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ABSTRACT

It is common in deep learning to train networks on auxiliary tasks with the expec-
tation that the learning will transfer, at least partially, to another task of interest.
In this work, we investigate the inductive biases that result from learning auxil-
iary tasks, either simultaneously (multi-task learning, MTL) or sequentially (pre-
training and subsequent finetuning, PT+FT). In the simplified setting of two-layer
diagonal linear networks trained with gradient descent, we apply prior theoreti-
cal results to describe implicit regularization penalties associated with MTL and
PT+FT, both of which incentivize feature sharing between tasks and sparsity in
learned task-specific features. Notably, these results imply that during finetuning,
networks operate in a hybrid of the kernel (or “lazy”) regime and the feature learn-
ing (“rich”) regime identified in prior work. Moreover, we show that PT+FT can
exhibit a novel “nested feature selection” behavior not captured by either regime,
which biases it to extract a sparse subset of the features learned during pretraining.
In ReLU networks, we reproduce all of these qualitative behaviors empirically, in
particular verifying that analogues of the sparsity biases predicted by the linear
theory hold in the nonlinear case. We also observe that PT+FT (but not MTL) is
biased to learn features that are correlated with (but distinct from) those needed
for the auxiliary task, while MTL is biased toward using identical features for both
tasks. As a result, we find that in realistic settings, MTL generalizes better when
comparatively little data is available for the task of interest, while PT+FT outper-
forms it with more data available. We show that our findings hold qualitatively for
a deep architecture trained on image classification tasks. Our characterization of
the nested feature selection regime also motivates a modification to PT+FT that
we find empirically improves performance. Overall, our results shed light on the
impact of auxiliary task learning and suggest ways to leverage it more effectively.

1 INTRODUCTION

Neural networks are often trained on multiple tasks, either simultaneously (“multi-task learning,”
henceforth MTL, see Vafaeikia et al. (2020); Zhang & Yang (2022)) or sequentially (“pretraining”
and subsequent “finetuning,” henceforth PT+FT, see Du et al. (2022); Zhou et al. (2023)). Empiri-
cally, models are able to transfer knowledge from auxiliary tasks to improve performance on tasks
of interest. However, understanding of how auxiliary tasks influence learning remains limited.

Auxiliary tasks are especially useful when there is less data available for the target task. Modern
“foundation models,” trained on data-rich general-purpose auxiliary tasks (like next-word prediction
or image generation) before adaptation to downstream tasks, are a timely example of this use case
(Bommasani et al., 2022). Auxiliary tasks are also commonly used in reinforcement learning, where
performance feedback can be scarce (Jaderberg et al., 2016). Intuitively, auxiliary task learning bi-
ases the target task solution to use representations shaped by the auxiliary task. When the tasks share
common structure, this influence may enable generalization from relatively few training samples for
the task of interest. However, it can also have downsides, causing a model to inherit undesirable
biases from auxiliary task learning (Wang & Russakovsky, 2023; Steed et al., 2022).
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A relevant insight from the literature on single-task learning is that a combination of initialization
and learning dynamics produces an implicit regularizing effect on learned solutions. This regular-
ization can enable good generalization even when models are overparameterized (Neyshabur, 2017).

Contributions. In this work we characterize the inductive biases of MTL and PT+FT in terms of
implicit regularization. Note that we focus on MTL in which feature extraction layers are shared
and readouts are task-specific, and on PT+FT in which the readout of the network is reinitialized
before finetuning. We first apply prior theoretical results that study a simplified “diagonal linear net-
work” model (which importantly still captures a notion of feature learning/selection) to the settings
of PT+FT and MTL. These results provide an exact description of the solutions learned by PT+FT
in diagonal linear networks, and an approximate description of those learned via MTL, in terms of
norm minimization biases. Both biases encourage (1) the reuse of auxiliary task features and (2)
sparsity in learned task-specific features. For PT+FT, this bias corresponds to a hybrid of “rich” and
“lazy” learning dynamics in different parts of the network. Additionally, we find that under suitable
parameter scalings, PT+FT exhibits a novel “nested feature-selection” regime, distinct from previ-
ously characterized rich and lazy regimes, which biases finetuning to extract sparse subsets of the
features learned during pretraining. In ReLU networks, we reproduce these phenomena empirically.
Based on the nested feature selection insight, we suggest practical tricks to improve finetuning per-
formance, which shows positive results in experiments. We also describe a qualitative behavior of
PT+FT not captured by the linear theory: a bias toward learning main task features correlated with
(but not necessarily identical to) those learned during pretraining, which we find is beneficial given
sufficient training data for the task of interest but can be detrimental when data is scarce.

2 RELATED WORK

A variety of studies have characterized implicit regularization effects in deep learning. These include
biases toward low-frequency functions (Rahaman et al., 2018), toward stable minima in the loss
landscape (Mulayoff et al., 2021), toward low-rank solutions (Huh et al., 2023), and toward lower-
order moments of the data distribution (Refinetti et al., 2023). In shallow (single hidden-layer)
networks, Chizat & Bach (2020) show that when using cross-entropy loss, shallow networks are
biased to minimize the F1 norm, an infinite-dimensional analogue of the `1 norm over the space
of possible hidden-layer features (see also Lyu & Li, 2020; Savarese et al., 2019). Other work
has shown that implicit regularization for mean squared error loss in nonlinear networks cannot be
exactly characterized as norm minimization (Razin & Cohen, 2020), though F1 norm minimization
is a precise description under certain assumptions on the inputs (Boursier et al., 2022).

Compared to the body of work on inductive biases of single-task learning, theoretical treatments
of MTL and PT+FT are more scarce. Some prior studies have characterized benefits of multi-task
learning with a shared representational layer in terms of bounds on sample efficiency (Maurer et al.,
2016; Wu et al., 2020). Others have characterized the learning dynamics of linear networks trained
from nonrandom initializations, which can be applied to understand finetuning dynamics (Braun
et al., 2022; Shachaf et al., 2021). However, while these works demonstrate an effect of pretrained
initializations on learned solutions, the linear models they study do not capture the notion of feature
learning we are interested in. A few empirical studies have compared the performance of multi-task
learning vs. finetuning in language tasks, with mixed results depending on the task studied (Dery
et al., 2021; Weller et al., 2022). Several authors have also observed that PT+FT outperforms PT
+ “linear probing” (training only the readout layer and keeping the previous layers frozen at their
pretrained values), implying that finetuning benefits from the ability to learn task-specific features
(Kumar et al., 2022; Kornblith et al., 2019b).

2.1 INDUCTIVE BIASES OF DIAGONAL LINEAR NETWORKS

The theoretical component of our study relies heavily on a line of work (Woodworth et al., 2020;
Pesme et al., 2021; Azulay et al., 2021; HaoChen et al., 2021; Moroshko et al., 2020) that stud-
ies a inductive biases of a simplified “diagonal linear network” model. Diagonal linear networks
parameterize linear maps f : Rd

! R as

f~w(~x) = ~�(~w) · ~x, �d(~w) := w
(2)
+,dw

(1)
+,d � w

(2)
�,dw

(1)
�,d (1)

where ~�(~w) 2 RD. These correspond to two-layer linear networks in which the first layer consists
of one-to-one connections, with duplicate + and � pathways to avoid saddle point dynamics around
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~w = 0. Woodworth et al. (2020) showed that overparameterized diagonal linear networks trained
with gradient descent on mean squared error loss find the zero-training-error solution that minimizes
kfk

2
`2

=
PD

d=1 �
2
d , when trained from large initialization (the “lazy” regime, equivalent to ridge

regression). When trained from small initialization, networks instead minimize kfk`1 =
PD

d=1 |�d|

(the “rich” regime). The latter `1 minimization bias is equivalent to minimizing the `2 norm of the
parameters ~w (Appendix B). This bias is a linear analogue of feature-learning/feature-selection, as
a model with an `1 penalty tends to learn solutions that depend on a sparse set of input dimensions.

3 THEORY OF PT+FT AND MTL IN DIAGONAL LINEAR NETWORKS

3.1 FINETUNING COMBINES RICH AND LAZY LEARNING

We now consider the behavior of PT+FT in overparameterized diagonal linear networks trained to
minimize mean-squared error loss using gradient flow. We assume that all network weights are ini-
tialized prior to pre-training with a constant magnitude ↵. We further assume that during pretraining,
network weights are optimized to convergence on the training dataset (Xaux

, ~y
aux) from the auxil-

iary task, then the second-layer weights (w(2)
+,d and w

(2)
�,d) are reinitialized with constant magnitude

�, and the network weights are further optimized to convergence on the main task dataset (X, ~y).
The dynamics of the pretraining and finetuning steps can be derived as a corollary of the results
ofWoodworth et al. (2020) and Azulay et al. (2021):

Corollary 1. If the gradient flow solution ~�
aux for the diagional linear model in Eq. 1 during

pretrainig fits the auxiliary task training data with zero error (i.e. Xaux~�aux = ~y
aux), and follow-

ing reinitialization of the second-layer weights and finetuning, the gradient flow solution ~�
⇤ after

finetuning fits the main task data with zero training error (i.e. X~� = ~y), then

~�
⇤ = argmin

~�

k~�kQ s.t. X~� = ~y, (2)

k~�kQ :=
DX

d=1

�
|�

aux
d |+ �

2
�
q

✓
2�d

|�aux
d |+ �2

◆
, q(z) = 2�

p
4 + z2 + z · arcsinh(z/2), (3)

It is informative to consider limits of the expression 3. As |�d|
|�aux

d |+�2 ! 1, the contribution of a fea-

ture d approaches c|�d| where c ⇠ O
�
log

�
1/(|�aux

d |+ �
2)
��

. As |�d|
|�aux

d |+�2 ! 0, the contribution
converges to �

2
d/|�

aux
d |. Thus, for features that are weighted sufficiently strongly by the auxiliary

task (large |�
aux
d |), finetuning minimizes a weighted `2 penalty that encourages reuse of features

in proportion to their auxiliary task weight. For features specific to the auxiliary task (low |�
aux
d |),

finetuning is biased to minimize an `1 penalty, encouraging sparsity in task-specific features. Over-
all, the penalty decreases with |�

aux
d |, encouraging feature reuse where possible. The combination

of `1 and `2 behavior, as well as the dependence on |�
aux
d |, can be observed in Fig. 1a (left panel).

3.2 MULTI-TASK TRAINING LEARNS SPARSE AND SHARED FEATURES

Now we consider MTL for diagonal linear networks. A multi-output diagonal linear network with
O outputs can be written as

f~w(~x) = �(~w)~x, ~�o(~w) := ~w
(2)
+,o � ~w

(1)
+ � ~w

(2)
�,o � ~w

(1)
� (4)

where �(~w) 2 RO⇥D, and � is elementwise multiplication. We consider the effect of minimizing
k~wk2, as an approximation of the inductive bias of training a network from small initialization.
We argue that k~wk2 minimization is a reasonable heuristic. First, the analogous result holds in
the single-output case for infinitesimally small initialization and two layers (though not for deeper
networks, see Woodworth et al. (2020)). Second, for cross-entropy loss it has been shown that
gradient flow converges to a KKT point of a max-margin/min-parameter-norm objective (Lyu & Li,
2020). Finally, explicit `2 parameter norm regularization (“weight decay”) is commonly used.

In MTL, a result of Dai et al. (2021) shows that a parameter norm minimization bias translates to
minimizing an `1,2 penalty that incentivizes group sparsity (Yuan & Lin, 2006) on the learned linear
map �: k�k1,2 := 2

PD
d=1 k

~�·,dk2 (a self-contained proof is given in Appendix B). For the specific
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case of two outputs corresponding to main (first index) and auxiliary (second index) tasks, we have:

Corollary 2. Using the multi-output diagonal linear model of Eq. 4 with two outputs, adopting
shorthand notation ~� := ~�1, ~�aux := ~�2, a solution �

⇤ with minimal parameter norm ||~w
(1)
+ ||

2
2 +

||~w
(1)
� ||

2
2+

P
o ||~w

(1)
+,o||

2
2+

P
o ||~w

(1)
�,o||

2
2 subject to the constraint that it fits the training data (X~� =

~y,X
aux~�aux = ~y

aux) also minimizes the following:

�
⇤ = argmin

�

⇣
2
PD

d=1

p
(�aux

d )2 + (�d)2
⌘

s.t. X~� = ~y, X
aux~�aux = ~y

aux
. (5)

This penalty (plotted in Fig. 1a, right panel), encourages using shared features for the main and
auxiliary tasks, as the contribution of �d to the square-root expression is smaller when �

aux
d is large.

As |�d|
|�aux

d |+�2 ! 1, the penalty converges to 2|�d|, a sparsity-inducing `1 bias for task-specific

features. As |�d|
|�aux

d |+�2 ! 0 it converges to �2
d

|�aux
d | , a weighted `2 bias as in the PT+FT case.

3.3 COMPARISON OF THE MTL AND PT+FT BIASES

We now compare the MTL and PT+FT penalties given above.1 The MTL and PT+FT penalties have
many similarities. Both decrease as |�aux

d | increases, both are proportional to |�d| as |�d|
|�aux

d |+�2 !

1, and both are proportional to �2
d

|�aux
d | as |�d|

|�aux
d |+�2 ! 0. These similarities are evident in Fig. 1a.

However, two differences between the penalties merit attention.

First, the relative weights of the `1 and weighted `2 penalties are different between MTL and PT+FT.
In particular, in the `1 penalty limit, there is an extra factor of order O

�
log

�
1/(|�aux

d |+ �
2)
��

in the PT+FT penalty. Assuming small initializations, this factor tends to be larger than 2, the
corresponding coefficient in the MTL penalty. Thus, PT+FT is more strongly biased toward reusing
features from the auxiliary task (i.e. features where �

aux
d � 0) compared to MTL. We are careful

to note, however, that in the case of nonlinear networks this effect is complicated by a qualitatively
different phenomenon with effects in the reverse direction (see Section 5.2).

Second, the two norms behave differently for intermediate values of �d

|�aux
d | . In particular, as �d

increases beyond the value of �aux
d , the MTL norm quickly grows insensitive to the value of �aux

d
(Fig. 1a, right panel). On the other hand, the PT+FT penalty remains sensitive to the value of �aux

d
even for fairly large values of �d, well into the `1-like penalty regime (Fig. 1a, left panel). This
property of the PT+FT norm, in theory, can enable finetuned networks to exhibit a rich regime-like
sparsity bias while remaining influenced by their initializations. We explore this effect in section 4.2.

4 VERIFICATION AND IMPLICATIONS OF THE LINEAR THEORY

To validate these theoretical characterizations and illustrate their consequences, we performed ex-
periments with diagonal linear networks in a teacher-student setup. We consider linear regression
tasks defined by ~w 2 R1000 with a sparse set of k non-zero entries. We sample two such vectors,
corresponding to “auxiliary” and “main” tasks, varying the number of nonzero entries kaux and
kmain, and the number of shared features (overlapping nonzero entries). We train diagonal linear
networks on data generated from these ground-truth weights, using 1024 auxiliary task samples and
varying the number of main task samples. For re-initialization of the readout, we use � = 10�3.

4.1 FEATURE REUSE AND SPARSE TASK-SPECIFIC FEATURE SELECTION IN PT+FT AND MTL

We begin with tasks in which kaux = kmain = 40 (both tasks use the same number of features),
varying the overlap between the feature sets (Fig. 1b). Both MTL and PT+FT display greater sample
efficiency than single-task learning when the feature sets overlap. This behavior is consistent with
an inductive bias towards feature sharing. Additionally, both MTL and PT+FT substantially outper-
form single-task lazy-regime learning, and nearly match single-task rich-regime learning, when the
feature sets are disjoint. This is consistent with the `1-like biases for task-specific features derived

1We note that it is not a strict apples-to-apples comparison as the PT+FT penalty describes the bias of
gradient flow, while the given MTL penalty describes the bias of k~wk2 minimization.
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l1,2

Figure 1: Diagonal linear networks. a: Q (Eq. 3) and `1,2 (Eq. 5) penalties, assuming negligible � for
the Q penalty. Log scale on both axes. b: Main task generalization loss for networks trained with
MTL, PT+FT, single-task learning (STL), PT + finetuning via linear probing (PT+FT (LP)), and
single-task linear probing (STL (LP), equivalent to lazy single-task learning, or ridge regression).
Log scale on both axes. c: Proportion of variance concentrated in the top k weights, as a function
of k (for an overlap of 30/40). The rapid decrease demonstrates the sparsity of the learned solution.
d: Proportion of weight norm in the 40 dimensions relevant for the auxiliary task (again for an
overlap of 30/40). e: Generalization loss for case in which auxiliary task (with 40 nonzero ground-
truth weights) and main task (number of ground-truth weights indicated by color scale) share no
common features. f: Generalization loss for case in which main task uses a subset of the features
used by the auxiliary task. g: Same as PT+FT case in panel e, but with the network weights rescaled
by 0.1 or 0.01 (panel title) following pretraining. A sparsity bias is evident, unlike in e (rescaling
= 1.0 case), and more pronounced as rescaling coefficient decreases. h: Unexplained variance
as a function of weight scaling. On low numbers of samples, low scalings result in much more
pronounced sparsity. i: Performance in the case of 5 main task features chosen either as a subset of
the auxiliary task features (“shared”) or disjoint from them (“task-specific”), varying the rescaling
of weights following pretraining (1, 0.1, and 0.01). A bias toward feature reuse is evident even at
the low scalings which yield a sparsity bias in panels g, h.

above, which coincide with the bias of single-task rich-regime (but not lazy-regime) learning. When
the tasks partially overlap, MTL and PT+FT outperform both single-task learning and a PT + linear
probing strategy (finetuning only the second-layer weights w(2)

+,d and w
(2)
�,d), which by construction

cannot select task-specific features. Thus, both PT+FT and MTL are capable of simultaneously ex-
hibiting a feature sharing bias while also displaying task-specific feature selection, consistent with
the hybrid `1 / weighted-`2 regularization penalties derived above. Interestingly, PT+FT performs
better than MTL when the tasks use identical feature sets. This behavior is consistent with the Q-
norm more strongly penalizing new-feature learning than the MTL norm, as observed in Section 3.3.

To more directly test for a bias toward sparsity in task-specific features, we computed the fraction
of overall weight norm in the learned main task linear predictor ~� that is captured by the top k
strongest weights. We confirmed that the learned linear maps are indeed effectively sparse for both
MTL and PT+FT, even when the main and auxiliary tasks contain distinct features and few samples
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are available (Fig. 1c for 30/40 overlap case, see Appendix E, Fig. 5e for full suite of experiments)2.
Further, to test for a bias toward feature sharing, we computed the fraction of the norm of ~� cap-
tured by the 40 features learned on the main task (Fig. 1d, see Appendix E, Fig. 5f for full suite of
experiments). For MTL and PT+FT, this fraction is high for very few samples (indicating an induc-
tive bias toward feature sharing) and gradually approaches the true overlap (30/40=0.75). Finally,
we also directly measured the `1,2 and Q norms of the solutions learned by networks (Appendix E,
Fig. 5a), confirming a bias toward minimization of these norms in MTL and PT+FT, respectively.

As another test of the predicted bias toward sparsity in task-specific features, we conducted exper-
iments in which the main and auxiliary task features do not overlap, and varied the number kmain

of main task features. We find that both MTL and PT+FT are more sample-efficient when the main
task is sparser, consistent with the prediction (Fig. 1e).

4.2 PT+FT EXHIBITS A SCALING-DEPENDENT NESTED FEATURE-SELECTION REGIME

In the limit of small |�d|
|�aux

d | , both the MTL and PT+FT penalties converge to weighted `2 norms.

Notably, the behavior is `2-like even when |�d|
|�aux

d | ⇡ 1 (Fig. 1a). Thus, among features that are
weighted as strongly in the auxiliary task as the main task, the theory predicts that PT+FT and
MTL should exhibit no sparsity bias. To test this, we use a teacher-student setting in which all the
main task features are a subset of the auxiliary task features, i.e. kmain  kaux, and the number
of overlapping units is equal to kmain. We find that MTL and PT+FT derive little to no sample
efficiency benefit from sparsity in this context, consistent with an `2-like minimization bias (Fig. 1f).

However, as remarked in Section 3.3, in the regime where |�d|
|�aux

d | is greater than 1 but not astro-
nomically large, the PT+FT penalty maintains an inverse dependence on |�

aux
d | while exhibiting

approximately `1 scaling. In this regime, we would expect PT+FT to be adept at efficiently learning
the tasks just considered, which require layering a bias toward sparse solutions on top of a bias to-
ward features learned during pretraining. We can produce this behavior in these tasks by rescaling
the weights of the network following pretraining by a factor less than 1. In line with the prediction
of the theory, performing this manipulation enables PT+FT to leverage sparse structure within aux-
iliary task features (Fig. 1g). We confirm that weight rescaling does in fact lead to extraction of a
sparse set of features by analyzing, as in Fig. 1c, the extent to which the learned linear predictor on
the main task is concentrated on a small set of features (Fig. 1h). We also confirm that networks in
the nested feature selection regime retain their ability to privilege features learned during pretraining
above others (Fig. 1i), and that this phenomenon results from a bias toward feature reuse that grows
less strong as the weight rescaling factor is decreased (Appendix 5, Fig. 5b).

This (initialization-dependent, `1-minimizing) behavior is qualitatively distinct from the
(initialization-dependent, weighted `2-minimizing) lazy regime and the (initialization-independent,
`1-minimizing) feature-learning regimes. We refer to it as the nested feature-selection regime. This
inductive bias may be useful when pretraining tasks are more general or complex (and thus involve
more features) than the target task. This situation may be common in practice, as networks are often
pre-trained on general-purpose tasks before finetuning for more specific applications.

5 NONLINEAR NETWORKS

5.1 SIMILARITIES TO LINEAR MODELS: FEATURE REUSE AND SPARSE FEATURE LEARNING

We now examine the extent to which our findings above apply to nonlinear models, focusing on
single hidden-layer ReLU networks. We find that, as in the diagonal linear case, MTL and PT+FT
effectively leverage feature reuse (outperforming single-task learning when tasks share features,
Fig. 2a, right) and perform effective feature learning of task-specific features (nearly matching rich
single-task learning and substantially outperforming lazy single-task learning when task features
are not shared, Fig. 2a, left panel). Moreover, as in the linear theory, both effects can be exhibited
simultaneously (Fig. 2a, middle panels). We also confirm that task-specific feature learning exhibits
a sparsity bias (greater sample efficiency when non-shared main task features are sparse, Fig. 2b).

2Note that there is a slight non-monotonicity in learned solution sparsity as a function of number of main
task samples; this is because of the discrepancy of L1 norm minimization and L0 “norm” minimization (sparsity
maximization), see Appendix E Fig. 5c,d
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Figure 2: Nonlinear networks. a: Generalization loss (log-scaled) for different numbers of overlap-
ping features (out of 6 total) between main and auxilliary tasks. NTK indicates the (lazy) tangent
kernel solution. b: Generalization loss as a function of number of main task features (units in
teacher network) in tasks where main and auxiliary task features are disjoint. c: Inertia (unexplained
variance) for different numbers of clusters (overlap 5/6 case). The rapid decrease demonstrates the
feature sparsity of learned solutions for both MTL and PT+FT. d: Alignment between the main task
features and the best matching input-weight cluster found by k-means with K=12 (the total number
of features for both tasks). The high alignment for PT+FT and MTL compared to STL demon-
strates the bias toward feature sharing. e: Generalization loss in tasks where main-task features are
correlated (0.9 cosine similarity of input weights) with corresponding auxiliary task features. f: Gen-
eralization loss for an example with both identically shared and correlated features between tasks. g,
Generalization loss for PT+FT using different rescalings of network weights following pretraining
(0.1, 1, and 10.0), and also for MTL, on tasks in which main task features are a subset of auxiliary
task features. Color indicates number of main task features. h: Inertia for k-means clustering with
a single cluster (K=1) for networks finetuned on a task with a single main task feature chosen from
one of the auxiliary task features. Low inertia demonstrates that the network indeed learns a sparse
solution. i: Generalization loss for same strategies as in panel e, on tasks in which main task features
are either a subset of auxiliary task features (“shared”) or disjoint (“task-specific”).

We corroborate these claims by analyzing the sparsity of the learned solutions. We perform k-
means clustering with K clusters on the normalized input weights to each hidden-layer neuron in
a network. We measure the extent to which K cluster centers are able to explain the variance in
input weights across hidden units; the fraction of variance left unexplained is commonly referred to
as the “inertia.” For values of K at which the inertia is close to zero, we can say that (to a good
approximation) the network effectively makes use of at most K features. We find that the solutions
learned by PT+FT and MTL are indeed quite sparse (comparable to the sparsity of solutions learned
by single-task learning), even when the auxiliary task and main task features are disjoint (see Fig. 2c
for representative example, and Appendix E, Fig. 6c,d for full suite of experiments), supporting the
claim that PT+FT and MTL are biased toward sparsity in task-specific features. Further, the features
learned by PT+FT and MTL are more aligned with the ground truth features than those learned
by STL (Fig. 2d, see Appendix E, Fig. 6e for full suite of experiments), supporting the claim that
PT+FT and MTL are biased toward sharing main and auxiliary task features.
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5.2 PT+FT BIAS EXTENDS TO FEATURES CORRELATED WITH AUXILIARY TASK FEATURES

Interestingly, in cases with shared features between tasks, we find that finetuning can underperform
multi-task learning (Fig. 2a), in contrast to the diagonal linear case. We hypothesize that this effect
is caused by the fact that during finetuning, hidden units may not only change their magnitudes, but
also the directions ~✓h of their input weights. Thus, in nonlinear networks, PT+FT may not strictly
exhibit a bias toward reusing features across tasks, but rather a “softer” bias that also privileges fea-
tures correlated with (but not identical to) those learned during pretraining. We conduct experiments
in which the ground-truth auxiliary and main tasks rely on correlated but distinct features. Indeed,
we find PT+FT outperforms MTL in this case (Fig. 2e). Thus, PT+FT (compared to MTL) trades
off the flexibility to “softly” share features for reduced sample-efficiency when such flexibility is not
needed. In Appendix E, Fig. 6e we show that MTL learns features that are more aligned with the
ground-truth task features than PT+FT when main and auxiliary task features are identically shared,
but the reverse is true when main and auxiliary task features are merely correlated.

In realistic settings, the degree of correlation between features across tasks is likely heterogeneous.
To simulate such a scenario, we experiment with auxiliary and main tasks with a mixture of identi-
cally shared and correlated features. In this setting, we find that MTL outperforms PT+FT for fewer
main task samples, while PT+FT outperforms MTL when more samples are available (Fig. 2f). We
hypothesize that this effect arises because the flexibility of PT+FT to rotate hidden unit inputs is most
detrimental in the few-sample regime where there is insufficient data to identify correct features.

5.3 THE NESTED FEATURE-SELECTION REGIME

In Section 4.2, we uncovered a “nested feature-selection” regime, obtained at intermediate values of
|�d|

|�aux
d | between the rich and lazy regimes, in which PT+FT is biased toward sparse feature selection

biased by the features learned during pretraining. To test whether the same phenomenon arises in
ReLU networks, we rescale the network weights following pretraining by various factors (which
has the effect of scaling |�

aux
d | for all d). We evaluate performance on a suite of tasks that vary the

number of features in the main task teacher network and whether those features are shared with the
auxiliary task. At intermediate rescaling values we confirm the presence of a nested feature selec-
tion regime, characterized by a bias toward sparsity among features reused from the auxiliary task
(Fig. 2g) and a preference for reusing features over task-specific feature learning (Fig. 2i) which
arises from a bias toward reusing auxiliary task features (Appendix E, Fig. 6g). Further rescal-
ing in either direction uncovers the initialization-insensitive rich / feature-learning regime and the
initialization-biased lazy learning regime. We do not observe nested feature selection behavior in
MTL. Note that for different tasks and architectures, different rescaling values may be needed to
enter the nested feature learning regime.

To shed further light on this regime, we analyzed the effective sparsity of learned solutions using
the k-means clustering approach introduced previously. We find that networks identified above as
in the nested feature selection regime indeed learn sparse (effectively 1-feature) solutions when the
main task consists of a single auxiliary task feature (Fig. 2h). By contrast, networks with weights
rescaled by a factor of 10.0 following pretraining exhibit no such nested sparsity bias (consistent with
lazy-regime behavior). Additionally, supporting the idea that the nested feature selection regime
maintains a bias toward feature reuse (Fig. 1g, Fig. 2f), we find that networks in this regime exhibit
higher alignment of learned features with the ground-truth teacher network when the main task
features are a subset of the auxiliary task features, compared to when they are disjoint from the
auxiliary task features (Appendix E, Fig. 6g). This alignment benefit is mostly lost when networks
are rescaled by a factor of 0.1 following pretraining (a signature of rich-regime-like behavior).

6 PRACTICAL APPLICATIONS TO DEEP NETWORKS AND REAL DATASETS

Our analysis has focused on shallow networks trained on synthetic tasks. To test the applicabil-
ity of our insights, we conduct experiments with convolutional networks (ResNet-18) on a vision
task (CIFAR-100), using classification of two image categories (randomly sampled for each train-
ing run) as the primary task and classification of the other 98 as the auxiliary task. As in our
experiments above, MTL and PT+FT improve sample efficiency compared to single-task learning
(Fig. 3a). Moreover, the results corroborate our findings in Section 5.2 that MTL performs better
than PT+FT with fewer main task samples, while the reverse is true with more samples. A similar
finding was made in Weller et al. (2022) in natural language processing tasks.
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Figure 3: a: Test error on CIFAR-100 experiment as a function of main task samples (log scale on
both axes). b: Test error on CIFAR-100 for PT+FT with different weight rescaling values following
pretraining. c: Participation ratio (PR; measuring dimensionality) of the pretrained and finetuned
networks and the effective number of shared dimensions (ENSD) between them.

Our findings in Section 4.2 and Section 5.3 indicate that the nested feature selection bias of PT+FT
can be exposed or masked by rescaling the network weights following pretraining. Such a bias may
be beneficial when the main task depends on a small subset of features learned during pretraining,
as may often be the case in practice. We experiment with rescaling in our CIFAR setup. We find
that rescaling values less than 1 improve finetuning performance (Fig. 3b). These results suggest
that rescaling network weights before finetuning may be practically useful. We corroborate this
hypothesis with additional experiments using networks pre-trained on ImageNet (see Appendix F).

To facilitate comparison of the phenomenology in deep networks with our teacher-student experi-
ments above, we propose a signature of nested feature selection that can be characterized without
knowledge of the underlying feature space. Specifically, we propose to measure (1) the dimensional-
ity of the network representation pre- and post-finetuning, and (2) the extent to which the representa-
tional structure post-finetuning is shared with / inherited from that of the network following pretrain-
ing prior to finetuning. We employ the commonly used participation ratio (PR; Gao et al., 2017)
as a measure of dimensionality, and the effective number of shared dimensions (ENSD) introduced
by Giaffar et al. (2023), a soft measure of the number of aligned principal components between two
representations. Intuitively, the PR and ENSD of network representations pre- and post-finetuning
capture the key phenomena of the nested feature selection regime: we expect the dimensionality of
network after finetuning to be lower than after pretraining (PR(XFT ) < PR(XPT )), and for nearly
all of the representational dimensions expressed by the network post-finetuning to be inherited from
the network state after pretraining (ENSD(XPT ,XFT ) ⇡ PR(XFT )). We show that this descrip-
tion holds in our nonlinear teacher-student experiments with networks in the nested feature selection
regime (rescaling factor 1.0) (Appendix G, Fig. 8c). Moreover, we find that the ResNet-18 model
with rescaling applied (but not without rescaling) exhibits the same phenomenology (Fig. 3c). This
supports the hypothesis that the observed benefits of rescaling indeed arise from pushing the network
into the nested feature selection regime. See Appendix G for more details.

7 CONCLUSION

In this work we have provided a detailed characterization of the inductive biases associated with two
common training strategies, MTL and PT+FTWe find that these biases incentivize a combination
of feature sharing and sparse task-specific feature learning. In the case of PT+FT, we characterized
a novel learning regime – the nested feature-selection regime – which encourages sparsity within
features inherited from pretraining. This insight motivates simple techniques for improving PT+FT
performance by pushing networks into this regime, which shows promising empirical results. We
also identified another distinction between PT+FT and MTL – the ability to use “soft” feature sharing
– that leads to a tradeoff in their relative performance as a function of dataset size.

More work is needed to test these phenomena in more complex tasks and larger models. There are
also promising avenues for extending our theoretical work. First, in this paper we did not analytically
describe the dynamics of PT+FT in ReLU networks, but we expect more progress could be made
on this front. Second, our diagonal linear theory could be extended to the case of the widely used
cross-entropy loss (see Appendix C for comments on this point). Third, we believe it is important to
extend this theoretical framework to more complex network architectures. Nevertheless, our present
work already provides new and practical insights into the function of auxiliary task learning.
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