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ABSTRACT

Artificial intelligence systems are increasingly solving tasks that are commonly
believed to require human-like reasoning ability. However, learned approaches
still fare poorly on the Abstraction and Reasoning Corpus (ARC), a benchmark
that measures skill-acquisition efficiency as a proxy for intelligence. Each ARC
task requires an agent to reason about a transformation between input and out-
put pairs. In this work, we solve these tasks by identifying the program that
applies this transformation. We propose CodeIt, a program synthesis approach
that leverages a higher level of abstraction through a domain-specific language.
CodeIt iterates between sampling from the current large language model policy
and learning that policy using supervised learning. The sampling stage augments
newfound programs using hindsight relabeling and program mutation, requiring
no expert search procedure. We demonstrate CodeIt’s effectiveness on the ARC
benchmark, where we show that learning to write code in iterations leads to inter-
task generalization, which results in state-of-the-art performance.

1 INTRODUCTION

Iterative learning methods such as Expert Iteration (Anthony et al., 2017) have achieved super-
human performance in games such as chess, go (Silver et al., 2016; 2018), hex (Anthony et al.,
2017), and combinatorial problems such as bin-packing (Laterre et al., 2019). In these tasks, hu-
mans typically need to reason and think multiple steps ahead to select an optimal next move. By
playing through many games and looking back at what worked well and what did not, experts acquire
intuition for selecting good moves. Iterative learning methods emulate this process by alternating
between two phases: gathering data with an exploration policy, and improving the policy by train-
ing on the newfound experiences. This process works well in narrow domains, but has yet to show
results in domains that require generalization between different tasks.

We broaden the application scope of iterative learning methods with the Abstraction and Reasoning
Corpus (ARC) (Chollet, 2019), a benchmark dataset for intelligence with a focus on generalization
ability. It aims to measure skill-acquisition efficiency over a range of different tasks, argued by
Chollet (2019) to be a proxy metric for intelligence. Intuitively, if two agents gather a similar amount
of experience in a previously unknown set of tasks, the one that performs better has acquired the
necessary skills more efficiently, and can be said to be more intelligent. The ARC dataset consists of
400 training tasks and 400 evaluation tasks, plus 200 hidden test tasks not available to the public and
meant to score competitors to the ARC challenge.1 Each task contains one or more demonstration
examples, and one or more test examples, where each example is an input-output pair of grids. We
show a toy example of an ARC task in Figure 1. Based on the demonstration examples, an agent
needs to reason about what output grid the test inputs should map to.

Seen through the lens of program synthesis, ARC is an instance of programming-by-examples with
grids as inputs and outputs. The programming language to be used is not specified, which makes
it an open-DSL problem: one is free to define a custom domain-specific language, and therefore, a
custom search space. The limited size of the training dataset and the difficulty of individual problems
make it essential for the agent to generalize between different tasks. Existing approaches either fail
to generalize (Ainooson et al., 2023; Mirchandani et al., 2023) or are too inefficient to apply on the
full dataset (Alford et al., 2021; Kolev et al., 2020; Xu et al., 2022; Park et al., 2023).

1https://lab42.global/arcathon/
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Figure 1: A simplified ARC task. Given two demonstration examples, the goal is to determine the
output grid for the test example in three attempts or fewer. The size of the grids and the number of
demonstration and test examples may be different for each task.

In this work, we propose a scalable program synthesis approach that benefits from inter-task gener-
alization. The program synthesis approach induces a bias toward generalizable solutions through a
domain specific programming language. We empirically validate our method on the ARC dataset,
where the goal for each task then becomes to write the program that, when applied on the input
grids, produces the target output grids. Our approach, which we call Code Iteration or CodeIt for
short, iterates between a sampling stage and a learning stage. In the sampling stage, we sample
new programs from a language model policy, conditioned on the input-output examples of ARC
tasks. We then execute these programs on their associated inputs, and add the resulting input-output
pairs and corresponding programs to a replay buffer. In the learning stage, we train the policy on
experiences sampled from the replay buffer. The updated policy is then used in the next iteration of
sampling. This iterative procedure thus allows us to automatically generate new data without human
intervention.

CodeIt solves 48/400 ARC evaluation tasks, achieving state-of-the-art performance in line with GPT-
4 (Gendron et al., 2023). It achieves this result by gaining useful experience over the full dataset due
to to its scalability, and by successfully generalizing this experience between different tasks.

2 METHOD

We approach the ARC problem as a programming-by-examples problem: for a given set of tasks
that we call the search set, we aim to find programs that correctly match inputs with their respective
outputs, and we do so by training a policy to produce programs when shown demonstration exam-
ples. This is achieved by pretraining the policy on ground truth data, and then iterating between two
stages: writing programs using a policy, and learning from the program outputs. We first describe
key design choices below, and then explain the iterative procedure.

2.1 DESIGN CHOICES

Programming language We restrict our programming language to the open source domain spe-
cific language (DSL) of Hodel (2023), designed specifically for the ARC training split. This DSL
contains grid manipulation functions (e.g., vmirror or hmirror, which mirror the grid along the
vertical or horizontal axis), fill functions that replace all pixels of a certain color, and functions
that return locations of specific pixel groups. See Appendix B.4 for details on the DSL and more
example primitives, and see (Hodel, 2023) for discussion on the DSL’s primitives and capability.

Policy model Our choice of policy is a pretrained encoder-decoder Large Language Model (LLM).
We use the 220 million parameter CodeT5+ (Wang et al., 2023b) model and its default tokenizer,
which are pretrained on a diverse set of programming tasks. We input the demonstration examples
to the encoder, and let the decoder generate the corresponding program. If necessary, demonstration
examples are truncated to fit in the encoder context window.

Grid representation In order to condition the language model policy on input-output grids, we
represent them as text. Instead of encoding the grid as a 2-dimensional array, we use an object-
centric text representation. Specifically, each color is encoded as an integer, and for each color in
the grid we list all the grid cells with that color as [x, y] coordinates. Since the majority of cells
belong to the background color, this procedure significantly reduces the number of tokens required
to encode the grid (see Figure 5 in the Appendix). As an example, the demonstration examples from
Figure 1 would be represented as follows:
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Figure 2: Overview of the iterative algorithm. The sampling stage produces new programs ρ. These
are run on inputs S0, and the resulting input-output-program triplets are stored in the replay buffer.
The learning stage uses samples from the buffer to finetune the policy network. The updated policy
is then used in the next sampling stage.
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This object-centric text representation, similar to the one of Xu et al. (2023), works well for sparse
grids and is human-interpretable.

2.2 RUNNING CODE ITERATION

We always initialize the approach from ground truth data, and use this data to pre-train a policy
model, and to initialize a replay buffer. We then start the Code Iteration procedure, iterating between
a sampling and learning stage. We refer to one full pass of sampling and learning as a meta-iteration.
We show the procedure in Fig. 2, and explain each stage in more detail below. For pseudocode, see
Appendix A.1.

Initialization We start from a dataset of ARC training tasks, and solution programs written in the
domain-specific language (DSL) of Hodel (2023). This dataset is expanded by randomly mutating
programs (for details of this procedure, see Appendix A.2). We pre-train the policy network on the
resulting set, and initialize our replay buffer with it.

This dataset augmentation step serves multiple purposes. Pretraining teaches the model the DSL
syntax, and enables the model to learn how to interpret the task demonstration examples before
we begin iterative learning, improving the quality of our policy samples in early meta-iterations.
Mixing in mutated programs also acts as a form of regularisation, and is a common approach in
iterative policy improvement for program synthesis (Ellis et al., 2020; Fawzi et al., 2022).

Sampling stage In the sampling stage, we sample new programs using the policy Qθ. Let the
search set be the set of tasks for which we want to find a corresponding program. For each task in
the search set, we convert the demonstration examples’ input S0 and target output SN∗ from grid to
text representation, encode these using the policy, and then autoregressively decode a program: ρ ∼
Qθ(.|S0, SN∗). We then run the obtained program on the input grids. If the program is syntactically
incorrect or the runtime is too high, we discard it. Otherwise, we obtain a program output SN =
ρ(S0), and can add a new triplet to the buffer, consisting of the demonstration inputs S0, the program
ρ, and the obtained outputs SN (which may or may not match the target SN∗). In each sampling
stage we repeat this procedure nρ times per task, where nρ is a hyperparameter.

Replacing the target output by the realized one is similar to hindsight experience replay (Andrychow-
icz et al., 2017), and ensures that we obtain an experience every time we find a syntactically correct
program, thereby preventing stagnation of the buffer. Note that although these programs may not
solve the tasks we are interested in, they are always valid in terms of syntax and semantics (correctly
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mapping S0 to SN ). They can therefore be used to teach the policy about program syntax and pro-
gram behaviour, which may lead to positive transfer to the search set. We emphasize that we never
add test examples nor performance on the test examples to our buffer, as one should not have access
to their target output grid during sampling.

Learning stage During the learning stage, the policy Qθ is trained on experiences from the buffer,
consisting of input grids S0, the program ρ, and corresponding output grids SN . The training objec-
tive is then a straightforward negative log-likelihood objective:

L(S0, ρ, SN ) = − logQθ(ρ|S0, SN ). (1)

We keep only a single copy of the policy network which we continue to update during each learning
stage. In particular, we do not compare with past versions to guarantee an improvement in the policy
before using it in the next sampling stage. This could lead to worse performance in terms of finding
the correct program in the next iteration, but in practice we find this is not a problem.

To bias our training samples towards high quality experiences, we sample experiences that solve
ARC tasks more often than those that solve artificial tasks. This also prevents forgetting programs
that solve tasks of interest.

3 EXPERIMENTS

In this section, we aim to verify the efficacy of CodeIt. We first tuned the hyperparameters of CodeIt
on a custom training and validation split (for details, see Appendix B). Using these hyperparameters,
we benchmark our method on the ARC evaluation split and compare against previous state-of-the-art
methods. Finally, we ablate the importance of individual components of CodeIt.

We define demonstration performance as the percentage of solved demonstration examples on a
given task. To evaluate if the set of test examples for a given task are solved, we sort our solutions
first by task demonstration performance and then by program length, and evaluate the top three
programs on the set of test examples. Following ARC evaluation procedure, if at least one of these
three programs maps all test example inputs to outputs, the task is solved and test performance is 1.
We emphasize that the search procedure only makes use of the demonstration performance, and that
we use the test performance solely for final evaluation.

3.1 BASELINES

Mutating programs with task relabelling The mutation baseline keeps mutating the set of train-
ing programs provided by Hodel (2023), and is essentially a random search that stays close to a
set of ground truth programs. Specifically, for each meta-iteration, we sample nm = nρ ∗ ntasks

programs by mutating the population of training tasks, where np is the desired number of policy
samples per meta-iteration, and ntasks the total number of tasks in the population. We then evaluate
each program on all tasks in the search set. For more details on this procedure, see Appendix A.2.

Random sampling of programs with task relabelling For the random baseline, for each program
line, we sample a primitive function at random from our DSL. We then sample its arguments given
its type. When a variable which is of type grid is created, we end the program with probability
0.8, otherwise we continue writing more program lines. For each meta-iteration, we sample nm =
nρ ∗ ntasks programs. We then evaluate each program on all tasks in the search set.

ARC baselines We compare with baselines from the literature that report scores on the public
ARC evaluation set. A direct comparison is sometimes difficult, as not all baselines apply their
method to the full ARC evaluation set: Kolev et al. (2020); Alford et al. (2021) focus only on
a subset, and Mirchandani et al. (2023) report performance on an aggregated set of both the train
and eval splits. Ainooson et al. (2023) and Ferré (2021) do run a search procedure for a custom
DSL on the full set, but do not train a network on the ARC train split. The best performing variant
of Ainooson et al. (2023) does not involve training at all, so they can report performance numbers
on the train set too. Since Ainooson et al. (2023) report the highest performance on the full ARC
evaluation set, we choose it as our main baseline.
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Figure 3: Left: Performance as function of number of sampled programs for CodeIt, mutation base-
lines, a random-search baseline, and baseline Ainooson et al. (2023). “CodeIt: full eval” considers
all programs in the buffer as candidates, “CodeIt: policy eval” only considers programs sampled by
the policy. Right: Ablations for a model with encoder context window size reduced from 1024 to
512. Solid lines indicate the mean, shaded area indicates standard deviation across three runs.

3.2 SETUP

We initialize our replay buffer with the 400 examples from the ARC training split and the associated
solution programs provided by Hodel (2023). We also sample 3,038 programs as additional pre-
training data via the mutation procedure outlined in Appendix A.2. We use the 400 ARC evaluation
examples as our search set.

During the sampling stage of each meta-iteration, we use temperature sampling with temperature of
0.95, and sample up to nρ = 24 programs per task. This encourages exploration and, as a result,
increases the diversity of data added to the replay buffer. Note that only a proportion of policy
sampled and mutated programs are syntactically correct and, thus, are added to the buffer.

In each learning stage, we start by sampling a set of experiences from the buffer for training. This set
always includes all tasks in the train split, because the ground truth programs are available for these
tasks. It also includes tasks from the search set that have a perfect task demonstration performance.
For some search set tasks, we may have multiple programs that reach maximum demonstration
performance. In this case, we randomly select a program with weight 5

|ρ| , where |ρ| is the length of
the candidate program. This effectively means we sample the shortest program most of the time.

For all other programs, resulting either from policy sampling or mutation, we prioritize more recent
experiences. Each unique program can have multiple associated input-output pairs. For each pro-
gram, we include corresponding input-output pairs with a probability of 1 − 0.99i, where i is the
meta-iteration in which the experience was added. For a full list of hyperparameters, see Table 3 in
the Appendix.

3.3 MAIN RESULTS ON ARC EVAL SET

We report performance of CodeIt after sampling 500,000 programs, and that of various baselines,
in Table 1. We also visualize the performance of CodeIt, the mutation baseline, and Ainooson et al.
(2023) across meta-iterations in Figure 3. Our approach substantially outperforms both variants
of Ainooson et al. (2023) and Mirchandani et al. (2023), and performs on par with GPT-4 (Gendron
et al., 2023). As no other baseline scales to the full ARC evaluation set, our method represents the
state-of-the-art on the ARC evaluation set.

We emphasize that the best-performing approaches (including the ARC Challenge 2022 winning
solution of Hodel (2023), which we do not consider here) are ultimately all based on some variant
of brute-force search. Our approach outperforms these despite the simplicity of the search pro-
cedure, compared to Ainooson et al. (2023). We argue that our method can achieve this result by
successfully shifting the focus from brute force search to smart data acquisition and inter-task gener-
alization, and is therefore closer in spirit to the idea of “fluid intelligence” that the ARC is designed
to benchmark (Chollet, 2019).
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Method ARC Train Set ARC Eval Set ARC Eval 412

Ferré (2021) 29 / 400 6 / 400 -
Ainooson et al. (2023) MLE 70 / 400 17 / 400 -
Ainooson et al. (2023) brute force 104 / 400 26 / 400 -
Mirchandani et al. (2023) text-davinci-003 56 / 400* 27 / 400* -
Gendron et al. (2023) GPT-4 - - 49 / 412*

Mutation d1 - 41 / 400 36 / 412*

Mutation d∞ - 36 / 400 35 / 412*

Random sample - 6 / 400 7 / 412*

CodeIt: policy eval - 40 / 400 43 / 412*

CodeIt: full eval - 48 / 400 49 / 412*

Table 1: Main results on ARC eval set. Our method outperforms all previous baselines. Evaluation
metric is pass@3 by default, * indicates pass@1. To enable comparison to related work, we include
pass@1 performance on the ARC Eval set with 412 examples. More details on this set and evaluation
in Appendix A.3.

Figure 4: Program output traces for an example task. We show the found program at meta-iteration
15 (Panel A), the improved one found at meta-iteration 41 (Panel C) and program code for both
(Panel B, right). We show the intermediate variable resulting from lines of code. At meta-iteration
41, CodeIt identified a much shorter solution program than the program at meta-iteration 15.

For the mutation baseline, we see a rapid performance increase followed by stagnation. CodeIt
on the other hand has not stagnated, indicating that high-quality samples are found during search.
Lastly, we address the balance between memorization and generalization. It is important to note
that our approach does not solely rely on memorization. In the process, we mix in 3,038 random
programs, at which point the mutation baseline has solved 5.5% of the tasks. This means that at most,
5.5% of solutions can be attributed to program memorization while abstracting between training and
search set task representations. The majority of the performance stems from the model’s ability to
generalize, writing new and unseen programs.

To provide intuition, we show found programs for an example task in Figure 4. At meta-iteration 15
we obtain a longer program than necessary, but by meta-iteration 41, we see that the optimal program
has been found, requiring only three lines to solve the problem. This also provides evidence that
running the policy on tasks for which a solution program has previously been found is beneficial, as
shorter programs are more likely to generalize from demonstration to test examples.
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initial policy # demo # policy
Method weights examples samples Test perf.

CodeIt (small): policy eval CodeT5 ≤ 4 24 37/400

A1: One demo example CodeT5 1 24 27/400
A2: No policy feedback CodeT5 ≤ 4 0 24/400
A3: No pretrained weights Random ≤ 4 24 2/400
A4: No mutated programs CodeT5 ≤ 4 24 8/400

Table 2: Ablation results, using a small version of CodeIt with context window size 512. The results
highlight the importance of pretraining.

3.4 ABLATIONS

In Table 2, we ablate some of our design choices with the encoder context window reduced from
1024 to 512 due to computational constraints. Note that this means that for tasks with larger grid
sizes fewer examples will be encoded. In all cases, we initialize the method with the ARC train set,
and use the ARC evaluation set as the search set.

We first test the effect of the number of demonstration examples provided as input to the policy
network (A1). Most tasks in the ARC dataset can only be solved when taking multiple demonstration
examples into account, but there are many tasks that can be solved from a single example too. The
primary objective of this ablation is to underscore the policy’s capacity to derive intelligent insights
from the input-output grids, rather than merely learning a sampling distribution over programs.
By demonstrating enhanced performance with four demonstrations compared to one, we provide
evidence supporting the policy’s ability to learn a meaningful embedded representation of the task. It
should be noted that the scale of this effect might be understated due to the reduced encoder context
window. In our experimentation, running CodeIt with only one demonstration example resulted
in diminished performance compared to when multiple examples are considered, reinforcing the
importance of multiple demonstration examples in achieving optimal performance. Further, we
pose that using a larger encoder context window would increase performance even further as less
grid representations would be truncated.

In order to validate the efficacy of incorporating sampled programs during iterations, we execute an
alternative scenario wherein the replay buffer remains static, and no additional policy samples are
introduced (A2). In this variation, the policy continuously trains exclusively on the initial set of 400
programs and their 3,038 mutated counterparts. A noticeable decline in performance is observed in
this setting. This outcome underscores the inference that the ongoing inclusion of samples from the
evolving policy contributes to the enrichment of the training data quality.

We examine pretraining by reinitializing the policy’s weights (A3). The modified policy takes an ex-
tended period to achieve non-zero performance and underperforms in comparison to its pre-trained
counterpart. These results underscore the utility of beginning with a pre-trained model. The dif-
ference in performance is attributed to the pre-trained model’s familiarity with Python and text
comprehension. Since our programs are written in Python, starting with CodeT5, which already un-
derstands the language, expedites the learning process. The policy’s adaptation to our custom DSL
is also accelerated when beginning with pre-established foundational knowledge.

We also include a variation, no mutated programs, that skips the initial program mutation step,
starting from just the 400 ARC training tasks. This model is slow to learn due to the reduced variety
of data in the early stages of training, highlighting the importance of good initialization.

4 RELATED WORK

Iterative policy improvement Iterative policy improvement procedures have been applied to
many complex tasks, including game-playing (Silver et al., 2016; 2018), combinatorial problems
(Laterre et al., 2019), question-answering (Zelikman et al., 2022), and program synthesis (Ellis
et al., 2020; Fawzi et al., 2022; Gauthier & Urban, 2022; Butt et al., 2022). Expert iteration (ExIt)
(Anthony et al., 2017; Silver et al., 2017; 2018) is one such class of approaches, consisting of a
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policy-guided search stage that gathers new experiences, and a learning stage that improves the
policy by imitation learning. Commonly used experts tend to be powerful and computationally in-
tensive tree search algorithms such as Monte Carlo Tree Search (Kocsis & Szepesvári, 2006) and
greedy search (Daumé et al., 2009). Reinforced self-training (ReST) (Gulcehre et al., 2023) shows
that policy improvement is also possible without a strong search-based expert, but requires a pre-
specified reward function for fine-grained filtering of generated data samples. In comparison to both
ExIt and ReST, our approach is more straightforward: “search” consists of sampling from the policy,
and sampled data are only filtered for syntactical correctness before learning.

A closely related work is the work of Haluptzok et al. (2022), which proposes a data generation
pipeline for puzzle solving. Similar to our work, they propose an iterative approach: a language
model policy generates solutions, then solutions are filtered on correctness using an interpreter. Key
differences are in the way tasks are generated, and the way output programs are used. In their work,
tasks are proposed by the language model, meaning most tasks are synthetic. In this work, we only
use real task inputs, but use hindsight relabeling to further augment the set of input-output-program
triplets in the buffer. Investigating whether these two ideas are complementary is an interesting area
for future research.

A key challenge with iterative multi-stage procedures is to ensure all stages are working together. For
example, if the policy overfits during learning, then the next search stage may yield less varied useful
experiences, potentially leading to a negative feedback loop. Common techniques for mitigating
this phenomenon include adding noise to policy output to promote exploration (Silver et al., 2016),
injecting off-policy experiences into the replay buffer (Silver et al., 2016), or filtering experiences
before training (Ye et al., 2020; Danihelka et al., 2021; Dong et al., 2023; Gulcehre et al., 2023).
In this work, we introduce artificial experiences at the start of training via program mutation. After
that, we only filter policy outputs for syntactical correctness, and require no explicit exploration
incentive; instead we use hindsight relabeling of the target output to the true output to ensure that all
correct policy outputs can be used in subsequent learning stages.

Program synthesis The field of program synthesis is concerned with generating programs that
solve specific problems (Gulwani, 2011), with many works aiming to train an agent capable of
programming (Becker & Gottschlich, 2017; Kalyan et al., 2018; Bunel et al., 2018; Odena & Sutton,
2020). Notably, powerful language models have also been employed, demonstrating efficacy in
automating code generation (Austin et al., 2021; Chen et al., 2021b; Fijalkow et al., 2021; Jain et al.,
2022; Le et al., 2022). A subfield of program synthesis is programming-by-examples (Gulwani,
2011), where one aims to infer the program that produces a specific output given a given input, e.g.
writing a function which correctly computes and returns the sum of its arguments. Recent works
have successfully applied reinforcement learning approaches to this problem (Becker & Gottschlich,
2017; Ellis et al., 2019; Gauthier, 2022; Butt et al., 2022).

A closely related task is that of theorem proving (Han et al., 2021; Drori et al., 2022). Similar
to programming-by-examples, the aim is to produce a series of formal statements that reaches a
pre-specified goal, and to obtain formal verification of exactness of the resulting proof. In Polu
& Sutskever (2020) and Polu et al. (2022), the authors reduce the problem to the one of finding,
via a tree-search procedure, the right decomposition of a theorem into more easily provable sub-
statements, whose proofs are obtained by querying an LLM trained with an expert iteration proce-
dure. These works aim to showcase reasoning capability, similar to the goal of this work, but differ
because the proposed methods rely on an advanced tree search.

Abstraction and Reasoning Corpus Various works have applied program synthesis approaches
to subsets of the ARC dataset. Xu et al. (2022) proposes to represent grids as graphs, and applies log-
ical programs to the graph nodes, solving 63 of 160 tasks. Kolev et al. (2020) apply a Differentiable
Neural Computer to ARC, solving 78% of tasks with grids of size 10× 10 and smaller. Alford et al.
(2022) applies DreamCoder (Ellis et al., 2020) and execution-guided program synthesis, solving 22
of 36 considered tasks. Park et al. (2023) first collects human feedback, then performs behavioral
cloning for a subset of ARC tasks using a decision transformer (Chen et al., 2021a). However, none
of these methods are applied on the full ARC evaluation set, typically due to poor scaling behavior.

The few works that do scale to the full evaluation set tend to solve each task in isolation. One of the
most successful approaches on the private leaderboard of the yearly ARC challenge uses a breadth-
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first search for a hand-designed DSL (Hodel, 2023). Ferré (2021) and Ainooson et al. (2023) both
design a custom DSL and perform search for each task. Ainooson et al. (2023) obtains state of the art
performance on the ARC evaluation set using brute-force search, solving 36 of 400 evaluation tasks.
Mirchandani et al. (2023) demonstrate that a pretrained language model with custom tokenizer will
output the correct grid after being shown multiple input-output pairs, obtaining correct solutions for
85 of 800 tasks. Wang et al. (2023a) further augment this approach by generating hypotheses in
multiple rounds, although they only show performance on a subset of the ARC training set due to
the high monetary cost of querying the language model. In this work, we design a scalable program
synthesis approach that combines language models with the higher-level abstraction of a DSL. We
also ensure that our approach benefits directly from generalization between tasks.

5 DISCUSSION

Leveraging a domain-specific language (DSL) allows CodeIt to reason at a higher level of abstrac-
tion, and to generate new tasks to learn from. However, this does mean a DSL must be available, or
must be created first. A well-engineered DSL should support generalization and exploration through
mutations and policy sampling, and designing one may not be straightforward. Additionally, one
must have access to example programs written in this DSL for tasks of interest, in order to fine-tune
pretrained language models. We address this issue via program mutation and hindsight relabeling,
thus requiring only a small amount of expert programs to start training.

An important question is how much of our generalization capability is due to the model’s ability to
generate abstract representations, and how much is due to the inductive bias baked into the DSL.
We observe that the mutation baseline obtains competitive performance, indicating the usefulness
of a well-designed DSL. At the same time, our policy-based approach performs best overall, and
we observe in practice that the policy samples new programs for the tasks of interest, indicating
that it has learned to generalize between tasks. Both factors likely contribute to performance, and
disentangling their effect is an interesting avenue for future research.

In iterative learning methods, there is a tradeoff between the quality and the quantity of experience
generated by the sampling stage. Expert Iteration relies on a policy improvement operator: a pow-
erful but computationally expensive sampling stage with a policy improvement guarantee. In this
work, we opt for a cheaper sampling stage that gives no guarantee of (semantic) policy improvement,
though does provide guarantee of syntactic correctness (due to filtering and hindsight relabeling).
While CodeIt strikes an interesting balance—as our results show—it remains an open question what
the optimal tradeoff might be.

6 CONCLUSION

In this work, we have presented an iterative learning method to solve problems in the Abstraction
and Reasoning Corpus (ARC). Previous approaches either fail to scale to the full ARC evaluation
dataset, or solve ARC tasks individually with brute-force search. We outperform these methods
by achieving inter-task generalization using learned search. We show that a scalable search and fast
learning enable our approach to quickly generate and learn from a diverse set of data, allowing expe-
rience to transfer. We demonstrate that our Code Iteration approach acquires the abstract reasoning
capabilities required to solve ARC problems.
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Luke B. Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: Grow-
ing generalizable, interpretable knowledge with wake-sleep Bayesian program learning. CoRR,
abs/2006.08381, 2020. URL https://arxiv.org/abs/2006.08381.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,
Barekatain Mohammadamin, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser,
Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster
matrix multiplication algorithms with reinforcement learning. Nature, 610, 2022. doi: https:
//doi.org/10.1038/s41586-022-05172-4.
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A METHOD AND EVALUATION DETAILS

A.1 CODEIT ALGORITHM

The pseudo code for the CodeIt procedure is portrayed in Algorithm 1.

Initializing CodeIt Before we start the CodeIt procedure, we expand the training dataset using
the first 3,308 mutated tasks from the mutation procedure (see Appendix A.2) used for the mutation
d1 baseline.

Algorithm 1 CodeIt Algorithm

Require: Training set Dtrain, search set Dtest, policy Q
Ensure: Finetuned policy Q, updated replay buffer R, ρ∗

1: Dmutated train ← EvolveTrainingTasks(Dtrain) ▷ Evolve training tasks
2: Initialize R with Dtrain and Dmutated train ▷ Populate the initial replay buffer
3: Initialize ρ∗ as an empty set ▷ Init set of programs that solve tasks in Dtest

4: Dsample ← SampleFrom(R) ▷ Sample tasks from the replay buffer
5: Train Q on Dsample for 20 epochs ▷ Initial training of the policy
6: for meta iter = 1→ 50 do
7: # Sampling stage
8: for task in Dtest do
9: {ρ} ← Q(ρ|{S0, SN}) ▷ Sample programs for test tasks

10: for each ρ in {ρ} do ▷ Test each inferred program
11: if SyntacticallyValid(ρ) then ▷ If program outputs valid grids
12: Add {ρ, {(S(i)

0 , ρ(S
(i)
N )), . . . }} to R ▷ Update the replay buffer

13: end if
14: for (S

(i)
0 , S

(i)
N ) in task do

15: if ρ(S(i)
0 ) = S

(i)
N then ▷ Verify output

16: Add {(ρ, task)} to ρ∗ ▷ Update set of programs that solve tasks in Dtest

17: end if
18: end for
19: end for
20: end for
21: # Learning stage
22: Dsample ← SampleFrom(R) ▷ Sample tasks from the replay buffer
23: Train Q on Dsample for 1 epoch ▷ Continual training of the policy
24: end for
25: return Q, R, ρ∗ ▷ Return the finetuned policy, updated buffer, and optimal programs set

A.2 PROGRAM AND TASK MUTATION

Mutation procedure To grow a population of mutated programs with task demonstration inputs
corresponding to the original training dataset, we follow the procedure outlined in Algorithm 3.
This involves mutating a single task, which is described in Algorithm 2. The mutation is carried out
with the hyperparameters ϕvar = 0.25, ϕarg = 0.5, ϕfunc = 0.25. With respect to naming notation,
d1 reflects a depth of 1, meaning we only mutate programs from the original training set, and d∞
reflects a depth of infinity, meaning we can mutate previously mutated programs.

The intuitive explanation of the mutation procedure for a single program is as follows. We pick a
random line from a program (L2-3). We then replace either a function call with a function with
similar output type (L4-7), or we replace an input argument in the function call (L8-11), or we
replace the function call but leave its input variables the same (L12-14).

Mutation baseline with task relabelling For our mutation baseline, we sample mutated programs
using the mutation procedure outlined above. With task relabelling, for all the mutated programs in
the evolved task population, we evaluate each program on the tasks in our search set.

13



Under review as a conference paper at ICLR 2024

Algorithm 2 MutateProgram

Require: Replacement probabilities ϕvar, ϕarg, ϕfunc, program ρ
Ensure: ρ′

1: Initialize ρ′ ← ρ ▷ Copy original program
2: l← RandomLineFrom(ρ′) ▷ Randomly select a line
3: p ∼ U(0, 1)
4: if p < ϕvar then ▷ Variable mutation
5: f ′ ← SampleFunctionWithOutputType(GetTypeOfVariable(l))
6: args′ ← SampleArgumentsForFunction(f ′)
7: Replace variable definition f(args) in l with f ′(args′)
8: else if p < (ϕvar + ϕarg) then ▷ Argument mutation
9: a← RandomArgumentFrom(l)

10: a′ ← SampleTermOfType(GetTypeOfArgument(a))
11: Replace argument a with a′

12: else ▷ Function mutation
13: f ′ ← SampleFunctionOfType(GetTypeOfFunction(f))
14: Replace function f in l with f ′

15: end if
return ρ′

Algorithm 3 EvolveTrainingTasks

Require: Initial population of training tasks Tinit (each task is a tuple (ρ, E) where E =

{(S(i)
0 , S

(i)
N ), . . . }, depth

Ensure: Updated task population T ′ (initialized with Tinit)
1: T ← Tinit
2: i← 0
3: while i < num samples do
4: if depth = 1 then
5: (ρ, E)← RandomSelectTask(Tinit) ▷ Select from initial tasks
6: else
7: (ρ, E)← RandomSelectTask(T ) ▷ Select from current tasks
8: end if
9: ρ′ ← MutateProgram(ρ)

10: E ′ ← ∅ ▷ Initialize mutated task demonstration examples
11: for each (S

(k)
0 , ) ∈ E do

12: S
′(k)
N ← Execute(ρ′, S(k)

0 )

13: E ′ ← E ′ ∪ {(S(k)
0 , S

′(k)
N )}

14: end for
15: if AreValidGrids(GetAllOutputs(E ′)) then
16: T ′ ← T ′ ∪ {(ρ′, E ′)} ▷ Add new task to the population
17: end if
18: i← i+ 1
19: end while

return T ′
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Figure 5: Grid size versus token count for the ARC training data.

A.3 TASK REPRESENTATION

Grid representation We use a compressed grid representation, mainly to reduce the number of
tokens needed to represent each grid. We do not use a custom tokenizer. A visualization of the
number of tokens is shown in Fig. 5, showing that in almost all cases, the sparse grid representation
we use leads to a reduction in the number of needed tokens, especially for larger grid sizes.

Truncation We truncate our task demonstration tokens and program tokens such that these se-
quences fit in our predefined encoder and decoder context windows. For the task demonstration
examples, we first order by grid size and divide the encoder context window into two equally sized
sections. For task demonstration inputs, we first encode input grids to text as above and then we
tokenize using the standard text tokenizer. We truncate these tokens at half the size of the encoder
context window. We do the same for the task demonstration outputs and with the exception of also
adding an end of sequence token. As a result, even though we aim to show the policy up to four task
demonstration examples, large grids will be cut-off. For programs, we tokenize directly using the
standard text tokenizer and truncate at the decoder context window size.

A.4 ARC EVALUATION

Different works use different evaluation procedures to report performance on the ARC evaluation
set. We describe two common evaluation settings in more detail below. Unless mentioned otherwise,
we always use the first procedure, “ARC Eval Set”.

ARC Eval Set This setup is intended as close as possible to the evaluation procedure described by
Chollet (2019). Baselines Ferré (2021), Ainooson et al. (2023) follow this procedure, and it is our
default setting as well.

The ARC eval set consists of 400 tasks, some of which contain multiple test examples. Common
procedure is to report pass@3 performance, meaning the top 3 solutions are selected according to
demonstration task performance. If there are ties, we favor the shorter program, under the assump-
tion that shorter programs are more likely to generalize. We then run these programs on all test
examples for the task. In some cases, there are multiple test examples per task. We call the task
“solved” if all output grids are correct.
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ARC Eval 412 This setup is designed to match Gendron et al. (2023). Instead of calling a task
with multiple test examples solved if all test outputs are correct, distinct tasks are created - one per
test example. This results in a set of 412 evaluation tasks with one test example each. Furthermore,
Gendron et al. (2023) uses pass@1, rather than pass@3: only one solution per task is evaluated, and
the task is considered solved if the output is correct.

B EXPERIMENT DETAILS

B.1 RESOURCES

Main experiments were run for a maximum of 80 hours on a NVIDIA A100 80GB. Ablation exper-
iments were run for a maximum for 80 hours on a NVIDIA Tesla V100 32GB.

B.2 HYPERPARAMETER TUNING

Dataset The ARC benchmark does not contain a validation split. Hence, we use part of the ARC
train split for validation during the hyperparameter tuning. In particular, this validation set is the
search set that the sampling stage uses as described in 2.2. With this setup we avoid overfitting the
hyperparameters to the ARC evaluation split. We choose the split such thatDtrain andDvalid contain
roughly equally difficult programs by sampling based on program length: Dtrain contains 80% of
2-line programs, 80% of 3-line programs, and so on. This results in 311 examples in Dtrain and 89
examples in Dvalid.

Experiments on validation set In these experiments, we initialise our replay buffer with the 311
Dtrain examples, and our search set consists of the 89Dvalid examples. The aim of these experiments
is to find optimal hyper-parameters for search and training. A list of our tuned hyperparameter values
and their description is shown in Tab. 3

B.3 HYPERPARAMATERS CHOSEN ON INTERNAL VALIDATION SET

We optimized these parameters on our custom validation set before applying CodeIt to ARC eval.

CodeIt stage Param Value Description

Sampling nρ 24 no. policy samples ρ per task per meta-iteration1

nm 3, 038 no. mutated task samples for replay buffer initialisation1

τ 0.95 sampling temperature

Learning
nϵ 1 no. train epochs per meta-iteration i > 0
nϵ1 20 no. (pre-)train epochs in first meta-iteration i = 0
lr 5e− 5 learning rate

Table 3: Table of hyperparameters.

B.4 DOMAIN SPECIFIC LANGUAGE

We adopt the domain specific language (DSL) of Michael Hodel, made available on GitHub:
https://github.com/michaelhodel/arc-dsl. This DSL was designed based on the training set: the (hu-
man) designer did not peek at the evaluation set. This is what allows us to run search on ARC eval
here. Using a DSL designed for the eval tasks would be cheating, as we would benefit immensely
from human insights captured in the primitives. On the other hand, it may mean that some ARC eval
programs are not solvable with the current DSL.

1Note that no. samples here refers to policy and mutation samples before filtering for syntactic correctness.
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Figure 6: Pass@3 performance versus number of samples, where we consider a task solved if either
mutation or the CodeIt policy identified a solution. This means CodeIt starts from 5.5% tasks solved.
Left: main results and comparison to baselines. Right: ablations.

The DSL is implemented in https://github.com/michaelhodel/arc-dsl/blob/main/dsl.py. It contains
many basic grid manipulation operations, such as rotations (rot90, rot180, rot270), mir-
roring (dmirror, hmirror, vmirror), resizing (downscale, upscale), or concatenation
(hconcat, vconcat). It also contains functions that perform counting, for example numcolors
counts the number of colors occurring in an object or grid. For some ARC tasks, identifying the
foreground objects and determining how these objects interact is an effective strategy for human
test-takers. Therefore, some functions also apply to “objects”, which are patches of the same color
that stand out from the background. To extract these, the function objects returns the set of fore-
ground objects, i.e. those that have a different color than the most common color, assumed to be
the background. For a complete list of primitives and their description, we refer the reader to the
aforementioned Github page.

Michael Hodel was kind enough to also provide hand-designed solution programs for all training
tasks in https://github.com/michaelhodel/arc-dsl/blob/main/solvers.py. Some programs are highly
complex: for some of the more challenging ARC tasks, we see solutions consisting of up to 58 lines
of code (solve b775ac94). We use these 400 solution programs to kickstart CodeIt training.

C SUPPLEMENTARY RESULTS

In the main text Figure 3, we showed performance of CodeIt based on the policy performance. That
is, we only consider programs sampled from the policy for evaluation, and effectively ignore that
the mutation baseline has already identified candidate solutions – as these solutions are in the replay
buffer, the CodeIt policy will learn about these as we train.

However, we could also combine the best of both worlds, by including samples from the initial
mutation step during evaluation. That is, if a mutated program from the buffer obtains better demon-
stration task performance than any of the policy samples, we take this as the solution program during
evaluation. In Figure 6 on the left, we show the resulting pass@3 performance as a function of num-
ber of samples. The immediate effect is that CodeIt starts from 5.5% of tasks solved, as the buffer
already contains solutions for a number of tasks from the initial mutation step. Secondly, we observe
that this allows us to outperform the mutation baseline, as CodeIt finds solutions to tasks that the
mutation baseline does not solve.

In Figure 6 on the right, we show the pass@3 performance for all ablations. All runs start from a
set of mutated programs, except A4 “no mutated programs”, which then also starts from 0% tasks
solved. A striking observation is that A3, which does not use pretrained weights, completely stag-
nates, indicating that despite the domain shift there is a clear advantage to using a model pretrained
on code synthesis. For A1 and A2, behavior is similar to Figure 3 in the main text: showing only one
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Method Number of tasks solved
CodeIt only 14
Mutation d1 only 8
Mutation d∞ only 4
CodeIt ∩Mutation d1 23
CodeIt ∩Mutation d∞ 22
Mutation d1 ∩Mutation d∞ 27
CodeIt ∩Mutation d1 ∩Mutation d∞ 17

Table 4: ARC evaluation tasks solved per method, plus unique number of tasks solved. The top
group of three rows show how many programs were identified by a method, but not by the other
two. The center group of three rows show which tasks were solved by two of the three methods.
The final row shows tasks solved by all three methods.

(a) Histogram of number of lines for tasks where
both CodeIt and Mutation produced solutions.
CodeIt (in blue) typically produces shorter programs
than the Mutation baseline (in orange).

(b) Number of task representation tokens vs number of
program tokens. Colors represents the different tasks.
We see no obvious correlation between task represen-
tation length and program length.

Figure 7: Shortest programs for solved ARC evaluation tasks for CodeIt and the Mutation baseline.

demonstration example (A1) harms performance, and (A2) using only the initial set of 400 ground
truth + 3,038 mutated samples results in worse performance still.

D PROGRAM ANALYSIS

D.1 PROGRAM LENGTH

We compare the programs found using our mutation d1 baseline, mutation d∞ baseline and the
best performing of the three CodeIt runs. Table 4 displays the number of ARC evaluation tasks
uniquely solved by each method and the tasks which are solved by multiple methods. Overall,
CodeIt solves 42/400 tasks, 14 of which neither of the mutation baselines solve. In Figure 7, we
select the shortest program that solves an evaluation task for CodeIt and our mutation d1 baseline,
computing the program length and task representation size. Note that CodeIt has an encoder context
window size of 1024 and so any tasks which having representations of more than 1024 tokens have
been truncated. Overall, CodeIt finds shorter programs as shown in 7a. Further, for the same task,
CodeIt more often finds shorter programs than our mutation d1 baseline, as shown in 7b where
each color represents a different task. Interestingly, CodeIt does solve some tasks with very large
task representations, suggesting in some cases a truncated task representation provides sufficient
information to solve the task.
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D.2 COMPARISON WITH MUTATION SOLUTIONS

In Tables 5 and 6, we show a subset of solution programs for ARC eval tasks solved by both CodeIt
and our mutation d1 baseline. We select tasks where the shortest programs differ between the two
methods. CodeIt programs appear more concise and use different primitives. Out of the 23 tasks
that are solved by both methods, there are 18 shortest programs where method output is different.
CodeIt produces a shorter program in 16 out of these 18 cases. The 2 longer CodeIt programs are
displayed in Table 6.

The Mutation baseline often includes redundant lines, for example producing a line x4 =
vconcat(x2, x3) that is not used to produce the final solution. Of course, these can be fil-
tered out in hindsight: whenever a variable is unused, we do not execute the line. However, for
many programs, CodeIt produces a program that is qualitatively better: the solution is less complex,
and contains fewer lines overall.

D.3 CODEIT SOLUTIONS AND OPTIMIZATION OVER META-ITERATIONS

This section shows the evolution of solutions generated by CodeIt across meta-iterations. Although
CodeIt is not explicitly optimizing for shorter solutions, a trend towards more concise solutions
emerges in later meta-iterations. Specifically, in 81% (standard error 2.55) of solved tasks, the first
solution program proposed by CodeIt is refined to a more compact form in a later meta-iteration.
Furthermore, for 63.1% (standard error 1.8) of programs that have at least three solutions, the short-
est solutions are predominantly found in the final 50% of iterations since the solution is first found.
This suggests a consistent improvement in solution efficiency over time. However, we observe that
some solutions also increase in length. Table 7 shows a selection of tasks where compression oc-
curs. The compression usually consists of removing redundant lines from the program and/or using
a more directly applicable primitive.
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CodeIt Mutation d1

x1 = ofcolor(I, ONE) x1 = rot180(I)
x2 = lbind(shift, x1) x2 = ofcolor(I, ONE)
x3 = mapply(x2, x1) x3 = ofcolor(x1, ONE)
O = underfill(I, TWO, x3) x4 = neighbors(ORIGIN)

x5 = mapply(neighbors, x4)
x6 = lbind(shift, x3)
x7 = apply(x6, x5)
x8 = lbind(intersection, x2)
x9 = argmax(x7, x8)
O = underfill(I, TWO, x9)

x1 = replace(I, EIGHT, ZERO) x1 = asindices(I)
x2 = compress(x1) x2 = fgpartition(I)
O = trim(x2) x3 = rbind(greater, TWO)

x4 = compose(x3, size)
x5 = sfilter(x2, x4)
x6 = totuple(x5)
x7 = apply(color, x6)
x8 = apply(center, x6)
x9 = pair(x7, x8)
x10 = fill(I, ZERO, x1)
x11 = paint(x10, x9)
x12 = rbind(greater, ONE)
x13 = compose(dedupe, totuple)
x14 = chain(x12, size, x13)
x15 = sfilter(x11, x14)
x16 = rot90(x15)
x17 = sfilter(x16, x14)
O = rot270(x17)

x1 = bottomhalf(I) x1 = tophalf(I)
x2 = cellwise(x1, I, THREE) x2 = bottomhalf(I)
O = switch(x2, ONE, TWO) x3 = ofcolor(x1, ZERO)

x4 = ofcolor(x2, ZERO)
x5 = intersection(x3, x4)
x6 = astuple(FOUR, FIVE)
x7 = canvas(THREE, x6)
O = fill(x7, ZERO, x5)

x1 = hmirror(I) x1 = hmirror(I)
x2 = ofcolor(I, THREE) x2 = vmirror(I)
x3 = subgrid(x2, x1) x3 = ofcolor(I, THREE)
O = replace(x3, THREE, EIGHT) x4 = subgrid(x3, x1)

x5 = subgrid(x3, x2)
x6 = palette(x4)
x7 = contained(ONE, x6)
O = branch(x7, x5, x4)

Table 5: Selection of shortest programs for ARC evaluation tasks solved by CodeIt (left) and the
Mutation d1 baseline (right) for which CodeIt program is shorter.

CodeIt Mutation d1

x1 = rot90(I) x1 = rot90(I)
x2 = ofcolor(x1, ONE) O = crop(x1, ORIGIN, TWO BY TWO)
O = crop(x1, ORIGIN, TWO BY TWO)
x1 = hmirror(I) x1 = rot90(I)
x2 = rot180(I) x2 = ofcolor(I, ZERO)
x3 = ofcolor(I, ZERO) O = subgrid(x2, x1)
O = subgrid(x3, x1)

Table 6: All shortest programs for ARC evaluation tasks solved by CodeIt (left) and the Mutation
d1 baseline (right) for which the CodeIt program is longer.
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Long program Short program

Task key: 1a2e2828
Longest (Iteration 15) Shortest (Iteration 45)
x1 = objects(I, T, T, T) x1 = objects(I, T, F, F)
x2 = first(x1) x2 = argmax(x1, height)
x3 = subgrid(x2, I) x3 = color(x2)
x4 = leastcolor(I) O = canvas(x3, UNITY)
x5 = leastcolor(x3)
x6 = ofcolor(I, x4)
x7 = ofcolor(x3, x5)
x8 = intersection(x6, x7)
x9 = canvas(x4, UNITY)
O = fill(x9, x5, x8)
Task key: f0df5ff0
Longest (Iteration 24) Shortest (Iteration 47)
x1 = objects(I, T, F, T) x1 = ofcolor(I, ONE)
x2 = colorfilter(x1, ONE) x2 = mapply(neighbors, x1)
x3 = sfilter(x2, square) O = underfill(I, ONE, x2)
x4 = compose(backdrop, inbox)
x5 = mapply(x4, x3)
O = underfill(I, ONE, x5)
Task key: e133d23d
Longest (Iteration 27) Shortest (Iteration 50)
x1 = lefthalf(I) x1 = vmirror(I)
x2 = righthalf(I) x2 = lefthalf(I)
x3 = ofcolor(x1, ZERO) x3 = righthalf(I)
x4 = ofcolor(x2, ZERO) x4 = cellwise(x2, x3, TWO)
x5 = intersection(x3, x4) O = replace(x4, SIX, SIX)
x6 = astuple(THREE, THREE)
x7 = canvas(TWO, x6)
x8 = fill(x7, ZERO, x5)
O = replace(x8, SIX, TWO)
Task key: e0fb7511
Longest (Iteration 30) Shortest (Iteration 50)
x1 = objects(I, F, F, T) x1 = objects(I, T, F, T)
x2 = colorfilter(x1, ZERO) x2 = mfilter(x1, square)
x3 = sfilter(x2, square) x3 = fill(I, EIGHT, x2)
x4 = sizefilter(x3, ONE) O = switch(x3, EIGHT, ZERO)
x5 = merge(x4)
x6 = fill(I, THREE, x5)
x7 = merge(x3)
x8 = fill(x6, EIGHT, x7)
O = switch(x8, EIGHT, ZERO)
Task key: 195ba7dc
Longest (Iteration 36) Shortest (Iteration 49)
x1 = lefthalf(I) x1 = lefthalf(I)
x2 = righthalf(I) x2 = righthalf(I)
x3 = ofcolor(x1, SEVEN) x3 = cellwise(x1, x2, ONE)
x4 = ofcolor(x2, SEVEN) O = replace(x3, SEVEN, ONE)
x5 = combine(x3, x4)
x6 = intersection(x3, x5)
x7 = fill(x1, ONE, x5)
x8 = replace(x7, SEVEN, ONE)
O = replace(x8, EIGHT, TWO)

Table 7: Selection of longest (left) and shortest programs (right) for ARC evaluation tasks solved by
CodeIt.
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