possible that the whole turn is just one span, because the act applies to
its entirety. Please present your predictions in a JSON format like this:
{\n\t{\n\t\t'Span': '...', \n\t\t'Predicted label': '...' \n\t},\n}\n")

↪→
↪→
↪→

5 task_instruction_TANL = ("Please annotate the spans in the turn by marking them inline using the
format [ span | label ]. It is possible that the whole turn is just one span if the act
applies to its entirety.")

↪→
↪→

6 task_instruction_GoLLIE = ("Task: Annotate the following text with {TASK_NAME[task]}
labels.\n\n'docstring += 'Guidelines:\n'docstring += '- Identify spans in the text that
correspond to the following acts.\n'docstring += '- The act classes are defined below.")

↪→
↪→

7

8 entire_input = system_prompt + read_instruction + label_schema + task_instruction

Figure 9: Simplified version of the Python code showing the span-labeling task prompt for ReWIRED.

1 Text = "Explainer: \"So machine learning is a way that we teach computers to learn things about
the world by looking at patterns and looking at examples of things. So can I show you an
example of how a machine might learn something?\""

↪→
↪→

2

3 labels = [
4 {'span': "So machine learning is a way that we teach computers to learn things about the

world by looking at patterns and looking at examples of things.", 'label':
'T05___Knowledge_Statement'},

↪→
↪→

5 {'span': "So can I show you an example of how a machine might learn something?", 'label':
'T02___Lesson_Proposal'},↪→

6 ]

Figure 10: Example for a result from a GoLLIE prompt with Gemini 1.5 Pro.

1 "Explainer: ""It's a lot of practice and analysis. [Really, an advanced chess player was not
born an advanced chess player. They have probably hundreds, if not thousands of more games
in their mind, in their past, in their history that they've analyzed, that they've studied.
It's like any athlete, you know? | T07 - Generalization] [I put my weight on this foot, and
so I wasn't able to hit the shot back that well. So the next time that that happens, I'm
gonna be more prepared. | T06 - Comparison]"""

↪→
↪→
↪→
↪→
↪→

Figure 11: Example for a result from a TANL prompt with GPT-4o.
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Figure 12: Annotators assessment on contribution of each metric present in IXQUISITE for each level.

Figure 13: IXQUISITE form metrics: prompt-based evaluation of the five levels in the dataset.
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