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ABSTRACT

CT images are a critical diagnostic tool in modern medicine, yet they face risks
to image authenticity posed by diverse image tampering techniques, which could
disrupt the normal medical order and the societal trust system. Although image
tamper detection technology has made some progress, techniques specifically tar-
geting CT image tampering detection are extremely scarce. This paper proposes
a dual-branch feature fusion framework based on generative artificial intelligence
(GenAI) for CT image tampering detection. This framework utilizes a ResNet-
based generator to create tampered images that rich in edge and noise features,
which are then fed into a dual-branch discriminator to separately learn noise and
edge features. For the features learned by the discriminator, we designed a feature
fusion module that captures complex relationships between features and selects
different feature weights through a cross self-attention mechanism and dynamic
feature selection. Additionally, we created a CT image tampering dataset and
conducted comparative experiments with existing mainstream methods on public
image tampering datasets and the self-made CT tampering image dataset. Experi-
mental results demonstrate that the proposed method possesses good accuracy and
robustness, providing an effective solution for CT image tamper detection.

1 INTRODUCTION

In modern medicine, computed tomography (CT) images have become one of the core tools for doc-
tors in diagnosis and treatment decision-making, as noted by Khatami et al. (2017). However, with
the rapid development of image tampering techniques, CT images face increasing risks of tampering,
as reported by Pasqualino et al. (2024). Therefore, research on detection technologies for CT image
tampering holds significant value and importance, as emphasized by Ghoneim et al. (2018). Tradi-
tional methods for image tamper detection are mainly categorized into detection based on tampering
trace detection and intrinsic image feature statistical analysis, as described by Chen Yi Lei (2011).
Common methods in tampering trace detection include block matching and feature vector analysis,
resampling trace detection, and edge discontinuity detection Niu et al. (2021). Block matching in-
volves dividing the image into fixed-size blocks, extracting feature vectors such as DCT coefficients,
and identifying abnormal or repeated blocks to find tampered areas, particularly effective in copy-
move operations Zhuang et al. (2021). Resampling trace detection uses periodic signals introduced
by interpolation during operations to judge if scaling or rotation has occurred. Edge discontinuity
detection locates anomalies by discovering inconsistencies in image edges after tampering Lin et al.
(2011). Intrinsic image feature statistical analysis is achieved through pattern noise analysis and
color channel correlation detection, where the former locates tampered areas by identifying regions
lacking noise specific to imaging devices, and the latter detects tampering traces by utilizing changes
in color channel correlation Barad & Goswami (2020). Additionally, deep learning technology has
made remarkable strides in the field of image tamper detection, fundamentally transforming the way
such tasks are approached Fridrich et al. (2003). Convolutional Neural Networks (CNN) are widely
employed in image tamper detection due to their robust feature extraction capabilities Liu et al.
(2022). CNN utilize a series of convolutional layers to progressively detect hierarchical patterns in
the data, from simple edges and textures to more complex structures and tampering artifacts. By ap-
plying filters across an image, CNN can capture spatial hierarchies and relationships, enabling them
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to identify subtle changes and anomalies indicative of tampering. This layered approach not only
enhances the accuracy of detection but also allows for the efficient processing of high-dimensional
image data. Moreover, CNN incorporate pooling operations that reduce the spatial dimensions of
feature maps, which helps in managing computational complexity and preventing overfitting. Pool-
ing layers, such as max pooling, condense information by selecting the most prominent features,
aiding robustness against variations and distortions in the input data. This is particularly important
in tamper detection, where the model must discern between genuine content and alterations that may
be minuscule or concealed.

In recent years, the rapid development of Generative Adversarial Networks (GAN) has been demon-
strated by Remya Revi et al. (2021), along with generative algorithms and pre-trained models, sig-
nificantly improving the quality and diversity of Artificial Intelligence Generated Content (AIGC)
Xu et al. (2024). This adversarial training between generation and discrimination greatly enhances
the realism of model-generated images, while also promoting the learning of image details by the
discriminator. The application of GAN in image tamper detection is also gradually increasing, as
noted by Zhang et al. (2024), with researchers beginning to use its generative capabilities to enrich
the training data of detection models while improving the ability to recognize complex tampering
techniques. Traditional CNN detection methods face challenges when dealing with highly realistic
generated images, and the application of GAN provides a new path to solve this problem. By deeply
analyzing the characteristics of GAN-generated images, researchers have developed various detec-
tion techniques: on one hand using fake samples generated by GAN to enhance the diversity of the
detection training set, and on the other hand combining GAN with deep learning techniques such as
attention mechanisms and feature extraction technologies to further improve sensitivity to different
types of tampering Xu et al. (2024). These methods perform excellently in capturing subtle and com-
plex tampering traces, but still need to address the problem of high requirements for high-quality
and diverse data. With further research, the combination of GAN and other detection technologies
will help improve the accuracy and robustness of image tamper detection. Although image tamper
detection methods have achieved certain detection effects in some areas, they still show inadequa-
cies when addressing the specific challenge of CT image tampering. For CT image tamper detection,
current methods mainly include machine learning algorithms Ghoneim et al. (2018), image feature
analysis, and data integrity verification methods Chiang et al. (2008). However, these methods face
technical limitations when dealing with complex tampering scenarios, including insufficient ability
to recognize different types of tampering, strong dependency on specific datasets, and adaptability
issues when addressing diverse CT image tampering techniques. Therefore, further in-depth re-
search is needed to enhance the accuracy and robustness of these methods to effectively address
diverse image tampering threats.

In this study, we aim to address the critical challenges associated with CT image tampering de-
tection by proposing a novel dual-branch feature fusion framework based on generative artificial
intelligence (GenAI). Existing methods, including traditional handcrafted feature-based approaches
and modern transformer-based algorithms, exhibit limitations in handling the unique characteristics
of medical images. Traditional methods often struggle with complex manipulations and fail to gen-
eralize across diverse tampering scenarios, while transformer-based approaches tend to emphasize
global dependencies, potentially overlooking subtle local anomalies and fine-grained features essen-
tial for CT image analysis. To overcome these challenges, our framework integrates edge and noise
features through a cross-attention mechanism, enabling precise localization of tampered regions.
Furthermore, by leveraging the capabilities of GAN to produce realistic tampered images during
training, our approach enhances robustness and generalization performance, making it well-suited
for the complex and subtle nature of medical image tampering detection.

Our contributions are summarized as follows:

• We propose a GenAI-based dual-branch feature fusion framework, generating more tam-
pered images with edge and noise features using a ResNet-based generator, which are fed
into a dual-branch discriminator to learn noise and edge features in generated CT tampered
images.

• Leveraging GenAI characteristics, we design a feature fusion module for the dual-branch
discriminator, which includes a cross self-attention mechanism, residual connections, and
dynamic feature selection. The cross self-attention mechanism captures complex relation-
ships between features, residual connections alleviate gradient vanishing in deep networks,
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and dynamic feature selection determines the weights of different features, improving the
specificity of fused features.

• We create a CT image tampering dataset and conducted comparative experiments with
existing mainstream methods on public image tampering datasets and a self-made CT tam-
pered image dataset. Experimental results prove that our method has excellent accuracy
and robustness.

2 RELATED WORK

2.1 MEDICAL IMAGE DETECTION

In recent years, deep learning has revolutionized medical image analysis, significantly improving
tasks such as disease diagnosis, lesion localization, and organ segmentation Chen et al. (2017;
2023a). GAN-based methods, such as DH-GAN proposed by Liu et al. (2024), have shown promise
in localizing manipulated regions by leveraging adversarial learning to enhance feature representa-
tion. The end-to-end Coupled GAN for multimodal feature fusion in Alzheimer’s disease classi-
fication was introduced by Ma et al. (2021). In cancer diagnosis and lesion detection, Pasqualino
et al. (2024) presented MITS-GAN to protect image authenticity against tampering attacks, while
Tang et al. (2023) designed a dual-stream attention network based on ResNet variants to focus on
texture and shape features for thyroid nodule diagnosis. For MRI, CNN and MIL-based methods
Chen et al. (2023b); Farooq et al. (2017) have been extended by Lu et al. (2025) with a dual-branch
framework using cross-attention loss to capture both spatial and local features. In multi-organ seg-
mentation, Wan et al. (2024) proposed a single encoder multi-decoder design to construct and ag-
gregate dependencies between organs, while semi-supervised approaches Chen et al. (2023c) im-
prove encoder-decoder features via attention-guided predictors and semantic contrast learning to
enhance performance when handling unlabeled data. Despite these advances, challenges remain
in high-dimensional image analysis, subtle anomaly detection, and generalization across imaging
modalities.

2.2 IMAGE TAMPERING DETECTION

Image tampering detection has become a major research area due to the increasing ease of manipula-
tion with advanced editing tools Mehrjardi et al. (2023). A blocking strategy with rich model CNNs
to process image blocks for robust localization was proposed by Zhou et al. (2017), while Yang et al.
(2020) introduced Constrained R-CNN, a coarse-to-fine architecture learning unified manipulation
features. Han et al. (2024) developed HDF-Net with RGB and SRM dual streams, integrating mul-
tiple saliency modules to improve accuracy, and Dong et al. (2022) designed a multi-view feature
learning network exploiting boundary artifacts and noise cues. Liu et al. (2022) proposed PSCC-Net
with spatial-channel correlation modules for multi-scale manipulation detection, and Huang et al.
(2022) introduced DS-UNet to coarsely locate and refine tampering traces by revealing noise incon-
sistencies. Islam et al. (2020) applied a dual-attention GAN to capture positional and discriminative
features for copy-move detection, while Remya Revi et al. (2021) explored both active and pas-
sive approaches, highlighting passive techniques such as AT-MobileViT and CSA blocks for AIGC
image detection. These methods have shown strong results, but detecting subtle manipulations in
complex domains remains challenging.

2.3 MEDICAL IMAGE TAMPERING DETECTION

Compared with general tampering detection, medical image tampering detection is less mature but
has shown promising progress. Active protection methods Lu et al. (2024); Qasim et al. (2018),
such as encryption and watermarking, aim to enhance the security and integrity of image data dur-
ing transmission and storage. For example, a hybrid watermarking algorithm combining DWT and
MobileNetV2 to improve robustness, concealment, and recovery capability under attacks was pro-
posed by Nawaz et al. (2024). Passive detection methods are also gaining attention: Lin et al.
(2023) introduced EMT-Net to enhance edge artifacts and capture subtle traces, and Bai et al. (2025)
developed PIM-Net to exploit pixel- and region-level inconsistencies for fine localization. GAN-
based frameworks such as MITS-GAN Pasqualino et al. (2024) add perturbations to improve anti-
tampering capability in CT images, while Chiang et al. (2008) used wavelet transforms for detecting
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and repairing tampered areas without original-image comparison. Ghoneim et al. (2018) combined
multi-resolution regression filtering with machine learning for real-time tamper detection in cloud
environments. However, many existing methods target specific image types or tampering scenar-
ios, limiting generalizability. The complexity of anatomical structures and the requirement for high
sensitivity in detecting subtle modifications motivate the development of more robust and adaptable
frameworks, such as the one proposed in this work.

3 METHOD

3.1 OVERALL FRAMEWORK

Our proposed framework aims to effectively detect tampering in medical CT images, as shown in
Figure 1. The generator in our framework plays a critical role in enhancing the model’s generaliza-
tion performance. Specifically, the generator takes random noise vectors as input, enabling it to in-
troduce stochastic variations into the generated images, such as differences in edge sharpness, noise
intensity, and boundary irregularities. Furthermore, the adversarial training process encourages the
generator to continuously improve the realism of the tampered images, further contributing to the
model’s ability to generalize across different types of tampering scenarios. The discriminator is de-
signed with a dual-branch structure, learning edge and noise features separately. The edge discrimi-
nator branch (D1) extracts edge information using edge enhancement techniques and a U-Net edge
segmentation module. This branch aids in detecting boundary discontinuities in images, especially
important for detecting tampering involving geometric adjustments or morphological changes. By
combining U-Net’s feature extraction capabilities with edge enhancement mechanisms, this branch
effectively detects anomalies in edge distribution. The noise discriminator branch (D2) enhances
subtle and critical noise features in the image using Spatial Rich Model (SRM) filters. In medical
images, slight noise changes may indicate tampering traces. By applying SRM filters, this branch
identifies noise differences produced during tampering, detecting tampering traces in CT images.

FC

ReLU

Edge Discriminator

Input Image

Generated Image

Fake / Not

ResNet

Generator

Edge

Enhancement

U-Net Edge segmentation AC-FPN

CEM
Conv

⊙

⊙

⊕

Edge Discriminator

AC-FPN

CEM
Conv

⊙

⊙

⊕

SRM

Filter

Noise identification

Conv 3×3, ReLUMax Pool 2×2Adaptive Average Pool

⊕

Figure 1: Proposed Network Structure

3.2 EDGE DISCRIMINATOR BRANCH

The edge discriminator branch (D1) focuses on extracting edge features from the generated CT
images, which are crucial for identifying abnormal boundaries caused by tampering.

First, the edge enhancement module applies a Sobel filter to identify and amplify edge features in
the image:

Eenhanced =
√
(Gx ∗ Iinput)2 + (Gy ∗ Iinput)2 (1)
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where Gx and Gy represent the convolution kernels of the Sobel filter in the horizontal and vertical
directions, and ∗ denotes the convolution operation.

Next, our U-Net variant processes the edge-enhanced feature map, combining encoder, decoder, and
skip connections to extract hierarchical and multi-scale edge features, which enhances sensitivity to
tampering details:

Fseg = U-Net(Eenhanced) (2)

After U-Net completes the segmentation, the AC-FPN (Adaptive Contextual Feature Pyramid Net-
work) module performs multi-scale fusion on the segmented edge features. AC-FPN optimizes edge
feature expression by integrating features at different scales. First, the input features are decomposed
into representations at different scales through multi-scale feature extraction:

F i
pyramid = Downsample(Fseg), i = 1, 2, . . . ,m (3)

where Ffused represents the final fused feature map after multi-scale integration, and F i
pyramid denotes

the feature map at scale i extracted by the multi-scale feature extractor. βi are learnable weights
that determine the contribution of each scale feature map during fusion. Upsample(·) refers to the
upsampling operation, which restores the spatial resolution of the feature maps to match the original
input size. This weighted summation ensures that features across different scales are effectively
combined to enhance representation.

Then, features at different scales are integrated through weighted summation:

Ffused =

m∑
i=1

βi · Upsample(F i
pyramid) (4)

where βi are learned weights used to control the contribution of features at different scales.

Finally, through the AC-FPN module, features are integrated to extracte more detailed feature ex-
pressions.

3.3 NOISE DISCRIMINATOR BRANCH

The noise discriminator branch (D2) is designed to enhance and extract noise-related features, which
are critical for detecting tampering artifacts in CT images. First, Spatial Rich Model (SRM) fil-
ters and the wavelet transform W(·) are combined to decompose the input image Iinput into multi-
frequency representations:

Wi = W(Iinput) ∗Hi (5)

where Hi denotes a set of high-pass SRM filters that enhance noise features in different directions.
Specifically, three representative SRM filters are used:

H1=


−1 2 −1
2 −4 2
−1 2 −1

, H2=


0 0 0
1 −2 1
0 0 0

, H3=


−1 2 −1
0 0 0
1 −2 1

 (6)

These filters help highlight noise inconsistencies caused by tampering. After this preprocessing, the
feature maps are further refined using a series of convolutional operations to form detailed noise
representations.

For enhanced discrimination, an Adaptive Contextual Feature Pyramid Network (AC-FPN) module
is employed to aggregate features at multiple scales. Down-sampling and up-sampling techniques
are combined for effective multi-scale fusion:

Ffused =

n∑
i=1

αi · Fi (7)

where Fi denotes the feature at scale i and αi are dynamically learned weights that adaptively
emphasize the most tampering-sensitive features.
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To further guide the network with anatomical context, an anatomical prior map Aprior is introduced.
An attention mechanism A(·) calculates attention weights Mattn for improved feature calibration:

Mattn = A(Fres, Aprior), Fadj = Mattn ⊙ Fres (8)

where ⊙ denotes element-wise multiplication.

Finally, the adjusted noise feature map Fadj is flattened and passed through a fully connected layer
for final decision:

Ffinal = FC(Flatten(Fadj)) (9)
where Flatten(·) operation converts the feature map into vector form for processing by the fully
connected layer. This process ensures that the final expression of noise features can effectively
support tamper detection decisions.

3.4 AC-FPN MODULE (PARTIAL)

In our dual-branch framework, the AC-FPN and feature fusion modules are critical for enhancing
detection sensitivity and accuracy. The Adaptive Contextual Feature Pyramid Network (AC-FPN),
shown in Figure 2, builds on the traditional Feature Pyramid Network (FPN) framework, but is
adapted for the unique characteristics of medical images.

Anatomical

Prior Map

Feature

Preprocessing

Input Feature

Bottom-Up Feature Encoding

Local feature

extraction

Hierarchical

abstraction

Multi-scale

representation

Top-Down Feature Decoding

Semantic 

propagation

Upsampling

fusion with

shallow features

Multi-Scale Feature Fusion

feature alignment
Enhance 

discriminative context

Anatomical Prior 

Guided Adjustment

Output Feature

Figure 2: Detailed architecture of the AC-FPN module.

The AC-FPN first receives input features from the generator, which are processed through a series
of convolutional layers:

F i
conv = σ(W i ∗ Finput + bi), (10)

where F i
conv denotes the output of the i-th convolutional layer, ∗ the convolution operation, and σ an

activation function (typically ReLU).

Multi-scale processing follows a bottom-up path, where features from all layers are aggregated:

Fbottom-up =

n∑
j=1

αj · Pool(F j
conv), (11)

with αj as learnable weights and Pool(·) representing a pooling operation.

3.5 FEATURE FUSION MODULE

Attention maps for each branch are first computed using learnable weight matrices:

AD1 = softmax(WD1FD1), AD2 = softmax(WD2FD2), (12)

The attention maps are then integrated by element-wise multiplication:

Acombined = AD1 ⊙AD2, (13)
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The combined attention map is used to weight the sum of feature maps from both branches, yielding
the final fused feature:

Ffinal = Acombined ⊙ (FD1 + FD2) (14)

Furthermore, multi-scale fusion is performed by weighted summation:

Facfpn =

m∑
i=1

γi · F i
scale, (15)

where F i
scale are features at different scales and γi are learned weights.

Guided by anatomical prior maps, this process ensures fused features can better reflect anatomical
structures and tampered regions. During training, adversarial loss, edge loss, and noise loss are
combined, with the total loss formulated as:

Ltotal = αLadv + β Ledge + γ Lnoise + δ Lattn

= α

(
− 1

nr

∑
(1− p̄(real))

2
logD(xr)

)
+ β

(
− 1

nf

∑
(1− p̄(fake))

2
log(1−D(G(z)))

)
+ γ

1

nr

∑
∥FD1(xr)− FD1(G(z))∥22

+ δ
1

nr

∑
∥FD2(xr)− FD2(G(z))∥22

(16)

4 EXPERIMENTS

4.1 EXPERIMENTAL PREPARATIONS

4.1.1 PUBLIC AND CUSTOM CT TAMPERED IMAGE DATASETS

We evaluate our method on multiple public tampered image datasets, including CASIAv2,
Columbia, NIST16, and MSMC series datasets, which contain diverse manipulation types such as
copy-move, splicing, and inpainting. Detailed dataset composition, image counts, and manipulation
type breakdowns are reported in Appendix A.4, along with Table 5.

Lesion

Specification

……

Lesions

Lung

Detection

CT Image with Tamper 

region

SAM2

Image

Segmentation

Shuffle Rotation scratch

Splicing within 

effective area

SAM2

Image

Segmentation

Figure 3: The workflow for creating the custom CT image dataset. This
process involves the segmentation and manipulation of lesions to generate
diverse tampered images.

In addition to these
existing datasets, we
created a new dataset
specifically for CT
image tampering
detection. As shown
in Figure 3, the work-
flow begins with using
the SAM2 model Ravi
et al. (2024) for region
segmentation, which
allows for accurate
extraction of lesion
areas based on coarse
annotations from the
original CT image
dataset. By randomly
copying and splicing
lesion areas within the
original CT images, the lesions are specified and extracted, then subjected to transformations such
as shuffling, rotation, and scratch removal to enhance their diversity. These tampered lesions are
then spliced back into the images within valid areas, ensuring realistic and effective tampering.
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Our custom dataset comprises a total of 6,000 images, equally divided into two types of tampering:
3,000 images feature copy-move tampering, while the remaining 3,000 images involve splicing tam-
pering. This dataset is designed to provide a comprehensive dataset for evaluating the accuracy of
tampering detection algorithms, specifically in the context of CT images.

4.2 COMPARISON ON PUBLIC TAMPERED IMAGE DATASETS

In the first experiment, we evaluated the performance of our model on public tampered image
datasets. This experiment aimed to compare the detection capabilities of our model with those of ex-
isting state-of-the-art methods. We used the CASIAv2, Columbia, NIST16, and MSMC-16k datasets
for this evaluation Dong et al. (2013); National Institute of Standards and Technology (2016); Ren
et al. (2022). The results of this experiment are presented in Table 1.

Methods
F1/AUC(%)

CasiaV1+ Columbia NIST MSMC-16k
CR-CNNYang et al. (2020) 34.5/42.0 25.0/52.0 20.0/48.0 21.5/47.0

ManTra-NetWu et al. (2019) 54.8/70.0 39.4/70.0 28.7/50.0 23.1/55.0
HiFi-NetZheng et al. (2024) 44.6/68.0 44.9/73.0 26.9/48.0 24.4/56.0
CAT-NetKwon et al. (2021) 48.1/60.0 46.2/78.0 36.1/63.0 37.7/65.0

MVSSDong et al. (2022) 72.4/80.0 42.8/71.0 39.3/76.0 39.5/70.0
PSCCLiu et al. (2022) 72.6/81.5 66.3/95.1 49.3/84.9 36.5/70.1

Our model 78.1/86.0 70.3/90.0 68.2/89.0 60.6/80.0

Table 1: Performance on various image tampering detection datasets

Specifically, on the MSMC-16k dataset, our model achieved an F1 score of 60.6% and an AUC
of 80.0%. This result highlights the model’s capability to effectively detect tampered regions in
diverse manipulation scenarios, demonstrating its accuracy in handling complex and varied tamper-
ing techniques. On the CasiaV1+ dataset, our model reached an F1 score of 78.1% and an AUC of
86.0%, showcasing its high precision and sensitivity in identifying tampered areas. For the Columbia
dataset, an F1 score of 70.3% and an AUC of 90.0% were achieved, indicating the model’s effec-
tiveness in minimizing false positives, especially in splicing tampered images. Lastly, in the NIST
dataset, the model delivered an F1 score of 68.2 and an AUC of 89.0%, confirming its strength in
detecting tampering in high-resolution and structurally complex images.

4.3 COMPARISON ON CT IMAGE DATASET

In this experiment, we assessed the performance of our model on our CT image dataset. This
experiment was designed to evaluate the model’s ability to detect tampering in CT images, which
present different challenges compared to public image datasets. The results are shown in Table 2.

Methods F1/AUC(%)
Copy-Move Splicing Overall

CR-CNN 65.3 / 67.0 62.4 / 64.5 64.1 / 65.2
ManTra-Net 70.4 / 72.3 69.1 / 71.4 68.7 / 70.8

HiFi-Net 62.7 / 64.5 66.5 / 68.7 65.0 / 66.2
CAT-Net 71.8 / 73.6 68.5 / 70.9 70.6 / 72.1
MVSS 78.5 / 80.7 76.8 / 79.0 77.7 / 79.9
PSCC 80.2 / 82.5 78.9 / 81.1 79.6 / 81.8

Our model 86.1 / 88.0 83.7 / 85.6 85.9 / 87.4

Table 2: Performance on CT image tampering
dataset

Our model demonstrated outstanding perfor-
mance on the our CT image dataset, achieving
the highest overall F1 score and AUC compared
to other leading methods. For copy-move tam-
pering, the model achieves an F1 score of 86.1
and an accuracy of 88.0, underscoring its ability
in highlighting subtle inconsistencies introduced
during the tampering process. This is largely due
to the sophisticated noise feature extraction capa-
bilities of the model, particularly the use of the
SRM filter. In the case of splicing tampering, our
model reached an F1 score of 83.7% and an accuracy of 85.6%, demonstrating its ability to de-
tect unnatural boundaries and inconsistencies. The overall performance, with an F1 score of 85.9%
and an accuracy of 87.4%, reflects the model’s comprehensive analysis capabilities, enabled by its
dual-branch structure and feature fusion module.
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4.4 ABLATION STUDY

In this ablation study, we systematically evaluated the contributions of individual components within
our model’s architecture to understand their impact on the overall performance of image tampering
detection. This involved selectively disabling each branch of the dual-branch network and substitut-
ing the backbone network with ResNet-50 and ResNet-101 architectures. The results are presented
in Table 3.

Modified Structure CasiaV1+ Columbia NIST MSMC-16k CT Dataset
Discriminator Branch:

Noise Discriminator 30.1 / 44.5 29.3 / 41.8 31.7 / 43.2 28.6 / 40.1 33.9 / 47.0
Edge Discriminator 38.2 / 49.6 36.5 / 45.9 39.8 / 48.3 37.1 / 46.7 40.5 / 50.2
Backbone Network:

ResNet-50 43.7 / 53.1 41.5 / 49.7 45.9 / 52.6 42.2 / 50.9 46.8 / 56.0
ResNet-101 46.9 / 56.4 44.8 / 52.8 47.2 / 54.3 48.3 / 55.9 50.1 / 58.7

AC-FPN Module:
Without AC-FPN 65.2 / 72.5 62.1 / 68.9 59.8 / 65.4 50.3 / 60.1 70.5 / 73.2

Simple Upsampling 68.4 / 75.3 65.7 / 72.1 62.5 / 69.8 54.6 / 63.9 75.2 / 78.5
Full Model (with AC-FPN) 78.1 / 86.0 70.3 / 90.0 68.2 / 89.0 60.6 / 80.0 85.9 / 87.4

Table 3: Performance of modified structures in ablation study.
From Table 3, the noise-branch classifier alone achieved 30.1%/44.5% F1/AUC on CasiaV1+, while
the visual-branch scored 38.2%/49.6%, highlighting the need to capture both noise and edge fea-
tures. Replacing the dual-branch architecture with single backbones like ResNet-50 or ResNet-
101 led to notable performance drops, underscoring the value of the integrated design with cross-
attention. The AC-FPN module also proved critical: removing it reduced CT dataset results to
70.5%/73.2%, and simple upsampling achieved only 75.2%/78.5%, both below the full model’s
85.9%/87.4%.

4.5 ROBUSTNESS TEST

To evaluate our model’s robustness under real-world attack scenarios, we conducted experiments
involving common types of image perturbations. The detailed settings for these attacks are provided
in Appendix A.7, and the results are shown in Table 4.

Methods F1/AUC(%) under various attacks
Rotation Scaling Noise Overall

CR-CNN 45.2 / 47.0 44.1 / 46.0 43.5 / 45.3 44.3 / 46.1
ManTra-Net 50.3 / 52.2 48.7 / 50.5 47.9 / 49.8 49.0 / 50.8

HiFi-Net 44.8 / 46.5 46.2 / 48.0 45.5 / 47.3 45.5 / 47.3
CAT-Net 52.7 / 54.5 51.3 / 53.0 50.5 / 52.3 51.5 / 53.3
MVSS 58.0 / 60.1 56.8 / 58.9 55.7 / 57.8 56.8 / 58.9
PSCC 60.5 / 62.7 59.2 / 61.3 58.3 / 60.5 59.3 / 61.5

Our Model 68.9 / 70.8 67.4 / 69.3 66.8 / 68.7 67.7 / 69.6

Table 4: Robustness testing results under various at-
tacks

The model achieved an F1 score of 68.9%
under rotational attacks, showcasing its ro-
bust noise feature extraction capabilities.
For scaling disturbances, it achieved an F1
score of 67.4, supported by the edge fea-
ture extraction branch’s ability to detect
structural inconsistencies. Under noise at-
tacks, the model maintained an F1 score
of 66.8%, indicating its effectiveness in
distinguishing genuine tampering signals
from noise artifacts. Overall, the model’s
performance, with an F1 score of 67.7% and an AUC of 69.6%, highlights its potential for ensuring
medical image integrity, even in the presence of various attacks.

5 CONCLUSION

This paper presents an innovative dual-branch feature fusion framework based on GenAI for tamper
detection in CT images. The framework combines GenAI with a dual-branch feature fusion module,
capturing subtle tampering features in CT images—primarily edge and noise features—through a
dual-branch discriminator. It achieves feature fusion via a cross-attention mechanism, ultimately
enabling accurate localization of tampered areas in CT images. In experiments, our method demon-
strated excellent performance across multiple public tampering datasets and a custom CT image
tampering dataset. Additionally, we tested under various image attack conditions, and the results
confirmed the robustness of our model against image disturbances. The proposed method holds sig-
nificant importance in ensuring the authenticity of medical images and offers new perspectives and
solutions for future research in medical image tamper detection.
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A APPENDIX

A.1 AC-FPN MODULE

To further capture information across different levels, aggregation and top-down fusion are per-
formed:

Foutput = ϕ
(
γ · Upsample(Fbottom-up) + δ · Fskip

)
, (17)

where Fskip denotes skip connections, γ and δ are balancing coefficients, Upsample(·) denotes up-
sampling, and ϕ(·) is a refinement function such as additional convolution and non-linear activation.
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This structure enables AC-FPN to integrate and refine features at multiple scales, improving the
model’s ability to capture both global context and fine details for robust tampering detection.

A.2 IMPLEMENTATION DETAILS

In our dual-branch feature fusion framework, we implemented using the PyTorch deep learning
framework and conducted training and evaluation on dual NVIDIA RTX 4090 GPUs. During train-
ing, the Adam optimization algorithm was used to adjust the parameters of the generator and dis-
criminator, with an initial learning rate of 10−4, dynamically reduced to 10−8 using the ReduceL-
ROnPlateau algorithm to promote optimal model convergence. Training was conducted using a
mini-batch strategy with a batch size of 32, and the number of training epochs was set to 100. To
prevent overfitting, a dropout rate of 0.5 was applied in the fully connected layers, and weight decay
techniques were used. For the weight factors of the loss function, α and β were set to 1 to balance
the loss of the generation and discrimination process, while γ and δ were set to 0.1 to fine-tune the
impact of feature matching.

The overall training process of our framework is outlined in Algorithm 1. Each input medical CT
image undergoes normalization preprocessing, and noise reduction techniques such as Gaussian fil-
tering are applied to preserve basic details. The generator network generates synthetic images from
random noise vectors to challenge the discriminator. The first discriminator (D1) combines edge en-
hancement techniques and U-Net structures to extract edge features, while the second discriminator
(D2) uses Spatial Rich Model (SRM) filters to extract noise features. The features of the discrimina-
tors are integrated through a cross-attention mechanism to enhance feature representation, comput-
ing the total loss and guiding the optimization of the model. During testing, the model applies the
same preprocessing and generation steps to each test image, generating tampering probability maps
for authenticity judgment.

A.3 ALGORITHM

Algorithm 1 outlines the complete training and testing procedure of our proposed dual-branch fea-
ture fusion framework for CT image tampering detection. During training, each input CT image
undergoes normalization and Gaussian filtering to preserve important structural details, followed by
edge enhancement using a Sobel filter. The generator G produces synthetic tampered images from
the preprocessed inputs and random noise vectors, introducing diverse edge and noise characteris-
tics. The edge discriminator branch (D1) employs a U-Net variant and AC-FPN to extract and refine
edge features, while the noise discriminator branch (D2) utilizes SRM filters, wavelet transform, and
AC-FPN to capture noise-related tampering traces. A cross-attention mechanism integrates features
from both branches, and the total loss Ltotal combines adversarial, edge, noise, and cross-attention
losses to update the generator and discriminators. During testing, the same preprocessing is applied,
and the trained generator and discriminators produce edge and noise feature maps, which are fused
to generate a tampering likelihood map T (x, y), from which the authenticity verdict is derived.
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Input: Input CT image I
Output: Authenticity assessment result
for each training step from 1 to N do

Preprocess image I: normalize, apply Gaussian filtering, and enhance edges using Sobel
filter.

Generate synthetic image Î = G(I, z) using generator G with input image I and random
noise z.

Apply edge enhancement and extract edge features Eenhanced using Sobel filter.
Process Eenhanced through U-Net variant to get edge feature map Fseg.
Perform multi-scale fusion using AC-FPN to obtain refined edge features.
Compute edge loss Ledge based on feature differences.
Apply SRM filters and wavelet transform to extract noise features.
Process through AC-FPN to obtain refined noise features.
Compute noise loss Lnoise based on feature differences.
Integrate features from D1 and D2 using cross-attention mechanism.
Compute cross-attention loss LCA.
Compute total loss Ltotal = αLadv + βLedge + γLnoise + δLCA.
Update generator G and discriminators D1, D2 using Ltotal.

end
for each testing image Itest do

Preprocess Itest: normalize, apply Gaussian filtering, and enhance edges.
Generate synthetic image Îtest = G(Itest, z) using trained generator G.
Compute edge feature map using edge discriminator D1 on Îtest.
Compute noise feature map using noise discriminator D2 on Îtest.
Combine edge and noise features to produce the final tampering likelihood map T (x, y).
Output the tampering likelihood map T (x, y) and derive the final authenticity verdict.

end
Algorithm 1: Training and Testing Procedure

A.4 PUBLIC DATASET DETAILS

Our training dataset primarily consists of CASIAv2 Dong et al. (2013) and MSMC-80k, while the
testing dataset includes CasiaV1+, Columbia Ng et al. (2009), NIST National Institute of Standards
and Technology (2016), and MSMC-16k, with dataset details shown in Table 5. To construct a
robust and diverse dataset for validating our model, we created two unique datasets: MSMC-80k and
MSMC-16k. The images in these datasets come from DEFACTO Mahfoudi et al. (2019), MSM30K
Ren et al. (2022), and tampered images made using MS-COCO as the original images. MSMC-80k
is our primary training dataset, containing a total of 80,000 images, including 17,739 copy-move
images, 40,287 splicing images, and 21,974 inpainting images. On the other hand, MSMC-16k
is designed as a testing dataset, containing 16,000 images, with 2,500 copy-move images, 2,500
splicing images, and 3,000 inpainting images. We adopt a strict sampling method to ensure that
source images used in training do not appear in the testing set, thus preventing data leakage and
maintaining the integrity of the evaluation.

Dataset Number copy-move splicing impainting
Training

MSMC-80k 80000 17739 40287 21974
CASIAv2 5063 3235 1828 0

Testing
CasiaV1+ 200 100 0 0
Columbia 363 0 180 0

NIST 564 68 288 208
MSMC-16k 16000 2500 2500 3000

Table 5: The two training datasets and four testing datasets
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A.5 OUR TAMPERED CT IMAGE DATASET

In addition to the existing datasets, we created a new dataset specifically for CT image tampering
detection. As shown in Figure 3, the workflow begins with using the SAM2 model Ravi et al. (2024)
for region segmentation, which allows for accurate extraction of lesion areas based on coarse anno-
tations from the original CT image dataset. By randomly copying and splicing lesion areas within
the original CT images, the lesions are specified and extracted, then subjected to transformations
such as shuffling, rotation, and scratch removal to enhance their diversity. These tampered lesions
are then spliced back into the images within valid areas, ensuring realistic and effective tampering.

Our custom dataset comprises a total of 6,000 images, equally divided into two types of tamper-
ing: 3,000 images feature copy-move tampering, while the remaining 3,000 images involve splicing
tampering. This dataset is designed to provide a comprehensive dataset for evaluating the accu-
racy of tampering detection algorithms, specifically in the context of CT images, which pose unique
challenges due to their complex anatomical structures and small targets. While our study primarily
focuses on copy-move and splicing tampering, which are the most common and impactful tampering
methods in medical imaging scenarios, we acknowledge the existence of other tampering behaviors
such as deletion and inpainting. These methods, often used to erase or replace specific regions in an
image, are equally important to address in tampering detection. However, due to the lack of pub-
licly available and suitable datasets for CT images containing these tampering types, they were not
included in our current experiments.

A.6 EVALUATION METRICS

The F1 score is a harmonic mean of precision and recall, providing a balanced measure that considers
both false positives and false negatives. It is defined as:

F1 Score = 2 · Precision · Recall
Precision + Recall

, (18)

where precision is the proportion of correctly identified tampered pixels (true positives, TP) to all
pixels predicted as tampered (true positives + false positives, TP + FP), and recall is the proportion of
correctly identified tampered pixels (true positives, TP) to all actual tampered pixels (true positives
+ false negatives, TP + FN). The F1 score is particularly useful in scenarios where there is an
imbalance between tampered and non-tampered regions, as it ensures that both precision and recall
are equally weighted. In our experiments, the F1 score was computed at both the pixel level and the
image level, with a threshold of 0.5 for binary classification.

The Area Under the Curve (AUC) metric measures the area under the Receiver Operating Charac-
teristic (ROC) curve, which plots the true positive rate (TPR) against the false positive rate (FPR) at
various threshold settings. The AUC is defined as:

AUC =

∫ 1

0

TPR(t) · dFPR(t), (19)

where the true positive rate (TPR) is given by TPR = TP
TP+FN , and the false positive rate (FPR) is

given by FPR = FP
FP+TN . A higher AUC value indicates better model performance in distinguishing

between tampered and non-tampered regions. Unlike threshold-dependent metrics, the AUC eval-
uates the model’s performance across various decision thresholds, making it a robust indicator of
overall classification ability. In this study, the AUC was calculated for each dataset to evaluate the
model’s capability to generalize across different tampering scenarios.

A.7 ROBUSTNESS TEST DETAILS

In our robustness evaluation, three common types of attacks were applied to simulate various tam-
pering conditions:

• Rotation attacks: Images were rotated by angles ranging from −15◦ to +15◦ to test the
model’s ability to handle orientation variations.

• Scaling attacks: Images were resized with scaling factors between 0.8 and 1.2, assessing
detection performance across size changes.
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• Noise injection: Two types of noise were added — Gaussian noise with a mean of 0 and
variance of 0.01, and salt-and-pepper noise with a density of 0.05 — to simulate pixel-level
disturbances.

A.8 INFERENCE TIME MEASUREMENT

To evaluate the real-time detection capability of our proposed method, we measured the inference
time for processing a single 512×512 CT image. The experiments were conducted on a dual NVIDIA
RTX 4090 GPU setup, and the average processing time was approximately 0.28 seconds per image.
This demonstrates that our framework is capable of near-real-time detection, making it suitable
for practical applications in clinical settings. Further optimizations, such as model pruning and
hardware acceleration, could be explored in future work to enhance computational efficiency and
reduce detection latency.

A.9 VISUAL COMPARISON SAMPLES

Images Masks PSCCCR-CNN MVSSManTra-Net Our Model

Figure 4: Examples of Image Tampering Detection with State-of-the-art Methods.

Figure 4 presents qualitative comparisons between our proposed method and several state-of-the-art
image tampering detection approaches on representative samples from different datasets. In each
example, the left column shows the original input image, followed by the ground truth tampered
regions, and the detection results produced by competing methods, including CR-CNN, ManTra-
Net, HiFi-Net, CAT-Net, MVSS, PSCC, and our model. It can be observed that our method achieves
more precise localization of tampered areas, with clearer boundaries and fewer false detections,
particularly in complex scenarios involving subtle noise artifacts or irregular edges.
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