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Abstract
An important research question is better under-
standing the privacy leakage of LLMs. The most
practical and common way we have to understand
privacy leakage is through a privacy audit. The
first step in a successful privacy audit is a good
membership inference attack. A major challenge
in privacy auditing language models (LLMs) is
the development of effective membership infer-
ence attacks. Current methods rely on basic ap-
proaches to generate canaries, which may not be
optimal for measuring privacy leakage and under-
estimate the privacy leakage. In this work, we
introduce a novel method to generate more effec-
tive canaries for membership inference attacks on
LLMs. We demonstrate through experiments on
fine-tuned LLMs that our approach can signifi-
cantly improve the detection of privacy leakage
compared to existing methods. For non-privately
trained LLMs, our attack achieves 64.2% TPR at
0.01% FPR, largely surpassing previous attack
that achieves 36.8% TPR at 0.01% FPR. Our
method can be used to provide a privacy audit
of ε ≈ 1 for a model trained with theoretical ε
of 4. To the best of our knowledge, this is the
first time that a privacy audit of LLM training has
achieved nontrivial auditing success in the setting
where the attacker cannot train shadow models,
insert gradient canaries, or access the model at
every iteration.

1. Introduction
Large language models (LLMs) (Brown et al., 2020) pre-
trained on large amounts of webscraped data have achieved
impressive performance on many tasks (OpenAI, 2023;
Team et al., 2023), particularly when they are finetuned
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on domain-specific datasets (Anil et al., 2023). There is
also growing concern around the privacy risks of deploying
LLMS (McCallum, 2023; Bloomberg, 2023; Politico, 2023)
because they have been shown to memorize verbatim text
from their training data (Carlini et al., 2019; 2021; 2023b;
Biderman et al., 2023a).

There is currently a discrepancy between memorization stud-
ies in Large frontier models reports (Reid et al., 2024;
Brown et al., 2020; OpenAI, 2023) that show very limited
memorization and several research that data can be extracted
from such models(Carlini et al., 2021; 2023a; Nasr et al.,
2023a). With the goal of understanding the concern around
the privacy risks of deploying LLMs, currently, model devel-
opers study the quantifiable memorization of their models
by inserting canary sequences and testing for memoriza-
tion, and they conclude that the models do not memorize
much (Reid et al., 2024; OpenAI, 2023).

The gap between these two bodies of work is in the data
being memorized. When developers insert canaries, they
are not necessarily inserting the canaries that are most likely
to be memorized. However, when researchers try to ex-
tract data, they are extracting the "most extractable" data,
which by definition was the most likely to be memorized.
Without better design of canaries, model developers will
systematically underestimate the privacy leakage of their
models.

We are primarily interested in understanding privacy leakage
from LLMs through the lens of membership information
leakage on a canary dataset on LLMs (as used to measure
the privacy leakage in LLM reports). Specifically, we want
to understand how to best construct canaries for language
models. Qualitatively, if we find that membership infor-
mation attacks (MIA) on canaries for LLMs can be very
effective, this improves our understanding of the privacy
leakage of LLMs. Moreover, (Steinke et al., 2023) design
an auditing method for differential private machine learning
algorithm that can directly uses membership inference attack
to compute an empirical lower bound on the privacy leakage.
We leverage their approach to also show this attacks is very
powerful in auditing private LLM even in Blackbox!

Our contributions are as follows.
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• We introduce a new method for generating input space
canaries such that the canary data is easy to memorize.

• We find that our new membership inference attack is
far more effective than the baselines used in prior work.
Specifically, we can get a TPR > 60% at FPR = 0.01%,
outperforming previous results that achieve TPR≈ 35%
at FPR = 0.01%.

• We provide the first privacy audit for the black-box set-
ting for LLMs.

2. Background
2.1. Membership Inference Attacks

The objective of a membership inference attack (MIA)
(Shokri et al., 2017) is to predict if a specific training ex-
ample was used as training data in a particular model. This
makes MIAs the simplest and most widely deployed at-
tack for auditing training data privacy leakage. It is thus
important that they can reliably succeed at this task. We
formalizes the membership inference attack security game
(§2.1) in this Section.

Definitions We define membership inference via a stan-
dard security game inspired by Yeom et al. (2018) and Ja-
yaraman et al. (2020).

Definition 2.1 (Membership inference security game). The
game proceeds between a challenger C and an adversary A:

1. The challenger samples a training dataset D ← D and
trains a model fθ ← T (D) on the dataset D.

2. The challenger flips a bit b, and if b = 0, samples a
fresh challenge point from the distribution (x, y)← D
(such that (x, y) /∈ D). Otherwise, the challenger
selects a point from the training set (x, y)← D.

3. The challenger sends (x, y) to the adversary.

4. The adversary gets query access to the distribution D,
and to the model fθ, and outputs a bit b̂← AD,f (x, y).

5. Output 1 if b̂ = b, and 0 otherwise.

For simplicity, we will write A(x, y) to denote the adver-
sary’s prediction on the sample (x, y) when the distribution
D and model f are clear from context.

Note that this game assumes that the adversary is given
access to the underlying training data distribution D; while
some attacks do not make use of this assumption (Yeom
et al., 2018), many attacks require query-access to the dis-
tribution in order to train “shadow models” (Shokri et al.,
2017) (as we will describe). The above game also assumes

that the adversary is given access to both a training example
and its ground-truth label.

Instead of outputting a “hard prediction”, all the attacks
we consider output a continuous confidence score, which is
then thresholded to yield a membership prediction. That is,

A(x, y) = 1[A′(x, y) > τ ]

where 1 is the indicator function, τ is some tunable decision
threshold, and A′ outputs a real-valued confidence score.

2.2. Auditing Differentially Private Language Models

We provide a concise overview of differential privacy (DP),
private machine learning, and methods to audit the privacy
assurances claimed under DP.

Differential Privacy Differential privacy (DP) is widely
regarded as the gold standard for ensuring algorithmic pri-
vacy (Dwork et al., 2006).

Definition 2.2 ((ε, δ)− Differential Privacy (DP)). An algo-
rithmM is considered to be (ε, δ)-DP if for any set of events
S ⊆ Range(M) and all neighboring datasets D,D′ ∈ Dn

(where D represents the set of all possible data points) dif-
fering in one element, the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

Informally, within the realm of machine learning, if a train-
ing algorithm M satisfies (ε, δ)-DP, then an adversary’s
ability to determine whetherM was applied to D or D′ is
limited by eε, with δ representing the probability that this
upper bound does not hold.

Differentially Private Machine Learning Differentially
Private Stochastic Gradient Descent (DP-SGD) (Song et al.,
2013; Abadi et al., 2016) is the workhorse method for train-
ing neural networks on private data. For a batch size B
and learning rate η, DP-SGD has an update rule given by
w(t+1) = w(t)− ηt

|Bt|
(∑

i∈Bt

1
C clipC(∇ℓ(xi, w

(t))) + σξ
)

where the changes to SGD are the per-sample gradient
clipping clipC(∇ℓ(xi, w

(t))) = C×∇ℓ(xi,w
(t))

max(C,||∇ℓ(xi,w(t))||2)
, and

addition of noise sampled from a d-dimensional Gaussian
distribution ξ ∼ N (0, 1) with standard deviation σ. The
combination of clipping to limit the sensitivity of the update
and the addition of noise make DP-SGD a differentially
private training algorithm.

Auditing DP-SGD Any differentially private algorithm
M limits an adversary’s ability to infer whether M was
trained with D or D′. Kairouz et al. (2015) show that if
M is (ε, δ)-DP, it defines a privacy region (a bound on an
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attacker’s TPR and FPR) given by

R(ϵ, δ) = {(α, β) | α+ eϵβ ≥ 1− δ ∧ eϵα+ β ≥ 1− δ ∧
α+ eϵβ ≤ eϵ + δ ∧ eϵα+ β ≤ eϵ + δ}

(2)

In other words, an (ε, δ)-DP algorithm implies a valid region
for the type I (α) and type II (β) errors of any test.

The objective of a privacy audit is to design a hypothesis
test that distinguishes D from D′ while minimizing α and
β. Then, we can compute the privacy budget ϵ, for any fixed
value of δ. In practice, for many interesting differentially
private algorithms including DP-SGD, one cannot compute
the minimum possible values of α and β in closed form,
and so empirical estimates are necessary. This is achieved
by designing a distinguisher that predicts if mechanismM
operated on D or D′.

A recent privacy auditing method that we use in this paper
is Steinke et al. (2023) which can provide an audit without
needing to train multiple models. However, they are not able
to provide a nontrivial result when training on real data in
the black-box setting (where the canaries exist in the input
space and the attacker observes the loss of the model), and
do not provide audits for language models (only computer
vision).

Summary of DP Background DP-SGD provides a math-
ematical proof that gives an upper bound on the privacy
parameter. A privacy audit is a procedure that provides a
lower bound on the privacy parameter. Privacy audits can
be used to ascertain the correctness of DP-SGD training
and estimate the tightness of analysis. Many privacy audit-
ing methods have been proposed, but no privacy auditing
method has been able to provide a nontrivial lower bound
of an LLM trained with a realistic DP guarantee (ε < 10 on
real data in the black-box setting in a single run.

3. Crafting Canaries That Are Easy To Spot
Previous research has consistently shown that out-of-
distribution (OOD) inputs are more prone to memorization
by machine learning models (Carlini et al., 2022a; Nasr
et al., 2021; 2023b; Carlini et al., 2022b). Leveraging this
insight, existing methods for generating canaries in member-
ship inference attacks often focus on crafting OOD inputs
with a higher likelihood of being memorized. In the con-
text of LLMs, this typically involves creating inputs with
random tokens or factually incorrect statements, under the
assumption that such anomalies will stand out and be more
easily retained by the model.

While these basic approaches have shown some degree of
success, there is a lot of opportunity for improving the effec-
tiveness of canary generation for privacy auditing in LLMs.

Our proposed approach takes a different route, opting for a
straightforward yet effective canary design.

Instead of relying on random or nonsensical inputs given
that we have access to the model parameters and we can
modify them, we introduce a series of unique tokens to the
tokenizer and embedding tables of the LLM. These unique
tokens are only present in the canary inputs and are absent
from the regular training data. The canaries themselves are
then constructed as procedurally generated strings of normal
tokens, followed by a sequence of these special tokens.

To evaluate membership score of a canary, we compute the
loss over the sequence of special tokens. By isolating the
canary’s identification to these special tokens, we can insert
canary data without significantly impacting the model’s per-
formance on benign inputs. Additionally, once the model
is trained and the audit is complete, the rows of the em-
bedding matrix corresponding to the special tokens can be
easily removed. In the following section we empirical eval-
uation confirms that first we can achieve significantly better
membership scores on our canaries compared to the basic
approaches and the insertion of canaries does not negatively
affect the utility of the trained model.

4. Membership Inference Attacks on LLMs
Experimental Setup. We evaluatecPythia (Biderman et al.,
2023b). We do instruction tuning (Ouyang et al., 2022)
on the PersonaChat (Zhang et al., 2018) dataset, which
consists of conversations of people describing themselves.
We view this as a reasonable dataset where privacy leakage
may be concerning. All experiments were conducted on an
academic compute budget on a single A100 GPU.

Random Canary Baseline. The canary construction used
by multiple prior works (Anil et al., 2023; Team et al., 2023)
is just a set of random tokens.

Membership Inference Attack. We insert 1000 canaries
into the training dataset, and each canary is seen a single
time over the course of training. We consider a black-box
attack where the attacker prompts the model with the first
P (typically 50) tokens of the canary string and computes
the loss over the last N (typically 1) token. This final token
is either a random token for the baseline, or a newly added
token for our method. Given the list of 1000 losses, the
attacker must determine which canaries are members and
which are non-members. We visualize this with log-scale
Receiver Operating Characteristic (ROC) curve plots, where
we are specifically interested in the True Positive Rate (TPR)
at very low False Positive Rate (FPR).

Main Result. We first present the main result on Pythia-
1.4b. Figure 1 compares our method that adds canaries
corresponding to new tokens (orange) to the baseline that
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Figure 1. Ablation of loss difference with and without additional
tokens as canaries.

uses random tokens for the canaries. Our method is vastly
superior to the random canary baseline. In this setting, each
canary is only seen a single time, but this is already enough
for our method to obtain very high MIA accuracy. However,
the baseline struggles, with an AUC near that of random
guessing. We also report TPR at very low FPR. Our attack
achieves 64.2% TPR at 0.01% FPR while baseline attack
only achieves 36.8% TPR at 0.01% FPR. That is, we are
able to increase TPR by twice and improve TPR to more
than 60% even at this very low FPR=0.01%.

Table 1. TPR (%) results at different FPR.

w.new (our attack) w/o new (baseline)

FPR 0.01% 64.2 36.8
FPR 0.1% 64.4 42.8
FPR 1% 67.2 59.0

5. Auditing Evaluation
In Section 4, we show the effectiveness of our attack for
LLMs in non-private setting. We now present the privacy
auditing results for the DP-SGD trained models.

Setup. We use the privacy auditing procedure of (Steinke
et al., 2023). This means that we randomly generate 1000
canaries, insert half of them, and try to do membership
inference on the entire set. The accuracy of our MIA then
translates into a lower bound with a 95% confidence interval
on ε, meaning that the privacy loss is at least ε. This is the
exact same implementation and confidence interval, etc. as
in (Steinke et al., 2023) so we believe this is an accurate
way to run the privacy audit.

In the MIA evaluation, we inserted additional tokens that
were initialized to zero. However, it may not be realistic to
actually assume that the attacker can insert new tokens into
the tokenizer; it is more likely that they can insert canaries
corresponding to tokens with their values near-initialization.
In this section, when we evaluate our method, we initialize

the rows of the embedding matrices corresponding to the
newly added token to be drawn from a normal distribution
as is standard in neural network initialization.

While Section 4 use Pythia-1.4B model for the main results,
we use GPT2 model for the main results due to compu-
tation limitation. This is because DP-SGD incurs more
computations and longer training time compared to standard
non-private training.

Main results. We first present the comparison of our attacks
and baseline attack for auditing DP-SGD in Table 2. Similar
to Section 4, the ‘w. new’ column is our attack and the ‘w/o
new’ column is the baseline random token attacks.

We report the empirical ε estimation both in 95% and 99%
confidence. By increasing the confidence level, we get a
lower empirical ε estimation. In both confidence level, our
attack gives the better empirical ε estimation, i.e., more
close the the theoretical ε.

Table 2. Comparison of our attack and baseline attack for auditing
models trained with DP-SGD.

w. new w/o new

audit 95% 1.29 0.63
audit 99% 1.00 0.28

Moreover, we are able to show an empirical ε ≈ 1 for an
analytical ε = 4. This is the main result of this paper. In the
same setting, the SOTA single-run privacy audit (Steinke
et al., 2023) is only able to show empirical ε > 0 when
there is no real data present.

Our Audit Does Not Compromise Clean Accuracy
Steinke et al. (2023) report an accuracy drop of 2% due
to the canaries inserted for auditing. In Table 3 we vali-
date that our method does not degrade utility on the domain
specific tasks, i.e., the Personachat eval set. We compare
the effect of adding our canaries on perplexity for both no
privacy and ε = 4 set-up. Table 3 shows that in both care,
the perplexity degradation by our canaries is less than 1.

Table 3. Our method does not decrease the clean perplexity.

no privacy ε = 4
w/o canaries w. canaries w/o canaries w. canaries

18.1 19.0 25.7 25.5

Besides, after we finish the auditing procedure, we can
remove the corresponding special tokens in the tokenizer
and corresponding value in tokens. Within this, we will not
reveal the exact additional tokens we used for auditing to
the public.
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