
AgentTorch: a Framework for Agent-based Modeling
with Automatic Differentiation

Anonymous Authors

Abstract

Agent-based models (ABMs) are discrete simulators comprising agents that can act
and interact in a computational world. ABMs are relevant across several disciplines
as these agents can be cells in bio-electric networks, humans in the physical world,
or even AI avatars in a digital ecosystem. Despite wide applicability, research
in ABMs has been extremely fragmented and has not benefited from modern
computational advances, especially automatic differentiation. This paper presents
AgentTorch: a framework to design, simulate, and optimize agent-based models.
AgentTorch definition can be used to build stochastic, non-linear ABMs across
digital, biological, and physical realms; while ensuring gradient flow through all
simulation steps. AgentTorch simulations are fully tensorized, execute on GPUs
and can range from a few hundred agents in synthetic grids to millions of agents in
real-world contact graphs. The end-to-end differentiability of AgentTorch enables
automatic differentiation of simulation parameters and integration with deep neural
networks (DNNs) in several ways, for both supervised and reinforcement learning.
We validate AgentTorch through multiple case studies that study cell morphogenesis
over bio-electric networks, infection disease epidemiology over physical networks
and opinion dynamics over social networks. AgentTorch is designed to be a viable
toolkit for scientific exploration and real-world policy decision-making. We hope
AgentTorch can help bridge research in AI and agent-based modeling.

1 Introduction

Agent-based models (ABMs) [8] are discrete simulators that comprise a collection of agents which
can act and interact within a computational world. They can explicitly represent the heterogeneity of
an interacting population via underlying contact networks and model the adaptability of individual
agent behavior for more realistic simulations. This enables domains experts to ground simulations
in mechanistic understanding and explore the emergent effects of agent behavior and external
interventions. ABMs are used to simulate heterogeneous systems across biological [22, 29, 21],
physical [16, 5, 37], digital [20, 2, 28] and financial [24, 30] realms. For instance, ABMs have
helped simulate: i) cells in a tumor micro-environment to evaluate antibody treatments for tumor
suppression [22], ii) diseased humans in the physical world to decide lockdown strategies [27] and
prioritize vaccination schedules [35], iii) avatars in a digital environment to counter misinformation [9]
and vaccine hesitancy [2] and iv) firms in a financial network to predict housing market crashes [30].
Despite wide applicability, the adoption of ABMs for practical decision making has been scarce
which can largely be attributed to computational constraints.

The utility of ABMs for practical decision depends upon their ability to recreate realistic populations
with great detail, integrate with real-world data streams and analyze sensitivity of results. The
simulation outputs are sensitive to scale of the input population [11], initial conditions [8] and model
specification [12]. However, conventional ABM frameworks [26, 41] are very slow to execute,
difficult to scale to million-size populations, tough to calibrate and largely rely on simple hand-
crafted rules. Prior works have sought to alleviate performance constraints though super-computing
clusters [7] or highly-customized C++ code [23]. However, these are difficult to implement and

Preprint. Under review.



Figure 1: AgentTorch can be used to define diverse ABMs across biological, digital and physical
realms; execute million-scale simulations; and support learning capabilities through automatic
differentiation of simulation parameters and by integration with DNNs.

generalize; and don’t benefit from modern advances in data-driven analytics. Motivated from parallel
efforts in differentiable scientific computation for molecular dynamics [36, 18], computational
chemistry [39] and physics engines [17], some recent works has sought to achieving highly performant
ABMs by leveraging capabilities of automatic differentiation. Differentiable ABMs [16, 4] have
shown promising results to accelerate simulations [15], calibrate by integrating with DNNs [16],
conduct sensitivity analyzes with gradients [33] and learn more expressive rule sets using DNN
parameterizations [29]. However, these benefits have been restricted to few specific examples and no
general framework exists. Alleviating this gap is the focus of this work.

We introduce AgentTorch: a framework to define, simulate and optimize ABMs with automatic
differentiation. First, AgentTorch takes a functional view to ABMs and introduces a model definition
which can be used to build non-linear stochastic ABMs across across biological, physical and digital
realms; while ensuring gradient flow through all simulation steps. Second, AgentTorch leverages
the capabilities of accelerators such as GPUs/TPUs and automatic differentiation to achieve highly
performant simulations, while abstracting the user from the engineering complexity. AgentTorch
simulations are fully tensorized and can range from a few hundred agents in a synthetic environment
to millions of agents interacting over real-world contact graphs. Third, AgentTorch models are fully-
differentiable which enables the use of automatic differentiation to optimize ABM parameters and
integrate with DNNs to extend capabilities of rule-based ABMs. Here, we validate the AgentTorch
design through diverse case studies that span cell morphogenesis over bio-electric networks, infection
disease epidemiology over physical networks and opinion dynamics over social networks.

2 AgentTorch: define, simulate and optimize agent-based models

AgentTorch is used to describe discrete-event simulations with multiple interacting agents. First,
we introduce the design specification for defining an AgentTorch model. Second, we describe the
implementation primitives and the system architecture for executing an AgentTorch simulation. Third,
we describe learning with AgentTorch which leverages the benefits of automatic differentiation.

2.1 Model Definition

Definition 1 (AgentTorch model). An AgentTorch model is defined by the following tuple: ⟨S,G⟩.
Here S = ⟨SAg,SOb,SEnv⟩, represents the set of states of the agents, objects and the environment
respectively, including the agent-agent and agent-object interaction networks which form a part of

2



state

N citizens

Agents

Age
Disease_St
age

Citizen

10

Citizen

Age
Disease_Stag
e

Age
Disease_Stag
e

Citizen

Citizen

age
disease
compliance
vaccination
infect_time 1

N

…
.

Virus

Ro
generation_time

1

Pub

Age
Disease_Stage

Age
Disease_Stage

Pub

Pub

lat-long
capacity
open-time 1

M

Objects Environments

…
.

Pubs ←→ Citizens

Citizens ←→ Citizens

Step:
day 1

Step:
day 2

Step:
day 3

Step:
day T……

Substep:
SEIRMProgression

Substep:
Vaccination

Substep:
NewTransmission

S_day3

Observation function:
Observe_neighbors

Policy function:
Choose_vaccine

Transition function:
Update_vacc_statusS_day3_1

observation
S_day3_2

action

S_day4S_day3_2S_day3_1

Substep Vaccination: S_day3_1 → S_day3_2 

Figure 2: Defining an AgentTorch model for spatial epidemiology. The simulation has N citizen
that interact through direct mobility and co-locate across pubs (Object) to spread the virus (Object).
The simulator state is a collection of properties that describe each of these entities, is initialized once
and transformed during T steps of simulation. Each step models the disease progression of infected
agents, vaccination of susceptible agents and transmission of new infections, to recursively transform
the simulation state over multiple substeps. AgentTorch is designed to ensure gradient flow through
all simulation steps and enables automatic differentiation of any state property or substep function.

the state of the environment. G represents the set of substeps, where each substep is composed of
the three functions – i) the observation function which generates objects for all agents, o : S → O,
where O is the space of all observations, ii) the policy function which generates the actions taken by
agents, π : H → A, where H is the set of trajectories of all historical observations and A is the set
of all actions (over all agents) and iii) the transition function which captures the system evolution by
generating the next state given the current state and the current action t : S ×A → S.

AgentTorch model has two components: i) state (S) ii) substep (G: S 7→ S). The state is a collection
of properties that describe different entities in the simulation. A substep is a unit operation that
transforms the state to produce a new state. When reading the terminology below, consider the
example in Figure 2 which simulates the spread of an infection disease (like covid-19).

AgentTorch model has three kinds of entities:

• Agents which observe, act and interact within a computational world. For instance, these can be
infected citizens that spread diseases (with properties like {age, disease_stage}).

• Objects which interface between agents but don’t have the agency to act. For instance, these can be
a virus that carries infection (with properties like {RO}) or a pub where citizens co-locate (with
properties like {lat-long, capacity}).

• Environments which facilitate the interactions of agents with other agents or objects. These are
interaction graphs of one of two types: agent-agent and agent-object. For instance, a citizen-pub
(agent-object) graph can represent interaction of citizens across different pubs in a geo-locality.

Each state property is initialized once to define the initial state and may be transformed during the
simulation. The simulation comprises a series of substeps that recursively transform the state, in
sequence. Each substep is the basic unit which transforms the state to produce a new state. To
produce the next state for a given agent, a substep invokes three kinds of functions in sequence:

1. Substep Observation which uses the current state and returns an observation for the agents. For
instance, an agent can receive an observation regarding the state of infection and vaccination status
of its immediate neighbors (observation = observe_neighbors(state)).

2. Substep Policy which uses this generated observation, along with the entire history of earlier
observations (compiled as observation_history) to yield the agents’ actions. For instance, an
agent uses its current observations of vaccination by neighbors and historical deaths to decide
whether to vaccinate itself (action = choose_vaccine(observation_history)).

3. Substep Transition which uses the current state and agent actions to generate the next state.
For instance, a non-vaccinated agent in contact with infected agents may get infected itself
(next_state = update_vacc_status(state, action)).

3



2.2 Simulator Implementation

AgentTorch leverages the PyTorch API to describe simulation state (nn.ParameterDict) and the
computational graph of substeps (nn.ModuleDict). Furthermore, this provides in-built support
for tensorized GPU execution, automatic differentiation and streamlines integration of DNNs with
mechanistic ABMs. Here, we describe the framework primitives and high-level modules.

Primitives AgentTorch has two primitives: variable at_var and method at_function which
maps from at_var to at_var. at_var has a value, shape, dtype, learnable flag and extends
torch.nn.Parameter class. Hence, this at_var can be a scalar, tensor or even a neural net-
work. at_function has inputs, outputs and arguments each of which is an at_var and extends
torch.nn.Module class. These form the building blocks for an AgentTorch model.

Each state property (at_property) has a value (instance of at_var) and an initialization function
(instance of at_function). Each property is initialized once to compile the initial state (at_state).
This can be transformed during the simulation or even learned via optimization by setting the flag
learnable=True. The at_state is a collection of at_property instances which describe the
agents, objects and environments; and extends torch.nn.ParameterDict class.

Each substep (at_substep) is a mapping from at_state to at_state. Each
at_substep is a collection of at_function instances that describe the observation, pol-
icy and transition functions. These functions are invoked in sequence to produce the
next_state. Specifically, i) observation = substep.observation_function(state),
ii) action = substep.policy_function(observation), iii) next_state =
substep.transition_function(state, action). Any substep function can be inde-
pendently learned during optimization by setting its arguments flag learnable=True and may
also be parameterized with a deep neural network. This modularity allows embed neural networks
inside mechanistic simulators and learn specific components without affecting the rest. Each substep
extends torch.nn.ModuleDict class. The design helps AgentTorch simulations ensure gradient
flow (and parameter tracking) through each substep and across all the steps of a simulation.

High-level modules AgentTorch has multiple high-level modules to define models, execute simula-
tions and track variables. Config and Runner are exposed to the user for defining the model and
executing episodes of the simulation. Internally, these interface with Controller to initialize the
simulator state, sequence substeps, execute all episodes and track variables.

Model is defined by instantiating a config = Config(). This config enables creating agents and
objects, inserting interaction environments, defining execution metadata and creating simulation
substeps. The code listing below uses the config to create infectious citizens agents (line 5)
and infecting virus object (line 6), define citizen mobility networks (line 8), describe a infection
transmission substep (line 10) and execute the simulation for 10 episodes (line 12).

1 from AgentTorch import Config
2

3 config = Config ()
4

5 config.add_agents(name="citizens", num_citizens , prop_list)
6 config.add_objects(name="virus", num_strains , prop_list)
7

8 config.add_environment(type="agent -agent", src="from_file", path="
citizen_citizen.networkx")

9

10 conf.add_substeps(name="new_transmission", active_agents="citizens",
transition=TransitionFunc)

11

12 config.add_metadata("num_episodes", 10)

Listing 1: Using the AgentTorch Config API to define a model

Simulation is executed by instantiating a runner = Runner(config). Each runner has
four modules: runner.init, runner.step, runner.reset and runner.parameters. First,
runner.init() is used to initialize all state properties (state) and creates a tracking
registry of substep functions (registry_dict) by invoking controller.initialize().

4



Second, runner.step() is used to run all steps in a simulation episode. Each
episode step invokes controller.execute_substep(state, registry_dict) to exe-
cute substeps in sequence. controller.execute_substep handles control flow de-
pendency, tracks parameters and transforms the state by invoking: observation =
controller.observe(state), action = controller.act(observation) and next_state
= controller.progress(state, action) in order. Third, runner.reset() is used to reini-
tialize the state of the simulator before the start of subsequent episodes. While the default is to
just use runner.init(), this function is often overloaded to specify custom reset functions (as
in Case Study 1 using state from prior episodes). Fourth, runner.parameters() tracks and re-
turn all learnable parameters in the simulation episode. These parameters can be properties of the
simulator state or arguments of substep functions. This is then used to define optimizers, such
as torch.optim.SGD(runner.parameters()). Finally, runner.trajectory tracks the simula-
tion state across multiple steps and episodes and is used to define loss functions and plot outputs.

1 import torch
2 import AgentTorch as AT
3

4 # Step 1: define entities , metadata and substeps
5 config = AT.Config ()
6 config.add_agents (...)
7 config.add_objects (...)
8 config.add_environments (...)
9 config.add_metadata (...)

10 config.add_substeps (...)
11

12 # Step 2: create simulation instance
13 runner = AT.Runner(config)
14

15 # Step 3: initialize simulation state and create registry
16 runner.init()
17

18 # Step 4: create optimizer using learnable simulation parameters
19 opt = torch.optim.SGD(list(runner.parameters ()), lr=config_lr)
20

21 for episode in range(num_episodes):
22 opt.zero_grad ()
23

24 # Step 5: reset state before each episode
25 runner.reset()
26

27 # Step 6: execute all substeps in sequence
28 runner.step(num_steps)
29

30 # Step 7: read the trajectory to extract output
31 trajectory = runner.trajectory
32 output = generate_output(trajectory)
33

34 # Step 8: compute loss and optimize parameters
35 loss = loss_fn(output , ground_truth)
36 loss.backward ()
37 opt.step()

Listing 2: Using the AgentTorch API to define simulate and optimize agent-based models

2.3 Gradient-based Optimization

AgentTorch is designed to ensure gradient-flow through all substeps of the simulation and is compati-
ble with automatic differentiation. This allows using gradient-based learning to update properties of
the state or arguments of any substep function. All learnable parameters across the simulator can be
accessed via runner.parameters() and used in torch.optim to define custom optimizers.

AgentTorch supports both supervised learning (SL) and reinforcement learning (RL) using first-order
gradient estimates [38] and leverages the PyTorch API for optimization. Broadly, there are three
modes of optimization configurations:

5



Figure 3: C1: Embed DNN inside ABM with AgentTorch. [29] uses cellular automata to simulate
morphogenesis and parameterizes the update rules with a CNN. AgentTorch is used to learn the
cellular automata rules by representing the transition function of a substep with a DNN. Enabling
this requires only a few additional lines as shown in the pseudocode on the left, and is an instance of
Mode 2 in sec 2.3. The experiment follows from [29] and more details are included in the appendix.
Corresponding results in appendix A show the emergent pattern for two shapes (lizard and butterfly)
at different steps along the simulation.

.

• Mode 1: Optimize scalar/tensor ABM parameters. For instance, this may involve calibrating
the R0 parameter of a virus to death statistics using SL (sec 3.1) or learning purchase pol-
icy of an agents to maximize expected utility using RL (sec 3.3). The optimizer is defined as
torch.optim.SGD(runner.parameters()).

• Mode 2: Embed DNN inside ABM to learn substep functions. For instance, an unknown mechanism
can be parameterized with a neural network without affecting any other components of the simulator;
and learned to reproduce observed simulation output using SL (sec 3.1). This neural substep
function is defined in the config and its parameters tracked in runner.parameters(). The
optimizer is defined as torch.optim.SGD(runner.parameters())..

• Mode 3: Integrate ABM with DNN pipelines. Instead of optimizing components of the simulation,
AgentTorch model can define a proxy objective and provide gradients to learn an external black-
box models (external_nn). For instance, they may be used to jointly forecast infections across
multiple counties with distinct simulators via SL (sec 3.2). The hybrid optimizers can be defined
with torch.optim.SGD(list(external_nn.parameters() + runner.parameters())).

3 Case Studies

Here, we present diverse case studies to show the flexibility of AgentTorch in definition, simulation,
and optimization. These case studies span digital, physical, and biological realms; scale from a few
hundred agents in a synthetic grid spaces to millions of agents over city-scale contact networks; and
involve learning simulation parameters, agent policies, and transition rules. Specifically, these include
cells in a bio-electric micro-environment assembling organs, human citizens in a physical environment
spreading infections and avatars in a digital environment sharing opinions. The flexibility in design
is coupled with computational benefits realized by tensorization, GPU execution, and support for
automatic differentiation which unlocks new capabilities via seamless (end-to-end) integration with
deep neural networks. For this analysis, we benchmark previously introduced simulators using
AgentTorch. The key objective is to demonstrate the capabilities of the design of AgentTorch
which allows to specify diverse multi-agent scenarios, execute million-scale simulations, conduct
gradient-based optimization and evaluate interventions in agent-based models.

6



3.1 Cell Morphogenesis

Morphogenesis is the process of an organism’s shape development where cells interact over bio-
electric networks to self-assemble into tissues and organs. The process is extremely robust to
perturbations where several species have the ability to regenerate entire organs by repairing damage
(to intermediate states) or produce viable organs even from atypical initial states. Understanding
the mechanism behind behind morphogensis is an active area of research and key to progress in
regenerative medicine. We follow from [29] which extends cellular automata (CAs) to identify
cell-level rules that result in adaptive and robust morphogensis. CAs consist of a grid of cells that
are iteratively updated with the same set of rules applied to each cell at every step. The new state
of a cell depends only upon the state of a few cells in its immediate neighborhood. The goal of
the simulation is two fold: a) learn the cell-level mechanism by representing it with a deep neural
network, b) validate robustness of the learned mechanism to perturbations in initial state.

Following from [29], in the simulation, agents are cells with 16-dim property state. Agent-agent
interaction are described over a 2D grid space environment. The state is initialized with a single
active agent and produces a multi-cellular pattern through the simulation. The simulation has a single
substep (EvolveCell) with transition function is parameterized with a CNN and describes how cells
interact with neighbors to update their state. The output of the simulation is a 2D grid pattern of all
cell states (denoting organism shape) and the learning objective is supervised loss against an expected
shape (or grid pattern). The goal is to learn a transition function robust to perturbations in initial state
and involves jointly optimizing over multiple simulations with varying initial states.

AgentTorch demonstrates two key capabilities:

• C1: AgentTorch allows to embed DNN inside an ABM. Here, the transition function of
EvolveCell substep is parameterized with a CNN. This is captured by runner.parameters()
and can be used with an optimizer as shown by psuedocode in Figure 3.

• C2: AgentTorch enables joint optimization and parameter sharing between multiple runners.
Here, multiple runner objects created for different initial states utilize a shared optimizer and
each is simulated via runner[j].step_from_params(runner[i].substep.parameters()).
Pseudocode and results for this experiment are included in the appendix.

3.2 Spatial Infectious Disease Epidemiology

Infectious diseases spread through physical contact with infected agents and have a two-time scale
nature of transmission of new infections and stage progression of already infected agents. Under-
standing the spread of infection is key to designing effective intervention policies. In the context of
COVID-19, this involved deciding lockdown policies, prioritizing vaccination schedules and selecting
testing strategies. In practice, such decisions are highly complex as they require considering scale
of the population, stochastic behavior of individual agents as well as properties of the intervention.
For instance, effective public health policies during COVID-19 included delaying administration of
the second vaccine dose, prioritizing test speed over specificity. Evaluating these decisions in-silico
requires granular and data-driven simulations, fast calibration and sensitivity analyzes. The goals
of this simulation are: a) recreate real-world million-scale populations, b) improve calibration of
simulation parameters using DNNs, c) analyze sensitivity of diverse interventions.

Following from [16, 35, 23, 15], in the simulation, agents are citizens with 5-dim property state
(age, occupation, disease-stage, infected-time, vaccine-status) that spread covid-19 infection. Ob-
jects include both the infecting virus and co-location centers like pubs, schools and care-homes.
Environments are obtained using real-world contact graphs and describes interactions in citizen-
citizen mobility networks and citizen-pub co-location networks. The simulator state is initialized
with a few infected agents. Each simulation step has two substeps InfectionTransmission and
SEIRMProgression which describe transmission of new infections and an SEIRM progression
of previously infected agents, respectively. Discrete stochasticity in the simulation is handled by
reparameterizing with gumbel-softmax gradient estimator, to ensure differentiability. The output of
the simulation is the histogram of citizen disease stages and the learning objective for calibration is a
supervised loss against ground truth case statistics (from CDC).

AgentTorch demonstrates the following capabilities:

7



Figure 4: C3-C5 AgentTorch can simulate ABMs with millions of agents, build hybrid DNN-ABM
pipelines and jointly optimize multiple ABMs by changing only a few lines of code. AgentTorch is
used to calibrate simulations with millions of agents and forecast spread of two diseases - COVID-19
and Influenza over three different learning situations denoted by (a), (b) and (c). This calibrated
model is used to answer policy questions as shown on the right. These experiments follow from [16]
and more details, with pseudocode for each learning situation are in the appendix

• C3: AgentTorch enables realistic simulations with million-scale populations and real-world contact
networks, all while abstracted from the engineering complexity. The same API scales to millions
of agents and can support real-world contact graphs generated offline. The run-time performance
benchmarking is shown in the appendix.

• C4: AgentTorch enables integrating ABMs with DNNs. Here, this pipeline is used to calibrate
simulation parameters using gradient-based learning by designing hybrid optimizers. Pseudocodes,
corresponding to results in figure 4(left), are shown in figure 10 of appendix B.

• C5: AgentTorch allows flexible experimentation through its modular design. First, AgentTorch
can be used to evaluate policy interventions through white-box scenario analysis. Figure 4 (right)
shows results which evaluate the efficacy of delayed vaccination schedule. Second, AgentTorch
can generalize across simulation assumptions by changing a few lines of code. Figure 4 (left)
shows a model built for COVID-19 can be adapted to Influenza by just replacing a single substep
(SEIRMProgression with SIRSProgression). More details are in the appendix.

3.3 Social Opinion Dynamics

Digital interactions are already ubiquitous and are become increasingly becoming more relevant with
the advent of autonomous agents. Such agents, trained to act strategically, will become integral to
society and business as they redefine interfaces with humans to mitigate vaccine hesitancy against
diseases, advertise new products in competitive markets etc. Typically agents in these systems interact
in two ways – directly via communicating with each other (influenced by their individual follower
tendencies) and indirectly via affecting the environment or objects. We implement a standard opinion
dynamics model, focusing on direct interactions, to simulate lock-in of consumer behavior. The goal
of this simulation is: a) learn agent policies that maximize utility over time horizon.

Following from [20], in the simulation, consumers and marketers are the two types of agents. Objects
include products that the marketers advertise to consumers. We specifically consider a duopoly with
two products. Environment describes interactions through consumer-consumer networks that are
defined using grid graphs in the simulation. The simulation has a single substep PurchaseProduct
where agents observe purchase behavior of neighbors to make a discrete purchase decision. The
output of the simulation is the observed utility for all agents and the learning objective is to maximize
each agent’s expected utility over the finite time horizon. The discrete stochasticity in the simulation,
arising from agent purchase behavior, is reparameterized with the gumbel softmax gradient estimator
allowing for automatic differentiation through time. In principle, a score-function gradient estimate
(some variant of REINFORCE) can also be used. We note that the goal is to demonstrate ability to
use AgentTorch for sequential decision making irrespective of the specific choice of algorithm.

AgentTorch demonstrates the following capabilities:

• C6: AgentTorch allows learning agent policies by specifying custom reward functions. End-to-end
differentiability of AgentTorch enables reinforcement learning with first-order policy gradients [40].
Pseudocode and specific example in context of opinion dynamics is shown in Figure 5.

8



Figure 5: C6 - Policy optimization with AgentTorch. In social opinion dynamics [20], purchase
behavior is parameterized with a follower tendency and agents learn personalized optimal follower
tendencies to maximize utilities over timesteps. This policy learning is enabled easily in AgentTorch
with parameters in runner as shown in the pseudocode on the left. The learning curve with follower
tendencies versus episodes for a few sample agents is shown on the right. The experimental setup
follows from [20] and more details are in the appendix.

4 Related Work

Automatic differentiation is becoming an integral part of scientific computation with recent ap-
plications in computational finance [13], atmospheric modeling [14], protein modeling [1, 25],
computational chemistry [39], physics engines [17, 19]. Hence, in recent times, several frameworks
have emerged with the goal to equip automatic differentiation libraries with simulation capabilities.
Some examples include JAX.MD [36] and TorchMD [18] for molecular dynamics, TorchDyn [32]
for neural differential equations, JAXFluids [6] for fluid dynamics. These packages have helped
realize highly performance simulations by leveraging the capabilities of XLA and integrations with
deep learning models. Some recent work has explored differentiable agent-based modeling [16, 4]
with promising results to accelerate simulations [15], improve calibration by integrating with deep
neural networks [16, 34], conduct one-shot sensitivity analysis using gradients [33], and replace
mechanistic rules with neural networks [29, 31]. However, this has been restricted to very specific
examples and no general framework exists. Designing such a framework for agent-based modeling
presents unique challenges due to the presence of stochasticity of individual behavior, heterogeneity
of population interactions, multi-scale evolution, nested conditional rule sets and extremely diverse
applicability. [3] integrate ABMs with DNNs using 0th-order gradients as the simulators are not
tensorized or differentiable. We aim to fill the gap with AgentTorch. AgentTorch can be used to build
extremely diverse simulators across digital, physical, and biological realms and supports learning
with automatic differentiation, as demonstrated by our analysis.

5 Conclusions and Future Work

We introduce AgentTorch: a framework to define, simulate and optimize agent-based models (ABMs).
First, the AgentTorch model definition has been used to design diverse ABMs across biological,
digital and physical realms. Second, The simulations are fully tensorized, execute on GPUs and
can range from few hundred agents in synthetic grids to millions of agents over real-world contact
graphs. Third, AgentTorch models are designed to be fully differentiable which enables use of
automatic differentiation of all simulation parameters and integrate with DNNs in several ways to
extend capabilities of mechanistic ABMs. For future work, we plan to build an AgentTorch gym,
similar to [10], to provide a test bed of real-world simulators for AI researchers. AgentTorch is
designed to be a viable toolkit for scientific exploration as well as real-world policy decision-making.
We hope AgentTorch can help bring research in AI and agent-based models closer together.

9



References
[1] Mohammed AlQuraishi. End-to-end differentiable learning of protein structure. Cell systems,

8(4):292–301, 2019.

[2] Camilla Ancona, Francesco Lo Iudice, Franco Garofalo, and Pietro De Lellis. A model-based
opinion dynamics approach to tackle vaccine hesitancy. Scientific Reports, 12(1):11835, 2022.

[3] Leo Ardon, Jared Vann, Deepeka Garg, Thomas Spooner, and Sumitra Ganesh. Phantom-
a rl-driven multi-agent framework to model complex systems. In Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems, pages 2742–2744,
2023.

[4] Gaurav Arya, Moritz Schauer, Frank Schäfer, and Christopher Rackauckas. Automatic differ-
entiation of programs with discrete randomness. Advances in Neural Information Processing
Systems, 35:10435–10447, 2022.

[5] Joseph Aylett-Bullock, Carolina Cuesta-Lazaro, Arnau Quera-Bofarull, Miguel Icaza-Lizaola,
Aidan Sedgewick, Henry Truong, Aoife Curran, Edward Elliott, Tristan Caulfield, Kevin Fong,
et al. June: open-source individual-based epidemiology simulation. Royal Society open science,
8(7):210506, 2021.

[6] Deniz A Bezgin, Aaron B Buhendwa, and Nikolaus A Adams. Jax-fluids: A fully-differentiable
high-order computational fluid dynamics solver for compressible two-phase flows. Computer
Physics Communications, 282:108527, 2023.

[7] Keith R Bisset, Jiangzhuo Chen, Xizhou Feng, VS Anil Kumar, and Madhav V Marathe. Epifast:
a fast algorithm for large scale realistic epidemic simulations on distributed memory systems.
In Proceedings of the 23rd international conference on Supercomputing, pages 430–439, 2009.

[8] Eric Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems.
Proceedings of the national academy of sciences, 99(suppl_3):7280–7287, 2002.

[9] Julii Brainard, PR Hunter, and Ian R Hall. An agent-based model about the effects of fake news
on a norovirus outbreak. Revue d’epidemiologie et de sante publique, 68(2):99–107, 2020.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[11] Antonio Bru, E Alós, JC Nuño, and M Fernández de Dios. Scaling in complex systems: a link
between the dynamics of networks and growing interfaces. Scientific reports, 4(1):1–7, 2014.

[12] Patrick Cannon, Daniel Ward, and Sebastian M Schmon. Investigating the impact of model
misspecification in neural simulation-based inference. arXiv preprint arXiv:2209.01845, 2022.

[13] Luca Capriotti. Fast greeks by algorithmic differentiation. Available at SSRN 1619626, 2010.

[14] Gregory R Carmichael, Adrian Sandu, et al. Sensitivity analysis for atmospheric chemistry
models via automatic differentiation. Atmospheric Environment, 31(3):475–489, 1997.

[15] Ayush Chopra, Esma Gel, Jayakumar Subramanian, Balaji Krishnamurthy, Santiago Romero-
Brufau, Kalyan S Pasupathy, Thomas C Kingsley, and Ramesh Raskar. Deepabm: scalable,
efficient and differentiable agent-based simulations via graph neural networks. In Winter
Simulation Conference (WSC), 2021.

[16] Ayush Chopra, Alexander Rodriguez, Jayakumar Subramanian, Balaji Krishnamurthy, B Aditya
Prakash, and Ramesh Raskar. Differentiable agent-based epidemiology, 2023.

[17] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.
End-to-end differentiable physics for learning and control. Advances in neural information
processing systems, 31, 2018.

[18] Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Kramer, Cecilia Clementi, Frank Noe,
Toni Giorgino, and Gianni De Fabritiis. Torchmd: A deep learning framework for molecular
simulations. Journal of chemical theory and computation, 17(4):2355–2363, 2021.

10



[19] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation, 2021.

[20] Michael Garlick and Maria Chli. Agent-based simulation of lock-in dynamics in a duopoly.
In 9th International Joint Conference on Autonomous Agents and Multiagent Systems, pages
1545–1546, 2010.

[21] Voit EO Glen CM, Kemp ML. Agent-based modeling of morphogenetic systems: Advantages
and challenges. PLoS Computational Biology, 2019.

[22] Chang Gong, Oleg Milberg, Bing Wang, Paolo Vicini, Rajesh Narwal, Lorin Roskos, and
Aleksander S Popel. A computational multiscale agent-based model for simulating spatio-
temporal tumour immune response to pd1 and pdl1 inhibition. Journal of the Royal Society
Interface, 14(134):20170320, 2017.

[23] Robert Hinch, William JM Probert, Anel Nurtay, Michelle Kendall, Chris Wymant, Matthew
Hall, Katrina Lythgoe, Ana Bulas Cruz, Lele Zhao, Andrea Stewart, et al. Openabm-
covid19—an agent-based model for non-pharmaceutical interventions against covid-19 in-
cluding contact tracing. PLoS computational biology, 17(7):e1009146, 2021.

[24] Cars H Hommes. Modeling the stylized facts in finance through simple nonlinear adaptive
systems. Proceedings of the National Academy of Sciences, 99(suppl_3):7221–7228, 2002.

[25] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure
with a differentiable simulator. In International Conference on Learning Representations, 2019.

[26] Jackie Kazil, David Masad, and Andrew Crooks. Utilizing python for agent-based modeling:
The mesa framework. In Robert Thomson, Halil Bisgin, Christopher Dancy, Ayaz Hyder,
and Muhammad Hussain, editors, Social, Cultural, and Behavioral Modeling, pages 308–317,
Cham, 2020. Springer International Publishing.

[27] Cliff C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abeysuriya, Katherine Rosenfeld,
Gregory R Hart, Rafael C Núñez, Jamie A Cohen, Prashanth Selvaraj, Brittany Hagedorn, et al.
Covasim: an agent-based model of covid-19 dynamics and interventions. PLOS Computational
Biology, 17(7):e1009149, 2021.

[28] Ian S Lustick et al. Agent-based modelling of collective identity: testing constructivist theory.
Journal of Artificial Societies and Social Simulation, 3(1):1, 2000.

[29] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing
neural cellular automata. Distill, 2020.

[30] Federico Guglielmo Morelli, Michael Benzaquen, Marco Tarzia, and Jean-Philippe Bouchaud.
Confidence collapse in a multihousehold, self-reflexive dsge model. Proceedings of the National
Academy of Sciences, 117(17):9244–9249, 2020.

[31] Elias Najarro, Shyam Sudhakaran, Claire Glanois, and Sebastian Risi. Hypernca: Growing
developmental networks with neural cellular automata. ICLR Workshop on Cells to Societies,
2022.

[32] Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Torch-
dyn: A neural differential equations library. arXiv preprint arXiv:2009.09346, 2020.

[33] Arnau Quera-Bofarull, Ayush Chopra, Joseph Aylett-Bullock, Carolina Cuesta-Lazaro, Anisoara
Calinescu, Ramesh Raskar, and Michael Wooldridge. Don’t simulate twice: One-shot sensitivity
analyses via automatic differentiation. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, pages 1867–1876, 2023.

[34] Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge, and Joel
Dyer. Bayesian calibration of differentiable agent-based models. ICLR Workshop on AI for
Agent-based Models, 2023.

11



[35] Santiago Romero-Brufau, Ayush Chopra, Alex J Ryu, Esma Gel, Ramesh Raskar, Walter
Kremers, Karen S Anderson, Jayakumar Subramanian, Balaji Krishnamurthy, Abhishek Singh,
et al. Public health impact of delaying second dose of bnt162b2 or mrna-1273 covid-19 vaccine:
simulation agent based modeling study. bmj, 373, 2021.

[36] Samuel Schoenholz and Ekin Dogus Cubuk. Jax md: a framework for differentiable physics.
Advances in Neural Information Processing Systems, 33:11428–11441, 2020.

[37] Neal R Smith, James M Trauer, Manoj Gambhir, Jack S Richards, Richard J Maude, Jonathan M
Keith, and Jennifer A Flegg. Agent-based models of malaria transmission: a systematic review.
Malaria journal, 17(1):1–16, 2018.

[38] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pages 20668–
20696. PMLR, 2022.

[39] Teresa Tamayo-Mendoza, Christoph Kreisbeck, Roland Lindh, and Alán Aspuru-Guzik. Auto-
matic differentiation in quantum chemistry with applications to fully variational hartree–fock.
ACS central science, 4(5):559–566, 2018.

[40] Nina Wiedemann, Valentin Wüest, Antonio Loquercio, Matthias Müller, Dario Floreano, and
Davide Scaramuzza. Training efficient controllers via analytic policy gradient. arXiv preprint
arXiv:2209.13052, 2022.

[41] Uri Wilensky. Netlogo. http://ccl.northwestern.edu/netlogo/, Center for Connected Learning
and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999.

12


	Introduction
	AgentTorch: define, simulate and optimize agent-based models
	Model Definition
	Simulator Implementation
	Gradient-based Optimization

	Case Studies
	Cell Morphogenesis
	Spatial Infectious Disease Epidemiology
	Social Opinion Dynamics

	Related Work
	Conclusions and Future Work

