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Abstract
The increasing ubiquity of text-to-image (T2I)
models as tools for visual content generation
raises concerns about their ability to accurately
represent diverse cultural contexts. In this work,
we present the first study to systematically quan-
tify the alignment of T2I models and evaluation
metrics with respect to both explicit as well as im-
plicit cultural expectations. To this end, we intro-
duce CULTURALFRAMES, a novel benchmark de-
signed for rigorous human evaluation of cultural
representation in visual generations. Spanning
10 countries and 5 socio-cultural domains, CUL-
TURALFRAMES comprises 983 prompts, 3,637
corresponding images generated by 4 state-of-
the-art T2I models, and over 10k detailed human
annotations. We found that state-of-the-art T2I
models not only fail to meet the implicit expecta-
tions which are more challenging to meet, but also
the less challenging explicit expectations. Across
models and countries, cultural expectations are
missed an average of 44% of the time. Among
these failures, explicit expectations are missed at
a surprisingly high average rate of 68%, while
implicit expectation failures are also significant,
averaging 49%. Furthermore, we demonstrate that
existing T2I evaluation metrics correlate poorly
with human judgments of cultural alignment, irre-
spective of their internal reasoning. Collectively,
our findings expose critical gaps, providing ac-
tionable directions for developing more culturally
informed T2I models and evaluation methods.

1. Introduction
Visual media such as advertisements, posters, and public
imagery play a central role in encoding and transmitting

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2025 Workshop on
Models of Human Feedback for AI Alignment. Do not distribute.

cultural values (McLuhan, 1966). They often depict cul-
turally specific elements (e.g., traditional attire, religious
symbols) and embed societal norms and values (e.g., expec-
tations around family structure, gender roles, and etiquette),
thus reflecting and influencing the cultures from which they
originate (Hall, 1980).

Text-to-image (T2I) models are emerging as a significant
component of this visual media ecosystem, now adopted
across diverse domains like education, marketing, and story-
telling (Dehouche & Dehouche, 2023; Loukili et al., 2025;
Maharana et al., 2022). This magnifies the cultural implica-
tions of their outputs for global audiences (Wan et al., 2024;
Hartmann et al., 2025) and raises a critical question: how
accurately, and with what depth, do these models depict
diverse cultures? While T2I models may generate visually
plausible outputs for cultural prompts (e.g., “a bride and
groom exchanging vows at their Hindu wedding,” Fig. 1),
they often capture explicit details at the expense of crucial,
implicit elements integral to the cultural context (such as
a sacred fire or officiating priest). Indeed, T2I model per-
formance hinges on accurate cultural representation, which
can foster familiarity and trust. Inaccuracies, however, risk
reinforcing stereotypes, exclusion, or propagating dominant
narratives (Naik & Nushi, 2023).

This necessitates evaluation practices that not only verify
faithfulness to the explicit expectations (expectations based
on the words in the prompt) but also assess the inference
and contextualization of implicit cultural expectations (ex-
pectations based on the cultural context mentioned in the
prompt). However, current T2I evaluation methodologies
predominantly focus on the former by assessing explicit
prompt-image consistency using automated metrics (Hu
et al., 2023; Hessel et al., 2021; Ku et al., 2024a).1 Further,
existing benchmarks for evaluating T2I models are designed
around prompts that emphasize attributes like realism (Sa-
haria et al., 2022), compositionality (Huang et al., 2023;
2025), and safety (Lee et al., 2023), typically using generic
or Western-centric prompts. Consequently, current evalua-
tion methods and benchmarks lack adequate representation

1The only prior work evaluating appropriate contextualization
of sensitive content is Akbulut et al. (2025), which focuses on
image-to-text for historical events.
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A bride and groom exchanging vows 
at their Hindu wedding in India.

Families sharing dumplings during 
Chinese New Year celebration. 🇵🇱

Polish father taking out a Christmas 
carp from the bathtub.

a bride and groom ✅

exchanging vows ❌

Hindu wedding in India ✅

families ❌

sharing dumplings ❌

chinese new year celebration ✅

polish father ✅

taking out a Christmas carp ✅

from the bathtub ✅

“…vows without a priest? That’s incomplete!”

🇨🇳🇮🇳

“…the red lanterns are very stereotypical”

“…the image lacks the sacred fire, that’s an  
essential element of the ritual”

“…we don’t eat dumplings like that, they 
are part of a feast, not the only food items” 

“…father is dressed like Santa Claus”

“…why is there snow in the bathtub in the 
bathroom?”
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Ex
pe

ct
at

io
ns exchanging vows  

exchanging vows

Chinese new year celebrations

sharing dumplings From a bathtub 

Polish father

“…yes it seems like vows, but in a Hindu 
wedding it doesn’t happen like this”

“The image shows kids, not a family”

“This is baozi (steamed buns), not 
dumplings”

Figure 1: Examples from CULTURALFRAMES benchmark for three selected countries: India, China, and Poland. We ask
annotators to evaluate the generated images with respect to both explicit and implicit cultural expectations.

of culturally nuanced and expectation-rich scenarios critical
to diverse cultural contexts.

In response to these limitations, we perform a comprehen-
sive study to evaluate how state-of-the-art T2I models repre-
sent cultural expectations across diverse contexts. We intro-
duce CULTURALFRAMES, a novel benchmark comprising
983 prompts across 10 countries, with 3,637 corresponding
images generated by 4 state-of-the-art T2I models, and over
10k detailed human annotations. The curated prompts are
grounded in real-life situations and cover five culturally sig-
nificant domains: greetings, etiquette, dates of significance,
religion, and family life, which are explicitly designed to test
representation of both explicit and implicit cultural expecta-
tions. Using the collected prompts, we first generate images
with four state-of-the-art T2I models, two open-source and
two closed-source. Second, we conduct evaluations employ-
ing human evaluators with relevant cultural backgrounds,
who provide fine-grained judgments of the generated images
with respect to the prompt in order to assess T2I models’
performance. We find that state-of-the-art T2I models not
only fail to meet the implicit expectations that are more
challenging to meet, but also the less challenging explicit
expectations. In fact, models fail to meet cultural expecta-
tions 44% of the time on average across countries. Among
these instances, the failure rate for explicit expectations is
unexpectedly high, averaging 68%, and the rate for implicit
expectations is also significant at an average of 49%.

Furthermore, we correlate these human assessments with
existing T2I evaluation metrics to demonstrate that current
metrics correlate poorly with human judgments of cultural
alignment, while differing in their internal reasoning. Col-
lectively, our findings lead to a discussion on actionable
directions for developing more culturally informed T2I
models and evaluation methodologies. These include utiliz-
ing our prompts for future evaluations, leveraging the full
CULTURALFRAMES (prompts, images, and annotations) for
model alignment, and using explicit instructions for metrics.

2. Related Work
Evaluating T2I models. A suite of benchmarks has been
proposed for text-to-image generation. DrawBench (Saharia
et al., 2022) and PartiPrompts (Yu et al., 2022) evaluate
overall image fidelity and complex scene rendering. The
T2I-CompBench series (Huang et al., 2023; 2025) focus
specifically on compositional challenges. Human assess-
ment and considerations for bias and fairness are addressed
by ImagenHub (Ku et al., 2024c), HEIM (Lee et al., 2023),
and GenAI Arena (Jiang et al., 2024). Traditional metrics
assess image quality and diversity using embedding-based
metrics, e.g., FID (Heusel et al., 2018), Inception Score (Sal-
imans et al., 2016), and the text-image alignment via pre-
trained vision-language embeddings, e.g., CLIPScore (Hes-
sel et al., 2021) and DinoScore (Ruiz et al., 2023). More
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recently, reward models trained on human preferences such
as HPSv2 (Wu et al., 2023a), ImageReward (Xu et al., 2023),
and PickScore (Kirstain et al., 2023) have shown improved
correlation with human judgments. Concurrently, further
metrics leverage LLMs and VLMs for evaluating prompt
consistency and image-text alignment through question-
answering or reasoning, such as TIFA (Hu et al., 2023),
DSG (Cho et al., 2024), V2QA (Yarom et al., 2023), VQAS-
core (Lin et al., 2025), VIEScore (Ku et al., 2024b), and
LLMScore (Lu et al., 2023).

Cultural Alignment Evaluation of T2I models. T2I
models struggle to accurately and respectfully represent
cultural elements, leading to misrepresentation of cultur-
ally grounded concepts and values (Ventura et al., 2024;
Prabhakaran et al., 2022; Struppek et al., 2023). A growing
body of work highlights various cultural biases, such as
nationality-based stereotypes (Jha et al., 2024), skin tone
bias (Cho et al., 2023), broader risks and social biases in
T2I models across gender, race, age, and geography (Bird
et al., 2023; Naik & Nushi, 2023). Other works focus on ge-
ographic representation (Basu et al., 2023; Hall et al., 2024),
showing skewed generations towards Western contexts. Sev-
eral recent benchmarks aim to probe cultural alignment in
T2I systems. CUBE (Kannen et al., 2025) evaluates gen-
erations across food, clothing, and landmarks from eight
countries. CULTDIFF (Bayramli et al., 2025) studies cul-
turally specific generations across ten nations. CCUB (Liu
et al., 2024) introduces a benchmark for inclusive represen-
tation and proposes the SCoFT method to leverage model bi-
ases for improved equity. Similarly, MC-SIGNS (Yerukola
et al., 2025) presents a dataset of gestures from 85 coun-
tries, while tasks like cultural image transcreation (Khanuja
et al., 2024), study cultural adaptation, evaluating how well
models translate images across cultures. Other works re-
trieve cultural context to refine generation prompts (Jeong
et al., 2025), or evaluate portrayals of nationality in limited
settings (Alsudais, 2025).

While these efforts provide valuable insights, they predom-
inantly focus on visible and explicit cultural symbols and
references like clothing, food, or monuments. Our work
is inspired by Qadri et al. (2025), who argue that relying
predominantly on standard metrics of faithfulness and qual-
ity can yield only surface-level understanding. Therefore,
Qadri et al. (2025) advocate for “thick” evaluations, offering
qualitative insights through culturally grounded human stud-
ies. As a result, our work targets day-to-day scenarios and
investigates how well T2I models represent both explicit and
implicit cultural expectations. We also evaluate both models
and metrics through detailed human studies to understand
their strengths and limitations in these scenarios. To the
best of our knowledge, this is the first attempt to systemati-
cally quantify the alignment of T2I models and metrics with

implicit cultural expectations in visual generations.

3. CULTURALFRAMES

We detail our entire data collection pipeline below and high-
light the design decisions that make it distinct from standard
annotation efforts.

3.1. Selection of Countries

We operationalize cultural groups using countries as a
proxy (Adilazuarda et al., 2024), building upon the premise
that individuals within a country share a substantial amount
of common cultural knowledge, implicit understandings,
and norms that shape their daily interactions and prac-
tices (Hofstede et al., 2010; Hershcovich et al., 2022). To
create a dataset with diverse cultures, we selected coun-
tries spanning five continents and representing diverse cul-
tural zones as per the zone categorization in the World Val-
ues Survey (WVS; Haerpfer et al. 2022). Thus, our selec-
tion includes countries from the following cultural zones:
West and South Asia (India), Confucian (China, Japan),
African-Islamic regions (Iran, South Africa), Latin America
(Brazil, Chile), English-speaking (Canada), Catholic Europe
(Poland), and Protestant Europe (Germany).2

3.2. Selection of Cultural Categories

Our dataset is designed to evaluate culturally relevant ex-
pectations in visual generations. Specifically, we target five
socio-cultural domains from CulturalAtlas (Mosaica, 2024)
deeply embedded in day-to-day life: 1) family, addressing
familial roles, hierarchy, and interactions; 2) greetings, cov-
ering norms in social and business interactions; 3) etiquette,
involving conduct during visits, meals, gift-giving, etc.; 4)
religion, reflecting rituals and customs shaping group identi-
ties; 5) and dates of significance, highlighting celebrations
of cultural, historical, or religious importance. These cate-
gories were selected due to their coverage in the CulturalAt-
las for the selected countries and their potential to induce
prompts that elicit both explicit (elements directly men-
tioned in the prompt) and implicit cultural (not mentioned in
the prompt but inferred from shared cultural commonsense
and needed for cultural authenticity) expectations.

3.3. Data Generation Pipeline

Building on cultural categories, we first generate culturally
grounded prompts reflecting the core values described above.
For each prompt, we generate corresponding images and
evaluate across multiple dimensions from culturally knowl-
edgeable annotators to assess whether text-to-image models

2We acknowledge that the labels assigned to these cultural
categories are limited in their precision. Yet, these categories
present the cross-cultural variation relevant to this work.
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Assertion (CulturalAtlas) Generated Prompts

Greetings (India): Indians expect
people to greet the eldest or most senior person
first. When greeting elders, some may touch the
ground or the elder’s feet as a sign of respect.

(1) Grandchildren touching grandfather’s
feet at an Indian temple. (2) Indian village
elder blessing children during harvest
festival.

Religion (Iran): Most Iranians believe
in Islam, but due to politicization, many
younger citizens have withdrawn. Devout
followers often practice privately at home.

(1) Iranian family praying together at home.
(2) Elderly Iranian man praying in a quiet
mosque.

Table 1: Examples of assertions in CulturalAtlas for two
categories greetings in India and religion in
Iran and corresponding generated prompts.

capture both explicit and implicit cultural expectations.

Prompt Generation. We use Cultural Atlas (Mosaica,
2024) as our knowledge base to extract cultural expectations
(norms, practices, values) written as assertions. Cultural
Atlas is an educational resource informed by extensive com-
munity interviews and validated by cultural experts. To
generate culturally grounded prompts, we first extract con-
cise assertions from Cultural Atlas content and feed them
to GPT-4o (OpenAI, 2024) using designed instructions (see
App. A.1.1). These instructions guide the model to embed
cultural expectations into the prompts for realistic and ob-
servable everyday scenarios. Next, we use GPT-4o (OpenAI,
2024) and Gemini (Team, 2024) to automatically validate
the generated prompts, discarding any that are overly ab-
stract, culturally misaligned, or not visually depictable. As a
final step, we present each prompt to three culturally knowl-
edgeable annotators. Only prompts agreed upon by the ma-
jority are retained in the dataset (more details in App. A.1.2).
Example assertions and prompts from our benchmark are
shown in Tab. 1.

Image Generation. We generate images using four state-
of-the-art text-to-image models: two open-source models
(Flux 1.0-dev (Labs, 2024) and Stable Diffusion 3.5 Large
(SD) (Esser et al., 2024)) and two closed-source models (Im-
agen3 (Imagen-Team-Google, 2024) and GPT-Image (Ope-
nAI, 2025)). We note that Imagen3 includes a prompt ex-
pansion mechanism, which we enable by default and also
ablate by disabling it to assess its effect on the depiction
of cultural expectations. Not focusing on output diversity,
we generate one image per model per prompt to keep the
evaluation practical. In Fig. 9, we present prompt-image
examples.

Rating Collection. We developed a human rating collec-
tion interface and the associated annotation guidelines. We
tested several interface designs and variants of annotation
guidelines to collect high-quality annotations. The final
interface and the guidelines are provided in App. A.2. To
ensure high data quality, we filtered for attentive annotators
and ensured a minimum of 20 unique, culturally knowl-

edgeable workers3 per country. We collect data from three
annotators for each country using the Prolific4 platform.
Our annotation process captures detailed, multi-faceted
feedback. Each annotator first evaluates how well the image
aligns with the prompt (image-prompt alignment), consider-
ing both explicit elements stated in the prompt and implicit
elements expected based on cultural context. Following Ku
et al. (2024c), we use a 3-point Likert scale: 0.0 (no align-
ment), 0.5 (partial), and 1.0 (complete). For scores below 1,
annotators specify whether explicit, implicit, or both types
of elements were missing or not depicted satisfactorily in
the image, and highlight the specific words in the prompt
whose visual depictions were not satisfactory, along with
providing justifications for why they were not satisfactory.
This fine-grained rating scheme allows us to analyze the in-
terplay between various quality aspects and their correlation
with perceived cultural appropriateness. Annotators flag
stereotypes in the images, providing justifications if present.
Next, they assess image quality, noting issues such as
distortions, artifacts, or unrealistic object rendering. Finally,
they assign an overall image score on a 5-point Likert scale.

4. Data Analysis
Prompts. CULTURALFRAMES consists of 983 prompts
collected from 10 countries, with each country contribut-
ing between 90 and 110 prompts, ensuring balanced
cross-country representation. The prompts are distributed
across five cultural categories introduced in § 3.2: eti-
quette (24.3%), religion (14.4%), family (14.2%), greetings
(13.1%), and dates of significance (34%). For a detailed
per-country breakdown, see Fig. 8 in App. A.1.3.

Images. For open-source models, we generate images for
all prompts. However, closed-source models apply safety
filters that block some generations. This issue is most notice-
able with Imagen3, which filters out 290 prompts—29.5%
of the prompts. Most of these are blocked because the
prompts involve children. We requested an exemption but
have not received approval yet. We will continue to follow
up and add more images if access is granted. GPT-4o blocks
only 5 prompts. In total, we collect 3,637 images.

Inter-rater Agreement. We collect a total of 10,911 rat-
ings, with each image rated by 3 annotators. To measure
agreement among raters, we compute Krippendorff’s alpha
(Krippendorff, 2013): 0.37 for prompt alignment, 0.28 for
image quality, and 0.36 for overall score. These values in-

3Annotators were selected based on the following criteria: born
in the country, national of the country, have spent the majority of
the first 18 years of life there, and are a resident of the country.
The residency criterion was relaxed for China to ensure a sufficient
annotator pool size.

4https://www.prolific.com/
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Figure 2: Human evaluation results for selected T2I models. From left to right: 1) Prompt Alignment (0−1 scale, 1 =perfect
alignment). 2) Image Quality (0−1 scale, 1 =highest quality). 3) Stereotype Score (0−1 scale, 0 indicates no stereotyping).
4) Overall Score (1− 5 Likert scale, 5 =best overall). For fairness, we compare across prompts that have images generated
by all models.

dicate moderate agreement among annotators. Our results
align with previous findings that image quality assessment
is subjective (Wu et al., 2023b; Qadri et al., 2025). For
prompt alignment, the agreement scores indicate diverse an-
notators’ expectations, showing the difficulty of the cultural
expectation evaluation task.

What aspect of the generated image dominates anno-
tators’ overall assessment? We find that the overall
score given by annotators is strongly correlated with im-
age–prompt alignment (Spearman rank correlation of 0.68),
whereas image quality shows a more moderate correlation
of 0.45. This trend holds consistently across countries, sug-
gesting that annotators prioritize faithfulness to the prompt
over aesthetic appeal when rating images. Also, stereotype
is negatively correlated with overall score weakly (-0.21),
which indicates a lower impact of the presence of stereo-
types on overall score. Interestingly, the results contrast
with findings from prior work using side-by-side image
comparisons (Kirstain et al., 2023), where image quality
often dominates overall preference judgments.

5. Evaluating T2I Models on
CULTURALFRAMES

How do different models perform for different criteria
across different countries? Fig. 2 shows human evalu-
ation results for prompt alignment, image quality, stereo-
type, and overall score. We find that GPT-Image achieves
the highest prompt alignment (0.85), followed by Imagen3
(0.79). The open-source models, SD-3.5-Large and Flux,
fall behind with scores of 0.66 and 0.63, respectively. For
image quality, Imagen3 is rated highest, with GPT-Image
and Flux performing comparably well. SD-3.5-Large, how-
ever, scores far behind the other models. Across all models,
including the state-of-the-art closed-source ones, the pro-
portion of images rated stereotypical ranged from 10% to

16%, with SD-3.5-Large generating stereotypical visuals the
most and Flux the least. Overall, raters prefer images from
GPT-Image, consistent with the prompt alignment result.
SD received the lowest overall score, most likely due to
poorer image quality and higher stereotype levels, despite
outperforming Flux in prompt alignment.

Consistent with Rastogi et al. (2024), our findings (Fig. 14)
indicate notable cross-country variations in both the overall
score and perceived importance of different evaluation
criteria. For instance, even assessments of image quality
differ, showing a discernible trend where Asian countries
tend to assign lower scores across multiple criteria.

Is there a preferred model across countries? For prompt
alignment (see Fig. 3), GPT-Image is consistently preferred
across countries, followed by Imagen3. Among open-source
models, SD-3.5-Large is generally more faithful except for
Germany, Poland, and Iran, where Flux performs better. In
Fig. 14, we show detailed results across countries and all cat-
egories. Regarding image quality, Imagen3 is the preferred
model, likely due to its hyper-realistic generations. Inter-
estingly, concerning stereotypes, closed-source models are
ranked as more stereotypical for 6 out of the 10 countries.

Which aspect—implicit or explicit—do models fail to
capture, and is this consistent across countries? Across
CULTURALFRAMES, annotators gave sub-perfect scores
(below 1) for 44% of the time. Out of these, 50.3% are
attributed to issues with explicit elements, 31.2% to implicit
elements, and 17.9% to both. While explicit errors are most
common, implicit cultural failures still account for 49.1% of
these cases, underscoring persistent challenges in capturing
culturally nuanced, context-dependent knowledge. Fig. 4
shows that GPT-Image has the lowest overall image-prompt
alignment error rate (ratings ¡ 1), with its errors roughly
evenly split between implicit and explicit types. In contrast,
other models, particularly SD-3.5-Large and FLUX, exhibit

5
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Figure 3: Prompt alignment scores across countries for a given model

Figure 4: Distribution of image-prompt alignment errors
(score ¡1) by model, grouped by error type: implicit, explicit,
or both. Bar lengths show fraction of total errors; % show
each type’s share of model’s total errors.

higher total error rates where explicit errors form the largest
share of their respective alignment failures. These results
indicate that improvements are needed in both explicit and
implicit cultural modeling.

In Canada, Poland, Germany, and Brazil, approximately
two-thirds of comments mention explicit prompt mis-
matches, indicating that literal fidelity dominates their feed-
back. Conversely, annotator feedback from India, China,
and South Africa is more evenly distributed, with roughly
half of the remarks targeting explicit flaws and half target-
ing implicit cultural elements. At the opposite end of the
spectrum, annotators from Japan and Iran predominantly
highlight implicit cultural elements, such as absent rituals,
attire, or local setting, with only about one-third of their
comments citing explicit tokens. Chile follows the latter
trend, albeit less strongly. Collectively, these observations
indicate that T2I models increasingly fail to capture users’
implicit cultural expectations in regions like Asia and the
Middle East, as contrasted with user feedback from the
Americas and Europe.

Figure 5: tSNE plot of Imagen3 images. Labeled markers
show image embedding centroids per country.

Which words do models most frequently misinterpret?
Fig. 15 displays every word in the prompt that at least one
rater labeled as erroneous, revealing two striking patterns.
First, country demonyms (e.g., Iranian, Brazilian, Chinese,
Japanese) are prominent. A closer examination of the rater
comments reveals these words are typically highlighted as
errors for two reasons: (i) a country-specific element is
missing from the image, or (ii) the annotators are not able
to relate to the depicted content. Second, terms such as
family, festival, ceremony, wedding, temple, meal, guests,
tea, greeting, music, costumes, and flags account for much
of the remaining error frequency. These words represent
broad cultural signifiers—rituals, social roles, and iconic
objects—indicating that T2I models frequently misrepresent
such elements.

What are the main causes of model failures across differ-
ent countries? To identify reasons behind model failures,
we analyze free-form comments collected from annotators.
For each country, we embed the comments using a sentence
transformer5 and cluster them using HDBScan (Campello

5https://huggingface.co/sentence-transfo
rmers/all-mpnet-base-v2

6
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Figure 6: Spearman rank correlation of various T2I evaluation metrics with human ratings across three criteria: prompt
alignment, image quality, and overall score. Human denotes the human-human Spearman rank correlation.

et al., 2013). We then prompt GPT-4o to summarize each
cluster with a concise label and explanations. This approach
reveals distinct failure patterns across regions. In Asia, mod-
els frequently misrepresent traditions and religious prac-
tices, often relying on stereotypes. In African contexts,
outputs lacked cultural authenticity, defaulting to generic or
Westernized portrayals. South American outputs suffered
from poor regional specificity and inaccurate depictions of
people’s appearances. Similarly, German outputs are con-
sistently marked by stereotypical associations; Canadian
content lacked appropriate demographic diversity and In-
digenous representation. Further, we investigate the nature
of the generated images by embedding them using the CLIP
vision encoder.6 As shown in Fig. 5, images from Asian
countries form distinct clusters, while those from other re-
gions lack such clear grouping. This suggests model outputs
fail to capture culturally distinctive visuals, demonstrating
that failures are not uniform but potentially reflect specific
training data blind spots and uneven geo-cultural represen-
tation.

6. Evaluating T2I Metrics on
CULTURALFRAMES

Metrics analyzed. We analyze five representative met-
rics spanning different evaluation paradigms: CLIPScore
(Hessel et al., 2021), TIFA (Hu et al., 2023), HPSv2
(Wu et al., 2023a), VQAScore (Lin et al., 2025), and VI-
EScore (Ku et al., 2024b). For TIFA, we use GPT-4o-mini
as the question generation model and Qwen2.5-VL-32B-
Instruct (Team, 2025) as the VQA module. GPT-4o is also
used as the backbone VLM in VIEScore.

How do metrics perform against different rating crite-
ria? We evaluate how well current T2I metrics correlate
with human judgments across prompt alignment, image
quality, and overall score (see Fig. 6). Among the evaluated

6https://huggingface.co/openai/clip-vit-l
arge-patch14

metrics, VIEScore achieves the highest correlation with
human ratings across all criteria. For prompt alignment,
VIEScore attains a Spearman correlation of 0.30. While this
is below the human-human agreement of 0.38, it notably
outperforms all other metrics. In contrast, TIFA, despite
being explicitly designed to assess image-text faithfulness,
exhibits a lower correlation, highlighting a gap between met-
ric design and actual alignment with human perception. The
performance gap is even more pronounced for image quality,
where all metrics correlate poorly with human ratings.
Nevertheless, VIEScore again performs best, followed by
HPSv2. The relatively stronger performance of HPSv2 may
be attributed to its alignment on image pairs, with human
preference likely driven by image quality, potentially mak-
ing it more sensitive to visual appeal. However, the overall
weak correlations suggest that current metrics fail to capture
the subjective nature of image quality as assessed by hu-
mans. For the overall score, VIEScore again demonstrates
the highest alignment with human judgments, achieving a
correlation of 0.31 compared to human-human agreement
of 0.42. CLIPScore, in contrast, consistently underperforms,
indicating limitations as a general-purpose evaluation met-
ric, particularly for culturally sensitive image assessments.

Do explanations provided by VLM-based metrics cap-
ture the mistakes human raters highlight? To further
analyze the effectiveness of the best-performing metric on
our benchmark, VIEScore, we evaluate whether its gener-
ated explanations reflect the issues raised by human anno-
tators. We adopt an LLM-as-a-judge setting, instructing it
to assess the alignment between VIEScore’s reasoning and
human concerns on a 1–5 Likert scale. The instructions are
shown in Fig. 16. To calibrate the LLM’s judgments, we
provided five in-context examples corresponding to vary-
ing quality levels. Additionally, we manually evaluate 100
judge-provided scores, sampled across countries and rating
categories. We confirm that the LLM judge provides high-
quality assessments. The results reveal that VIEScore’s
explanations achieve an average rating of 2.19, indicating
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that while some overlap exists, the metric only partially
captures the concerns raised by human raters. This also sug-
gests a mismatch in the underlying rationale, emphasizing
that current metrics, have substantial room for improvement
in aligning with human judgment and reasoning processes.
Some qualitative examples are provided in Fig. 17.

Can we improve metric performance through explicit
instructions? Current T2I metrics are not explicitly
guided to consider implicit and explicit prompt elements
when evaluating image alignment. To test whether such
guidance improves performance, we modify the instructions
given to GPT-4o within VIEScore, replacing them with
the more detailed annotation guidelines provided to human
raters, including illustrative examples. We then re-evaluate
images for image-prompt alignment using this instruction-
tuned version of the VIEScore. This intervention yields
a modest improvement in correlation with human ratings,
with the Spearman correlation increasing from 0.30 to
0.32. To assess whether the reasoning behind the scores
also improved, we again use the LLM-as-judge setup to
evaluate 100 generated explanations. The resulting average
score of 2.37, compared to 2.19 for the original VIEScore
explanations, suggests that the modified metric captures
human concerns slightly more effectively. Despite this
improvement, the metric’s reasoning still falls considerably
short of human rationale, indicating that explicit instructions
alone are insufficient. These results underscore a persistent
cultural and conceptual gap in model reasoning, even when
provided with explicit guidance.

7. Conclusions
In this work, we introduce CULTURALFRAMES, a novel
benchmark comprising 983 cultural prompts, 3,637
generated images, and 10,911 human annotations, spanning
ten countries and five socio-cultural domains. CULTUR-
ALFRAMES assesses the ability of T2I models to generate
images across diverse cultural contexts. We find that
state-of-the-art T2I models not only fail to meet the more
nuanced implicit expectations, but also the less challenging
explicit expectations. In fact, models fail to meet cultural
expectations 44% of the time on average across countries.
Failures to meet explicit expectations averaged a surpris-
ingly high 68% across models and countries, with implicit
expectation failures also significant at 49%. Finally, we
demonstrate that existing T2I evaluation metrics correlate
poorly with human judgments of cultural alignment.

8. Limitations
Our study faces limitations due to our data collection meth-
ods and the scope of the CULTURALFRAMES. We approxi-
mated cultural groups as countries for annotator recruitment,

which may potentially oversimplify cultural identities and
conflate culture with nationality due to practical constraints
like information available in CulturalAtlas and annotator
availability.

Our strategic choice to maximize diversity by recruiting
multiple annotators per country, while enriching the evalua-
tion with varied viewpoints, inherently presents a trade-off.
A broader range of interpretations, stemming from a more
diverse group, can naturally lead to lower inter-rater agree-
ment scores when compared to evaluations conducted by a
smaller, more homogenous annotator pool. It is this trade-
off, coupled with the inherent subjectivity of the task, that
provides context for our inter-annotator agreement results.
This reflects the inherent subjectivity of evaluating cultural
nuances and expectations.

A further limitation, driven by practical considerations of
scale, is a generation of only a single image per model for
each prompt. This single-instance evaluation makes it chal-
lenging for annotators to definitively identify stereotypical
associations, as patterns of representation across multiple
generations for the same prompt cannot be observed.

9. Ethical Considerations
Our CULTURALFRAMES benchmark comprises prompts
and generated images, whose cultural alignment is rated
by professional annotators via Prolific from the relevant
countries. To ensure wide cultural representation, we re-
cruited annotators from three distinct community groups
within these countries, compensating them at $10-15 per
hour for all tasks performed, a rate established after pilot
testing. This reflects our commitment to fair and inclusive
data collection practices.

Despite the efforts, we acknowledge a key limitation: equat-
ing cultural groups with national borders within or across
these national lines. This simplification may overlook the
complex realities of minority and diaspora communities.
We thus urge future research to explore finer-grained distinc-
tions within cultural groups. While recognizing these con-
straints, we are hopeful that our work contributes to a deeper
understanding of cultural nuances in visual generations and
provides a foundation for such future investigations.
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Farinella, G. M., and Hassner, T. (eds.), Computer Vision
– ECCV 2022, pp. 70–87, Cham, 2022. Springer Nature
Switzerland. URL https://doi.org/10.1007/
978-3-031-19836-6_5.

McLuhan, M. Understanding Media: The Extensions of
Man. Signet Books, New York, 1966.

Mosaica. The cultural atlas. https://culturalatla
s.sbs.com.au/, 2024.

Naik, R. and Nushi, B. Social biases through the text-to-
image generation lens, 2023. URL https://arxiv.
org/abs/2304.06034.

OpenAI. Gpt-4o system card, 2024. URL https://ar
xiv.org/abs/2410.21276.

OpenAI. Introducing 4o image generation. https://op
enai.com/index/introducing-4o-image-g
eneration/, 2025.

Prabhakaran, V., Qadri, R., and Hutchinson, B. Cultural
incongruencies in artificial intelligence, 2022. URL ht
tps://arxiv.org/abs/2211.13069.

Qadri, R., Diaz, M., Wang, D., and Madaio, M. The case for
”thick evaluations” of cultural representation in AI, 2025.
URL https://arxiv.org/abs/2503.19075.

Rastogi, C., Teh, T. H., Mishra, P., Patel, R., Ashwood, Z.,
Davani, A. M., Diaz, M., Paganini, M., Parrish, A., Wang,
D., Prabhakaran, V., Aroyo, L., and Rieser, V. Insights
on disagreement patterns in multimodal safety perception
across diverse rater groups, 2024. URL https://ar
xiv.org/abs/2410.17032.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., and
Aberman, K. Dreambooth: Fine tuning text-to-image dif-
fusion models for subject-driven generation, 2023. URL
https://arxiv.org/abs/2208.12242.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. Photorealistic text-to-image diffusion
models with deep language understanding, 2022. URL
https://arxiv.org/abs/2205.11487.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans, 2016. URL https://arxiv.org/ab
s/1606.03498.

Struppek, L., Hintersdorf, D., Friedrich, F., Br, M.,
Schramowski, P., and Kersting, K. Exploiting cul-
tural biases via homoglyphs in text-to-image synthe-
sis. Journal of Artificial Intelligence Research, 78:
1017–1068, December 2023. ISSN 1076-9757. doi:
10.1613/jair.1.15388. URL http://dx.doi.org/1
0.1613/jair.1.15388.

Team, G. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context, 2024. URL https:
//arxiv.org/abs/2403.05530.

Team, Q. Qwen2.5-vl, January 2025. URL https://qw
enlm.github.io/blog/qwen2.5-vl/.

Ventura, M., Ben-David, E., Korhonen, A., and Reichart,
R. Navigating cultural chasms: Exploring and unlocking
the cultural pov of text-to-image models, 2024. URL
https://arxiv.org/abs/2310.01929.

Wan, Y., Subramonian, A., Ovalle, A., Lin, Z., Suvarna, A.,
Chance, C., Bansal, H., Pattichis, R., and Chang, K.-W.
Survey of bias in text-to-image generation: Definition,
evaluation, and mitigation, 2024. URL https://ar
xiv.org/abs/2404.01030.

Wu, X., Hao, Y., Sun, K., Chen, Y., Zhu, F., Zhao, R., and Li,
H. Human preference score v2: A solid benchmark for
evaluating human preferences of text-to-image synthesis,
2023a. URL https://arxiv.org/abs/2306.0
9341.

11

https://arxiv.org/abs/2401.08053
https://doi.org/10.1007/978-3-031-88653-9_51
https://doi.org/10.1007/978-3-031-88653-9_51
https://openreview.net/forum?id=OJ0c6um1An
https://openreview.net/forum?id=OJ0c6um1An
https://doi.org/10.1007/978-3-031-19836-6_5
https://doi.org/10.1007/978-3-031-19836-6_5
https://culturalatlas.sbs.com.au/
https://culturalatlas.sbs.com.au/
https://arxiv.org/abs/2304.06034
https://arxiv.org/abs/2304.06034
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/
https://arxiv.org/abs/2211.13069
https://arxiv.org/abs/2211.13069
https://arxiv.org/abs/2503.19075
https://arxiv.org/abs/2410.17032
https://arxiv.org/abs/2410.17032
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
http://dx.doi.org/10.1613/jair.1.15388
http://dx.doi.org/10.1613/jair.1.15388
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://arxiv.org/abs/2310.01929
https://arxiv.org/abs/2404.01030
https://arxiv.org/abs/2404.01030
https://arxiv.org/abs/2306.09341
https://arxiv.org/abs/2306.09341


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

CULTURALFRAMES: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

Wu, X., Sun, K., Zhu, F., Zhao, R., and Li, H. Human
preference score: Better aligning text-to-image models
with human preference. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2096–
2105, 2023b.

Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang,
J., and Dong, Y. Imagereward: Learning and evaluating
human preferences for text-to-image generation, 2023.
URL https://arxiv.org/abs/2304.05977.

Yarom, M., Bitton, Y., Changpinyo, S., Aharoni, R., Herzig,
J., Lang, O., Ofek, E., and Szpektor, I. What you see is
what you read? improving text-image alignment evalua-
tion. In NeurIPS, 2023.

Yerukola, A., Gabriel, S., Peng, N., and Sap, M. Mind the
gesture: Evaluating ai sensitivity to culturally offensive
non-verbal gestures, 2025. URL https://arxiv.or
g/abs/2502.17710.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z.,
Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K., Hutchinson,
B., Han, W., Parekh, Z., Li, X., Zhang, H., Baldridge, J.,
and Wu, Y. Scaling autoregressive models for content-
rich text-to-image generation, 2022. URL https://
arxiv.org/abs/2206.10789.

A. Appendix
A.1. CULTURALFRAMES

This section outlines the full pipeline used to create the
CULTURALFRAMES. We describe how culturally grounded
prompts were generated, filtered, and verified by human an-
notators across multiple countries. We also detail how these
prompts were used to generate images from various text-to-
image models, along with the settings and parameters used
for generation.

A.1.1. PROMPT GENERATION

We begin with the Cultural Atlas (Mosaica, 2024), a cu-
rated knowledge base of cross-cultural attitudes, practices,
norms, behaviors, and communication styles, designed to
inform and educate the public about Australia’s migrant
populations. The Atlas provides detailed textual descrip-
tions across categories such as family structures, greeting
customs, cultural etiquette, religious beliefs, and more. We
use the Cultural Atlas as a source of culturally grounded
information to guide prompt generation. However, not all
categories in the Atlas are suitable for visual depiction. We
selected five categories—dates-of-significance, etiquette,
family, religion, and greetings—based on two main crite-
ria: (1) the content describes values or practices that can be
meaningfully represented in images, and (2) the category
is consistently available across a broad set of countries to
support cross-cultural comparison.

We parsed the textual content from each selected category
and segmented it into paragraphs using newline characters.
Each paragraph served as an input “excerpt” to an LLM
for prompt generation. Given a country and an excerpt, we
prompted GPT-4o (gpt-4o-2024-08-06) (OpenAI, 2024) to
generate two short prompts (each under 15 words) that: (i)
were grounded in the excerpt’s content, (ii) described a cul-
turally relevant and visually observable scenario, and (iii)
included sufficient country-specific context, either explicitly
or implicitly. The prompts were designed to reflect underly-
ing cultural values through everyday, observable situations,
such as a wedding ceremony or a workplace interaction.
To guide this process, we crafted category-specific instruc-
tions that encouraged the model to generate meaningful and
culturally grounded prompts.

We began by generating a small number of prompts per
category, which were evaluated by human annotators to
assess whether the scenarios were both visually depictable
and culturally appropriate (see Section A.1.2 for details).
Prompts that passed these quality checks were reused as few-
shot in-context examples to guide further prompt generation.
This iterative process enabled us to scale prompt creation
while maintaining cultural fidelity and diversity. Instructions
provided to GPT-4o (OpenAI, 2024) used across different
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Country Unique Annotators Avg Age % Male % Female % Other

Brazil 35 36.1 69.0 31.0 0.0
Canada 34 37.9 47.9 52.1 0.0
Chile 35 31.1 77.7 22.3 0.0
China 40 33.0 32.3 67.7 0.0
Germany 51 35.1 68.5 31.5 0.0
India 32 31.7 46.6 53.4 0.0
Iran 28 32.0 47.0 53.0 0.0
Japan 25 44.2 56.1 40.6 3.2
Poland 27 32.0 62.0 38.0 0.0
South Africa 83 32.9 35.1 64.9 0.0

Table 2: Summary of participant demographics by country.

categories are provided below.

A.1.2. PROMPT FILTERING

For every country, we ask 3 culturally knowledgeable anno-
tators if the prompt represents a scenario observable in their
culture and aligns with their values. Only those prompts
that 2 or more annotators choose make it into CULTURAL-
FRAMES. In Fig. 7, we present the prompt filtering inter-
face where annotators choose “Yes/No” for a given prompt
depending on whether the prompt reflects an observable sce-
nario in their culture that aligns with their cultural values.

A.1.3. PROMPT DISTRIBUTION ACROSS CATEGORIES

Fig. 8 shows the distribution of prompts across five cul-
tural categories used in constructing CULTURALFRAMES:
dates-of-significance, etiquette, family, religion, and greet-
ings. Across countries, dates-of-significance consistently
accounts for the largest share of prompts, followed by eti-
quette. This distribution reflects the relative amount of
information available for each category in the Cultural At-
las. The remaining three categories—family, religion, and
greetings—have relatively balanced proportions. We aimed
to maintain a similar category distribution across countries
to support fair cross-cultural comparisons. Notably, South
Africa lacks sufficient information in the family category, so
it is excluded from that category in the figure.

A.1.4. IMAGE GENERATION

We generate images at a resolution of 1024×1024 across
all models to ensure consistency. For GPT-Image, we set
the image quality to high. For Imagegen3, we use VertexAI
to make API calls and enable the default enhance prompt
setting, which expands the prompt prior to image genera-
tion. For FLUX.1-dev, we set the guidance scale to 3.5,
max sequence length to 512, and use 50 inference steps. In
the case of SD-3.5-Large, we use a guidance scale of 4.5

and 40 inference steps.

A.2. Image Rating

We develop a custom interface for collecting image ratings.
Fig. 10 and Fig. 11 show the detailed instructions we pro-
vide to the annotators for rating images. Fig. 12 shows the
interface where annotators rate images.

A.2.1. ANNOTATOR DEMOGRAPHICS

Tab. 2 provides details on the annotators who participated
in our studies.
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Prompt Instructions (Religion)

Purpose:
We want to test whether text-to-image models can accurately capture how religion is practiced in a particular country along with its
norms, practices, rituals, traditions, and values. You will be given:

1. A country name

2. A short excerpt on religious norms: an implicit description of how religion is practiced or influences everyday life, or some
information that is related to religious practices.

Your Task:
Use these inputs to produce two short prompts (each under 15 words) that is rooted in the provided excerpt and explore diverse
scenarios, to evaluate the image-generation model’s understanding of the religion of the country. Each prompt should:

• Be clearly rooted in the excerpt’s details and context (e.g., setting, participants, timing). You must not deviate from the provided
excerpt

• Create prompts that describe specific daily interactions, rituals, or scenarios that reflect the cultural values and social norms
related to religion and mentioned in the excerpt. These should be concrete, observable situations that commonly occur in this
culture/country.

• Be diverse, realistic scenario, and under 15 words

• Be visually depictable - that is, it must be possible to generate a meaningful and culturally relevant image based on the prompt.

Important: Make sure the country can be inferred from the prompt. It should be either stated explicitly like mentioning a region or
name of the country or there must be enough country specific elements in the prompt to infer the country.

Note: If the information provided cannot be used to create a practical observable scenario that can be depicted as an image, return
”N/A”.

Return the prompts in this JSON format:
{

"prompt_1": "...",
"prompt_2": "..."

}

Here are the inputs:

• Country: {country}

• Excerpt: {excerpt}

Previously Generated Prompts (to avoid duplication):
{already_generated_prompts}

Accepted Examples:
{incontext_examples_positive}

Rejected Examples:
{incontext_examples_negative}

Generate exactly two new prompts that satisfy all of the criteria above, follow the style/patterns of the accepted examples, avoid the
issues shown in the rejected ones, and explore diverse scenarios different from the ones already generated. Output only the JSON
object specified.
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Prompt Instructions (Etiquette)

Purpose:
We want to test whether text-to-image models can accurately capture how etiquette is practiced in a particular country, including
norms, manners, and social conduct related to visiting, gifting, eating, and other social situations. You will be given:

1. A country name

2. A short excerpt on etiquette norms: an implicit description of how people in this country engage with each other in different
social situations, or some information related to etiquette.

Your Task:
Use these inputs to produce two short prompts (each under 15 words) that is rooted in the provided excerpt and explore diverse
scenarios, to evaluate the image-generation model’s understanding of etiquette. Each prompt should:

• Be clearly rooted in the excerpt’s details and context (e.g., setting, participants, timing). You must not deviate from the provided
excerpt

• Represent a social scenario or interaction where the etiquette norm or value mentioned in the excerpt can be observed. It must
be a realistic, observable scenario that commonly occurs in this culture/country.

• Do not explicitly name the etiquette rule. Be implicit in conveying the details. The goal is to create situations where the
etiquette rule can be observed and inferred by the model.

• Be diverse, realistic scenario, and under 15 words

• Be visually depictable - that is, it must be possible to generate a meaningful and culturally relevant image based on the prompt.

• Avoid using phrases like ”arrving late”, ”arriving on time” and other such phrases that cannot be visualized in the image.

Important: Make sure the country can be inferred from the prompt. It should be either stated explicitly like mentioning a region or
name of the country or there must be enough country specific elements in the prompt to infer the country.

Note: If the information provided cannot be used to create a practical observable scenario that can be depicted as an image, return
”N/A”.

Return the prompts in this JSON format:
{

"prompt_1": "...",
"prompt_2": "..."

}

Here are the inputs:

• Country: {country}

• Excerpt: {excerpt}

Previously Generated Prompts (to avoid duplication):
{already_generated_prompts}

Accepted Examples:
{incontext_examples_positive}

Rejected Examples:
{incontext_examples_negative}

Generate exactly two new prompts that satisfy all of the criteria above, follow the style/patterns of the accepted examples, avoid the
issues shown in the rejected ones, and explore diverse scenarios different from the ones already generated. Output only the JSON
object specified.
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Prompt Instructions (Family)

Purpose:
We want to test whether text-to-image models can accurately depict how family values, structures, and dynamics operate in a
particular country. You will be given:

1. A country name

2. A short excerpt on family norms: an implicit description of how family life, roles, or relationships function in this culture.

Your Task:
Use these inputs to produce two short prompts (each under 12 words) that are clearly rooted in the provided excerpt and explore
diverse scenarios, to evaluate a model’s understanding of these family practices. Each prompt should:

• Be firmly based on the excerpt’s context. You must not deviate from the provided excerpt

• Portray family related interactions that happen in the culture/country conditioned on the values, norms provided in the excerpt

• Avoid explicitly naming the core family norm or value, but include enough detail for the model to infer it

• Depict diverse, realistic scenarios that convey familial interactions, each under 12 words

• Be visually depictable - that is, it must be possible to generate a meaningful and culturally relevant image based on the prompt.

Important: Make sure the country can be inferred from the prompt. It should be either stated explicitly like mentioning a region or
name of the country or there must be enough country specific elements in the prompt to infer the country.

Note: If the information provided cannot be used to create a practical observable scenario that can be depicted as an image, return
”N/A”.

Return the prompts in this JSON format:
{

"prompt_1": "...",
"prompt_2": "..."

}

Here are the inputs:

• Country: {country}

• Excerpt: {excerpt}

Previously Generated Prompts (to avoid duplication):
{already_generated_prompts}

Accepted Examples:
{incontext_examples_positive}

Rejected Examples:
{incontext_examples_negative}

Generate exactly two new prompts that satisfy all of the criteria above, follow the style/patterns of the accepted examples, avoid the
issues shown in the rejected ones, and explore diverse scenarios different from the ones already generated. Output only the JSON
object specified.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

CULTURALFRAMES: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

Prompt Instructions (Dates-of-significance)

Purpose:
We want to test whether text-to-image models can accurately depict how a country observes its significant dates—festivals, holidays,
or other notable events. You will be given:

1. A country name

2. A short excerpt on a date of significance: an implicit description of festivities, traditions, or commemorative practices related to
this important day.

Your Task:
Use these inputs to produce two short prompts (under 12 words) that are clearly rooted in the provided excerpt and explore diverse
scenarios, to evaluate a model’s understanding of these celebrations. Each prompt should:

• Be firmly based on the excerpt’s context. You must not deviate from the provided excerpt

• Represent daily interactions, rituals, or scenarios that are related to this date of significance. It must be a realistic, observable
scenario that commonly occurs in this culture/country.

• Convey the date of significance through rituals, traditions, or celebrations that are specific to this date.

• Depict diverse, realistic scenarios that convey how people observe this date, each under 12 words.

• Be visually depictable - that is, it must be possible to generate a meaningful and culturally relevant image based on the prompt.

Important: Make sure the country can be inferred from the prompt. It should be either stated explicitly like mentioning a region or
name of the country or there must be enough country specific elements in the prompt to infer the country.

Note: If the information provided cannot be used to create a practical observable scenario that can be depicted as an image, return
”N/A”.

Return the prompts in this JSON format:
{

"prompt_1": "...",
"prompt_2": "..."

}

Here are the inputs:

• Country: {country}

• Excerpt: {excerpt}

Previously Generated Prompts (to avoid duplication):
{already_generated_prompts}

Accepted Examples:
{incontext_examples_positive}

Rejected Examples:
{incontext_examples_negative}

Generate exactly two new prompts that satisfy all of the criteria above, follow the style/patterns of the accepted examples, avoid the
issues shown in the rejected ones, and explore diverse scenarios different from the ones already generated. Output only the JSON
object specified.
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Figure 7: Prompt filtering interface where annotators choose “Yes/No” for a given prompt depending on whether the prompt
reflects an observable scenario in their culture that aligns with their cultural values.
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Figure 8: Distribution of prompts from different categories across countries.
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Figure 9: Prompt-image examples from CULTURALFRAMES across different countries generated by the models.
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Figure 10: Prompt alignment instructions provided to the annotators. The example shown varies depending on the countries.
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Figure 11: Instructions given to annotators for stereotype, image quality, and overall score criteria.
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Figure 12: Rating collection interface shown to the annotators. When annotators select a score of less than 1, they need to
give detailed feedback regarding explicit and implicit expectations, along with selecting the problematic words
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Figure 13: Model ranking across countries for different criteria (1 is the highest rank). Countries are grouped by geographical
proximity.

24



1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

CULTURALFRAMES: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

(a) Average prompt alignment scores across countries for different models

(b) Average image quality scores across countries for different models

(c) Average stereotype scores across countries for different models

(d) Average overall scores across countries for different models

Figure 14: Comparison of different models’ scores for different countries for prompt-alignment, image quality, stereotypes,
and overall score.
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Figure 15: World cloud for words highlighted as having issues by annotators across different countries.
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LLM-as-Judge Evaluation Instructions

You are a strict yet fair evaluator. You will be given a prompt, issues highlighted by several annotators along with the words which
have the issues as marked by the annotators, and an explanation of the automatic metric for how good the image is.
Your task is to assess how well the automatic explanation captures the concerns raised by the annotators.

TASK

• ORIGINAL PROMPT – the text that generated the image

• Up to four annotator blocks, each with:

– HUMAN REASON X – A 1-2 sentence critique
– HIGHLIGHTED WORDS X – Prompt words flagged by that annotator

• MODEL REASON – The automatic explanation

Decide how well MODEL REASON covers the union of concerns across all annotators.

Coverage Scale

• 5 (Perfect) – Covers all issues highlighted by annotators with no contradictions.

• 4 (Strong) – Covers most main concerns, may miss at most one minor issue.

• 3 (Partial) – Covers around half of the union of concerns.

• 2 (Weak) – Only covers a small portion; many key points are missing or vague.

• 1 (None/Wrong) – Irrelevant explanation or contradicts annotators.

Output Format

{
"score": 1-5,
"explanation": "1-2 sentence explanation of the score"

}

Rules

• Sometimes, annotators highlight specific words without explicitly explaining them in their comments. In such cases, it should
be assumed that these words indicate an issue, and the metric explanation should mention that these words have issues.

• If MODEL REASON contradicts the general consensus of the annotators, assign a score of 1.

• Mention missing or covered ideas in no more than 50 words.

• Output only a valid JSON object as shown above.

Figure 16: Instructions for LLM-as-a-judge evaluation to assess the alignment between VIEScore’s reasoning and human
concerns on a 1–5 Likert scale.
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Figure 17: Qualitative examples illustrating misalignment between the scores and explanations provided by VIEScore and
those provided by human annotators.

Explicit instructions provided to VIEScore

You are a professional cultural visual analyst and digital artist. You are tasked with evaluating how faithfully an AI-generated image
represents the provided text prompt, especially in capturing both explicit and culturally implicit details.

All input images are AI-generated. All people or characters shown are also AI-generated — you do not need to consider privacy or
ethical issues in the evaluation.

Your evaluation should result in a JSON output in the following format:

{
"reasoning": "<reasoning to determine how faithful the image is to the prompt>",
"score": [<integer from 0 to 10>],

}

How to Evaluate:

You will give a score from 0 to 10, based on how accurately the image matches the explicit and implicit elements described in the
prompt.
1. Explicit Elements: Explicit elements are the clearly stated words in the prompt — such as objects, people, actions, locations, or
relationships. A good image must include and visually represent all of these elements clearly and correctly.
{country specific example}

You should check: Are all these elements present and recognizable? Is their interaction depicted as described?

2. Implicit Elements These are elements of the prompt that are not directly mentioned as words in the prompt but are expected
to be present in the image based on the cultural context. These may include appropriate attire or food for the setting, gestures or
expressions that suit the context, interactions between people, or additional details that contribute to the authenticity of the scene. A
strong image will reflect these expectations in a way that feels appropriate to someone familiar with the described scenario.

For the same prompt above, implicit elements may include:
{country specific example}

There may be several other implicit details that needs to be considered given the image and the prompt. For the image to align with
the prompt, it should include and accurately show these details.

From scale 0 to 10:
A score from 0 to 10 will be given based on the success in following the prompt.
(0 indicates that the AI generated image does not follow the prompt at all and major explicit elements and implicit elements are
missing or incorrectly depicted. 10 indicates the AI generated image follows the prompt perfectly and all explicit elements and
necessary implicit elements are present and correctly depicted.)

Put the score in a list such that output score = [score].

Text Prompt: ¡prompt¿
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