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Abstract

While learning to align Large Language Mod-001
els (LLMs) with human preferences has shown002
remarkable success, aligning these models to003
meet the diverse user preferences presents fur-004
ther challenges in preserving previous knowl-005
edge. This paper examines the impact of per-006
sonalized preference optimization on LLMs, re-007
vealing that the extent of knowledge loss varies008
significantly with preference heterogeneity. Al-009
though previous approaches have utilized the010
KL constraint between the reference model and011
the policy model, we observe that they fail012
to maintain general knowledge and alignment013
when facing personalized preferences. To this014
end, we introduce Base-Anchored Preference015
Optimization (BAPO), a simple yet effective016
approach that utilizes the initial responses of017
reference model to mitigate forgetting while ac-018
commodating personalized alignment. BAPO019
effectively adapts to diverse user preferences020
while minimally affecting global knowledge or021
general alignment. Our experiments demon-022
strate the efficacy of BAPO in various setups.023

1 Introduction024

Large Language Models (LLMs) (Achiam et al.,025

2023; Touvron et al., 2023) have been successfully026

aligned with human preferences across various ap-027

plications, ranging from summarization tasks to en-028

hancing reasoning capabilities (Ouyang et al., 2022;029

Stiennon et al., 2020; Tunstall et al., 2023b; Wang030

et al., 2023a). This alignment process involves031

collecting human feedback by presenting pairs of032

responses generated from the same user prompt and033

asking users to choose their preferred response (Bai034

et al., 2022; Cui et al., 2023; Lee et al., 2023; Cheng035

et al., 2023). The LLMs learn from this preference036

data to produce responses that better match human037

preferences, effectively addressing the challenge of038

converting complex human expectations into tan-039

gible training objectives (Ouyang et al., 2022; Ji040

et al., 2023; Xu et al., 2024). Known as preference041

optimization, this approach has become essential 042

in the final stages of LLM training (Meta, 2024; 043

Abdin et al., 2024; Jiang et al., 2024). 044

However, the common assumption in preference 045

optimization is that all users share a uniform set of 046

general preferences (Bai et al., 2022; Rafailov et al., 047

2024; Zheng et al., 2023), leading LLMs to align 048

with an average of these preferences, as derived 049

from collective feedback data (Jafari et al., 2024; 050

Li et al., 2024; Guo et al., 2024). While effective 051

for broadly accepted preferences like helpfulness 052

and harmlessness, this approach does not account 053

for the diversity of individual preferences in real- 054

world scenarios (Jang et al., 2023; Zeng et al., 2023; 055

Cheng et al., 2023; Zhong et al., 2024). For exam- 056

ple, given the same context, one user might prefer 057

a humorous response, while another might prefer 058

a concise one. This reliance on averaged prefer- 059

ences often fails to capture the unique preferences 060

of each user. This is known as the Condorcet Para- 061

dox (Gehrlein, 1983, 2002) in social choice theory, 062

where no single response consistently satisfies all 063

users, leading to non-transitive preferences (Wang 064

et al., 2024a; Munos et al., 2023). 065

Recent studies have begun to tackle this chal- 066

lenge by fine-tuning instruction-tuned LLMs for 067

personalized alignment (Jang et al., 2023; Zeng 068

et al., 2023; Rame et al., 2024). Although these per- 069

sonalized preference optimization approaches en- 070

able support for diverse user preferences (Li et al., 071

2024; Zhong et al., 2024; Guo et al., 2024), the 072

impact of learning to meet personalized prefer- 073

ences on previously acquired knowledge (Jin and 074

Ren, 2024; Lu et al., 2024), such as global knowl- 075

edge (Dou et al., 2023) and general alignment (Lin 076

et al., 2023), remains underexplored. 077

In this work, we systematically analyze how per- 078

sonalizing LLMs according to diverse user pref- 079

erences impacts their global knowledge and gen- 080

eral alignment. Our findings reveal that the ex- 081

tent of knowledge loss heavily depends on these 082
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water to melon, as they are distinct fruits…
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seriously, it’s not 
possible to make a 
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Figure 1: Overview of Base-Anchored Preference Optimization (BAPO): For a given user prompt, the base response
achieves general alignment. Models A and Model C, fine-tuned with BAPO, maintain this alignment by using the
base response as an anchor. In contrast, Model B, fine-tuned with DPO, fails to preserve the knowledge from the
base response, drifting away from the desired knowledge preservation area.

preferences, often inducing significant declines083

in specific areas of knowledge. This suggests084

that the conventional Kullback-Leibler (KL) con-085

straints between the policy model and the reference086

model (Schulman et al., 2017; Rafailov et al., 2024),087

which is based solely on the tokens appearing in088

preferred or dispreferred responses (Pal et al., 2024;089

Azar et al., 2024; Zheng et al., 2023), fail to pre-090

vent the forgetting that occurs during personalized091

preference optimization.092

To address this issue, we start by analyzing the093

initial responses, referred to as base responses, of094

instruction-tuned models to the given prompts and095

observe how their likelihood of producing these096

responses changes over training steps. We dis-097

cover that personalizing preferences to enhance098

the distinction between preferred and dispreferred099

responses not only diminishes the likelihood of pro-100

ducing the dispreferred responses, but also lowers101

the likelihood of generating these base responses.102

We hypothesize that aligning the reference and103

policy models, especially focusing on the tokens104

that appear in the base response, is essential for105

preserving global knowledge and ensuring gen-106

eral alignment. To this end, we introduce a novel107

preference optimization method named as Base-108

Anchored Preference Optimization (BAPO). BAPO109

aims to maintain the likelihood that the policy110

model will produce a base response originating111

from the reference model during personalized pref-112

erence optimization.113

Our main contributions are summarized as follows: 114

• We systematically analyze how diverse user 115

preferences affect the global knowledge and 116

alignment of instruction-tuned LLMs, finding 117

that the extent of forgetting varies significantly 118

with preference type. (Section 2) 119

• We propose a novel preference optimiza- 120

tion method, BAPO, which utilizes the base 121

response from the reference model to pre- 122

serve existing knowledge in instruction-tuned 123

LLMs during personalized preference opti- 124

mization. (Section 3) 125

• We validate the efficacy of BAPO across var- 126

ious setups, demonstrating its effectiveness 127

in preserving global knowledge and general 128

alignment while adapting to diverse personal- 129

ized preferences. (Section 4) 130

2 Personalized Preference Optimization 131

In this section, we first introduce preference opti- 132

mization for LLM alignment. Next, we examine 133

how personalized preferences impact the existing 134

knowledge of instruction-tuned LLMs. We suggest 135

that the typical KL-constraint in preference opti- 136

mization is not effective in preventing forgetting. 137

2.1 Preliminary: Preference Optimization 138

Consider a dataset of pairwise preferences, denoted 139

as D “ txi, yiw, yilu
N
i“1. In this dataset, for each 140

prompt xi, the responses yiw and yil represent the 141
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preferred (i.e., chosen) and not preferred (i.e., re-142

jected) responses, respectively. Our goal is to opti-143

mize the policy model πθpy|xq to maximize the ex-144

pected value of the ideal reward function r˚px, yq145

that aligns with human preferences:146

π˚ “ argmax
πθ

Ey„πθp ¨ |xq

“

r˚px, yq
‰

. (1)147

A common approach to modeling the reward func-148

tion is using the Bradley-Terry model (Bradley and149

Terry, 1952), which models the human preference150

distribution p˚py1 ą y2 | xq as follows:151

exppr˚px, ywqq

exppr˚px, ywqq ` exppr˚px, ylqq
. (2)152

Note that the Bradley-Terry model assumes that153

for each prompt x, the paired comparison proba-154

bilities ppyw ą yl | xq reflect a consistent human155

preference ordering across all possible responses,156

depending solely on the reward difference between157

responses r˚px, ywq ´ r˚px, ylq.158

RLHF Using the reward function defined in159

Equation 2, Reinforced Learning from Human160

Feedback (RLHF) (Ouyang et al., 2022; Stiennon161

et al., 2020) initially trains a reward model rϕpx, yq162

that produces a single scalar prediction for the re-163

ward value. In the subsequent RL phase, this re-164

ward model guides the LLM to align the learned165

preference with the reference model πref, which166

has undergone supervised fine-tuning (SFT) from167

a pre-trained LLM as follows:168

LRLHF “ ´ Ex„D,y„πθpy|xq

“

rϕpx, yq169

´βDKL
“

πθpy|xq}πrefpy|xq
‰

ı

. (3)170

where β corresponds to the regularization strength171

of KL-Divergence between the policy model πθ172

and the reference model πref.173

DPO By simplifying Equation 3, Direct Prefer-174

ence Optimization (DPO) (Rafailov et al., 2024)175

optimizes the maximum likelihood of the policy176

model πθ without the need to train a separate ex-177

plicit reward model as follows:178

LDPO “ ´ Epx,yw,ylq„D

„

log σ

ˆ

β log
πθpyw|xq

πrefpyw|xq
179

´β log
πθpyl|xq

πrefpyl|xq

˙ ȷ

. (4)180

Here, β represents the KL-regularization strength181

in RLHF. Note that in both RLHF and DPO, this182

KL-constraint depends only on the tokens appear-183

ing in yw and yl, the responses directly related to184

the preference ranking comparison.185

2.2 Forgetting from Personalization 186

To understand how preference heterogeneity af- 187

fects the extent of forgetting, we conduct an 188

experimental study using heterogeneous prefer- 189

ence datasets: P-Soups (Jang et al., 2023) and 190

DSP (Cheng et al., 2023). We fine-tune the 191

instruction-tuned Phi-3-mini (Abdin et al., 2024) 192

model using DPO (Rafailov et al., 2024) with 193

LoRA (Hu et al., 2021). Please refer to the detailed 194

setups provided in Section 4.

65 70 75 80 85
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Friendly
(a) Sci. QA
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Figure 2: Performance on Global Knowledge: (a) Sci-
ence QA and (b) MMLU - Humanities after personal-
ization on diverse preferences. The black vertical dotted
line indicates the base model performance.
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Figure 3: Performance on General Alignment: (a) HHH-
Honesty and (b) HHH-Harmless after personalization
on diverse preferences. The black vertical dotted line
indicates the base model performance.

195
In Figure 2 and Figure 3, we evaluate perfor- 196

mance changes after optimizing for specific prefer- 197

ence types and present some representative results. 198

The first two rows of each figure depict specific 199

style preferences (e.g., Friendly or Concise) from 200

the P-Soups dataset, while the last two rows show- 201

case specific domain preferences (e.g., Academy 202

or Literature) from the DSP dataset. 203

Our analysis reveals that the extent of forget- 204

ting global knowledge varies significantly with 205

the prioritized preference type. For example, as 206

shown in Figure 2, personalizing for the Litera- 207

ture domain preference leads to a notable decrease 208

in performance on Science QA (Lu et al., 2022) 209

datasets, while the Academy domain preference 210

shows a lesser decline. Conversely, prioritizing the 211

Friendly style preference enhances performance 212

in Social Science within the MMLU (Hendrycks 213

et al., 2020) datasets, whereas the Concise style 214
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preference causes a substantial drop. This variation215

is not limited to global knowledge but also extends216

to general alignment. For example, in Figure 3,217

the Friendly style preference significantly com-218

promises Honesty in the HHH-Alignment (Askell219

et al., 2021) datasets. On the other hand, favoring220

the Academy domain preference rather improves it.221

2.3 Knowledge in Base Response222

The significant variation in performance after per-223

sonalized preference optimization suggests that the224

typical KL-divergence constraints (Ouyang et al.,225

2022; Rafailov et al., 2024; Zheng et al., 2023) used226

in general preference optimization (Bai et al., 2022;227

Tunstall et al., 2023b) still suffer from forgetting228

induced by preference heterogeneity.229

We hypothesize that the original response from230

the initial reference model πref, which contains231

intact global knowledge and aligns with general232

alignment, is influenced by learning to meet diverse233

individual preferences. We take a closer look at234

personalized preference optimization to understand235

how adapting to heterogeneous preferences affects236

the likelihood of generating specific responses, rep-237

resented by logrπθpyp.q|xq ´ πrefpyp.q|xqs.238

The observations in Figure 5 verify our con-239

jecture. Personalizing preferences to enhance the240

distinction between the chosen response yw (i.e.,241

preferred) and the rejected response yl (i.e., dispre-242

ferred) not only reduces the likelihood of producing243

the rejected response but also lowers the likelihood244

of generating base responses yb. In this context,245

KL-divergence constraints between the reference246

and policy models on tokens found in these chosen247

and rejected responses do not help maintain the248

likelihood of base responses. Based on our find-249

ings, we consider an approach that leverages the250

tokens appearing in the base responses to encour-251

age knowledge preservation during personalized252

preference optimization.253

3 Proposed Method: BAPO254

In this section, we introduce Base-Anchored Pref-255

erence Optimization (BAPO). Our primary mo-256

tivation is to use the initial response from the257

instruction-tuned model before it undergoes person-258

alized preference optimization. By anchoring the259

policy model to this initial response, the personal-260

ized policy model can effectively retain its original261

global knowledge and general alignment while still262

accommodating diverse user preferences.263

… which toy to play with. One toy was my old favorite, 

a stuffed animal but it was getting worn out…

Chosen Response (𝒚𝒘)

Base Response (𝒚𝒃)

… whether to allocate resources to speed up or to 

maintain the current pace and ensure of the product …

… implementing complex computational models of 

brain function trying to determine the level of detail…

Rejected Response (𝒚𝒍)

Describe a time when you had to make a 

difficult decision.

User prompt (𝑥)

Style (P1A): Elementary School Level

Style (P1B): Ph.D. Student Level

Original Phi-3-mini Response

Figure 4: An example of Chosen, Base, and Rejected
responses to the same user prompt. Note that Chosen
and Rejected in the figure assume that the user has the
P1A (elementary school level) style preference.

Chosen (𝑦𝑤)
Base (𝑦𝑏)

Rejected (𝑦𝑙)

Figure 5: Average difference in reference model (πrefq

and policy model (πθ) log probabilities for Chosen,
Base, and Rejected responses during personalization
across four domain preferences in DSP datasets.

3.1 Base-Anchored Preference Optimization 264

Consider the base response yb from the reference 265

model πref and the policy model πθ, which we fine- 266

tune for personalized preferences. The example 267

in Figure 4 showcases how the chosen, base, and 268

rejected responses differ for the same given user 269

prompt. The core concept of BAPO is to preserve 270

the knowledge contained in this base response dur- 271

ing the optimization for diverse preferences. 272

Base Anchor BAPO ensures that the policy 273

model’s likelihood of producing the base response 274

yb (πθpyb|xq) remains closely aligned with that of 275

the reference model (πrefpyb|xq): 276

LAnchor “ max

ˆ

0, log
πrefpyb|xq

πθ pyb|xq

˙

. (5) 277

Note that the base anchor loss LAnchor becomes 0 278

if the policy model πθ assigns a higher likelihood 279

to the base response yb than the reference model 280

does (πθpyb|xq ą πrefpyb|xq). Intuitively, if the 281

policy model is already more confident in the base 282
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response than the reference model, there’s no need283

to penalize it further. The BAPO objective LBAPO284

is defined as follows:285

LBAPO “ LDPO ` λ ¨ LAnchor . (6)286

Here, λ controls the strength of the anchoring effect.287

In our main experiments, we set λ “ 5.288

3.2 Theoretical Analysis289

We assess the impact of BAPO on personalized290

preferences by analyzing how information from291

base responses aids in aligning personal prefer-292

ences. We assume linear utility and reward func-293

tions, with their respective unknown parameters294

having distinct nonzero components.295

Assumption 1. A utility function G‹ exists for gen-296

eral alignment with global knowledge, and a re-297

ward function L‹ measures personal alignment.298

Assumption 2. For the response y and context299

x, the functions G‹ and L‹ are linear, defined300

as: G‹px, yq “ xϕpx, yq,θG
‹ y and L‹px, yq “301

xϕpx, yq,θL
‹ y where ϕpx, yq is a d dimensional302

feature vector of y and x. Additionally, θG
‹ ,θ

L
‹303

have non-intersecting nonzero components on d-k304

and the k dimensions respectively.305

Proposition 1. Given the information of θG is306

known. Then, the sample complexity for estimating307

θL reduces from Op
?
dq to Op

?
kq.308

The proof is provided in Appendix C. This309

proposition suggests that the last k-dimensional310

subspace, which governs personalized rewards,311

is typically much smaller than the first d ´ k-312

dimensional subspace responsible for general align-313

ment. Consequently, this reduction in complexity314

of the parameter space influencing personalized315

rewards allows for more efficient estimation with316

fewer samples. In practice, personalization is often317

driven by a smaller, critical set of features com-318

pared to those affecting broader alignment criteria.319
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Figure 6: Evolution of log probabilities for Chosen and
Base responses during preference optimization. The
results are averaged across different preference types.

320

The results in Figure 6 empirically support our 321

analysis. We analyze the changes in log proba- 322

bilities of responses under DPO and BAPO. For 323

experimental details, see Section 4. While log prob- 324

abilities for the base response decrease under DPO, 325

BAPO maintains them, enhancing stability through- 326

out the preference optimization process. This con- 327

sistency enables the model to assign significantly 328

higher log probabilities to the chosen response, thus 329

speeding up the learning process. 330

4 Experiment 331

4.1 Experimental Setups 332

Datasets We use two preference datasets for per- 333

sonalized preference optimization: P-Soups (Jang 334

et al., 2023) and DSP (Cheng et al., 2023). 335

• Personalized Soups (P-Soups) include Style 336

preferences , organized into three dimensions: 337

P1, P2, and P3. Each dimension features two 338

contrasting types, A and B. In Table 1, we 339

briefly describe the preference types. 340

• Domain Specific Preference (DSP) includes 341

Domains preferences: Academy, Business, 342

Entertainment, and Literature & Art. 343

Each dataset is composed of user queries and a 344

set of responses for each query. In our pairwise 345

preference format, for each user queryx, we select 346

a response that aligns with a specific preference 347

as the chosen response yw. Responses from other 348

preferences are designated as rejected responses yl. 349

More details are provided in Appendix A. 350

Table 1: Response Preferences of the P-Soups dataset.

Dimension Type Response Preference

(P1) Expertise A Elementary school level.
B PhD-level expertise in the field.

(P2) Verbosity A Concise, without being verbose.
B Informative and fully detailed.

(P3) Style A Friendly, witty and humorous.
B Answer in an unfriendly manner.

Learning Setups In our main experiments, we 351

primarily use a Phi-3 model (Abdin et al., 2024), 352

specifically its instruction-tuned version referred to 353

as Phi-3-mini-128k-instruct, with 3.82 billion pa- 354

rameters. This model has been enhanced with DPO 355

to align with general human preferences and safety 356

guidelines, following the SFT stage. Each person- 357

alized model, aimed at aligning with a specific pref- 358

erence type, is fine-tuned using Q-LoRA (Dettmers 359

et al., 2024), a quantized variant of LoRA (Hu et al., 360
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Table 2: Performance on global knowledge datasets after fine-tuning for personalized preferences. The term ’Base’
refers to the initial performance of the Phi-3-mini model before personalization. Values in parentheses represent the
standard deviation across different preference types: 6 for the P-Soups datasets and 4 for the DSP datasets.

Preference Dataset: P-Soups (Jang et al., 2023)

Method PIQA SIQA ARC-c Sci. QA Comm. MMLU
STEM Social Human Other

Base 78.0 72.0 81.9 79.8 46.0 47.7 62.7 55.4 65.3
DPO 77.0p2.8q 69.7p0.1q 81.6p0.9q 78.5p2.1q 68.7p1.6q 49.2p1.9q 65.7p8.4q 53.7p2.5q 64.8p5.5q

RSO 76.4p2.4q 71.1p0.7q 82.3p1.3q 80.8p1.5q 70.5p0.7q 50.3p1.2q 67.6p6.5q 55.3p0.5q 66.9p1.9q

IPO 62.9p11.0q 50.2p13.6q 51.2p24.2q 52.2p20.8q 41.8p19.2q 38.2p11.3q 51.4p19.8q 39.8p10.3q 48.2p16.6q

DPOP 76.1p1.7q 70.8p0.8q 81.8p1.7q 80.6p1.1q 70.6p1.4q 50.5p1.6q 68.3p4.5q 54.7p0.8q 67.4p1.4q

ORPO 66.6p6.0q 61.5p4.0q 71.5p2.9q 68.5p6.4q 60.7p2.9q 51.2p1.5q 70.0p2.7q 50.5p0.8q 65.1p1.1q

BAPO 78.0p1.5q 71.6p0.8q 82.5p1.1q 81.0p0.6q 71.5p0.7q 49.7p1.0q 66.1p3.0q 55.1p0.6q 66.4p1.0q

Preference Dataset: DSP (Cheng et al., 2023)

Method PIQA SIQA ARC-c Sci. QA Comm. MMLU
STEM Social Human Other

Base 78.0 72.0 81.9 79.8 46.0 47.7 62.7 55.4 65.3
DPO 77.6p0.6q 70.2p1.3q 81.7p1.1q 78.5p3.1q 69.1p0.9q 49.9p3.0q 65.2p9.2q 54.1p1.9q 66.3p2.2q

RSO 77.2p0.9q 71.2p0.5q 81.9p1.0q 80.2p0.9q 70.4p1.1q 50.5p2.0q 66.8p6.2q 55.9p0.6q 66.7p1.5q

IPO 50.9p1.3q 35.5p3.1q 19.8p13.1q 24.8p9.4q 25.8p6.6q 28.0p1.9q 30.2p4.8q 30.3p2.3q 30.0p2.5q

DPOP 77.9p1.5q 70.9p1.0q 81.6p2.4q 80.1p0.4q 69.8p1.5q 50.4p1.9q 67.4p7.4q 55.1p1.4q 67.2p1.5q

ORPO 66.6p6.0q 61.5p4.0q 71.5p2.9q 68.9p6.4q 60.7p2.9q 51.1p1.5q 69.9p2.7q 50.5p0.7q 65.1p1.1q

BAPO 78.0p1.2q 71.7p0.3q 83.2p0.5q 80.9p1.1q 71.1p0.7q 50.2p0.9q 66.1p2.9q 55.6p0.4q 67.1p0.4q

2021). We utilize a 4-bit normalized float (nf4) and361

double quantization with bf-16 to enhance compu-362

tational efficiency. The LoRA settings, including363

a rank of r = 32 and α= 64 with a dropout rate364

of 0.05, are applied to all linear layer weights of365

the model. Each personalized model is trained for366

a single epoch on feedback pairs using an effec-367

tive batch size of 8. The learning rate, set at 5e-5,368

follows the conventional training recipe (Tunstall369

et al., 2023a,b). The learning rate is decayed using370

a cosine scheduler (Loshchilov and Hutter, 2016).371

Evaluation To evaluate the extent of forget-372

ting after personalized preferences optimization,373

we divide the datasets into two categories: (i)374

Global Knowledge and (ii) General Alignment. In375

Global Knowledge, we assess the model’s prior376

knowledge of world understanding through closed-377

book question-answering tasks. More specif-378

ically, we use commonsense datasets such as379

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),380

Arc-Challenge (Clark et al., 2018), Science QA (Lu381

et al., 2022), Commonsense QA (Talmor et al.,382

2018), and 5-shot MMLU (Hendrycks et al., 2020).383

Since the Science QA dataset includes visual tasks,384

we utilize text-only questions from this dataset. For385

assessing General Alignment, we conduct eval-386

uations using the HHH-Alignment (Askell et al.,387

2021) datasets, which consist of categories focused388

on helpfulness, harmlessness, and honesty.389

4.2 Performance on Knowledge Preservation 390

In Table 2, we evaluate how fine-tuning the Phi-3- 391

mini model affects its performance in the Global 392

Knowledge across diverse preferences. This eval- 393

uation includes the DPO (Rafailov et al., 2024) 394

and other preference optimization methods such 395

as RSO (Liu et al., 2023), IPO (Azar et al., 2024), 396

DPOP (Pal et al., 2024), and ORPO (Hong et al., 397

2024). The ’Base’ in the table indicates the initial 398

performance of the Phi-3-mini model. 399

The results show that the baseline methods 400

significantly declines the performance on global 401

knowledge datasets, while our BAPO method ef- 402

fectively maintains consistent performance across 403

various evaluated datasets. We highlight that BAPO 404

has advantageous characteristics, keeping perfor- 405

mance variations due to preference heterogeneity 406

remarkably low. In contrast to the baseline method, 407

which exhibits high fluctuation and large variance 408

across varying preferences, BAPO provides more 409

reliable results with minimal variation. 410

We observe that personalized preferences do 411

not necessarily lead to forgetting. In fact, they 412

can sometimes enhance performance on certain 413

datasets based on the types of preferences involved. 414

For example, fine-tuning with domain-specific pref- 415

erences in DSP datasets often results in improved 416

performance on MMLU datasets. Notably, the 417

ORPO method, which does not use a reference 418
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model during preference optimization, consistently419

outperforms other approaches in such cases. This420

implies there exists a natural trade-off in the use421

of reference models between preserving existing422

knowledge and acquiring new knowledge.423

4.3 Performance on Alignment424

General Alignment Table 3 presents the evalu-425

ation of general and personalized alignment after426

the personalized preference optimization. Ideally,427

the personalized model should maintain general428

alignment while accommodating its specific per-429

sonalized preferences. We first evaluate whether430

the fine-tuned models maintain general alignment431

after personalization by using the HHH-Alignment432

datasets (Askell et al., 2021). The results show that433

BAPO effectively preserves the level of general434

alignment seen in the initial reference model, with435

minimal variation across diverse preference types.436

Personalized Alignment We evaluate personal-437

ized alignment by measuring Reward Accuracy,438

which assesses whether the policy model prefers439

the selected response yw over the dis-preferred re-440

sponse yl for user prompts x in the validation set.441

The results show that BAPO more effectively ac-442

commodate personalized performance compared443

to other baselines. This demonstrates that utiliz-444

ing base responses can boost sample efficiency for445

reward signals related to personalized preferences.446

Table 3: Performance on general/personalized align-
ment after fine-tuning for personalized preferences.

Preference Datasets: P-Soups

Method HHH-Alignment Rwd Acc.
Helpful Harmless Honest

Base 84.7 89.7 80.3 -
DPO 81.4p6.3q 87.9p5.3q 76.0p4.8q 93.2p3.1q

RSO 83.1p3.6q 89.7p3.6q 78.4p3.5q 93.0p3.1q

IPO 70.3p11.7q 73.3p16.5q 68.0p14.2q 89.6p7.6q

DPOP 83.1p4.7q 89.7p4.4q 79.2p2.9q 92.2p3.4q

ORPO 81.9p2.8q 83.6p5.5q 74.9p3.1q 84.6p2.1q

BAPO 84.0p1.8q 87.9p4.2q 80.6p1.2q 97.8p2.3q

Preference Datasets: DSP

Method HHH-Alignment Rwd Acc.
Helpful Harmless Honest

Base 84.7 89.7 80.3 -
DPO 82.6p2.9q 91.8p3.6q 80.7p4.9q 87.1p4.0q

RSO 81.6p1.3q 91.4p2.7q 81.4p2.4q 87.1p4.3q

IPO 72.9p7.3q 74.6p8.6q 68.0p7.6q 86.2p3.7q

DPOP 72.9p7.3q 74.6p8.6q 68.0p7.6q 87.3p4.1q

ORPO 83.1p1.4q 92.2p3.3q 77.1p3.8q 79.2p3.2q

BAPO 85.2p1.6q 93.1p1.4q 81.2p3.4q 97.0p0.1q

4.4 Ablation Study 447

Model Architecture We conduct further ex- 448

periments with the instruction-tuned Gemma-2B 449

model (Team et al., 2024), referred to as Gemma- 450

2B-it, which has also undergone RLHF for general 451

alignment after the SFT stage. The results pre- 452

sented in Table 4 validates the robust efficacy of 453

BAPO across different model architectures.

Table 4: Performance of the Gemma-2B-it model after
fine-tuning for personalized preferences. Scores for
MMLU and HHH are averaged across all categories.

Preference Datasets: P-Soups
Method Sci. QA Comm. MMLU HHH Rwd Acc
Base 51.9 46.0 28.8 67.4 -
DPO (P-Soups) 51.3 44.6 28.0 63.9 95.4p3.5q

BAPO (P-Soups) 51.5 44.9 28.1 64.2 95.4p3.4q

DPO (DSP) 51.5 45.4 28.3 66.1 98.2p0.6q

BAPO (DSP) 51.6 45.7 28.5 66.1 98.3p0.8q
454

Effect of Anchoring Strength The impact of 455

anchoring strength λ on BAPO is illustrated in 456

Figure 7. The performance change is measured 457

against the Base model. As depicted in Figure 7(a), 458

increasing anchoring strength generally enhances 459

global knowledge preservation, although the ef- 460

fect plateaus at higher strengths. Additionally, Fig- 461

ure 7(b) shows the results on alignment, indicating 462

that while base anchoring in BAPO improves both 463

types of alignment, its effectiveness also reaches a 464

limit at higher strengths. 465
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Figure 7: Performance of BAPO on P-Soups datasets
with varying anchoring strength values λ. Note that
setting λ= 0 is equivalent to using the vanilla DPO.

Effect of LoRA Rank In Figure 8, we explore 466

the impact of varying LoRA rank r on knowledge 467

preservation and alignment, setting the scaling fac- 468

tor α such that α
r “ 2. As shown in Figure 8(a) 469

and Figure 8(b), an increase in rank r leads to more 470

pronounced forgetting in both global knowledge 471

and general alignment. This finding supports re- 472

cent research suggesting that a lower LoRA rank 473

reduces the rate of learning but also minimizes 474

forgetting (Biderman et al., 2024). Nevertheless, 475

BAPO effectively preserves knowledge even as 476

LoRA rank increases and enhances accommodation 477
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of personalized preferences at higher ranks, where478

the increased learning capacity could otherwise479

detract from learning personalized preferences.480
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Figure 8: Performance of BAPO on P-Soups datasets
with varying LoRA rank values r.

5 Related Work481

Learning from Human Feedback Often em-482

ployed as the final stage of instruction tuning (Tun-483

stall et al., 2023b; Jiang et al., 2024; Meta, 2024),484

learning from human feedback refines the policy485

language model to generate responses that align486

with human preferences (Ji et al., 2023; Zheng et al.,487

2023). This process usually involves collecting hu-488

man preferences for pairs of candidate responses489

to differentiate between those that are preferred490

and those that are dispreferred. The two main ap-491

proaches used are Reinforcement Learning from492

Human Feedback (RLHF) (Stiennon et al., 2020;493

Ouyang et al., 2022) and Direct Preference Op-494

timization (DPO) (Rafailov et al., 2024). RLHF495

involves training a separate reward model that is496

then utilized in the subsequent reinforcement learn-497

ing phase (Bai et al., 2022; Tunstall et al., 2023b).498

In contrast, DPO does not rely on a reward model499

but directly establishes a mapping between the re-500

ward function and the optimization objective (Pal501

et al., 2024; Liu et al., 2023). Our work specifi-502

cally addresses the challenge of accommodating503

personalized preferences within the DPO frame-504

work. We focus on maintaining the likelihood of505

base responses from the reference model during the506

personalization process, ensuring the preservation507

of global knowledge and general alignment.508

Forgetting in LLM Fine-tuning The issue of509

forgetting previously acquired knowledge during510

the fine-tuning on heterogeneous data has been ex-511

tensively discussed (Wang et al., 2023b, 2024b),512

highlighting a fundamental trade-off between pre-513

serving old knowledge and acquiring new knowl-514

edge (Parisi et al., 2019; McCloskey and Cohen, 515

1989). In the context of LLMs, recent research has 516

shown that the knowledge from pre-training can 517

be compromised by supervised fine-tuning (SFT) 518

on instruction data (Dou et al., 2023; Dong et al., 519

2023). A similar issue, known as alignment tax, 520

occurs in preference optimization (Lin et al., 2023; 521

Lu et al., 2024). While prior research has ad- 522

dressed the forgetting induced by the LLM fine- 523

tuning (Biderman et al., 2024; Luo et al., 2023), 524

the effects of accommodating specific user prefer- 525

ences and the impact of their heterogeneity remain 526

largely unexplored. In our study, we investigate 527

how personalized preference optimization affects 528

both global knowledge and general alignment. 529

Personalized Preference in LLM The use of a 530

single scalar reward to represent user preferences 531

presents a significant limitation when users have 532

diverse and conflicting preferences (Ji et al., 2023; 533

Zheng et al., 2023). To address this issue, some 534

studies have explored clustering users who pre- 535

sumably share the same reward (Chakraborty et al., 536

2024; Park et al., 2024). Others have considered 537

defining a reward function with multiple objective 538

dimensions (Jafari et al., 2024; Yang et al., 2024) to 539

achieve Pareto optimality among them (Guo et al., 540

2024; Zhong et al., 2024; Wang et al., 2024a). Ad- 541

ditionally, some approaches involve merging model 542

parameters trained for each dimension to accommo- 543

date the diverse combinations expressed by those 544

dimension (Jang et al., 2023; Rame et al., 2024). In 545

our study, we focus on the impact of preference het- 546

erogeneity on forgetting during personalized pref- 547

erence optimization, assuming that each user has a 548

specific, definitive type of preference. 549

6 Conclusion 550

This study explores the degree and nature of forget- 551

ting caused by personalized preference optimiza- 552

tion in instruction-tuned LLMs. Our findings in- 553

dicate a reduced likelihood of generating original 554

responses, alongside a decrease in the generation 555

of dispreferred responses. To address this, we in- 556

troduce Base-Anchored Preference Optimization 557

(BAPO), a method that anchors the likelihood of 558

base responses during the preference optimization 559

process. This approach effectively preserves global 560

knowledge and general alignment while success- 561

fully accommodating personalized preferences. We 562

have conducted extensive experiments to validate 563

the efficacy of BAPO and its benefits. 564
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Limitations While BAPO effectively preserves565

existing knowledge by leveraging the base re-566

sponse, it is important to note that if the base model567

is biased, the fine-tuned personalized model may568

also exhibit a similar bias. This consideration is569

crucial for machine learning practitioners. In our570

experiments, we utilized Q-LoRA for fine-tuning.571

Although we conducted an ablation study varying572

model capacity by adjusting the LoRA rank, a full-573

finetune might show different tendencies. Nonethe-574

less, using LoRA fine-tuning for personalization575

is a common approach in LLM context. Regard-576

ing computational costs, although BAPO requires577

the use of a base response, potentially increasing578

memory and computational demands during train-579

ing, most of these costs can be mitigated by pre-580

generating the base responses and caching them as581

offline datasets. Concerning the anchoring strength582

hyperparameter, λ, the extent and scope of forget-583

ting may vary based on the type of knowledge and584

the personalized preference types. Ideally, the λ585

value should be adaptively assigned, but this aspect586

is left for future research.587

Ethical Considerations In developing and im-588

plementing our approach to align LLMs with per-589

sonalized preferences, we must consider the poten-590

tial implications. While BAPO aims to accommo-591

date diverse user preferences, it is crucial to ensure592

this customization does not unintentionally rein-593

force harmful biases or perpetuate discrimination.594

Additionally, we must protect user privacy and595

data security, ensuring that personalization does596

not expose sensitive information or compromise597

user anonymity. Finally, maintaining a balance598

between personalized alignment and the integrity599

of general knowledge is essential to avoid scenar-600

ios where excessive personalization might result in601

misinformation or a loss of objective truth.602

Use of AI Assistants We utilize Copilot1 for the603

development of our code pipeline, primarily for604

its auto-completion capabilities. For drafting the605

paper, we employ ChatGPT2 to review the con-606

tent, focusing on identifying grammatical errors607

and awkward expressions. However, the core con-608

tent of the paper is original. We do not rely on AI609

assistants to generate any specific content that is610

closely related to the main claims of our research.611

1https://github.com/features/copilot
2https://chatgpt.com/
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A Dataset details 923

In our experiments, we utilize two datasets written in English for personalized preference optimization: 924

the DSP (Domain-Specific Preference) and P-Soups datasets. The DSP dataset, proposed by (Cheng 925

et al., 2023), comprises 13,000 prompts selected from the 52,000 Alpaca datasets (Taori et al., 2023). It 926

features preferred responses tailored to specific queries across four practical domains: Academy, Business, 927

Entertainment, and Literature & Art. Each prompt includes five responses: one from each of the four 928

domains and the original Alpaca response. In our pairwise preference setup, the response from the 929

corresponding domain is selected as the preferred one, while the others are considered rejected. This 930

results in 52,000 pairs per dataset, with 2,000 pairs designated for the validation split. The P-Soups 931

dataset (Jang et al., 2023), simulated by GPT-4, consists of pairwise feedback data where the AI is 932

instructed to choose the better of two candidate responses. This dataset builds on prompt instances from 933

Alpaca-GPT4, with additional prompts provided to ensure consistency in preference criteria. To facilitate 934

experiments that require the same prompt across different preference types, we exclude the additional 935

prompts introduced by P-Soups, keeping only the original prompts from the Alpaca dataset. The P-Soups 936

dataset categorizes six conflicting preferences into three dimensions: expertise, informativeness, and 937

friendliness, resulting in six preference combinations. Out of the 10,000 Alpaca-GPT4 prompts (Peng 938

et al., 2023), we derive between 47,000 to 49,000 pairwise feedback entries per preference type, allocating 939

45,000 samples for the training split and the remainder for the validation split. Note that while response 940

lengths may vary among preferences in the P-Soups dataset, they remain fairly consistent across different 941

domains in the DSP dataset. 942

B Resources & Others 943

We use six RTX A6000 48GB GPU cards for our experiments, although we do not employ multi-GPU 944

training. The GPU hours required for each run vary, but typically, running one epoch on the Phi-3-mini 945

model with a LoRA rank of 32, including time for evaluation, takes about 10 hours. To reproduce all 946

the results in this paper, approximately 1,600 GPU hours are required. We employ the Hugging Face 947

Transformers library (Wolf et al., 2019) for the overall code. 948
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C Proof of Proposition 1949

First, observe that under the linear reward model assumption, maximum likelihood estimation (MLE) of950

unknown parameter θ‹ is obtained as follows:951

θ̂MLE “ argminθPθB
LBTpθq “ argminθPθB

n
ÿ

i“1

´ log

ˆ

σ
´

xθ, ϕpxi, yiwq ´ ϕpxi, yilqy

¯

˙

, (7)952

where, σ is a sigmoid function and pxi, yiw, y
i
lq denotes i-th (out of n) preference sample with context xi,953

winning and losing response yiw, y
i
l respectively. Also, and θB “ tθ P Rd : }θ} ď Bu.954

955

In order to prove the Proposition 1, we bring the latest result for the sample complexity bound for the956

linear preference model which is provided in the Lemma 3.1 of (Zhu et al., 2023). We restate the lemma957

here for the completeness.958

Lemma 1. Assume, ϕpy, xq ď L for all possible response, context pairs py, xq and θ‹ ď B is unknown959

parameter for linear model in eq. 7. Then, for λ ą 0, constant C 1 ą 0 and estimator θ̂MLE for the960

Bradley-Terry model loss (eq. 7), the following confidence bound holds with probability 1 ´ δ:961

}θ̂MLE ´ θ‹}ΣD`λI ď C 1 ¨

d

d ` logp1{δq

γ2n
` λB2. (8)962

Here, ΣD “ 1
n

řn
i“1pϕpxi, yiwq´ϕpxi, yilqqpϕpxi, yiwq´ϕpxi, yilqqJ, γ “ 1{p2`expp´LBq`exppLBqq.963

964

Now, suppose we have full information of θG‹ and without loss of generality, θG‹ has nonzero values965

on the first d-k dimensions. (Note that according to Assumption. 2, this automatically implies that θL‹966

has nonzero components only on the last k dimensions.) Here, for the ease of analysis, we truncate only967

nonzero parts of θL‹ to make it a k-dimensional vector. Also, denote ϕLpy, xq “ ϕpy, xqd´k`1:d be the last968

k dimensional part of feature vector that governs personalization reward L. With this, we can calculate969

MLE of BT model only for the last k dimensional components in the following way:970

θ̂LMLE “ argminθLPθB1
LBTpθLq “ argminθLPθB1

n
ÿ

i“1

´ log

ˆ

σ
´

xθL, ϕLpxi, yiwq ´ ϕLpxi, yilqy

¯

˙

, (9)971

where θB1 “ tθ P Rk : }θ} ď B1u.972

973

Now, with Lemma. 1 and Assumptions 1, 2, it is easy to see the following confidence bound for the974

θL‹ holds by the following lemma.975

Lemma 2. With ϕpy, xqd´k`1:d ď L1 for all possible response, context pairs py, xq and θL‹ ď B1. Then,976

for λ1 ą 0, constant C2 ą 0 and unknown parameter θ̂LMLE from the modified Bradley-Terry model loss977

(eq. 9), the following confidence bound holds with probability 1 ´ δ:978

}θ̂LMLE ´ θL‹ }ΣL
D`λ1I ď C2 ¨

d

d ` logp1{δq

γ12n
` λ1B12. (10)979

Here, ΣL
D “ 1

n

řn
i“1pϕLpxi, yiwq ´ ϕLpxi, yilqqpϕLpxi, yiwq ´ ϕLpxi, yilqqJ, γ1 “ 1{p2 ` expp´L1B1q `980

exppL1B1qq.981

982

Combining Lemma 1 and Lemma 2, we see that Proposition. 1 holds.983
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