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Abstract

Federated multi-task learning (FMTL) aims to simultaneously learn multiple related tasks
across clients without sharing sensitive raw data. However, in the decentralized setting,
existing FMTL frameworks are limited in their ability to capture complex task relationships
and handle feature and sample heterogeneity across clients. To address these challenges,
we introduce a novel sheaf-theoretic-based approach for FMTL. By representing client re-
lationships using cellular sheaves, our framework can flexibly model interactions between
heterogeneous client models. We formulate the sheaf-based FMTL optimization problem
using sheaf Laplacian regularization and propose the Sheaf-FMTL algorithm to solve it. We
show that the proposed framework provides a unified view encompassing many existing
federated learning (FL) and FMTL approaches. Furthermore, we prove that our proposed
algorithm, Sheaf-FMTL, achieves a sublinear convergence rate in line with state-of-the-art
decentralized FMTL algorithms. Extensive experiments show that although Sheaf-FMTL in-
troduces computational and storage overhead due to the management of interaction maps,
it achieves substantial communication savings in terms of transmitted bits when compared
to decentralized FMTL baselines. This trade-off makes Sheaf-FMTL especially suitable for
cross-silo FL scenarios, where managing model heterogeneity and ensuring communication
efficiency are essential, and where clients have adequate computational resources.

1 Introduction

The growing demand for privacy-preserving distributed learning algorithms has steered the research com-
munity towards federated learning (FL) (McMahan et al., 2017), a learning paradigm that allows several
clients, such as mobile devices or organizations, to cooperatively train a model without revealing their raw
data. By aggregating locally computed updates rather than raw data, FL aims to learn a global model that
benefits from the different data distributions inherently present across the participating clients. Despite its
promise, conventional FL faces significant hurdles when dealing with client data heterogeneity. In fact, while
the global model may perform well on average, the statistically heterogeneous clients’ data have been shown
to affect the model’s existence and convergence (Sattler et al., 2020; Li et al., 2020b). These challenges
are exacerbated in a decentralized environment where coordination is limited and direct control over the
client models is not feasible. Recently, there have been several attempts to bring personalization into FL to
learn distinct local models (Wang et al., 2019; Fallah et al., 2020; Hanzely & Richtárik, 2020) since learning
a personalized model per client is more suitable than a single global model to tackle data heterogeneity.
These models are specifically learned to fit the heterogeneous local data distribution via techniques such as
federated multi-task learning (FMTL) (Smith et al., 2017; Dinh et al., 2022) that model the interactions
between the different personalized local models.

FMTL generalizes the FL framework by allowing the simultaneous learning of multiple related but distinct
tasks across several clients. Unlike traditional FL, which focuses on training a single global model, FMTL
acknowledges that different clients may be interested in solving distinct tasks that are related but not iden-
tical. By leveraging task relatedness, FMTL aims to improve the performance of individual task models
through shared knowledge while maintaining task-specific uniqueness. This approach not only enhances the
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generalization performance of the models on individual tasks by leveraging shared information but also con-
tributes to tackling the non-independent and identically distributed (non-IID) nature of data across clients.
FMTL considers the different objectives and data distributions across clients, customizing models to per-
form optimally on each task while still benefiting from the federated structure of the problem as well as
the similarity between these tasks. However, existing FMTL frameworks are not without limitations. A
major concern is the oversimplified view of task interdependencies, where relationships between tasks are
often modeled using simple fixed scalar weights. This approach captures only the basic notion of task re-
latedness but fails to represent more intricate and higher-order dependencies that may exist among tasks.
As a result, these models may overlook subtle interconnections and dynamic patterns of interdependence,
leading to suboptimal knowledge sharing and reduced performance in heterogeneous and decentralized en-
vironments. For a comprehensive understanding of scenarios where task similarities are naturally defined
in vector spaces, kindly refer to Appendix C. Furthermore, a critical issue with the current FMTL frame-
works is the assumption that the models have the same size, which limits the applicability of FMTL in the
case of different model sizes. These challenges are particularly pronounced in cross-silo FL scenarios, where
collaborating organizations may possess large, complex datasets with significant heterogeneity and may use
different model architectures, necessitating a flexible and robust learning framework. Last but not least, to
the best of our knowledge, apart from MOCHA (Smith et al., 2017), which requires the presence of a server,
the interactions between the tasks are assumed to be known and not learned during training. Therefore, to
address these challenges, we seek to answer the following question:

“How can we effectively model and learn the complex interactions between various
tasks/models in an FMTL decentralized setting, even in the presence of different model sizes?"

To answer this question, the concept of sheaves provides a novel lens through which the interactions between
clients in a decentralized FMTL setting can be modeled. The mathematical notion of a sheaf initially invented
and developed in algebraic topology, is a framework that systematically organizes local observations in a
way that allows one to make conclusions about the global consistency of such observations (Robinson, 2014;
2013; Riess & Ghrist, 2022). As such requirements are a central part of FL problems, it is natural to ask
how one could utilize a sheaf-based framework to find an effective solution to the above question. Given
an underlying topology of the client relationships, we employ the notion of a cellular sheaf that captures
the underlying geometry, enabling a richer and more nuanced multi-task learning environment. Sheaves
enable the representation of local models as sections over the underlying space, offering a structured way to
capture the relationships between tasks/models in FMTL settings. As an inherent feature of the sheaf-based
framework, our approach can support heterogeneity over local models. More specifically, our framework
naturally facilitates learning models with different model dimensions. Moreover, sheaves are inherently
distributed in nature and hence facilitate decentralized training. A sheaf data structure consists of vector
spaces and linear mappings between them. In this work, we model the underlying space as a graph, and
vector spaces are defined over vertices and edges, capturing pairwise interactions. Crucially, we are required
to learn these maps that constitute the sheaf structure, as a decision variable of our problem. Learning these
maps is instrumental in comparing heterogeneous models by projecting them onto a common space.

Contributions. This paper introduces a novel unified approach that fundamentally rethinks FMTL and
gives it a new interpretation by incorporating principles from sheaf theory. Our work primarily targets
cross-silo FL environments. Unlike cross-device FL involving millions of resource-constrained edge devices,
cross-silo settings typically feature fewer but more computationally capable participants with substantial
local computing resources. This context is particularly well-suited for exploring richer collaborative learn-
ing frameworks that can effectively handle heterogeneity in exchange for some additional computational
overhead. In what follows, we summarize our main contributions

• Our proposed framework demonstrates a high degree of flexibility as it addresses the challenges
arising from both feature and sample heterogeneity in the context of FMTL exploiting sheaf theory.
It may be regarded as a comprehensive and unified framework for FMTL, as it encompasses a mul-
titude of existing frameworks, including personalized FL (Hanzely & Richtárik, 2020), conventional
FMTL (Dinh et al., 2022), hybrid FL (Zhang et al., 2024), and conventional FL (McMahan et al.,
2017).
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• To the best of our knowledge, this is the first work that proposes to solve the FMTL in a decentralized
setting while modelling higher-order relationships among heterogeneous clients. Furthermore, unlike
existing decentralized FMTL frameworks, we learn the interactions between the clients as part of
our optimization framework.

• Our algorithm, coined Sheaf-FMTL, exhibits high communication efficiency, as the size of shared
vectors among clients is significantly smaller in practice compared to the original models. This ad-
vantage is accompanied by computational and storage overhead due to the management of restriction
maps, making the approach especially well-suited for cross-silo FL environments where clients have
sufficient computational resources.

• A detailed convergence analysis of our proposed algorithm shows that the average squared norm of
the objective function gradient decreases at a rate of O(1/K), where K is the number of iterations,
recovering the convergence rate of state-of-the-art FMTL (Smith et al., 2017; Dinh et al., 2022).

• Extensive simulation results demonstrate the performance of our proposed algorithms on several
benchmark datasets compared to state-of-the-art approaches.

2 Related Work

Federated Learning (FL). FL is designed to train models on decentralized user data without sharing raw
data. While numerous FL algorithms (McMahan et al., 2017; Karimireddy et al., 2020; Li et al., 2020a;
Lin et al., 2020; Elgabli et al., 2022) have been proposed, most of them typically follow a similar iterative
procedure where a server sends a global model to clients for updates. Then, each client trains a local model
using its data and sends it back to the server for aggregation to update the global model. However, due to
significant variability in locally collected data across clients, data heterogeneity poses a serious challenge. A
prevalent assumption within FL literature is that the model size is the same across clients. However, recent
works (Zhang et al., 2024; Liu et al., 2022b) have highlighted the significance of incorporating heterogeneous
model sizes in FL frameworks in the presence of a parameter server.

Personalized FL (PFL). To address the challenges arising from data heterogeneity, PFL aims to learn
individual client models through collaborative training, using different techniques such as local fine-tuning
(Wang et al., 2019; Yu et al., 2020), meta-learning (Fallah et al., 2020; Chen et al., 2018; Jiang et al.,
2019), layer personalization (Arivazhagan et al., 2019; Liang et al., 2020; Collins et al., 2021), model mixing
(Hanzely & Richtárik, 2020; Deng et al., 2020a), and model-parameter regularization (T Dinh et al., 2020;
Li et al., 2021a; Huang et al., 2021; Liu et al., 2022a). One way to personalize FL is to learn a global
model and then fine-tune its parameters at each client using a few stochastic gradient descent steps, as in
(Yu et al., 2020). Per-FedAvg (Fallah et al., 2020) combines meta-learning with FedAvg to produce a better
initial model for each client. Algorithms such as FedPer (Arivazhagan et al., 2019), LG-FedAvg (Liang et al.,
2020), and FedRep (Collins et al., 2021) involve layer-based personalization, where clients share certain layers
while training personalized layers locally. A model mixing framework for PFL, where clients learn a mixture
of the global model and local models was proposed in (Hanzely & Richtárik, 2020). In (T Dinh et al., 2020),
pFedMe uses an L2 regularization to restrict the difference between the local and global parameters.

Federated Multi-Task Learning (FMTL). FMTL aims to train separate but related models simultane-
ously across multiple clients, each potentially focusing on different but related tasks. It can be viewed as a
form of PFL by considering the process of learning one local model as a single task. Multi-task learning was
first introduced into FL in (Smith et al., 2017). The authors proposed MOCHA, an FMTL algorithm that
jointly learns the local models as well as a task relationship matrix, which captures the relations between
tasks. In the context of FMTL, task similarity can be represented through graphs, matrices, or clustering.
In (Sattler et al., 2020), clustered FL, an FL framework that groups participating clients based on their local
data distribution was proposed. The proposed method tackles the issue of heterogeneity in the local datasets
by clustering the clients with similar data distributions and training a personalized model for each cluster.
FedU, an FMTL algorithm that encourages model parameter proximity for similar tasks via Laplacian reg-
ularization, was introduced in (Dinh et al., 2022). In (SarcheshmehPour et al., 2023), the authors leverage
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a generalized total variation minimization approach to cluster the local datasets and train the local models
for decentralized collections of datasets with an emphasis on clustered FL.

Data Heterogeneity in FL. A fundamental challenge in FL is the inherent heterogeneity of data across
clients, commonly referred to as non-IID data (Kairouz et al., 2021; Li et al., 2020a). Following taxonomies
proposed in the literature (Zhao et al., 2018; Hsieh et al., 2020; Li et al., 2022), data heterogeneity can
be categorized into several distinct types. Feature distribution skew (covariate shift) occurs when clients
have different marginal feature distributions P (X) while conditional label distributions P (Y |X) remain
consistent across clients (Quionero-Candela et al., 2009; Koh et al., 2021). This is common in scenarios where
data collection environments differ, such as medical imaging equipment varying across hospitals (Antunes
et al., 2022). Label distribution skew arises when label distributions P (Y ) vary across clients but feature
distributions conditioned on labels P (X|Y ) remain similar (Wang et al., 2020a; Li et al., 2021b). For
instance, some clients may have more instances of certain classes than others, reflecting demographic or
geographical differences (Hsu et al., 2019). Concept shift occurs when the relationship between features and
labels P (Y |X) differs across clients due to local environmental factors or preferences (Karimireddy et al.,
2020; Luo et al., 2021). This manifests as either different feature manifestations for the same labels (Tan
et al., 2022) or entirely different decision boundaries across clients for conceptually similar tasks (Collins
et al., 2021). Quantity skew refers to a significant imbalance in the amount of data possessed by each client
(Wang et al., 2020b; Duan et al., 2019), creating a disparity in their contributions to the global model.

Sheaves. A major limitation in FMTL over a graph, e.g., FMTL with graph Laplacian regularization in
(Dinh et al., 2022) and FMTL with generalized total variance minimization in (SarcheshmehPour et al.,
2023), that we wish to address in this work, is their inability to deal with feature heterogeneity between
clients. In contrast, sheaves, a well-established notion in algebraic topology, can inherently model higher-
order relationships among heterogeneous clients. Despite the limited appearance of sheaves in the engineering
domain, their importance in organizing information/data distributed over multiple clients/systems has been
emphasized in the recent literature (Robinson, 2014; 2013; Riess & Ghrist, 2022). In fact, sheaves can be
considered as the canonical data structure to systematically organize local information so that useful global
information can be extracted (Robinson, 2017). The above-mentioned graph models with node features
lying in some fixed space can be considered as the simplest examples of sheaves, where such a graph is
equivalent to a constant sheaf structure that directly follows from the graph. Motivated by these ideas, our
work focuses on using the generality of sheaves to propose a generic framework for FMTL with both data
and feature heterogeneity over nodes, generalizing the works of (Dinh et al., 2022; SarcheshmehPour et al.,
2023). The analogous generalization of the graph Laplacian in the sheaf context is the sheaf Laplacian. In
the context of distributed optimization, (Hansen & Ghrist, 2019) consider sheaf Laplacian regularization
with sheaf constraints, i.e., Homological Constraints, and the resulting saddle-point dynamics.

3 Sheaf-based Federated Multi-Task Learning (Sheaf-FMTL)

3.1 FMTL Problem Setting

We consider a connected network of N clients modeled by a graph G = (V, E), where V = [N ] = {1, . . . , N}
is the set of clients, and E ⊆ V × V represents the set of edges, i.e., the set of pairs of clients that can
communicate with each other. Each client i ∈ V has a local loss function fi : Rdi → R and only has access
to its own local data distribution Di. Client i can only communicate with the set of its neighbors defined
as Ni = {j ∈ V|(i, j) ∈ E} whose cardinality is |Ni| = δi. In this work, we aim to fit different models, i.e.,
θi ∈ Rdi , ∀i ∈ [N ], to the local data of clients, while accounting for the interactions between these models.
Finally, let θ = [θT

1 , . . . , θT
N ]T ∈ Rd be the stack of the local decision variables {θi}N

i=1, where d =
∑N

i=1 di.

3.2 A Sheaf Theoretic Approach of the FMTL Problem

A “cellular sheaf" F of R-vector spaces over a simple graph G = (V, E), i.e., without loops and multiple
edges, consists of the following assignments

• For each i ∈ V, a vector space F(i) = Rdi of dimension di,
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Figure 1: Schematic illustration of the sheaf-based modeling of FMTL.

• for each edge e = (i, j) ∈ E , a vector space F(e) = Rdij of dimension dij , and

• for each edge e ∈ E and a vertex i ∈ V that is incident to the edge e, a linear transformation
Fi⊴e : F(i) → F(e).

We shall refer to F(i) and F(e) as stalks over i and e, respectively, and the map Fi⊴e as the restriction
map from i to e. Also, given an edge e = (i, j) ∈ E , we denote the matrix representation of Fi⊴e, with
respect to a chosen basis such as the standard basis, by Pij . With an abuse of notation, we use Fi⊴e and
Pij interchangeably, as required, in the remainder of the paper.

Naturally associated with such a sheaf structure are the dual maps, F∗
i⊴e : F(e) → F(i), of the restriction

maps. Note that we are using the identification of the dual of a finite-dimensional vector space with itself.
It is a standard fact that the matrix representation of the dual map F∗

i⊴e is given by the transpose of Pij .
Similarly, with an abuse of notation, we shall also use F∗

i⊴e and P T
ij interchangeably.

For each i ∈ V, F(i) is the space in which the local model of client i is parameterized, i.e., θi ∈ F(i). A
choice {θi}i∈V of local models lies in the total space C0(F) :=

⊕
i∈V F(i). Note that, we do not assume

di and dj to be the same for i ̸= j. In particular, different clients can have different model sizes that could
arise from feature heterogeneity and/or different learning tasks. Also note that an element of C0(F) is not
fully observable by a single client, as assumed in the FL setting.

Therefore, any two models can be compared via the restriction maps, provided they share an edge. More
specifically, as can be seen from Figure 1, for two clients i and j such that e = (i, j) ∈ E , F(e) can be
considered as the “disclose space" in which models θi and θj are compared via the projections Fi⊴e (θi) = Pij

and Fj⊴e (θj) = Pji. Here, the local models θi are assigned to the vertices (the clients), while the restriction
maps Pij project the local models onto the edge space capturing the shared features or relationships between
the clients.

We refer the reader to Appendix B for an interpretation of this viewpoint in the context of linear models.
Given a choice of local models, the overall comparison of these models is done in the total space C1(F) :=⊕

e∈E F(e) of the disclose spaces. The total discrepancy of such a choice of local models, as measured by
comparing their projections onto the disclose spaces, can be formalized via the Laplacian quadratic form
associated with the so-called “sheaf Laplacian", the analogous to the graph Laplacian. To define the Laplacian
in the sheaf setting, we first need to orient the edges and define the “co-boundary map" δ : C0(F) → C1(F).

From now onwards, we shall fix an orientation for each edge and write e = (i, j) for an oriented edge. For
such an oriented edge e = (i, j), write e+ = j and e− = i. Our discussion is not subjective to the choice of
orientation; however, one can choose a canonical orientation associated with an ordering of the vertices, e.g.,
when vertices are indexed by numbers, by choosing e+ = max{i, j} and e− = min{i, j} for an unoriented
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edge e = {i, j}. Given such an orientation, the co-boundary map δ is given as follows. For θ = (θi)i∈V , the
co-boundary of θ, δ (θ) = (δ (θ)e)e∈E ∈ C1(F), is defined by

δ (θ)e = Fe+⊴e (θe+) − Fe−⊴e (θe−) . (1)

As in the case of restriction maps, one also has the dual δ∗ : C1(F) → C0(F) of the co-boundary map δ.
The sheaf Laplacian LF : C0(F) → C0(F) associated with the cellular sheaf F is then given by LF = δ∗ ◦ δ.
For a given θ, the sheaf Laplacian is defined as LF (θ) =

(
LF (θ)j

)
j∈V

, where LF (θ)j =
∑

i∈V Lj,i (θi) is
given by

Lj,i =


∑
i⊴e

F∗
i⊴e ◦ Fi⊴e, if i = j,

−F∗
j⊴e ◦ Fi⊴e, if e = (i, j) ∈ E ,

0, otherwise.
(2)

In particular, based on the ordering of V that is used to stack the local models, and the chosen bases for
F(i)’s and F(e)’s , LF is a block matrix structure indexed by V, whose (j, i) block can be directly obtained
from (2). More specifically, with an abuse of notation, writing Lj,i in terms of its matrix representation, we
have that

Lj,i =


∑

j′∈Ni

P T
ij′Pij′ , if i = j,

−P T
ji Pij , if e = (i, j) ∈ E ,

0, otherwise.
(3)

In fact, one can write the matrix representation of the co-boundary map, P , as follows. It has a block
structure whose rows are indexed by edges and columns are indexed by vertices. Then, the submatrix Pe,i

that corresponds to row e ∈ E and column i ∈ V is given by

Pe,i =

 Pij , if e = (i, j)
−Pij , if e = (j, i),
0, otherwise.

(4)

From the definition LF = δ∗ ◦ δ, one can get the matrix form of LF as LF = P T P . Assuming the matrix
representation of LF , we often write LF (θ) = LF θ = P T P θ. Note that this block structure aligns well
with the distributed optimization goal of the FMTL setting.

The significance of the sheaf Laplacian LF is characterized by the consensus property given by

ker(LF ) =
{

(θi)i∈V ∈ C0(F) | Fi⊴e (θi) = Fj⊴e (θj) for e = (i, j) ∈ E
}

. (5)

In other words, ker(LF ) consists of the choices of local models that are in global consensus so that any two
comparable local models θi and θj agree when projected onto the disclose space F(e), where e = (i, j) ∈ E .
Accordingly, the global consensus constraint on θ ∈ C0(F) is given by LF θ = 0.

Similar to that of a graph Laplacian, the sheaf Laplacian quadratic form QF (θ) = θT LF θ quantifies by how
much a given θ deviates from the constraint LF θ = 0. The following lemma shows that the sheaf Laplacian
quadratic form measures the total discrepancy between the projections of the local models onto the edge
spaces, summed over all edges in the graph.
Lemma 1.

θT LF θ =
∑

e=(i,j)∈E

∥Fi⊴e (θi) − Fj⊴e (θj)∥2 =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2
. (6)

Proof. The details of the proof are deferred to Appendix D.

Next, we show that θ being a global section, i.e., θ ∈ ker(LF ), is equivalent to θ minimizing the sheaf
Laplacian quadratic form.
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Lemma 2.

ker(LF ) = arg min
θ∈C0(F)

QF (θ) = arg min
θ∈C0(F)

θT LF θ. (7)

Proof. The proof is provided in Appendix D.

In the context of FMTL, a cellular sheaf is a structured way to assign information to each client (node) and
their connections (edges) in a network as follows

• Nodes (Clients): Each client i has its own local model θi ∈ Rdi .

• Edges (Interaction space): Each connection between clients i and j has a shared space F(e) ∈ Rdij .

• Restriction Maps: The mappings Pij : Rdi → Rdij project the local model of client i into the shared
space with client j. This projection facilitates meaningful comparisons and collaborations between
clients, ensuring that heterogeneous models can still interact effectively within the network.

This setup allows us to systematically ensure that the models of connected clients align within their shared
interaction spaces, promoting consistency and cooperation across the network. To formulate the FMTL opti-
mization problem, we aim to minimize the combined objectives of individual client losses and a regularization
term that enforces consistency across client models. Specifically, each client seeks to minimize its own loss
function based on its local data, while the regularization term penalizes discrepancies between connected
clients in their shared interaction spaces. Building upon this, we can express the regularization term more
succinctly using the sheaf Laplacian matrix LF (P ). This matrix encapsulates the structural relationships
and shared interaction spaces between clients, allowing us to reformulate the optimization problem in a
compact and mathematically elegant manner as follows

min
θ,P

Ψ(θ, P ) = f(θ) + λ

2 θT LF (P )θ, (8)

where f(θ) =
∑N

i=1 fi(θi) and LF (P ) is the sheaf Laplacian for the choices of the restriction maps. The
sheaf Laplacian regularization term λ

2 θT LF (P )θ enforces consistency between the projections of the local
models onto the edge space, promoting collaboration among the clients. A more in-depth discussion on the
rationale behind using Sheaf theory to model clients’ interaction in the context of FMTL can be found in
Appendix A. In the next subsection, we show that our proposed framework is very general and covers many
special cases previously introduced in the literature.

3.3 Special Cases

In this section, we show how some previous works can be considered as special cases of our framework.
Most of the works that we refer to, except (Zhang et al., 2024), consider the same model size for all the
clients. Thus, unless otherwise stated, we assume in the rest of this subsection that all the local models are
assumed to have the same size p ∈ N, i.e., ∀i ∈ V, θi ∈ Rp. In particular, we chose ∀i ∈ V and ∀e ∈ E ,
F(i) = F(e) = Rp.
Connection with conventional FMTL (Dinh et al., 2022). In conventional FMTL, we aim to solve
the problem

min
{θi}i∈V

N∑
i=1

fi(θi) + λ

2

N∑
i=1

∑
j∈Ni

aij ∥θi − θj∥2
, (9)

where the weights {aij} are assumed to be known in advance. This problem is a special case associated
with the sheaf F arising by choosing Fi⊴e = Pij = √

aijIp, where Ip is the p × p identity map/matrix. The
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dimension of the projection space is dij = p for all edges (i, j). For this particular choice of the sheaf F , the
associated Laplacian quadratic form is precisely

QF (θ) = θT LF θ =
∑
i,j◁e

aij ∥θi − θj∥2 =
∑

(i,j)∈E

aij ∥θi − θj∥2
. (10)

Replacing this into (17), we get the conventional FMTL problem (9).
Connection with conventional FL (Ye et al., 2020). Setting the restriction maps to be Pij = Ip and
dij = p, ∀(i, j) ∈ [N ] × [N ]. Then, the sheaf Laplacian regularization is given by

QF (θ) =
∑

(i,j)∈E

∥θi − θj∥2
. (11)

Hence, (17) reduces to

min
{θi}i∈V

N∑
i=1

fi(θi) + λ

2
∑

(i,j)∈E

∥θi − θj∥2 (12)

Taking λ → ∞, as pointed out in Remark 1, one recovers the conventional FL problem

min
{θi}i∈V

N∑
i=1

fi(θi)

s.t θi = θj , ∀(i, j) ∈ E . (13)

Connection with personalized FL (Hanzely et al., 2020). Introducing the client 0, e.g., a server,
where f0 ≜ 0 and θ0 = θ̄. Furthermore, let P0i = Pi0 = Ip, ∀i ∈ [N ], and Pij = 0p, ∀(i, j) ∈ [N ] × [N ],
where 0p is the p × p zero map/matrix. Hence, the set of neighbours of client 0 is N0 = [N ], and the set of
each client i ∈ [N ] is Ni = {0}. We observe that this amounts to choosing the constant sheaf over the graph
that connects each client to the server. Then, the associated Laplacian quadratic form can be written as

QF (θ) =
∑

i∈N0

∥P0iθ0 − Pi0θi∥2 =
N∑

i=1

∥∥θ̄ − θi

∥∥2
. (14)

Therefore, (17) reduces to the personalized FL objective (Hanzely et al., 2020, Eq. (2))

min
{θi}i∈V

N∑
i=1

fi(θi) + λ

2

N∑
i=1

∥∥θi − θ̄
∥∥2

. (15)

Connection with hybrid FL (Zhang et al., 2024). In this case, a communication framework is estab-
lished between a server (with index 0) and a set of clients (i ∈ [N ]), with each client connected solely to the
server. The server has access to all features, while clients are constrained by their local features. Hence, for
each client i, di ≤ d0, where θi ∈ Rdi and θ0 ∈ Rd0 are the models of client i and the server, respectively.
Let Πi denote binary matrices that prune the server model to align with the client local model, referred to
as the selection matrices. Given the above description, we have F(i) = Rdi and F(e) = Rdi for every i ∈ [N ]
and edge of the form e = (i, 0). The associated restriction maps are P0i = Πi and Pi0 = Idi

, for i ∈ [N ] and
Pij = 0p, ∀(i, j) ∈ [N ] × [N ]. With these choices, the Laplacian quadratic form of this sheaf is equal to the
regularizer term

QF (θ, Π) =
N∑

i=1
∥θi − Πiθ0∥2

. (16)

Replacing this into (17), we get the hybrid FL objective (Zhang et al., 2024, Eq. (6) given µ1 = 0).
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3.4 Proposed Algorithm & Convergence Analysis

Note that problem (8) arising from the sheaf formulation can be re-written as follows

min
{θi}i∈V ,

{Pij}(i,j)∈E

N∑
i=1

fi(θi) + λ

2

N∑
i=1

∑
j∈Ni

∥Pijθi − Pjiθj∥2
, (17)

where ∥ · ∥ is the Euclidean norm, and ∀(i, j) ∈ E , Pij is a matrix with size (dij , di) such that dij = dji.
In (17), we propose to jointly learn the models {θi}i∈V and the matrices {Pij}(i,j)∈E . The matrix Pij can
be seen as an encoding or compression matrix since it maps the higher-dimensional vector θi to a lower-
dimensional space with dimension dij , effectively retaining only the most important features or information
shared between the two clients i and j. Hence, the term (Pijθi − Pjiθj) captures the dissimilarity or
discrepancy between the two vectors θi and θj in this shared subspace.
Remark 1. In (17), the hyperparameter λ controls the impact of the models of neighboring clients on each
local model. When λ > 0, the minimization of the regularization term promotes the proximity among the
models of neighboring clients. On the other hand, if λ = 0, (17) reduces to an individual learning problem,
wherein each client independently learns its local model θi solely from its local data, without engaging in any
collaborative efforts with the other clients. Finally, as λ → ∞, (17) boils down to the classical FL problem
where the aim is to learn a global model (Hanzely & Richtárik, 2020).

Next, we propose a communication-efficient algorithm to solve (17) by adopting an iterative optimization
approach. Since the objective function is assumed to be differentiable, we can use gradient-based optimization
methods. More specifically, we will use alternating gradient descent (AGD) updates for {θi}i∈[N ] and
{Pij}(i,j)∈E , respectively. At iteration (k + 1), client i sends P k

ijθk
i and receives {P k

jiθ
k
j }j∈Ni

from its
neighbours, to update its model θi, using one gradient descent step

θk+1
i =θk

i −α

∇fi(θk
i )+λ

∑
j∈Ni

(P k
ij)T (P k

ijθk
i −P k

jiθ
k
j )

 . (18)

Then, client i sends P k
ijθk+1

i and receives {P k
jiθ

k+1
j }j∈Ni

from its neighbours, to be able to update its
matrices {Pij}j∈Ni , using one gradient descent step, according to

P k+1
ij =P k

ij −ηλ(P k
ijθk+1

i −P k
jiθ

k+1
j )(θk+1

i )T , (19)

where α and η are two learning rates. Note that, in our proposed algorithm, neighbouring clients only
share vectors and no matrix exchange is needed in both updates (18) and (19). Our proposed method is
summarized in Algorithm 1.
Remark 2. Note that each neighbour of the node i is required to send the vector Pjiθj in order to update
θi and Pij as per (18) and (19). The dimension of Pjiθj is dij, which in practice could be much smaller
than dj, the size of θj. For example, a reasonable choice of dij is dij = min(di, dj). Hence, our proposed
algorithm is more communication-efficient than sending the models {θi}i∈V .

Remark 3. It is crucial to initialize the restriction maps P 0
ij with non-zero values (e.g., randomly, as done

in our experiments). If initialized as zero matrices, the gradient update for Pij in (19) would always be zero,
preventing the learning of interactions and causing the algorithm to reduce to independent local training.

Next, we turn to analyzing the convergence of Sheaf-FMTL. To this end, we start by making the following
standard assumptions.

Assumption 1 (Smoothness). ∀i ∈ [N ], the function fi is assumed to be L-smooth, i.e., there exists
L > 0 such that ∀i ∈ [N ], ∀θ1, θ2, ∥∇fi(θ2) − ∇fi(θ1)∥ ≤ L∥θ2 − θ1∥.

Assumption 2 (Bounded domain). There exists Dθ > 0 such that ∥θ∥ ≤ Dθ.

9
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Algorithm 1 Sheaf-based Federated Multi-Task Learning (Sheaf-FMTL)
1: Parameters: Number of clients N , number of iterations K, learning rates (α, η), regularization param-

eter λ.
2: Initialization: Initial models {θ0

i }N
i=1, initial matrices {P 0

ij}(i,j)∈E .
3: for k = 0, . . . , K do
4: for i = 1, . . . , N in parallel do
5: ▷ Sends P k

ijθk
i and receives P k

jiθ
k
j from neighbors j ∈ Ni

6: ▷ Updates its model:

θk+1
i = θk

i − α

∇fi(θk
i ) + λ

∑
j∈Ni

(P k
ij)T (P k

ijθk
i − P k

jiθ
k
j )


7: ▷ Sends P k

ijθk+1
i and receives P k

jiθ
k+1
j from neighbors j ∈ Ni

8: ▷ Updates its matrix:

P k+1
ij = P k

ij − ηλ(P k
ijθk+1

i − P k
jiθ

k+1
j )(θk+1

i )T

9: end for
10: end for

Assumptions 1-2 are key assumptions that are often used in the context of distributed optimization (Karim-
ireddy et al., 2020; Li et al., 2020a; Deng et al., 2020b; 2023). In particular, Assumption 2 is commonly used
in the convex-concave minimax literature (Deng et al., 2020b; 2023). The following theorem establishes the
convergence rate of the Sheaf-FMTL algorithm.
Theorem 1. Let Assumptions 1 and 2 hold, and the learning rates α and η satisfy the conditions α < 2

NL
and η < 2

λD2
θ

, respectively. Then, the averaged gradient norm is upper bounded as follows

1
K

K−1∑
k=0

∥∇Ψ(θk, P k)∥2 ≤ 1
ρK

(Ψ(θ0, P 0) − Ψ⋆), (20)

where ρ = min
{

α
(
1 − αNL

2
)

, η
(

1 − ηλD2
θ

2

)}
and Ψ⋆ is the optimal value of Ψ.

Proof. The proof can be found in Appendix E.

Theorem 1 shows that the Sheaf-FMTL algorithm converges to a stationary point of the objective function
at a rate of O(1/K). The proof involves two main steps. First, we study the descent step in the variable
θk+1 and then, we study the descent step in the variable P k+1.

4 Experiments

4.1 Experimental Setup

To validate our theoretical foundations, we numerically evaluate the performance of our proposed algorithm
Sheaf-FMTL using two experiments: (i) the clients have the same model size in Section 4.2, and (ii) the
clients have different model sizes in Section 4.3.
Datasets. In the first experiment, we examine two datasets: rotated MNIST and heterogeneous CIFAR-10.
A detailed description of the datasets can be found in Appendix F. In appendix G, we report additional
results using four more datasets.
Model architecture. For image datasets, we employ CNN architectures: rotated MNIST uses a CNN with
two convolutional layers (32 and 64 filters) followed by a fully connected layer outputting 10 classes, while
heterogeneous CIFAR-10 uses a similar architecture adapted for RGB inputs. For tabular datasets, we use

10
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Table 1: Regularization parameters used during training.

Dataset HAR Vehicle GLEAM School R-MNIST H-CIFAR-10
Regularization parameter (λ) 0.05 0.001 0.001 0.01 0.001 0.001

Table 2: Summary of heterogeneous CNN architectures employed in Section 4.3 for rotated MNIST and
heterogeneous CIFAR-10 datasets, simulating clients with varying computational capabilities. The total
number of clients is N .

Dataset Characteristic Small Medium Large

R-MNIST

Conv Layers 1 2 2
Conv Filters/Layer (16) (24, 48) (32, 64)
FC Layers 1 1 2
Hidden FC Units None None 120
Approx. Params* 23 × 103 121 × 103 212 × 103

H-CIFAR-10

Conv Layers 1 2 2
Conv Filters/Layer (16) (24, 48) (32, 64)
FC Layers 1 1 2
Hidden FC Units None None 120
Approx. Params* 28 × 103 154 × 103 297 × 103

Client Allocation per Architecture ≈ N/3 ≈ N/3 ≈ N/3
*Approximate parameters (weights and biases) calculated based on standard inputs:

R-MNIST (28 × 28 × 1), H-CIFAR-10 (32 × 32 × 3). Values rounded.

multinomial logistic regression for classification tasks and linear models for regression tasks. In Sections
4.2 and 4.4, where clients have the same model size, the entire network architecture, including the final
classification layer, is identical across all clients. In Section 4.3, we investigate FMTL in a heterogeneous
setting where clients have different model architectures. To simulate devices with varying computational
capabilities, we employ different CNN architectures summarized in Table 2. These models are distributed
among clients in almost equal proportions, creating a heterogeneous federation.
Evaluation. In the first experiment, we use a train/test split ratio of 75%/25% for all datasets, as done in
(Smith et al., 2017), where the test set for each client maintains the same data distribution characteristics
(e.g., feature skew, label distribution) as their respective training set. Similar to (Dinh et al., 2022), we
reduce the data size by 80% for half of the clients to mimic the real-world FL setting where some clients have
small datasets and can benefit from collaboration. For the regression tasks, we consider the loss function to
be the regularized L2 loss, while we use the L2-regularized cross-entropy loss for the classification tasks. For
each experiment, we report both the average test accuracy/MSE and its corresponding one standard error
shaded area based on five runs.
Parameters and hyperparameters. In Sections 4.2 and 4.4, where all clients have the same model dimen-
sion d, we set dij = ⌊γd⌋ for all edges (i, j) ∈ E , where γ ∈ (0, 1] controls the communication/computation
trade-off. For experiments with heterogeneous model dimensions di ̸= dj (Section 4.3), we ensure com-
patibility and symmetry (dij = dji) by setting dij = ⌊γ min(di, dj)⌋. In all our experiments, unless it is
otherwise stated, the graph topology is based on the Erdős-Rényi model, where we randomly generate a
network consisting of N clients with a connectivity ratio p = 0.15 for rotated MNIST and heterogeneous
CIFAR-10 datasets and p = 0.2 for the rest of the datasets. Both learning rates are chosen to be small to
satisfy the conditions in Theorem 1. Furthermore, Sheaf-FMTL uses the same global learning rate (α) as
dFedU to update the models for a fair comparison. The linear maps are initialized randomly from a normal
distribution with a mean of 0 and a variance of 1. The values of the regularization parameter (λ) used for
every dataset are listed in Table 1. Finally, learning rates and other relevant hyperparameters were tuned
for all baseline methods using a grid search on a validation set to ensure a fair comparison.
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Figure 2: Test accuracy as a function of the number of communication rounds and the number of transmitted
bits for the rotated MNIST dataset (top), and the heterogeneous CIFAR-10 dataset (bottom).

Baselines. In the first experiment, we first compare our algorithm to the dFedU algorithm (Dinh et al.,
2022) as well as D-PSGD (Lian et al., 2017), and local training. Then, we provide more results by comparing
Sheaf-FMTL to state-of-the-art FL algorithms (McMahan et al., 2017; Li et al., 2021a; Fallah et al., 2020;
T Dinh et al., 2020). We implement our proposed algorithm using a mini-batch stochastic gradient in (18) to
make the comparison fair. For dFedU, the weights {aij}, defined in (9), are taken to be aij = 1, ∀(i, j) ∈ E .
In the second one, we compare to a stand-alone baseline where each client trains on each local dataset
without communicating with the rest of the clients. To the best of our knowledge, Sheaf-FMTL is the only
algorithm solving the FMTL problem over decentralized topology with the clients having different model
sizes, hence the comparison to a stand-alone baseline in the second experiment.
Hardware and code. Our experiments were carried out on a system equipped with an Intel(R) Xeon(R)
CPU operating at 2.20GHz with 2 cores and 12 GB of RAM. The algorithms are implemented in Python
using PyTorch (Paszke et al., 2019), and NetworkX (Hagberg et al., 2008).

4.2 Experiment 1: same model size

Figure 2 illustrates the performance of the proposed Sheaf-FMTL algorithm and dFedU on the rotated
MNIST and heterogeneous CIFAR-10 datasets, respectively, showcasing the test accuracy as a function of
the number of communication rounds and the total number of transmitted bits. We consider two values
for γ = {0.01, 0.03} such that the projection space dimension is γd. In Figure 2(a), we can see that
Sheaf-FMTL achieves similar test accuracies as dFedU. For both datasets, Sheaf-FMTL (γ = 0.01) and dFedU
converge significantly faster than D-PSGD and Local training. On rotated MNIST, Sheaf-FMTL achieves
85% accuracy within 15 rounds, while D-PSGD requires approximately twice the number of rounds to reach
comparable performance. On rotated MNIST, Sheaf-FMTL and dFedU both achieve final test accuracies
above 94%, outperforming D-PSGD (∼ 89%) and Local training (∼ 88%). The performance gap is even
more pronounced on Heterogeneous CIFAR-10, where Sheaf-FMTL and dFedU reach ∼ 66 accuracy while D-
PSGD struggles to exceed 55%. On the other hand, Figure 2(b) shows that Sheaf-FMTL achieves higher test
accuracy with fewer transmitted bits compared to the baselines, demonstrating its ability to learn effectively
while minimizing communication overhead. For the rotated MNIST dataset, using γ = 0.01 leads to almost

12



Under review as submission to TMLR

Table 3: Comparative analysis of storage, computational overheads, and communication costs.

Method Storage
per client

Compute per
iteration per client

Communication per
iteration per client

Sheaf-FMTL di +
∑

j∈Ni

dij × di O(di × dij)
∑

j∈Ni

dij

dFedU di O(di)
∑

j∈Ni

dj
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Figure 3: Test accuracy as a function of the communication rounds for (a) R-MNIST dataset and (b) H-
CIFAR-10 dataset.

similar test accuracy as dFedU, while it requires 100× less in terms of the number of transmitted bits to
achieve this accuracy. For the Heterogeneous CIFAR-10, Sheaf-FMTL requires slightly more communication
rounds than dFedU, but the benefit in terms of communication overhead is evident as it requires exchanging
significantly fewer bits.

As illustrated in Table 3, Sheaf-FMTL incurs additional storage and computational costs due to the main-
tenance and training of restriction maps. Specifically, each restriction map requires storing a matrix of size
dij × di, leading to a cumulative storage requirement of O(|E| × dij × di) across the network. Computation-
ally, updating these maps involves matrix multiplications and gradient calculations, adding a complexity of
O(dij × di) per edge per iteration. However, these costs are significantly offset by the substantial commu-
nication savings achieved, particularly when dij is chosen to be a small fraction of di, making Sheaf-FMTL
a viable option in resource-rich FL environments such as cross-silo FL settings. Furthermore, our analysis
in Table 4 shows that the actual memory footprint, while potentially higher than the simplest baselines,
remains within reasonable limits compared to the baselines.

In addition to FedAvg and D-PSGD, we compare the performance of our approach to three state-of-the-
art PFL algorithms: DITTO, pFedMe, and Per-FedAvg. These PFL algorithms are well-regarded in the
literature for addressing heterogeneity in FL environments. To evaluate the performance of our method
against these baselines, we conducted additional experiments on two datasets: Vehicle Sensor and HAR.
Table 4 measures the performance of various federated learning algorithms across four critical dimensions:
test accuracy (model effectiveness), transmitted bits in megabytes (communication efficiency), floating-point
operations in trillion (computational complexity), and memory usage in megabytes (resource requirements)
on both the Vehicle Sensor and Human Activity Recognition datasets. The test accuracy is averaged over
5 runs, reporting both mean and standard deviation, FLOPS represents the total number of floating-point
operations (in trillion) required for each algorithm to converge, and the memory column shows the peak
memory consumption in megabytes during the training process. The measurement captures the maximum
memory footprint. For the rotated MNIST dataset, Sheaf-FMTL achieves the highest test accuracy (94.5%)
regardless of the parameter γ, surpassing both decentralized algorithms like D-PSGD (92.2%) and central-
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Figure 4: Heat maps of the Frobenius norms of the final restriction maps for (a) R-MNIST dataset and (b)
H-CIFAR-10 dataset.

ized approaches like pFedme (90.05%). Notably, Sheaf-FMTL maintains this superior performance while
requiring only 38MB of communication (at γ = 0.1), which is about 100× lower than dFedU (3230.9KB)
and comparable to FedAvg. On the heterogeneous CIFAR-10 dataset, Sheaf-FMTL shows competitive ac-
curacy (65.8% at γ = 0.3) compared to dFedU (65.7%) while requiring about 100% less communication
overhead. As expected, the PFL baselines (DITTO, pFedMe, Per-FedAvg) and FedAvg achieve lower com-
munication overheads due to their star topology, leveraging a central parameter server. The computational
efficiency of Sheaf-FMTL is particularly evident when compared to personalization-focused algorithms such
as pFedme, which demands approximately 24× more floating-point operations on the heterogeneous CIFAR-
10 dataset. This substantial improvement in the computation-communication trade-off can be attributed
to our algorithm’s ability to learn task relationships through flexible sheaf structures rather than enforcing
rigid constraints across all clients. The parameter γ effectively controls this trade-off, with higher values
yielding marginal accuracy improvements at the cost of increased communication overhead. These results
confirm that Sheaf-FMTL successfully balances personalization, communication efficiency, and computational
complexity in heterogeneous federated environments.

4.3 Experiment 2: different model sizes

Figure 3 compares the performance of the proposed Sheaf-FMTL algorithm with the local training, i.e.,
training each model independently without communication with other clients, on the rotated MNIST and
heterogeneous CIFAR-10 datasets by plotting the test accuracy as a function of the number of communication
rounds. The horizontal dashed line (Local baseline) in each subplot represents the converged performance
achievable when clients train solely on their own data without any communication, serving as a reference
for the efficacy of collaboration. For both datasets, clients train different CNN architectures as per Table 2.
Subplot 3 (a) presents the results on the rotated MNIST dataset, where heterogeneity arises from concept
shift (different rotations applied to client data). Sheaf-FMTL demonstrates rapid convergence, surpassing the
local baseline accuracy of approximately 90% within the initial 40 communication rounds. The algorithm
continues to improve, eventually plateauing at a significantly higher test accuracy of around 93%, showcasing
the substantial advantage gained through collaborative learning facilitated by the sheaf mechanism in this
setting. Subplot 3 (b) displays the performance on the heterogeneous CIFAR-10 dataset, which exhibits
label distribution skew and quantity skew. Here, the task is more challenging due to the increased hetero-
geneity. While convergence is slower compared to rotated MNIST, Sheaf-FMTL consistently improves over
communication rounds. It surpasses the local baseline accuracy by approximately 62.5% around 60 rounds
and reaches a final accuracy of 68%.
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Table 4: Performance of Sheaf-FMTL compared to baselines for the rotated MNIST and heterogeneous
CIFAR-10 datasets.

Dataset Algorithm Test
Accuracy

Transmitted
Bits (MB)

FLOPS
(×1012)

Memory
(MB)

Rotated MNIST Sheaf-FMTL (γ = 0.01) 94.3 ± 0.12 38.2 240.7 7563.5
Sheaf-FMTL (γ = 0.03) 94.5 ± 0.08 165.7 249.3 24022.2

dFedU 94.4 ± 0.06 3230.9 1184.4 1582.9
D-PSGD 92.22 ± 0.06 3230.9 236.8 1438.6
FedAvg 81.4 ± 0.16 27.9 1184.1 1531
DITTO 92.2 ± 0.11 27.9 473.8 1714.6
pFedme 90.05 ± 0.14 27.9 5923.6 1550.7

Per-FedAvg 88.45 ± 0.11 27.9 202 1421
Heterogeneous CIFAR-10 Sheaf-FMTL (γ = 0.01) 65.5 ± 1.2 41.4 282.2 9582.5

Sheaf-FMTL (γ = 0.03) 65.8 ± 1.3 108.8 294.5 27452.2
dFedU 65.7 ± 1.8 3937.4 1376.5 9197.6

D-PSGD 64 ± 0.5 3937.4 207.5 8402.4
FedAvg 60.88 ± 1.4 25.5 1040 8431.6
DITTO 63.4 ± 1.1 25.5 413.4 8650.9
pFedme 62.5 ± 1.3 25.5 6886.2 8496.6

Per-FedAvg 61.25 ± 1.4 25.5 216 3480

To gain qualitative insights into the interaction structures learned by Sheaf-FMTL in the presence of archi-
tectural heterogeneity, Figure 4 visualizes the Frobenius norms (∥Pij∥F ) of the learned restriction maps for
the rotated MNIST (left) and heterogeneous CIFAR-10 (right) datasets. These plots correspond to the per-
formance results shown in Figure 3, where clients employed diverse CNN architectures as detailed in Table 2.
Each pixel (i, j) in the heatmaps represents the magnitude of the learned interaction map Pij projecting the
model parameters of client i into the shared space with client j. Brighter colors indicate a larger norm, sig-
nifying a stronger learned coupling or influence between the projected representations of the clients’ models.
The heatmaps clearly show that the algorithm learns non-trivial interaction maps (non-zero norms) between
connected clients. Crucially, the norms vary significantly across different client pairs. This demonstrates that
Sheaf-FMTL does not impose uniform interaction strengths but rather learns them. While many potential
interactions exist (off-diagonal entries), the number of pairs exhibiting very high norms (bright yellow spots)
is relatively sparse in both datasets. This suggests that the algorithm identifies and emphasizes connections
between specific client pairs deemed most beneficial for the joint optimization objective, while maintaining
weaker couplings between others.

4.4 Ablation Study

4.4.1 Effect of the Regularization Strength

To investigate the impact of both network topology and regularization strength on our proposed method, we
conducted experiments on the Vehicle dataset using three distinct network structures as illustrated in Figure
5: small-world, scale-free, and complete graphs. For the small-world topology, we used the Watts-Strogatz
model with each node connected to k = 4 nearest neighbors and a rewiring probability p = 0.1, creating a
network with high clustering and relatively short path lengths. The scale-free network was generated using
the Barabási-Albert preferential attachment model with m = 2 new edges per node, resulting in a power-law
degree distribution where some nodes act as hubs with many connections. The regularization parameter λ
was varied across six orders of magnitude from 10−4 to 10 to observe its effect on model performance.
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(a) Small world (b) Scale free (c) Complete

Figure 5: Network topologies used in the regularization experiments: (a) Small-world topology generated
using Watts-Strogatz model with k = 4 neighbors and rewiring probability p = 0.1, (b) Scale-free topology
generated using Barabási-Albert model with m = 2 attachments per new node, and (c) Complete graph
where every client is connected to all others.

Table 5: Performance comparison of Sheaf-FMTL and dFedU across different network topologies and regu-
larization strengths on the Vehicle dataset.

Topology Regularization
Strength

Sheaf-FMTL
(γ = 0.1) dFedU

Average Test
Accuracy

Transmitted
Bits (kB)

Average Test
Accuracy

Transmitted
Bits (kB)

Small-world
(Fig. 5a)

λ = 10−4 92.38 ± 0.38

162

91.79 ± 0.51

808
λ = 10−3 92.31 ± 0.38 91.57 ± 0.36
λ = 10−2 92.19 ± 0.40 91.89 ± 0.44
λ = 10−1 91.63 ± 0.47 90.65 ± 0.58

λ = 1 89.80 ± 0.73 84.64 ± 1.72
λ = 10 84.15 ± 1.20 80.88 ± 0.91

Scale-free
(Fig. 5b)

λ = 10−4 92.42 ± 0.40

485

91.58 ± 0.43

2424
λ = 10−3 91.63 ± 0.48 91.28 ± 0.72
λ = 10−2 92.45 ± 0.24 91.12 ± 0.20
λ = 10−1 90.19 ± 0.55 90.54 ± 0.50

λ = 1 89.08 ± 0.75 85.71 ± 0.30
λ = 10 80.55 ± 1.34 80.41 ± 0.35

Complete
(Fig. 5c)

λ = 10−4 92.06 ± 0.67

711

88.98 ± 0.46

3555
λ = 10−3 91.06 ± 0.26 89.60 ± 0.61
λ = 10−2 89.62 ± 0.52 89.40 ± 0.63
λ = 10−1 89.15 ± 0.56 89.07 ± 0.34

λ = 1 84.5 ± 0.74 83.67 ± 0.63
λ = 10 78.2 ± 0.45 80.40 ± 0.35

Table 5 presents a comprehensive comparison between Sheaf-FMTL and dFedU across these different con-
figurations. Several key observations emerge from these results. First, Sheaf-FMTL consistently achieves
superior communication efficiency, requiring approximately 5× fewer transmitted bits than dFedU across
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Table 6: Final average test accuracy of Sheaf-FMTL for different initialization strategies of the restriction
maps Pij under heterogeneous CNN architectures (Table 2).

Initialization Method Parameter R-MNIST H-CIFAR-10

Gaussian N (0, σ2)
σ = 0.01 0.9280 0.6767
σ = 0.1 0.9279 0.6722
σ = 1.0 0.9277 0.6815

Uniform U([−a, a])
a = 0.01 0.9288 0.6842
a = 0.1 0.9268 0.6759
a = 1 0.9277 0.6733

Orthogonal N/A 0.9273 0.6746
Identity + Noise σnoise = 0.01 0.9268 0.6624

all topologies. Second, regarding accuracy performance, Sheaf-FMTL generally outperforms dFedU across
most regularization values, with the performance gap becoming more pronounced at higher regularization
strengths (λ ≥ 1). For instance, with λ = 1 in the small-world topology, Sheaf-FMTL achieves 89.80%
accuracy compared to dFedU’s 84.64%. Among the three topologies, the small-world network provides the
best balance between communication efficiency and model performance, requiring the least communication
while maintaining comparable or better accuracy than more densely connected topologies.

While our experiments on the Vehicle dataset indicated optimal performance for λ in the range [10−4, 10−2]
across different topologies, this should not be interpreted as a universal recommendation. The optimal choice
of λ is highly dependent on factors such as the degree and type of data heterogeneity, network topology, and
the data and model size. In practice, λ should be treated as a hyperparameter tuned using a validation set
(typically a held-out portion of each client’s local data). We recommend searching over a logarithmic scale
(e.g., [10−5, 10]), noting that excessively large values (λ ≥ 1) can overly constrain personalization and harm
performance.

4.4.2 Effect of the Restriction Maps Initialization

We conduct an ablation study to assess the sensitivity of the Sheaf-FMTL algorithm to the initialization
strategy of the restriction maps Pij , particularly within the challenging context of heterogeneous model
architectures across clients. Using the CNN architectures specified in Table 2 for rotated MNIST and
heterogeneous CIFAR-10 datasets, we evaluated several initialization methods

• Gaussian Initialization: Each element of Pij is drawn independently from a normal distribution
N (0, σ2), with variances σ ∈ {0.01, 0.1, 1}.

• Uniform Initialization: Each element was drawn independently from a uniform distribution
U([−a, a]), with ranges corresponding to a ∈ {0.01, 0.1, 1.0}.

• Orthogonal Initialization: Pij was initialized as a matrix with orthonormal rows, ensuring
PijP T

ij = Idij
.

• Identity + Noise Initialization: Pij was initialized based on the identity matrix (selecting
the first dij rows of the di × di identity, padded with zeros if needed), with small Gaussian noise
(N (0, 0.012)) added to break perfect symmetry and allow adaptation.

The results, presented in Table 6, measure the final average test accuracy achieved after convergence.

On the rotated MNIST dataset, the performance of Sheaf-FMTL exhibits remarkable robustness to the
choice of initialization. Across all tested strategies, the final accuracy remains tightly clustered between
approximately 92.68% and 92.88%. The best performance was marginally achieved with a narrow Uniform
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initialization (U([−0.01, 0.01])). Still, the minimal variation suggests that the algorithm effectively converges
to a high-quality solution regardless of the starting point for Pij in this setting.

For the heterogeneous CIFAR-10 dataset, which presents greater data and architectural heterogeneity, we
observe slightly more variation, though the overall stability is still noteworthy. The final accuracy ranges
from 66.24% to 68.42%. Similar to rotated MNIST, the narrow Uniform initialization (U([−0.01, 0.01]))
yielded the highest accuracy. Notably, the (Identity + Noise) initialization resulted in the lowest accuracy
(66.24%), suggesting that starting with projections aligned to canonical parameter subsets might be less
effective than random or orthogonal initializations when dealing with complex models and diverse data
distributions inherent in the heterogeneous CIFAR-10.

5 Conclusion

In this work, we introduced a novel sheaf-based framework for FMTL that effectively tackles challenges
arising from data and sample heterogeneity across clients. By leveraging cellular sheaves, our approach
can flexibly model complex interactions between client models, even with varying feature spaces and model
sizes. While Sheaf-FMTL introduces additional memory and computational overhead for managing the sheaf
structure, this is often offset by significant communication savings, the ability to handle heterogeneous model
architectures and providing a unified view subsuming various existing FL methods, making it a compelling
approach, particularly in cross-silo FL settings. Theoretically, we analyzed the convergence properties of
Sheaf-FMTL, establishing a sublinear convergence rate in line with state-of-the-art decentralized FMTL
algorithms. Empirically, extensive experiments on benchmark datasets demonstrated the communication
savings of Sheaf-FMTL compared to the state-of-the-art baselines.
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A Sheaf-Theoretic Approach in FMTL

A.1 Rationale for Adopting Sheaf Theory in FMTL

Sheaf theory provides a powerful mathematical framework for modelling and analyzing complex relationships
in FMTL. The adoption of this approach in our context is motivated by several key advantages

1. Heterogeneity modeling. FMTL often involves clients with different data distributions, model
architectures, or task objectives. Sheaf theory allows us to capture these heterogeneous relationships
in a structured and mathematically rigorous manner.

2. Local-Global consistency. Sheaves provide a natural way to ensure consistency between local
(client-specific) and global (network-wide) information. This is crucial in FMTL scenarios where we
aim to leverage network information to improve local performance.

3. Flexible representation. The sheaf structure allows for representing varying degrees of similarity
or difference between clients. This nuanced representation is more sophisticated than traditional
approaches that often assume uniform relationships across the network.

A.2 The Interaction Space and Client Relationships

The interaction space, denoted as F(e), plays a central role in our sheaf-theoretic approach to FMTL. It
serves as a shared space where local models θi and θj are projected using restriction maps Pij and Pji,
respectively. The projection into this interaction space provides a measure of client relationships for the
following reasons

1. Common feature capture. The interaction space captures the common or comparable features
between clients, analogous to how principal component analysis (PCA) captures the most important
features of a dataset.

2. Consistency enforcement. Our approach enforces consistency between the projections of local
models onto the interaction space. This is mathematically represented by the sheaf Laplacian term
λ
2 θT LF (P )θ, which penalizes discrepancies between the projections of local models.

3. Collaboration encouragement. By minimizing the sheaf Laplacian term, local models are en-
couraged to collaborate effectively, leveraging shared information to improve overall performance.

A.3 Restriction Maps and Their Interpretations

The restriction maps, represented by matrices Pij , are fundamental to our sheaf-theoretic approach. These
maps project local models θi onto the interaction space F(e). The intuition behind these maps can be
understood as follows

1. Feature selection. Pij acts as a feature selection matrix, identifying common or comparable
features between clients i and j.

2. Information sharing. The restriction maps facilitate information sharing between clients by pro-
jecting local models onto a common space, enabling effective collaboration even when local models
have different dimensions or feature sets.

3. Model comparison. In heterogeneous settings where clients have different model sizes, traditional
FL methods relying on direct model aggregation or comparison fail. The restriction maps allow for
meaningful comparisons by projecting onto a common space.
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A.4 Dimensional Considerations and Trade-offs

The dimensions of the restriction map Pij are determined by the dimensions of the local model θi and the
interaction space F(e). If θi ∈ Rdi and the interaction space has dimension dij , then Pij is of size dij × di.
The choice of dij involves a trade-off

• Smaller dij: Results in a more compact representation of shared information, leading to communi-
cation savings.

• Larger dij: Allows for more flexibility in capturing relationships between local models but increases
communication costs.

In practice, the choice of dij can be guided by factors such as the estimated overlap in feature spaces
between clients, computational resources available, and the desired balance between model expressiveness
and communication efficiency.

A.5 Comparative Advantages over Traditional FMTL Methods

Our sheaf-theoretic approach offers several advantages over traditional FMTL methods

1. Heterogeneity handling. Unlike many traditional FMTL methods that assume homogeneous
models across clients, our approach naturally accommodates heterogeneous model architectures and
task objectives.

2. Nuanced relationships. Traditional methods often assume uniform relationships between clients.
Our approach allows for more nuanced modelling of inter-client relationships through the interaction
space and restriction maps.

B Interpretation of dij and Pij

In this appendix, we provide an interpretation of the restriction maps Pij = Fi⊴e for the case when the local
models are given by linear or logistic regression. We describe how to choose dij and Pij in a meaningful way
and the constraints that can be imposed on them.

Consider a network of N clients, where each client i has a local model parameterized by θi ∈ Rdi . In the
case of linear regression, the local model of client i is given by fi(θi; xi) = θT

i xi, where xi ∈ Rdi is the input
feature vector. For logistic regression, the local model is given by fi(θi; xi) = σ(θT

i xi), where σ(·) is the
sigmoid function.

Interpretation of Pij. Consider two clients i, j ∈ V such that e = (i, j) ∈ E . The restriction maps Pij and
Pji aim to capture the relationships between the local models θi and θj by projecting them to a common
interaction space F(e). In the context of linear or logistic regression, Pij and Pji can be interpreted as
feature selection matrices that identify the common or comparable features between the two clients.

Let Pij ∈ Rdij×di and Pji ∈ Rdij×dj be the restriction maps for clients i and j, respectively, where dij =
dim F(e) is the dimension of the interaction space. The restriction maps should satisfy the following condition

Pijθi ≈ Pjiθj , (21)

which ensures that the projected models in the interaction space are comparable.

To impose the condition in (21), we consider the following regularizer term

Qij = ∥Pijθi − Pjiθj∥2
, (22)
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which we aim to minimize. By adding the regularizer terms for all neighboring clients and then summing
over all clients, we obtain the overall regularizer

Q(θ) =
N∑

i=1

∑
j∈Ni

∥Pijθi − Pjiθj∥2
, (23)

which is exactly the sheaf quadratic form for the choice Fi⊴e = Pij for e = (i, j) ∈ E .
Choice of dij. The dimension of the interaction space, dij , determines the size of the restriction maps Pij and
Pji. In practice, dij can be chosen based on the number of common or comparable features between clients
i and j. A smaller value of dij implies a more compact representation of the shared information between the
two clients, while a larger value allows for more flexibility in capturing the relationships between the local
models.

C Real-World Applications of Sheaf-FMTL

In this appendix, we explore practical scenarios where task similarities are inherently defined within vector
spaces, making them well-suited for the application of Sheaf-FMTL. By examining representation learning and
feature vector similarities in multi-modal tasks, we illustrate how our sheaf-theoretic framework effectively
captures and leverages complex task relationships. These examples showcase the applicability of Sheaf-FMTL
in diverse FL environments.

C.1 Representation Learning and Embedding Spaces

In many ML applications, tasks are associated with high-dimensional data that can be effectively represented
through embeddings in vector spaces. These embeddings capture semantic, syntactic, or feature-based
relationships between tasks, facilitating the modeling of task similarities as vector operations. For example,
if we consider the Natural Language Processing (NLP) field, then tasks such as sentiment analysis, topic
classification, and named entity recognition can be embedded in a semantic space using techniques like
Word2Vec or BERT. The proximity of these task vectors in the embedding space reflects their semantic
relatedness. Similar NLP tasks often share underlying linguistic structures. By representing these tasks as
vectors, Sheaf-FMTL can capture and leverage their shared characteristics to enhance collaborative learning.

C.2 Feature Vector Similarities in Multi-Modal Tasks

In multi-modal learning scenarios, tasks often involve integrating and processing data from different modal-
ities (e.g., text, image, audio). Task similarities can be defined based on the feature vectors extracted from
these modalities, enabling Sheaf-FMTL to model interactions across diverse data sources. For example, if
we consider multi-modal sentiment analysis, then tasks that analyze sentiment from text, images, and audio
can have their respective feature vectors embedded in a unified vector space. The similarities between these
feature vectors can indicate shared sentiment characteristics across modalities. Sheaf-FMTL can utilize these
vector similarities to facilitate collaborative learning, enhancing sentiment detection accuracy by leveraging
cross-modal information. Another example is healthcare applications, where tasks involving the analysis of
patient data from various sources (e.g., medical imaging, electronic health records, genomic data) can define
task similarities based on the integrated feature vectors representing different data modalities. By modeling
these similarities in vector space, Sheaf-FMTL can improve personalized treatment recommendations through
effective knowledge sharing across related healthcare tasks.

D Supporting lemmas

Lemma 3.

θT LF θ =
∑

e=(i,j)∈E

∥Fi⊴e (θi) − Fj⊴e (θj)∥2 =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2
. (24)
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Proof. Using the block matrix structure of LF from equation (3), we can expand the quadratic form as
follows

θT LF θ

=
∑
i∈V

∑
j∈V

θT
i Li,jθj

=
∑
i∈V

θT
i

 ∑
j∈Ni

P T
ij Pij

 θi − 2
∑

e=(i,j)∈E

θT
i P T

ij Pjiθj

=
∑

e=(i,j)∈E

(
θT

i P T
ij Pijθi + θT

j P T
ji Pjiθj − 2θT

i P T
ij Pjiθj

)
=

∑
e=(i,j)∈E

(
∥Pijθi∥2 + ∥Pjiθj∥2 − 2 ⟨Pijθi, Pjiθj⟩

)
=

∑
e=(i,j)∈E

∥Pijθi − Pjiθj∥2
. (25)

Recalling that Fi⊴e and Pij are used interchangeably to denote the restriction map from vertex i to edge
e = (i, j), we obtain

θT LF θ =
∑

e=(i,j)∈E

∥Pijθi − Pjiθj∥2 =
∑

e=(i,j)∈E

∥Fi⊴e (θi) − Fj⊴e (θj)∥2
. (26)

Lemma 4.

ker(LF ) = arg min
θ∈C0(F)

QF (θ) = arg min
θ∈C0(F)

θT LF θ. (27)

Proof. Let θ ∈ ker(LF ). Then, LF θ = 0. By the definition of QF (θ), we have

QF (θ) = θT LF θ = 0.

Therefore, θ ∈ arg minθ∈C0(F) QF (θ).

Conversely, let θ ∈ arg minθ∈C0(F) QF (θ). Then, QF (θ) = 0, which implies

0 = QF (θ) =
∑

e=(i,j)∈E

∥Fi⊴e (θi) − Fj⊴e (θj)∥2
. (28)

Thus, we get

Fi⊴e (θi) = Fj⊴e (θj) ∀e = (i, j) ∈ E . (29)

This concludes the proof.

E Proof of Theorem 1

We start by introducing the matrices Jij ∈ Rdij×di having all its entries equal to one. Then, let us define the
block matrix H such that Hij = Jij if (i, j) ∈ E , and Hij = 0, otherwise. Then, θ and P can be updated
using the following updates

θk+1 = θk − α(∇f(θk) + λ(P k)T P kθk), (30)
P k+1 = H ⊙

(
P k − ηλP kθk+1(θk+1)T

)
, (31)

25



Under review as submission to TMLR

where ⊙ is the Hadamard product and the matrix H is introduced to preserve the block structure of P by
zeroing out the entries that do not correspond to edges in the graph.

Next, we analyze the convergence of the Sheaf-FMTL algorithm by studying the descent steps in θ and P
separately. This approach allows us to establish bounds on the decrease of the objective function Ψ(θ, P )
in each descent step.
Theorem 2. Let Assumptions 1 and 2 hold. Assume the learning rates α and η satisfy the conditions
α < 2

NL and η < 2
λD2

θ

, respectively. Then, the averaged gradient norm is upper bounded as follows

1
K

K−1∑
k=0

∥∇Ψ(θk, P k)∥2 ≤ 1
ρK

(Ψ(θ0, P 0) − Ψ⋆), (32)

where ρ = min
{

α
(
1 − αNL

2
)

, η
(

1 − ηλD2
θ

2

)}
and Ψ⋆ is the optimal value of Ψ.

Proof. Using the Lipschitz continuity of the gradient of f(θ)

f(θk+1) ≤ f(θk) + ⟨∇f(θk), θk+1 − θk⟩ + NL

2 ∥θk+1 − θk∥2. (33)

Adding and subtracting λ
2 θk+1(P k)T P kθk+1 to both sides of the inequality, we get

Ψ(θk+1, P k)

= f(θk+1) + λ

2 θk+1(P k)T P kθk+1

≤ f(θk) + ⟨∇f(θk), θk+1 − θk⟩ + NL

2 ∥θk+1 − θk∥2 + λ

2 θk+1(P k)T P kθk+1

= f(θk) + ⟨∇f(θk), θk+1 − θk⟩ + NL

2 ∥θk+1 − θk∥2 + λ

2 θk+1(P k)T P kθk+1

− λ

2 θk(P k)T P kθk + λ

2 θk(P k)T P kθk

= f(θk) + ⟨∇f(θk), θk+1 − θk⟩ + NL

2 ∥θk+1 − θk∥2 + λ

2 (θk+1 − θk)T (P k)T P kθk+1

+ λ

2 θk(P k)T P kθk

= Ψ(θk, P k) + ⟨∇θΨ(θk, P k), θk+1 − θk⟩ + NL

2 ∥θk+1 − θk∥2, (34)

where the last equality follows from the definition of Ψ(θ, P ).

Using the update rule for θk+1, we have

⟨∇θΨ(θk, P k), θk+1 − θk⟩
= ⟨∇f(θk) + λ(P k)T P kθk, −α(∇f(θk) + λ(P k)T P kθk)⟩
= −α∥∇f(θk) + λ(P k)T P kθk∥2

= −α∥∇θΨ(θk, P k)∥2. (35)

On the other hand, we have

∥θk+1 − θk∥2
2

= α2∥∇f(θk) + λ(P k)T P kθk∥2

= α2∥∇θΨ(θk, P k)∥2. (36)

Substituting (35) and (36) back into (34), we obtain

Ψ(θk+1, P k) ≤ Ψ(θk, P k) − α

(
1 − αNL

2

)
∥∇θΨ(θk, P k)∥2. (37)
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By choosing α < 2
NL , we ensure that the term 1 − αNL

2 is positive.

From the definition of Ψ(θ, P ), we have

Ψ(θk+1, P k+1) = f(θk+1) + λ

2 (θk+1)T (P k+1)T P k+1θk+1. (38)

Using the update rule for P k+1, i.e., P k+1 = H ⊙ (P k − ηλP kθk+1(θk+1)T ), we can write

(P k+1)T P k+1

= (H ⊙ (P k − ηλP kθk+1(θk+1)T ))T (H ⊙ (P k − ηλP kθk+1(θk+1)T ))
⪯ (P k − ηλP kθk+1(θk+1)T )T (P k − ηλP kθk+1(θk+1)T ), (39)

where the inequality follows from the fact that the Hadamard product with H zeros out some entries, which
can only decrease the Frobenius norm.

Expanding the right-hand side, we get

(P k − ηλP kθk+1(θk+1)T )T (P k − ηλP kθk+1(θk+1)T )
= (P k)T P k − 2ηλ(P k)T P kθk+1(θk+1)T + η2λ2(P k)T P kθk+1(θk+1)T θk+1(θk+1)T (40)

Substituting this back into the expression for Ψ(θk+1, P k+1), we obtain

Ψ(θk+1, P k+1)

≤ f(θk+1) + λ

2 (θk+1)T (P k)T P kθk+1 − ηλ2(θk+1)T (P k)T P kθk+1(θk+1)T θk+1

+ η2λ3

2 (θk+1)T (P k)T P kθk+1(θk+1)T (θk+1)(θk+1)T θk+1. (41)

Since the gradient of Ψ with respect to P is given by ∇P Ψ(θ, P ) = λP θθT , we can compute the following
norm

∥∇P Ψ(θk+1, P k)∥2
F

= Tr((λP kθk+1(θk+1)T )T (λP kθk+1(θk+1)T ))
= λ2 Tr(θk+1(θk+1)T (P k)T P kθk+1(θk+1)T )
= λ2(θk+1)T (P k)T P kθk+1(θk+1)T θk+1, (42)

where we have used the cyclic nature of the trace operator Tr(·).

Therefore, we have the following bound

Ψ(θk+1, P k+1)

≤ Ψ(θk+1, P k) − η

(
1 − ηλ

2 ∥θk+1∥2
)

∥∇P Ψ(θk+1, P k)∥2

≤ Ψ(θk+1, P k) − η

(
1 − ηλD2

θ

2

)
∥∇P Ψ(θk+1, P k)∥2, (43)

where we have used Assumption 2.

Hence, to ensure
(

1 − ηλD2
θ

2

)
is positive, we choose the value of η to be η < 2

λD2
θ

. Combining the inequalities
(37) and (43), we get

Ψ(θk+1, P k+1)

≤ Ψ(θk, P k) − α

(
1 − αNL

2

)
∥∇θΨ(θk, P k)∥2 − η

(
1 − ηλD2

θ

2

)
∥∇P Ψ(θk+1, P k)∥2. (44)
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Summing up these inequalities from k = 0 to K − 1, we obtain

Ψ(θK , P K)

≤ Ψ(θ0, P 0) − α

(
1 − αNL

2

) K−1∑
k=0

∥∇θΨ(θk, P k)∥2 − η

(
1 − ηλD2

θ

2

) K−1∑
k=0

∥∇P Ψ(θk+1, P k)∥2. (45)

Let Ψ⋆ be the optimal value of Ψ, and we define ρ = min
{

α
(
1 − αNL

2
)

, η
(

1 − ηλD2
θ

2

)}
. Then, rearranging

the terms, we can write

1
K

K−1∑
k=0

∥∇Ψ(θk, P k)∥2 ≤ 1
ρK

(Ψ(θ0, P 0) − Ψ(θK , P K)) ≤ 1
ρK

(Ψ(θ0, P 0) − Ψ⋆), (46)

where we have used that Ψ⋆ ≤ Ψ(θK , P K) and ∥∇Ψ(θk, P k)∥2 = ∥∇θΨ(θk, P k)∥2 + ∥∇P Ψ(θk, P k)∥2.

F Additional Details on Datasets

A summary of the datasets and the tasks used in Section 4.2 is presented in Table 7. These datasets are
real-world datasets created in federated environments with varying degrees of heterogeneity. A detailed
description of the datasets, along with their specific data partitioning schemes, is provided in Table 8. To
further quantify the non-IIDness in our data partitions, we have incorporated quantitative metrics assessing
the degree of non-IIDness across different datasets in Table 9.

• Rotated MNIST (R-MNIST). Following similar techniques as outlined in (Liu et al., 2022a), we
shuffle and then evenly separate the original MNIST dataset between 40 clients. Next, we randomly
divide the clients into four groups, each containing 10 clients. We then apply rotations of {0°, 90°,
180°, 270°} to each group respectively. Therefore, clients within the same group share identical
image rotations, resulting in the formation of four distinct clusters. The MNIST dataset is available
under the CC BY-SA 3.0 license.

• Heterogeneous CIFAR-10 (H-CIFAR-10). The original CIFAR-10 dataset is split among 30
clients, and heterogeneity is introduced by assigning each client a random number of samples from 5
randomly selected classes out of the 10 available classes, following a similar approach as in (T Dinh
et al., 2020; Liu et al., 2022a). The CIFAR-10 dataset is available under the MIT license.

• Human Activity Recognition. The dataset is composed of data gathered from the accelerometers
and gyroscopes of smartphones used by 30 individuals, each performing one of six activities: walking,
walking upstairs, walking downstairs, sitting, standing, or lying down. In this dataset, the data from
each individual/client is treated as a unique task, with the primary objective being to differentiate
between these activities. To identify each activity appropriately, feature vectors with 561 elements
representing various time and frequency domain variables are used in the analysis. The dataset
(Anguita et al., 2013) is licensed under a Creative Commons Attribution 4.0 International (CC-BY
4.0) license.

• Vehicle Sensor. The dataset involves collecting data from a network of 23 wireless sensors, includ-
ing acoustic (microphones), seismic (geophones), and infrared (polarized IR sensors), strategically
placed along a specific road segment. This dataset aims to facilitate binary classification to identify
two types of vehicles: the Assault Amphibian Vehicle (AAV) and the Dragon Wagon (DW). Each
sensor, treated as a unique task or client, gathers acoustic and seismic data encapsulated in a 100-
dimensional feature vector, representing the recordings as vehicles pass by. The Vehicle dataset was
originally made public by its authors as a research dataset (Duarte & Hu, 2004).

• Google Glass Eating and Motion (GLEAM). The dataset is collected using Google Glass
from 38 individuals. It captures high-resolution sensor data to identify specific activities such as
eating. This extensive dataset, consisting of 27,800 entries, each with a 180-dimensional feature
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Table 8: Data partitioning strategies across datasets where nk is the number of training samples of client k.

Dataset Data split Domain
distribution

Label
distribution

R-MNIST min nk = 1500
max nk = 1500

4 groups with distinct
rotation angles

Uniform distribution
within each rotation group

H-CIFAR-10 min nk = 1515
max nk = 1839

Not explicitly
divided into domains

Each client has data
from 5 random classes

HAR min nk = 210
max nk = 306

All activity
classes per client

Uniform across activity
classes within each client

Vehicle Sensor min nk = 872
max nk = 1933

Same label set with
different feature distributions

Balanced across vehicle
classes per sensor

GLEAM min nk = 699
max nk = 776

All activity classes
with uniform distribution

Balanced between eating
and non-eating classes

School min nk = 15
max nk = 175

Shared regression task
with uniform feature sets

Continuous targets with
varying distributions per school

vector, records head movements for binary classification to determine if the wearer is eating or not.
The data includes accelerometer, gyroscope, and magnetometer readings, analyzed for statistical,
spectral, and temporal characteristics to distinguish eating from other activities like walking, talking,
and drinking. The GLEAM dataset, released by its original authors (Rahman et al., 2015), is
available for non-commercial use.

• School. The dataset, originally introduced in (Goldstein, 1991), seeks to forecast the exam results
of 15,362 students from 139 secondary schools. The dataset contains information for each school,
with student numbers ranging from 22 to 251, and each student is described using a 28-dimensional
feature vector. This vector contains information about the school’s ranking, the student’s birth year,
and the availability of free meals at the school. The dataset has been made publicly available in
(Zhou et al., 2011).

Table 7: Summary of the datasets and tasks used in our empirical setup.

Dataset Task # Clients/Tasks Input Dimension Model
R-MNIST Classification 40 28 × 28 × 1 convolutional neural network
H-CIFAR-10 Classification 30 32 × 32 × 3 convolutional neural network
HAR Classification 30 561 multinomial logistic regression
Vehicle Sensor Classification 23 100 multinomial logistic regression
GLEAM Classification 38 180 multinomial logistic regression
School Regression 139 28 linear regression

G Supplementary Experimental Results

Figure 6 compares the performance of our proposed Sheaf-FMTL method with dFedU on four datasets:
(a) the Vehicle dataset, (b) the School dataset, (c) the HAR dataset and (d) the GLEAM dataset using
γ = {0.1, 0.3}. The experiments evaluate the performance of the model in terms of communication rounds
and transmitted bits. Sheaf-FMTL and dFedU consistently achieves the highest accuracy and fastest con-
vergence, demonstrating an average improvement of 5-10 percentage points over D-PSGD and local across
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Table 9: Degree of non-IIDness across datasets.

Dataset Non-IID Metric Description Heterogeneity Type
R-MNIST Rotation angle

variance
High domain heterogeneity

with 4 distinct rotation groups
Feature distribution

skew
H-CIFAR-10 Label distribution High label distribution

skew among clients
Label distribution

skew
HAR Inter-client

variability
High heterogeneity due to unique

individual data per client Concept shift

Vehicle Sensor Feature distribution High feature heterogeneity
across different sensors

Feature distribution
skew

GLEAM Label distribution Low heterogeneity
with balanced labels

Minimal
(almost IID)

School Continuous targets
variance

Moderate to high heterogeneity based
on inter-school performance variability

Concept shift and
quantity skew

datasets. For instance, on the Vehicle dataset, Sheaf-FMTL reaches 88% accuracy compared to 82% for
D-PSGD and 82% for local. While Sheaf-FMTL requires more communication rounds for the Vehicle dataset
to achieve similar test accuracy compared to dFedU, the performance gap between the two methods narrows
as the number of communication rounds increases. However, when examining the number of transmitted
bits, Sheaf-FMTL demonstrates a clear advantage, requiring fewer bits to reach higher accuracy levels. For
example, Sheaf-FMTL with γ = 0.1 reaches a test accuracy of 0.85 with just 72 transmitted Kbits, while
dFedU requires over 450 Kbits to approach this accuracy. Similar trends are observed for the other datasets.
Sheaf-FMTL recovers the same performance as dFedU in terms of test accuracy with a slight drop in test
accuracy for the HAR and School datasets. Hence, the sheaf-based approach effectively captures the hetero-
geneous relationships among clients, achieving the same test accuracy using fewer transmitted bits than the
baseline dFedU.
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Figure 6: Test/MSE accuracy as a function of the number of communication rounds and the number of
transmitted bits for the Vehicle dataset (first row), the HAR dataset (second row), the School dataset (third
row), and the GLEAM dataset (bottom).
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