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Molecular mechanisms and diagnostic
model of glioma-related epilepsy
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Epilepsy is one of the most common symptoms in patients with gliomas; however, the mechanisms
underlying its interaction are not yet clear. Moreover, epidemiological studies have not accurately
identified patients with glioma-related epilepsy (GRE), and there is an urgent need to identify the
molecular mechanisms and markers of its occurrence. We analyzed the demographics,
transcriptome, whole-genome, and methylation sequences of 997 patients with glioma, to determine
the genetic differences between glioma andGREpatients and to determine the upregulatedmolecular
function, cellular composition, biological processes involved, signaling pathways, and immune cell
infiltration. Twelve machine learning algorithms were refined into 113 combinatorial algorithms for
building diagnostic recognition models. A total of 342 patients with GRE were identified with WHO
grade 2 (174), grade 3 (107), and grade 4 (61). The mean age of the patients with GREs, with IDH
mutations (n = 217 [63%]) and 1p19qnon-codeletion (n = 169 [49%]),was 38 years old.GREmolecular
functions were mainly passive transmembrane transporter protein activity, ion channel activity, and
gated channel activity. Cellular components were enriched in the cation-channel and transmembrane
transporter complexes.Cerebral cortical development regulates themembranepotential and synaptic
organization as major biological processes. The signaling pathways mainly focused on cholinergic,
GABAergic, and glutamatergic synapses. LASSO, combined with Random Forest, was the best
diagnostic model and identified nine diagnostic genes. This study provides new insights and future
perspectives for resolving the molecular mechanisms of GRE.

Epilepsy is the most common symptom of patients with glioma1.
Glioma-related epilepsy (GRE) is influenced by the tumor location,
histopathology, peritumoral microenvironmental features, and specific
genetic alterations2–5. The probability of epilepsy varies according to the
grade of the glioma6. Patients with low-grade gliomas have a 60–90%
probability of epilepsy7, while those with high-grade gliomas have a
30–40% probability of epilepsy8. Compared to patients without epilepsy
in the past, patients with glioma who had epilepsy before the operation
had significant survival benefits9. Therefore, it is necessary to summarize
and analyze the epidemiological and clinical characteristics of a large
sample of patients with preoperative glioma-related epilepsy.

Abnormal cell proliferation and spread in gliomas lead to damage to
neurons and neural networks, which may be an important mechanism of
epilepsy10,11. Glioma cells are involved in the development of seizures
through several mechanisms. They can secrete a variety of neuro-
transmitters or modulate neurotransmitter metabolism, such as glutamate
and gamma-aminobutyric acid (GABA), thereby altering the excitatory and
inhibitory balance between neurons and contributing to epilepsy12,13.
Additionally, the inflammatory response around gliomas is believed to be
related to the occurrence of epilepsy14,15. The release of inflammatory factors
can lead to neuronal hyperactivity and destabilization of neural networks,
increasing the risk of epilepsy16,17. Some signaling pathways are associated
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with the proliferation and survival of glioma cells and may influence epi-
leptogenesis. For example, signaling pathways such as PI3K/Akt, MAPK,
and EGFR are often activated in gliomas, and aberrant activation of these
pathways may lead to cellular dysfunction and promote epilepsy18,19.
Immune responses, synaptic transmission via GABA, cell cycle control, and
DNA repair are involved in glioma-related epileptogenesis20–22. However,
few studies have been conducted to comprehensively analyze the patho-
genesis of glioma-related epilepsy using tumor tissue sequencing.

With the rapid development in computer technology, machine
learning has become increasingly common in the medical field. Disease
identification is important, and machine learning offers various linear
models and decision trees for prediction, and outperforms traditional sta-
tistical methods23–25. A radiological prediction model was developed for the
epileptic phenotype associated withGRE, using imaging features of patients
with epilepsy and radiological mapping of seizure-prone regions26,27.
However, few transcriptome analyses have addressed GRE versus non-
epilepsy19. Additionally, the genetic background of tumor-associated epi-
lepsy remains unknown, and few studies have investigated the genetic
variability associated with GRE. Some susceptibility genes associated with
epilepsy may be involved in tumor-related epilepsy28,29. One study
demonstrated the potential mechanism of infiltration and provided evi-
dence of direct physical interactions betweenmicroglia andT cells by single-
cell sequencing of epileptic tissue, recruiting immune cells to create an
immune microenvironment for epilepsy30. Therefore, it is particularly
important to construct a model to predict the occurrence of epilepsy in
patientswith gliomas.Additionally,more research is needed todemonstrate
that epilepsy genes affect the glioma tumor microenvironment.

The development of GRE involves various factors, including tumor
location, tumor histopathology, peritumoral microenvironmental features,
and specific genetic alterations. However, these have not yet been analyzed
using large samples of transcriptomic and clinical data. In the present study,
weperformeda systematic investigation to reveal the geneticmechanismsof
GRE genesis, and subsequently identified a GRE gene diagnostic model
using transcriptome samples from 993 cases of GRE and non-epileptic
tumor tissues. Probing differentially expressed genes, gene mutations,
methylation, and immune cell infiltration, we hypothesized that it may be
possible to individualize drugs for the treatment of patients with GREs.
Finally, single-cell sequencing (scRNA-seq) was used to explore the rela-
tionship between the model genes and the tumor microenvironment.

Results
Baseline patient characteristics
The research process was divided into six steps (Fig. 1). As shown in Sup-
plement Table 1, we performed a comparative analysis of the clinical
information between patients with GRE and those without epilepsy. Of 342
patients with GRE, 174 wereWHO grade 2 (51%), 107 wereWHO grade 3
(31%), and 61wereWHOgrade 4 (18%). A total of 655 patientswith glioma
didnotdevelop epilepsypreoperatively, 127WHOgrade 2, 188WHOgrade
3, and 340 WHO 4 grade (p < 0.001). The mean age of patients who
developed glioma-related epilepsy was 38 years (32–45) and 45 years
(37–54) for those who did not develop GRE (p < 0.001). Regular post-
operative follow-up revealed that patients with GRE had a better prognosis:
162 (47%)patients survived and164 (48%)diedduring follow-up;while 175
(27%) without epilepsy survived, and 461 (70%) died (p < 0.001). Mean-
while, 217 (63%) patients with GRE had IDH mutations, 105 (31%) had
wild-typeGRE, and 20 (6%) unknown.Of the patientswithout epilepsy, 257
(39%) had IDH mutations, 368 (56%) had wild-type IDH, and 30 (5%)
unknown. Similarly, the 1p19q codeletion status in molecular pathology
differed. in patients with GRE, 81 (24%) developing the deletion, 169 (49%)
without codeletion, and92 (27%)unknown.GREdidnot differ according to
sex, MGMT methylation, or sequencing platforms (p > 0.05).

In the RNA-seq 693 cohort, 993 upregulated and 424 downregulated
geneswere identified (Supplement Fig. 1a). Therewere 649 upregulated and
1710 downregulated genes in cohort 325 (Supplement Fig. 1b). Moreover,
408 upregulated and 582 downregulated geneswere identified in cohort 301

(Supplement Fig. 1c). GRE differential signaling pathway analysis was also
performed, and we found upregulation of metabolic signaling pathways,
such as steroid biosynthesis, pentose and glucuronate interconversions,
glycine serine and threonine metabolism, glycosphingolipid biosynthesis,
lacto and neolacto series, and sphingolipid metabolism (Supplement Fig.
1d). Meanwhile, the up-regulated signaling pathways, Notch signaling
pathway, WNT signaling pathway, TGF-βsignaling pathway, and olfactory
transduction were found (Supplement Fig. 1d). Downregulated metabolic
signaling pathways included nicotinate and nicotinamide metabolism,
tryptophan metabolism, glycan biosynthesis, glutathione metabolism,
nitrogen metabolism, and propanoate metabolism (Supplement Fig. 1d).
The signaling pathways that were also downregulated were the JAK-STAT
signaling pathway, cytokine receptor interaction, natural killer cell-
mediated cytotoxicity, and hedgehog signaling (Supplement Fig. 1d). Sub-
sequently, we presented the analysis workflow for glioma-associated epi-
lepsy and glioma patients (Supplement Fig. 1e). GSEA enrichment analysis
also revealed that the signaling pathways activated in GRE were ribosome
biosynthesis, terpenoid backbone biosynthesis, oxidative phosphorylation,
and butanoate metabolism (Supplement Fig. 1f). Inhibitory signaling
pathways included amino sugar and nucleotide sugar metabolism, the p53
signalingpathway, cytokine-cytokine receptor interaction, cell cycle, and the
JAK-STAT signaling pathway (Supplement Fig. 1f).

Identification of glioma-related epilepsy co-expressed genes
and functional enrichment
We analyzed RNA-seq 693 cohorts and found that GRE differed from
glioma patients in terms of PRS type, IDHmutation, and 1p19q co-deletion
(p < 0.05) (Fig. 2A). To identify genes for GRE, we performed a weighted
gene co-expressionnetwork analysis (Fig. 2B,C).We found theMEmagenta
module to be the most relevant module for GRE, with 852 genes. The
magenta module was positively correlated with epilepsy (r = 0.33,
p = 0.00015) (Fig. 2D).TheMEbrownmodulewaspositively associatedwith
non-epilepsy (r = 0.46, p < 0.001) (Fig. 2E). Separate GO and KEGG
enrichment analyseswere performed.Molecular function enrichment of the
GRE genes revealed passive transmembrane transporters, channels, ion
channels, cation channels, and gated channel activities. Cellular component
enrichment revealed the presence of synaptic membranes, cation channels,
transporter, and transmembrane transporter complexes. Cerebellar cortex
development, membrane potential regulation, and synaptic organization
were the main biological processes (Fig. 2F). The KEGG enrichment ana-
lysis revealed nicotine addiction, cholinergic synapses, GABAergic synap-
ses, and glutamatergic synapses (Fig. 2G).Additionally, enrichment analysis
of glioma patients without epilepsy revealed that MHC class II protein
complex binding, integrin binding, growth factor binding, collagen binding,
and extracellular matrix structural constituents were the main molecular
functions. Cellular component enrichment showed cell–substrate junctions,
focal adhesions, endoplasmic reticulum lumen, vesicle lumen, cytoplasmic
vesicle lumen, secretory granule lumen, and collagen. Biological process
enrichment analysis revealed external encapsulating structural organiza-
tion, extracellular structural organization, extracellularmatrix organization,
collagen-containing extracellular matrix, and extracellular matrix organi-
zation (Fig. 2H). Finally, KEGG enrichment analysis showed that the main
focus was on the ECM–receptor interaction, phagosome, and NF-kappa B
signaling pathways (Fig. 2I).

Identifying glioma-related epilepsy immune landscape and
expression
Immune cells are an important subgroup of cells in the tumor micro-
environment. The heat map showed that most patients had low immune
cell infiltration, IDHmutations, and 1p19q deletions (Fig. 3A). Thirteen
immune function score analyses showed that APC costimulation, CCR,
checkpoint, cytolytic activity, HLA, Inflammation-promoting, MHC
class I, parainflammation, T cell costimulation, and Type I IFN response
were expressed at low levels in patients with GRE (Fig. 3B). Next, an
immune checkpoint analysis was performed. ADORA2A, BTNL9,
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C10ORF54, and SIRPAwere highly expressed in GRE patients compared
to glioma patients without epilepsy (p < 0.05). BTN2A1, BTN2A2,
CD274, CD276, CD80, IDO1, PDCD1, PDCD1LG2. PVR, TDO2,
TNFRSF14, and VTCN were lower in patients with GRE (p < 0.05)
(Fig. 3C). Compared to glioma patients without epilepsy, T cell follicular

helper, activated CD4 T cell, activated CD8 T cell, activated dendritic
cell, central memory CD4 T cell, central memory CD8 T cell, effector
memory CD8 T cell, mast cell, MDSC memory B cell, natural killer cell,
natural killer T cell, neutrophil, plasmacytoid dendritic cell, regulatory T
cell, T follicular helper cell, Type 1Thelper cell, Type 17Thelper cell and

Fig. 1 | Research roadmap. The technology roadmap consists of a total of six steps.
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Type 2 T helper cell were low infiltration in GRE patients (p < 0.05)
(Fig. 3D, E).

Metabolic signaling pathways in glioma-related epilepsy
The ssGSEA scores showed lower hypoxia and glycolyticmetabolism scores
inGREpatients (p < 0.001) (Supplement Fig. 2a).Tumorpurity is ameasure
of the proportion of malignant cells in a tumor sample. Patients with GRE
had higher tumor purity scores than those without epilepsy (Supplement
Fig. 2b).Meanwhile, afterCAMPdatabase analysis, we found thatAH.6809,
TTNPB, imatinib, X5109870, and MS.275 were the top five most effective
drugs for the personalized treatment of possible GRE (Supplement Fig. 2c).
The stromal, immune, andestimatedscoreswere lower inpatientswithGRE
than in patients with non-epileptic glioma (p < 0.05) (Supplement Fig. 2d).
In addition, MS.275 as a histone inhibitor, has been used as an important
drug for combination immunosuppressant therapy in glioma clinical drug
trials31–34. Sodium valproate is a histone inhibitor used to prevent epilepsy.

Identification of glioma-related epilepsy gene mutations and
methylated genes
In our study, we found that in patients with GRE, gene mutations were
identified in IDH1 (64%), TP53 (56%), ATRX (28%), CIC (21%), MUC16
(10%), EGFR (5%),TNN (3%), PTEN (3%), andNF1 (3%) (Supplement Fig.

3a). Genemutations in non-epileptic glioma patients includedTP53 (35%),
IDH1 (30%),ATRX (23%),PTEN (14%),CIC (11%),NF1 (9%),EGFR (7%),
PIK3CA (7%), and MUC16 (3%) (Supplement Fig. 3b). Methylated gene
differential analysis was also shown in GRE patients, with cg21098323,
cg13649728, cg19923810, cg26426582, and cg18992201 as downregulated
genes and cg10035303 as an upregulated gene (p < 0.05) (Supplement Fig.
3c). Methylated genes were analyzed for GSEA enrichment. The activated
signaling pathways were mismatch repair, RNA degradation, cell cycle,
pyrimidine metabolism, and terpenoid backbone biosynthesis. The inhib-
ited signaling pathways included linoleic acidmetabolism, steroid hormone
biosynthesis, the intestinal immune network for IGA production, and
olfactory transduction (Supplement Fig. 3d).

Machine learning identifiespatientswith glioma-related epilepsy
To identify genes that may influence the occurrence of GRE by tran-
scriptome sequencing, 113 combinations of 12 machine-learning algo-
rithmswere screened.Weconstructed aWaynediagramusing three cohorts
of differential genes, and the epilepsy genes looked for inWGCNAby taking
the intersection; a total of 33 geneswere obtained (Fig. 4A). As shown in the
forest plot, all genes were risk genes for glioma prognosis by one-way Cox
analysis except VEPH1 (Fig. 4B). The model constructed by LASSO and
Random Forest had an AUC value of 0.999 in the training set of the RNA-

Fig. 2 | Identification and enrichment analysis of glioma-related epilepsy gene co-
expression network. A Differences in clinically relevant characteristics.
BHierarchical clustering trees to construct genemodules.CDifferent genemodules
associated with glioma-related epilepsyD, ECorrelation of magenta (D) and brown

(E) modules with glioma-related epilepsy. F, G Glioma-related epilepsy magenta
gene module Go and KEGG enrichment analysis. H, I Go and KEGG enrichment
analysis of brown gene modules in gliomas without epilepsy.
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seq 693 cohorts. In the test cohort, the AUC of cohorts 301 and 325 were
0.685 and 0.692, respectively, with an average of 0.792 (Fig. 4C). After
screening, model genes were VEPH1, ABCC3, COL5A2, VEGFA, EMP3,
GOS2, GDF15, ANXA1, and TAGLN2. The LASSO screening process is
shown inFig. 4D,E).Randomforests showed theweights of themodel genes
(Fig. 4F). Moreover, all model genes were differentially expressed in GRE
andnon-epilepsy glioma patients (p < 0.001) (Fig. 5A). Except forTAGLN2,
all genes were highly expressed in glioma patients with poor prognosis
(Supplement Fig. 4a-i). The diagnostic model genes were associated with
hypoxia, glycolysis, and xenobiotic metabolism signaling pathways
(p < 0.001) (Fig. 5B). Among the diagnostic model genes, the correlation
coefficients between COL5A2 and VEGFA, ANXA1 and TAGLN2, GDF15,
andTAGLN2were 0.79, 0.82, and0.79, respectively (Fig. 5C).We found that
VEPH1 was negatively correlated with most immune cells, whereas the
remaining model genes were positively correlated with most immune cells
(Fig. 5D).

Identification of glioma-related epilepsy genes and tumor
immune microenvironment
Furthermore, we analyzed the expression of GRE in five cell subpopulations
in the glioma microenvironment. As shown in Fig. 6A, the heatmap shows
our subpopulations of marker genes, microglial cells (CSF1R, CX3CR1,
P2RY12, and TMEM119), macrophages (CD163 and CD68), neutrophils
(FPR2, CXCR2, and IL1R2), endothelial cells (VWF, CD34, FLT1, and
CLDN5), and T cells (CD8A,CD3E, andCD3D). Additionally, we visualized
each subpopulation of cells usingUMAPwhile showing the number of cells.

The 52,387 cells in the adjacent normal tissue and 60,707 cells in the tumor
tissue were shown byUMAP (Fig. 6B). UMAP revealed the distribution and
composition of each cell subgroup (Fig. 6C). Compared to the adjacent
normal tissue, the proportion of microglia and endothelial cells decreased
and the proportion of macrophages and neutrophils increased in the tumor
tissue (Fig. 6D). We also analyzed the expression of diagnostic model genes
in different tumor microenvironment cells. Most model genes were
expressed in the tumor tissue microenvironment (Fig. 6E, F). In addition,
G0S2was expressed in all thefive cell subpopulations. Compared to adjacent
normal microenvironment cells, ANXA1 was more highly expressed in
microglial cells, macrophages, endothelial cells, and T cells in the tumor
microenvironment. EMP3 is highly expressed in microglia and endothelial
cells. VEGFA was mainly expressed in macrophages and neutrophils
(Fig. 6F).Moreover, we found that TGF-β had the highest activation activity
in cell subpopulations, while high activation was in endothelial cells (Sup-
plement Fig. 5a). Subsequently, we performed cell trajectory extrapolation in
the tumor microenvironment to simulate cell dynamics (Supplement Fig.
5b). Endothelial cells, as the starting differentiated cells, gradually differ-
entiated into other tumor microenvironment cells over time (Supplement
Fig. 5c). After inferCNV analysis, we classified endothelial cells asmalignant
or benign cells (Supplement Fig. 5d). GSEA enrichment analysis of benign
and malignant cells showed that the highly expressed signaling pathways
were involved in focal adhesion, protein digestion and absorption, and
ECM-receptor interactions (Supplement Fig. 5e).Mapping of the expression
of diagnostic model genes through AUCell revealed that diagnostic model-
related genes were highly expressed in malignant cells (Supplement Fig. 5f).

Fig. 3 | Immune cell infiltration in glioma-related epilepsy. A Differences in
clinical features among patients with high and low immune cell infiltrating gliomas.
B Differential expression of 13 immune cell function scores. C Differential expres-
sion of immune checkpoints in patients with glioma-related epilepsy and glioma.
D, EAssessment of immune cell infiltration using CIBERSORT (D) and ssGSEA (E)

algorithms. The center line represents themedian, the bounds of the box indicate the
interquartile range (IQR) from the 25th to 75th percentile, and the whiskers extend
to 1.5 times the IQR from the 25th and 75th percentiles. Error bars represent the
standard deviation (SD). (*p < 0.05, **p < 0.01, ***p < 0.001).
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Verification of model gene expression in vivo and in vitro
Weanalyzed the expressionofmodel genes in the gliomacell linesU251 and
T98G, and normal human astrocyte line SVGp12 using quantitative poly-
merase chain reaction (qPCR). Compared to normal cells, ANXA1, EMP3,
GDF15,TAGLN2,VEGFA, andVEPH1were highly expressed in tumor cell

lines (p < 0.05)(Supplement Fig. 6a, b). Immunohistochemistry revealed
that the expression levels of ABCC3, ANAX1, COL5A2, EMP3, GDF15,
G0S2, and TAGLN2 were higher in the epilepsy group than in the non-
epilepsy group, whereas the expression ofVEPH1was lower in the epilepsy
group than in the non-epilepsy group (p < 0.05) (Supplement Fig. 6c, d).

Fig. 4 | Building and testing a machine learning identification model for glioma-
related epilepsy diagnosis. AWenndiagram showing the intersection of differential
and WGCNA co-expressed genes. B Forest plot showing a one-way Cox analysis of
33 genes.CAUC in training cohort RNA-seq 693 and validation cohorts 301 and 325
in different machine learning algorithms.D, E In the RNA-seq 693 cohort (n = 584),
the optimal λ value is selected and filtered to obtain the most useful model gene.

F The importance of nine model genes in the Random Forest model. The center line
represents the median, the bounds of the box indicate the interquartile range (IQR)
from the 25th to 75th percentile, and the whiskers extend to 1.5 times the IQR from
the 25th and 75th percentiles. Error bars represent the 95% confidence intervals (CI).
(*p < 0.05, **p < 0.01, ***p < 0.001).
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Discussion
We collected transcriptomic and clinically relevant information on the
largest number of patients with GRE to date and analyzed genetics, muta-
tions, methylation, drug prediction analyses, and machine learning to
identify diagnostically relevant genes, as well as cellular identifications that
may influence the immune microenvironment of epilepsy. Thus, in the
present study, we identified synaptic or ion channel-related signaling
pathways that may contribute to the development of GRE. A predictive
model capable of diagnosing glioma-associated epilepsy was constructed
using various machine-learning algorithms. Moreover, we found that most
model-related genes were centrally expressed inmalignant endothelial cells.
This may have led to an earlier onset of symptoms and resection of the
lesions.

In the present study, we found that multiple signaling pathways were
upregulated in patients with GRE, such as metabolism-related signaling
pathways steroid biosynthesis, pentose and glucuronate interconversions,
glycine serine and threonine metabolism, glycosphingolipid biosynthesis
lacto and neolacto series, oxidative phosphorylation, and sphingolipid
metabolism. In a metabolomic review on epilepsy published by Lai et al.,
alanine, aspartate, and glutamatemetabolism; glycine, serine, and threonine
metabolism; glycerophospholipid metabolism; glyoxylate and dicarboxylic
acid metabolism; and arginine and proline metabolism were found to be
involved in epilepsy. This is consistent with the findings of our study that

metabolic signaling pathways may be involved in the GRE. Patients and
animal models of GRE were well controlled after treatment with glutamate
receptor antagonists35–37. Pyruvate carboxylase, pyruvate carboxylase, and
glutamine synthetase have also been shown to be expressed in GRE tumor
tissue38. Synapse-associated signals, such as nicotine addiction, cholinergic
synapses, GABAergic synapses, and glutamatergic synapses, were enriched
in our study. Thus, GRE genes may promote synapse formation. It has also
been demonstrated that GRE genes promote excitatory synapse formation,
leading to hyperexcitability of the cortical network surrounding the tumor,
which may provide new insights into the epileptogenic mechanisms
of GRE22.

Patients with GRE are usually predicted to have a lower tumor grade
and better prognosis. Patients with concurrent epilepsy usually have a
molecular genetic profile of IDH mutations combined with 1p19q
deletions19. This finding is consistent with the results of our analysis. Low-
grade gliomas are slow-growing and epileptogenic, and epilepsy is the most
common initial symptom in patients39. Previous studies have found that
IDH mutations lead to increased release of D-2-hydroxysteroids in the
tumor cellmicroenvironment and that the high structural similarity ofD-2-
hydroxysteroids to the excitatory neurotransmitter glutamate, which
increases neuronal activity and incidence of epilepsy in patients with iso-
citrate dehydrogenase 1 mutant gliomas40. The co-occurrence of the IDH
mutation and combined 1p19q deletion is important for the diagnosis of

Fig. 5 | Correlation of model gene expression with metabolism and immunity.
A Beeswarm showing the difference in diagnostic model gene expression between
glioma-related epilepsy and non-epilepsy. B Heatmap showing diagnostic genes
correlate with metabolic signaling pathways. C Correlation analysis between model
genes.DHeat map showing the correlation betweenmodel genes and immune cells.

The center line represents the median, the bounds of the box indicate the inter-
quartile range (IQR) from the 25th to 75th percentile, and whiskers extend to 1.5
times the IQR from the 25th and 75th percentiles. Error bars represent the standard
deviation (SD). (*p < 0.05, **p < 0.01, ***p < 0.001).
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oligodendroglioma. Patients with oligodendrogliomas containing oligo-
dendroglial components and those with gliomas containing IDHmutations
are at a high risk of developing epilepsy, although all of the above risk factors
need to be clarified by pathological examination. Additionally, our study
found that the average age of patientswhounderwent theGREwas 38 years.
Therefore, in conjunction with previous literature, having the following risk
factors may help physicians and patients make an early prognosis of sus-
ceptibility to preoperative GRE: age < 38 years, location of the glioma in the
frontotemporal lobe functional area, and imaging findings suggestive of
cortical involvement of the glioma41.

To further identify genetic models for diagnosing patients with GRE.
Using 113 combinations of 12 machine learning algorithms, the combina-
tion of LASSO and Random Forest was identified as the optimal model,
significantly reducing thedimensionalityof the variables, revealingpotential
patterns, and contributing to the creation of a simplified and translatable
model for clinical applications. As a result, the nine identified gene features
accurately predicted GRE. The identified model bases were strongly cor-
related with metabolic signaling pathways, such as oxidative stress, glucose
metabolism, and immune cell infiltration. These genes may provide a
direction for further analyses of the mechanisms underlying epilepsy in

gliomas.Moreover, all gradeswere combinedas inputs to themodel,making
it difficult to determine whether these results were associated with the
presence or absence of epilepsy. Owing to the effects of IDHmutations and
different characteristics of glioblastomas, further studies are necessary to
specifically investigate the association between epilepsy and glioma
subtypes.

The development of GRE involves various factors, including tumor
location, tumor histopathology, characteristics of the peritumoral micro-
environment, and specific genetic alterations. Many scholars have begun to
recognize that extensive and in-depth studies on glioma development in the
tumor microenvironment are likely to provide new targets and therapeutic
tools for tumor therapy due to the tumor microenvironment. Our results
revealeddifferences in the expression of immune checkpoints betweenmost
patients with GRE and those without epilepsy. This may be one of the
reasons why patients with GRE have a better prognosis after receiving
systemic therapy. Microglia, macrophages, neutrophils, endothelial cells,
andT cells are themain immune cell types in the gliomamicroenvironment
of the brain42. Moreover, diagnostic recognition genes, such as ANXA1,
EMP3, and VEGFA, are highly expressed in most of the tumor micro-
environment cells. Endothelial cells are key cellular components of the

Fig. 6 | Diagnostic model genes expressed in glioma microenvironmental cells.
A Heatmap showing cell maker gene expression in different subtypes of cells.
B UMAP plot showing expression of tumor microenvironment cells in adjacent
normal and tumor tissues. C UMAP plot showing expression of maker genes in
subpopulation cells. D Comparison of cell subpopulation ratios in adjacent normal
and tumor tissues. E Diagnostic model gene expression of cell subpopulations in

adjacent normal tissues. FDiagnostic model gene expression of cell subpopulations
in tumor tissues. The center line represents the median, the bounds of the box
indicate the interquartile range (IQR) from the 25th to 75th percentile, and whiskers
extend to 1.5 times the IQR from the 25th and 75th percentiles. Outliers beyond this
range are plotted individually.
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blood-brain barrier. Brain endothelial cells establish a continuous complex
of tight junctions and adhesion junctions along the endothelial cell-
endothelial cell contact surface, providing a tight size-selective barrier43.
They further express different influx and efflux transporters, several of
which are capable of binding and limiting the brain penetration of a wide
range of small lipophilic xenobiotic compounds and drugs43. Some patients
with gliomas have difficulty controlling epilepsy after surgery and con-
ventional antiepileptic drug therapy. Single-cell sequencing revealed that
epilepsy diagnostic genes were highly expressed in malignant endothelial
cells. This may provide a theoretical basis for the identification of new
epilepsy drugs.

Histone modifications play important roles in epigenetic regulation.
Meanwhile, after our analysis, we found that histone inhibitorsmay become
a controllingGRE drug. Currently, sodiumvalproate is themost commonly
used antiepileptic drug. Sodium valproate is a histone deacetylase inhibitor
with anti-inflammatory, neuroprotective, and anti-convulsant properties.
Despite extensive clinical drug trials, histone inhibitors are often used as
adjunctive agents in combination with immunosuppressive agents for the
treatment of glioblastoma but do not achieve good therapeutic results44,45.
However, the results of our drug personalization analysis were based on
sequencing data, and more animal and cellular experiments are needed to
validate the feasibility of these drugs in the future. Thus, further studies
should explore whether the use of histone inhibitors in patients with low-
grade gliomas can control epilepsy while slowing tumor progression.

We collected and integrated data related to a large sample of patients
with GRE, which is valuable for clinical guidance. The results of these
analyses are promising; however, some limitations remain. First, all analyses
were retrospective, and future validation of the diagnostic models should be
performed in a prospective multicenter study. Second, some molecular,
pathological, and clinical features were lacking, which may mask certain
factors in the development of epilepsy in patients with gliomas. Gliomas
usually occur in the white matter, and epilepsy requires the involvement of
the graymatter. However, the tissue surrounding the tumor may also be an
important cause of epilepsy. Additionally, many glioma-related genes exert
their effects at the protein level through post-translational modifications,
which may not be evident in the transcription or methylation data. Finally,
the mechanistic role of the identified genes with diagnostic value in the
development of epilepsy in patients with glioma remains unknown, and
further in vivo and in vitro experiments are required to reveal their
functions.

In conclusion, we integrated multi-omics and clinical data to identify
high-risk factors that may contribute to the development of epilepsy in
patients with glioma as well as diagnostic models for identification. This
provides a basis for further understanding the clinical characteristics of
patients with GRE and the genetic mechanisms that may influence them.

Methods
Data source and study population
GRE was defined as at least one case of preoperative epilepsy without an
obvious trigger, based on the patient’s chief complaint and past medical
history5. In a retrospective analysis of 997 patients with glioma who
underwent craniotomy at Beijing Tiantan Hospital, 342 patients had pre-
operative epilepsy, and 655 patients had no preoperative epilepsy. The
patients’ diagnostic criteria were as follows: (1) Diagnosis of glioma was
confirmed using a combination of preoperative imaging and postoperative
pathology. (2) Documented history of well-defined preoperative epilepsy
andclinical signs. (3)EEGdemonstrating the correlationbetween apatient’s
tumor and epilepsy3. All patients received standard treatment, including
maximum safe resection, adjuvant radiotherapy, and/or chemotherapy,
depending on the tumor grade. Patient complaints, basic clinical informa-
tion, andmolecular pathological features were retrieved from the electronic
medical record system10. Tumor grading was performed according to the
World Health Organization (WHO) 2021 Classification of Tumors of the
Central Nervous System46. mRNA sequencing of postoperative tumor
sampleswasdivided intoRNA-seq693 (n = 507) andRNA-seq325 (n = 197)

using the IlluminaHiSeqplatformandArray301 (n = 293) using theAgilent
whole human genome (Array) platform, according to different sequencing
periods. Methylation sequencing data were obtained using the Illumina
Infinium HumanMethylation27 Bead-Chips platform at methyl 159
(n = 159). Data for gene mutations were obtained using the Agilent Sur-
eSelect kit v5.4 & IlluminaHiSeq 4,000 platformWESeq286 (n = 286)47. All
data, except for the clinical phenotype of epilepsy, were available for
download fromtheChineseGliomaGenomeAtlas (CGGA)platform48. The
scRNA-seq data of the four GBM and matched non-malignant brain
sampleswere obtained from theGeneExpressionOmnibus (GEO)database
(GSE162631)49. Transcriptome data were obtained from the CGGA data-
base (http://www.cgga.org.cn/index.jsp).

Ethics statement
This study was conducted in accordance with the Declaration of Helsinki.
The data collection was approved by the Institutional Ethics Committee
(Ethics Code: KY2014-002-02), andwritten informed consent was obtained
from all patients.

Identify differential gene analysis and signaling pathway
alterations
Moreover, we explored whether genes and signaling pathways influence
the occurrence of glioma-related epilepsy.We used “edgeR” and “limma”
packages from R software to analyze the different genes of GRE. The
filtering criteria were p < 0.05 and | logFC | >0.5. Simultaneously, the
volcano maps of RNA-seq693, RNA-seq325, and Array-301 were drawn
withRpackage “ggpubr,” using standard | logFC| > 0.5. To further analyze
the changes of signal pathways in GRE, the “GSVA” package was used to
view up-regulated and down-regulated signal pathways, and the “clus-
terProfiler” package was used to observe activation and inhibition signal
pathways50,51.

Immune infiltration and immune checkpoint evaluation
We analyzed whether immune cell infiltration affected the occurrence of
epilepsy in patients with gliomas. Simultaneously, immune cell infiltration
was evaluated using GREs. The immune cell infiltration was analyzed by R
package “ssGSEA” and 13 kinds of immune function scores published in
previous literature were scored52. To evaluate the correlation between
immunocyte infiltrationand the clinical andmolecular pathological features
of GRE, “ComplexHeatmap” was used to draw a heat map53.

Identification of co-expression network-related genes and
enrichment analysis
Next, we identified the genes that influence epileptogenesis in gliomas and
the signaling pathways that were affected.WGCNAwas used to identify the
gene modules associated with GRE and non-epilepsy (Supplement Fig. 7a).
We selected MEmagenta as the set of genes related to GRE for the enrich-
ment analysis. MEbrown module genes were selected for enrichment ana-
lysis in patients without epilepsy associated with gliomas. The results of GO
functional annotation and KEGG pathway enrichment analysis were plot-
ted using the R package “ClusterGVis.”

Building machine learning diagnostic models
We screened for genes that may affect glioma-associated epileptogenesis
using multiple machine-learning algorithms. To further evaluate the iden-
tification of diagnostic genes for GRE, 12machine learning algorithmswere
used: Random Forest (RF), least absolute shrinkage and selection operator
(LASSO), gradient boosting machine (GBM), support vector machine
(SVM), linear discriminant analysis (LDA), ridge regression (Ridge), gen-
eralized linear model boosting (glmBoost), partial least squares regression
generalized linear model (plsRglm), extreme gradient boosting (XGBoost),
stepwise generalized linear model (Stepglm), naive bayes classifier (Naive-
Bayes), and elastic network (Enet)54,55. Finally, based on the average AUC
values of the three cohorts, the most appropriate machine-learning model
was selected as the diagnostic model.
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Identification of glioma-related epilepsy mutant genes and
methylation differential genes
We analyzed whether gene mutations affected the occurrence of glioma-
related epilepsy. To further identifymutations in patientswithGRE, tumors
and matched blood samples were analyzed using exome sequencing. For
whole-exome sequencing, target capture was performed using the Agilent
SureSelect kit v5.4. For targeted sequencing, a customcollectionof 272 genes
was captured using SureSelectXT custom kits (Agilent Technologies).
Pairwise sequencingwasperformedusing the IlluminaHiSeq4000platform
as previously described47. The R package “ComplexHeatmap” was used to
visualize the different mutation types, clinical features, and the top 10 most
commonly mutated genes in glioma patients.

Analysis of immune scores and TheConnectivityMap in patients
with glioma-related epilepsy
We analyzed multiple immune scores that influenced the occurrence of
glioma-associated epilepsy anddrugs thatmay act. To assess immunological
and quantitative tumor tissue evaluation between patients with GRE and
patients with gliomas without epilepsy, the R package “IOBR” was used56.
The “IOBR” package is an immunological/biological study of multi-omic
data on tumors, capable of revealing the relationship between the tumor
microenvironment and clinical features.

To predict personalized drug therapy for GRE, an analysis was per-
formed using the Connectivity Map (CMAP) database57. The CMAP
database is based on species using similar gene expression profiles to predict
therapy for an individual and is primarily used to reveal functional asso-
ciations between small-molecule compounds, genes, and disease states. The
CMAP score was calculated using the function “XSum.”

Epilepsy-causing genes were expressed in the tumor
microenvironment
scRNA-seq data from gliomas were used to assess GRE gene expression in
the tumor microenvironment. Four GBM tumor tissues and four adjacent
normal tissues were analyzed. After quality control and screening, cells
expressing 200–6000 genes and less than 25% of the mitochondrial genes
were selected (Supplement Fig. 7b, c). Two thousand hypervariable genes
were selected for subsequent analyses (Supplement Fig. 7d). The R package
“harmony” was used to integrate multiple samples for de-batching (Sup-
plement Fig. 7e). Finally, we identified the clusters of cells grouped before
annotation (Supplement Fig. 7f).

The R package “InferCNV” was used to identify copy number varia-
tions in scRNA-seq analysis by pipeline parameters. According to previous
literature, cells with a CNV signal greater than 0.05 and a CNV correlation
coefficient greater than 0.5 were defined as malignant, and cells below these
two thresholds were defined as non-malignant (Supplement Fig. 7g).
Manual annotation was performed using previously published literature
and the CellMaker database58. The R package “decoupleR”was also used to
demonstrate the activation and inhibition of signaling pathway activity in
cell subpopulations.

Cell culture, RNA extraction, cDNA synthesis, and quantitative
real-time PCR
Furthermore, we validated the expression of the diagnostic model genes
using the glioma cell lines U251 and T98G and the normal human
astrocyte line SVGp12. The primer sequences are listed in Supplementary
Table 2. The human glioma cell lines, U251, T98G, as well as the human
astroglia SVGp12, were obtained from Procell (Wuhan, China) and cul-
tured in Dulbecco’s modified Eagle medium (DMEM; Servicebio) sup-
plemented with 10% fetal bovine serum (FBS, Excel) and 10ul/ml
Penicillin–streptomycin solution, (100×, Biosharp) at a cell incubator
(Hair) at 37 °C with 5% CO2.

Total RNA was extracted from tissues preserved at a
temperature <−80 °C using Takara RNAiso Plus (Takara Bio. Inc., Otsu,
Shiga, Japan), following the manufacturer’s protocol. cDNA was synthe-
sized from 1 μg of RNAusing the HiScriptIII Q RT SuperMix for qPCRKit

(Vazyme Medical Technology). The 2−ΔΔCt method was used to process
qPCR data.

Immunohistochemical verification of model gene expression
We used tumor tissues from three patients with GRE and three without
epilepsy to validate the model gene expression. Every pathological sec-
tion was evaluated by two experienced pathologists, with diagnostic
conclusions aligned with both the imaging results and clinical assess-
ments. All the samples were fixed in 10% formalin. Subsequently, the
tumor tissues were dehydrated, clarified, and embedded in paraffin.
Tissues were consistently sectioned at 4–5 μm and stained with
hematoxylin–eosin (HE). After selecting the representative lesion areas,
the sections were baked and deparaffinized, followed by three 5-minute
washes in PBS. Subsequently, the samples were immersed in citrate
buffer (pH 6.0) for repair. After the nonspecific sites were saturated with
5% normal goat serum, the sections were incubated overnight at 4 °C
with primary antibodies (ABCC3, #DF3874, EMP3, DF14661, Trans-
gelin 2 #DF12053, 1:200, Affinity; G0S2, #A9970, GDF15, #A0185,
#ANXA1, #A0767, VEGFA, #A0280, 1:200, Abclonal; COL5A2, #CSB-
PA072697, 1:100, Cusabio). They were then washed thrice with PBS for
5 min each. The sections then received a secondary antibody treatment
at 37 °C for 10 min, followed by another PBS wash and DAB staining.
Staining was halted using PBS. After dehydration with ethanol, sections
were sealed using xylene. The criteria for determining positive staining
were based on the color range from yellow to brown-yellow. The gra-
dation for positive staining was as follows: (3, ≥50%; 2,≥5% and <50%; 1,
≥1% and <5%; and 0, <1%).

Data availability
The data presented in this study are deposited in the SequenceReadArchive
(SRA) repository with the accession numbers PRJCA001747,
PRJCA001746, and PRJCA001636. All data were sourced from the CGGA
database (http://www.cgga.org.cn/) (mRNAseq_693, mRNAseq_325,
mRNA-array_301, methyl_159, WESeq_286) and the TCGA database
(http://www.cgga.org.cn/). Additional clinical information can be obtained
from the corresponding author.

Code availability
All code for this study is available on GitHub.
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