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ABSTRACT

Language models capture a broad spectrum of human knowledge due to being
trained on large and diverse real-world datasets. However, this knowledge is not
always necessary for linguistic tasks and can contribute to hallucinated outputs,
as real-world knowledge is inherently dynamic and context-dependent. Such be-
havior limits their applicability in domains where factual precision is critical, such
as healthcare and law. Moreover, LLMs trained on large text corpora inevitably
inherit societal biases present in their sources. In this work, we introduce Knowl-
edgeless LMs (KLLMs), a class of models intentionally pretrained to forgo mem-
orization of entity-specific knowledge while retaining structural and semantic un-
derstanding of language. We present our approach for designing and training these
models and evaluate them across a spectrum of downstream tasks, including lan-
guage understanding, commonsense reasoning, and context-based factual bench-
marks. Our results show that KLLMs achieve competitive or superior performance
compared to fully parametric LLMs, particularly when provided with the relevant
context, while substantially reducing reliance on memorized world knowledge.
This leads to lower hallucination risks and improved calibration, with more re-
liable confidence estimates. Overall, KLLMs demonstrate that strong linguistic
and reasoning capabilities can be maintained without extensive factual memoriza-
tion, highlighting knowledgeless pretraining as a promising paradigm for building
more efficient, faithful, and controllable language models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in encoding and lever-
aging a vast array of human knowledge (Petroni et al., 2019; Brown et al., 2020; Winata et al.,
2021; Heinzerling & Inui, 2021; Cohen et al., 2023a; Pan et al., 2023). Much of this success is
explained by parametric knowledge acquired during large-scale pretraining, including extensive and
diverse factual and entity-specific information. While such broad knowledge representation mate-
rially advances their capabilities across diverse downstream tasks, it also predisposes these models
to hallucination, generating plausible but ungrounded content (Maynez et al., 2020; Devaraj et al.,
2022; Tam et al., 2023; Kaddour et al., 2023; Huang et al., 2024), a phenomenon particularly prob-
lematic in high-stakes domains such as medicine or law. Hallucinations may stem from data-related
artifacts—including outdated, biased, or misinformed content (imitative falsehoods)—as well as in-
herent modeling limitations such as memorization of spurious correlations or long-tail facts. Recent
work suggests that this challenge stems from the nature of current training and evaluation paradigms,
combined with the sheer scale of factual knowledge, which makes it infeasible to encode exhaus-
tively within the finite capacity of a model (Tauman Kalai et al., 2025; Xu et al., 2024).

Considerable effort has been devoted to devising techniques for updating the parametric knowledge
of LLMs through targeted factual knowledge editing (Meng et al., 2022). However, these approaches
are often difficult to sustain (Wang et al., 2024), may be imprecise (Yang et al., 2024), or introduce
unintended side effects (Cohen et al., 2024a; Zhong et al., 2023). As LLMs are trained on static
datasets with a fixed cut-off date, their parametric knowledge is ill-equipped to keep up with the
rapid pace of novel facts and entities relating to current events. Moreover, LLMs inevitably inherit
societal biases embedded in their training data, manifesting as skewed, oversimplified, or stereotyp-
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Figure 1: Pipeline of Knowledgeless Language Model (KLLM) training and inference

ical outputs (e.g., algorithmic bias, selection bias across demographies). The prevailing strategy to
mitigate hallucination and account for new information involves grounding generation in external
evidence, such as Retrieval-Augmented Generation (RAG) using a curated document store (Lewis
et al., 2020) or graph (Edge et al., 2025). The LLM then no longer is required to maintain all per-
tinent knowledge in its weights. In this paper, we investigate the possibility of advancing this idea
even further.

We introduce a novel class of models—KnowledgeLess Language Models (KLLMs)—that are in-
tentionally trained to eschew specific world knowledge, in order to focus on the modeling of lan-
guage while still retaining an abstract or structural understanding of how knowledge is organized and
used. Beyond mitigating hallucination and bias, knowledgeless pretraining also offers practical ad-
vantages for the development and deployment of language models. Since KLLMs are not required to
memorize vast amounts of entity-specific knowledge, they can be pretrained on smaller, less special-
ized corpora, thereby reducing computational costs and environmental impact. This lighter training
burden makes the approach more sustainable and accessible, lowering barriers for research groups
and organizations with limited resources. Moreover, by decoupling linguistic and structural compe-
tence from factual recall, KLLMs enable a sharper focus on task-specific adaptation: Models can
be efficiently fine-tuned or contextualized for particular applications without carrying the overhead
of redundant parametric knowledge. Finally, this separation makes KLLMs particularly well-suited
for emerging agentic use cases—where models must act as adaptive, goal-driven systems that can
ground their reasoning in validated context and dynamically adjust to user needs—an increasingly
important direction in contemporary LLM research.

Hence, by overcoming the reliance on memorized facts, our goal is twofold: (1) to minimize halluci-
nations by reducing factual ambiguity, and (2) to lessen the amplification of societal biases found in
real-world data. Surprisingly, our empirical evaluation finds that knowledge-light pretraining retains,
and often strengthens, downstream performance. On SuperGLUE, KLLMs perform on par with or
surpass baselines, particularly on reasoning-heavy tasks like COPA and WSC. When provided with
the necessary context in factual reading benchmarks such as LAMA, SQuAD, and NQ, they consis-
tently match or outperform baselines, showing that strong linguistic and reasoning abilities do not
require memorized world knowledge. Closed-book evaluations further confirm that KLLMs carry
substantially less factual memory, validating the success of anonymization. In addition, KLLMs ex-
hibit improved calibration, with higher precision and more reliable confidence signals, making them
better aligned for applications where trustworthy uncertainty estimates are critical. Together, these
findings establish knowledgeless pretraining as a paradigm that holds potential for building more
efficient, faithful, and controllable language models, particularly suited to domains where factual
accuracy, interpretability, and safety are paramount.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 KNOWLEDGELESS LANGUAGE MODELLING

In order to develop an LLM that minimizes retention of real-world factual knowledge, we pro-
pose to preprocess pretraining data to markedly reduce the model’s propensity to memorize specific
factual knowledge from the data. In particular, we anonymize named entities by replacing their
mentions with placeholder tokens, preventing the model from learning to associate any factual in-
formation with the names of entities such as people, places, or events. We train models from scratch
on this preprocessed data without modifying the model architecture. During inference, the same
anonymization procedure is followed to anonymize both the query and the context (where appli-
cable), and entity names are restored as a postprocessing step. While some early work on reading
comprehension (Hermann et al., 2015) employed a similar entity anonymization scheme during su-
pervised training, we are not aware of previous work that applied this to pretraining and with the
explicit aim of pretraining a model that lacks entity-specific factual knowledge.

2.1 CORPUS ANONYMIZATION

Named Entity Recognition To effectively anonymize our pretraining data, we first seek to iden-
tify all named entities present in the text. We employ a state-of-the-art Named Entity Recognition
(NER) model from the Flair framework (Akbik et al., 2019). In particular, we use the large 18-
class OntoNotes model based on XLM-R embeddings,1 which obtained a reported 90.0% F1 on
OntoNotes (Schweter & Akbik, 2020).2 We use OntoNotes’ more fine-grained entity tagset (Hovy
et al., 2006; Weischedel et al., 2011a) for better control over which kinds of entity mentions are
anonymized and to be able to construct more informative placeholder tokens based on the entity
types.3 Importantly, in this work, we only anonymize tokens corresponding to named entity types,
not numerical or temporal values, which are also recognized by the NER model. This is based on
the conjecture that numerical and temporal values may be crucial for a deeper understanding of the
textual context. Retaining them ensures that the anonymized text remains coherent, readable, and
semantically meaningful, which is essential for effective model training without introducing bias.

Anonymization Strategy For each document in our dataset, we apply an anonymization proce-
dure that replaces all identified entities with placeholders following the format ENTX, where ENT
denotes the entity type and X is a unique identifier assigned within the specific document (see Ap-
pendix A). This strategy preserves the original sentence structure, enabling the model to discern
general linguistic patterns and relationships without being biased by concrete real-world instances.
By processing each document individually, we ensure that entity placeholders are unique within that
document and consistent for repeated mentions of the same entity. This consistency helps maintain
the coherence and logical flow of the text while still abstracting away factual details, thus preserving
the underlying structure of general knowledge without exposing the model to specific facts. How-
ever, we do not perform coreference resolution and therefore different named mentioned of the same
entity (e.g., “Barack Obama” and “President Obama”) will generally be assigned different tokens.
Figure 1 provides an example of text before and after applying our anonymization strategy.

This anonymization strategy notably limits models’ ability to acquire specific factual information
from the text, since most factual knowledge is grounded in one or more entity names. However, in
addition to the fact that NER models do not have perfect recall (and therefore a small proportion of
names will not be anonymized), some entities can be identified uniquely through descriptive refer-
ences, which may cause some leakage of entity-specific knowledge. For example, the sentence “The
44th President of the world’s most powerful country was born on an island state in that country.”
still encodes implicit entity knowledge, although our anonymization procedure was designed to re-
move such information. Another important limitation concerns gender information arising from the
use of gendered coreferences. Referring to an entity with pronouns such as “he” or “she” implicitly
reveals gender information and may lead the model to internalize gender-related biases. Nonethe-
less, we chose not to anonymize pronominal coreferences, as they constitute a fundamental linguistic
component of language and communication that we want the model to capture.

1https://huggingface.co/flair/ner-english-ontonotes-large
2Based on a manual inspection of 50 randomly sampled documents from our pretraining corpus, we estimate

an accuracy of approximately 87% in named entity recognition. In particular, rare or long-tail entity names
appear less likely to be correctly identified.

3See Appendix A for a list of the detected entity types.
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CNN/DailyMail Wikipedia
Total # of tokens 272M 2.2B
Average # of tokens per sentence 22.57 17.9
Total # of articles 300K 7M

Table 1: Pretraining corpus statistics comparing the CNN/DailyMail and Wikipedia datasets.

2.2 PRETRAINING PROCEDURE

Knowledgeless language models are pretrained on large, diverse corpora similar to standard lan-
guage models, the only difference being the application of the anonymization strategy described
above that limits the model’s direct exposure to entity-related knowledge. This ensures that the
model learns general linguistic patterns while minimizing reliance on memorized entity-specific in-
formation. We train autoregressive Transformer language models with the standard language mod-
eling objective of predicting the next token, but the approach is not limited to any particular model
architecture. The KLLM’s tokenizer should also be trained on the same anonymized corpus to en-
sure consistency. During fine-tuning and inference the same anomymization strategy is applied.
This ensures that the model is learning how to gather information about entities and to reason about
entities based on the given text without having memorized any information associated with entity
names.

3 EXPERIMENTS

In the following, we introduce the details of experiments, including the considered models and
baselines, training procedures, benchmark datasets, and evaluation protocols.4

Pretraining Data Our pretraining data consists of two English text corpora that complement each
other in scope and content. The CNN/DailyMail dataset (Hermann et al., 2015) comprises thousands
of English language news articles across diverse domains such as politics, business, sports, and tech-
nology, providing linguistically rich material with complex sentence structures and a high density
of named entities, which makes it particularly valuable for contextual understanding. In contrast,
the English Wikipedia (Bridge, 2001) offers comprehensive coverage of general world knowledge
through structured expository passages. This can enable the model to acquire an underlying rep-
resentation of the organization and structure of human knowledge, which can later be applied in
downstream reasoning tasks. Table 1 summarizes the main statistics of the two corpora. Wikipedia
is substantially larger in terms of token count and number of articles, and contains longer aver-
age sentences, whereas CNN/DailyMail, while smaller, provides denser entity mentions within its
news-oriented domain. During preprocessing we remove non-UTF-8 characters, which reduces the
number of redundant tokens in the tokenizer vocabulary. We concatenate these two corpora and
anonymize entity mentions using the mechanism described in Section 2.

Tokenization We train BPE tokenizers (Sennrich et al., 2016) on our pretraining corpus.
Anonymization tags (e.g. PERSON184) are added as reserved tokens in the tokenizer vocabulary
to avoid them from being split into multiple tokens. Given that our training corpus is substantially
smaller than the ones used for the original models considered in our study, we use a reduced vocab-
ulary size of 30k tokens. For consistency we use the same vocabulary size for our baseline standard
language models.

Model Pretraining We pretrain models from scratch using the LLaMA model architecture fam-
ily (Touvron et al., 2023; Dubey et al., 2024). In particular we use the Llama-3.2-1B and
Llama-3.2-3B models, as well as SmolLM-135M, SmolLM-360M, and SmolLM-1.7B from the Hug-
gingFace SmolLM model (Allal et al., 2025). As baselines we train standard language models
(referred to as SLMs) from scratch on our pretraining corpus but without applying the anonymiza-
tion process. Therefore for each model architecture and size we can compare our knowledgeless

4Our pretrained KLLMs, preprocessing and evaluation scripts will be released upon publication.
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BoolQ CB COPA MultiRC RTE WiC WSC Average
Original 77.8 78.5 58.8 66.9 69.4 64.1 63.8 68.5
SLM 70.6 75.0 55.7 64.4 62.8 61.2 61.4 64.4
KLLM 70.5 77.9 59.0 64.5 66.5 58.8 63.7 65.8
∆ −0.1 2.9 3.3 0.1 3.7 −2.4 2.3 1.4

Table 2: SuperGLUE task results for models based on Llama-3.2-1B, including the original
pretrained model, our standard model trained from scratch (SLM) and our knowledgeless model
(KLLM). Accuracy is reported for all tasks except MultRC (F1).

language model (KLLM) to its SLM counterpart, differing only in its exposure to explicit entity
information. Both models are trained on the same data size and for the same duration, which guar-
antees a fair comparison and allows us to attribute performance differences directly to the presence
or absence of anonymization rather than other confounding factors. The pretraining loss curves are
given in Appendix B. Additionally, we compare the results of both trained models against the origi-
nal pretrained model snapshot, trained on orders of magnitude more data. This provides an external
reference point to put our results in context.

Fine-tuning Since our pretraining is conducted at a comparatively small scale, we cannot assume
strong zero-shot or few-shot capabilities. Therefore, for each evaluation benchmark we perform
supervised fine-tuning using the corresponding training split of the dataset. To maintain consis-
tency with our pretraining regime and to enable to the model to learn to make inferences based on
anomyized text, the fine-tuning datasets are also anonymized prior to fine-tuning the knowledgeless
models.

Inference Our inference pipeline follows a three-step anonymization process designed to align
with the pretraining setup of our KLLMs. First, we anonymize both the input and its accompanying
context using the same entity-masking scheme applied during pretraining. The anonymized data is
then provided to the model for inference, ensuring that it operates without direct access to entity-
specific information. Finally, the model outputs are de-anonymized by substituting back the original
entities (see the example in Figure 1). This enables standard evaluation against the gold labels,
ensuring that the evaluation faithfully reflects the intended knowledgeless setting while maintaining
comparability to existing benchmarks.

4 RESULTS

To assess the performance of our KLLMs, we evaluate them on diverse downstream tasks in sev-
eral different setups. Across all tasks, we follow the standard evaluation protocols defined in the
respective benchmark setups, ensuring comparability with prior work. The main evaluation metric
is accuracy, which is reported as a percentage.

4.1 TASKS NOT REQUIRING ENTITY KNOWLEDGE

First, we employ the SuperGLUE benchmark (Wang et al., 2019). SuperGLUE is a suite of ten
challenging language understanding tasks, covering areas such as question answering, textual en-
tailment, co-reference resolution, and word sense disambiguation. The benchmark is particularly
suitable for our evaluation, as its tasks are designed to test diverse aspects of language understand-
ing and place a strong emphasis on reasoning. Table 2 presents the performance comparison between
our KLLM, based on Llama-3.2-1B, against the baseline standard language model (SLM) across
the SuperGLUE benchmark. The KLLM achieves comparable or slightly improved results on most
tasks, with notable gains on CB (+3.9%), COPA (+5.9%), and WSC (+3.7%). Some tasks, such
as BoolQ, RTE, and WiC, show small decreases relative to the baseline, with the largest relative
drop observed on WiC (-3.9%). Importantly, these results demonstrate that, despite the pretrain-
ing preventing it from directly acquiring factual knowledge about entities, KLLMs still effectively
capture the linguistic, grammatical, and semantic structure of the language, enabling strong perfor-
mance on both reasoning and comprehension tasks. This suggests that parametric knowledge is not
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Model LAMA SQuAD NQ FEVER HaluBench

SLM KLLM SLM KLLM SLM KLLM SLM KLLM SLM KLLM

SmolLM-135M 15.8 18.6 15.2 16.1 4.0 4.1 82.8 89.5 58.5 61.2
SmolLM-360M 21.4 24.9 20.3 22.0 8.5 9.9 83.6 90.1 59.8 65.5
SmolLM-1.7B 33.2 38.5 35.9 39.8 16.3 19.2 86.9 94.7 64.3 74.7

Table 3: Factual Reading accuracy results comparing KLLM and baseline across the LAMA,
SQuAD, NQ, FEVER, and HaluBench for different SmolLM model sizes. For LAMA, SQuAD,
NQ, and HaluBench we report accuracy scores; for FEVER, we report F1 scores.

strictly necessary for maintaining a robust understanding of language structure and meaning, and
that KLLMs can leverage task-specific contextual cues to achieve competitive performance. More
broadly, these findings demonstrate that knowledgeless training may help reduce pretraining require-
ments when the downstream application does not require extensive world knowledge, making it a
promising direction for developing models that are more efficient and easier to adapt to specialized
domains.

4.2 FACTUAL READING COMPREHENSION

Our next set of experiments aims to assess whether our knowledgeless models are able to perform
knowledge-intensive tasks including question answering, fact checking and hallucination detection
when the necessary factual knowledge is provided as context. LAMA (Petroni et al., 2019) is
designed to probe the factual knowledge encoded in language models by formulating cloze-style
queries about world facts. SQuAD (Rajpurkar et al., 2016) is a large-scale question answering
dataset based on Wikipedia passages, while Natural Questions (Kwiatkowski et al., 2019) provides
real user queries paired with corresponding answers. Since our models are not expected to retain
parametric factual knowledge, we adapt these benchmarks to a setup where the necessary back-
ground information is explicitly provided as context (as is already done in SQuAD). This allows us
to assess the models’ ability to extract and reason over knowledge from context rather than relying
on memorization.

FEVER (Thorne et al., 2018) is a large-scale fact verification benchmark, where claims must be
supported or refuted using evidence from Wikipedia, directly testing a model’s ability to ground
predictions in verifiable context. HaluBench (Ravi et al., 2024) is designed to measure hallucination
tendencies across diverse generation tasks, providing a fine-grained assessment of factual reliability.

Table 3 presents the performance of KLLM and SLM models across these benchmarks. On the
factual reading tasks (LAMA, SQuAD, and NQ), KLLM training consistently improves performance
over the baselines, with gains that grow larger at scale (e.g., +5.3 on LAMA and +3.9 on SQuAD
with SmolLM-1.7B). These results confirm that removing entity-specific cues during pretraining
does not weaken factual reasoning; rather, it encourages models to leverage the input context more
effectively.

Strikingly, the improvements are even more pronounced on fact-checking and hallucination detec-
tion. On FEVER, KLLM models achieve up to +7.8 F1 over their baselines, while on HaluBench the
gap reaches as high as +10.4% accuracy at the 1.7B scale. These benchmarks explicitly evaluate a
model’s ability to recognize misinformation and avoid generating unsupported claims, and the con-
sistently higher scores of KLLM models suggest that knowledgeless pretraining strengthens their
ability to abstain from or resist hallucinations. Together, these findings demonstrate that KLLMs
not only retain robust factual reasoning under context but also provide an advantage in maintaining
faithfulness and reliability.

4.3 COMMONSENSE REASONING

Furthermore, we evaluate our KLLMs on three widely-used commonsense reasoning benchmarks.
CommonsenseQA (Talmor et al., 2019) tests the model’s ability to answer multiple-choice ques-
tions that require broad everyday knowledge and commonsense inference. StrategyQA (Geva et al.,
2021) challenges models to reason over implicit multi-step processes to answer yes/no questions,
emphasizing reasoning rather than memorized facts. PIQA (Bisk et al., 2019) focuses on physi-
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Model CommonsenseQA StrategyQA PIQA

SLM KLLM SLM KLLM SLM KLLM

SmolLM-135M 26.5 31.1 52.2 55.5 65.9 69.6
SmolLM-360M 30.4 34.9 56.0 60.7 67.8 71.2
SmolLM-1.7B 34.6 39.6 61.8 66.7 70.5 76.2

Table 4: Commonsense reasoning results comparing KLLM and baseline SLM accuracy across three
benchmarks (CommonsenseQA, StrategyQA, and PIQA), for different SmolLM model sizes.

Model LAMA SQuAD

SLM KLLM SLM KLLM

SmolLM-135M 12.5 0.7 11.2 0.4
SmolLM-360M 20.8 1.2 18.6 0.9
SmolLM-1.7B 34.7 3.9 33.4 1.8
LLaMA-1B 34.5 3.7 33.1 1.7
LLaMA-3B 40.3 3.8 39.7 1.9

Table 5: Closed-book QA accuracy results on LAMA and SQuAD comparing baseline (SLM) and
KLLM performance across SmolLM and LLaMA models. The consistently low results for KLLMs
demonstrate that our approach successfully prevents them from acquiring factual knowledge.

cal commonsense, assessing the model’s understanding of everyday interactions and the principles
of physical reality. In all cases, we provide the necessary context or task-specific information to
the models, ensuring that the evaluation reflects their reasoning capability rather than reliance on
parametric knowledge.

Table 4 summarizes the results of our SmolLM-based KLLMs and SLM baselines. KLLMs con-
sistenctly outperform the baselines across all three tasks across all model scales, with improve-
ments ranging from modest gains for smaller models to substantial margins for the 1.7B architecture
(+5.0 on CommonsenseQA, +4.9 on StrategyQA, and +5.7 on PIQA). These results suggest that
anonymization during pretraining does not impede the models’ ability to capture commonsense pat-
terns; instead, it encourages reliance on contextual reasoning rather than memorized associations.
Combined with the reductions in hallucination observed in generation, this provides strong evidence
that knowledgeless pretraining improves both factual robustness and commonsense generalization,
particularly as the model capacity increases.

4.4 CLOSED-BOOK QA

In order to assess that our knowledgeless models are not acquiring parametric knowledge despite
anonymization, we additionally evaluate our KLLM models on the LAMA and SQuAD datasets
in a closed-book setting, where no supporting context is provided. This enables us to quantify
the effectiveness of our anonymization strategy, both because due to imperfect precision a small
proportion of named entities are preserved, and to verify whether anomymization is sufficient to
remove most factual knowledge.

Table 5 reports the results. The closed-book evaluationd clearly shows that KLLM models retain
only a minimal amount of factual knowledge compared to their non-anonymized baselines. While
baseline models attain considerable accuracies, KLLM consistently lags far behind across all scales,
with performance only marginally above random guessing. These findings demonstrate that KLLM
training produces models that are largely knowledge-free, confirming that our anonymization strat-
egy limits the accumulation of parametric knowledge by deliberately preventing exposure to entity-
specific information during pretraining.

4.5 CALIBRATION AND FACTUALITY

Calibration We evaluate the calibration of each of our models when using the model’s output
probability to predict model correctness or certainty. A decision threshold is chosen through a
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Model Precision Recall F1 Score
SLM KLLM SLM KLLM SLM KLLM

SmolLM-135M 35.2 52.5 14.0 15.9 20.1 24.4
SmolLM-360M 36.4 55.7 19.8 21.5 25.6 31.1
SmolLM-1.7B 46.7 63.2 29.5 33.9 36.2 44.1
LLaMA-1B 43.9 59.6 29.1 32.1 34.9 41.9
LLaMA-3B 45.6 63.8 31.9 36.3 37.4 46.2
Average 41.6 59.0 24.9 28.0 30.9 37.5

Table 6: Calibration evaluation reporting Precision, Recall, and F1 scores on the LAMA dataset
when using the model’s output probability to predict model correctness, for the SmolLM family,
Llama-3.2-1B, and Llama-3.2-3B, comparing SLM and KLLM versions.

Model Precision Recall F1 Score
SLM KLLM SLM KLLM SLM KLLM

SmolLM-135M 50.4 69.8 8.0 10.5 13.9 18.0
SmolLM-360M 50.9 71.9 13.1 16.5 20.8 26.9
SmolLM-1.7B 51.5 74.4 26.4 29.3 34.8 42.0
Average 50.9 72.0 15.8 18.8 23.2 29.0

Table 7: Abstention tuning results, reporting Precision, Recall, and F1 scores on the LAMA dataset
after abstention tuning on the SmolLM family, Llama-3.2-1B, and Llama-3.2-3B, comparing SLM
and KLLM versions.

parameter search on a held-out validation set, selecting the value that maximizes a model’s own F1
score. The confidence signal used for this calibration is the probability assigned by the model to the
first token in its generated output, which serves as a proxy for its certainty in producing a correct
answer. Table 6 presents the results of each of our KLLM models compared to its corresponding
baseline on the LAMA dataset. The evaluation metrics used here are precision (the proportion of
attempted predictions that are correct, recall (the proportion of correct answers the model attempts),
and their harmonic mean, the F1 score, to capture trade-offs between correctness and coverage.

KLLMs consistently outperform the baselines across all model sizes and metrics. While the absolute
recall values remain modest, KLLMs achieve considerably higher precision and balanced F1 scores,
with gains becoming more pronounced as model capacity increases. On average, KLLMs surpass
the baseline by +17.4 points in precision, +3.1 points in recall, and +6.6 points in F1. These results
indicate that knowledge-light training improves the alignment between model confidence and cor-
rectness, enabling more reliable use of probability estimates as a calibration signal. Importantly, this
suggests that removing parametric world knowledge may even enhance a model’s ability to act as
a calibrated predictor of its own correctness — an ability that is crucial in downstream applications
where uncertainty estimation is central.

Abstention Tuning We additionally employ a factuality-oriented fine-tuning strategy aimed at en-
couraging models to abstain when uncertain rather than producing incorrect answers (Cohen et al.,
2023a; Kadavath et al., 2022b). Specifically, we partition the training data into two subsets. The
model is first fine-tuned in the standard way on the first subset. It is then evaluated on the second
subset, and any instance where the model outputs an incorrect prediction is relabeled with the ab-
stention output “I don’t know the answer”. A second fine-tuning stage is then performed on this
modified data, providing the model with explicit abstention supervision.

As shown in Table 7, this procedure yields consistent improvements in calibration and reliability. On
average, KLLM models reach an F1 score of 29.0, compared to 23.2 for their baselines. Crucially,
when compared against the standard pretrained LLaMA-8B—trained on orders of magnitude more
data (trillions of tokens versus just 2.5B for KLLM)—the performance gap is remarkably small. For
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example, on SuperGLUE, our KLLM achieves an average score of 65.8, compared to 68.5 for the
standard model, despite the latter’s vastly larger training corpus and heavier pretraining regime.

These findings highlight two key insights: first, that knowledge-light models may be especially well-
suited for abstaining from misinformation, since they rely less on memorized parametric knowledge
and more on validated context; and second, that such models can remain highly competitive with
standard LLMs even under drastically lighter pretraining.

5 RELATED WORK

The primary motivation of this work is to develop models that are more robust by relying on exter-
nally provided, validated context rather than on their own parametric knowledge. As demonstrated
both theoretically and empirically by Xu et al. (2024), hallucinations in LLMs are inevitable, since
no model can fully encode the entirety of existing factual mappings. Additionally, the fact that
traditional training and evaluation reward guessing more than uncertainty acknowledgment makes
it natural for LLMs to hallucinate (Tauman Kalai et al., 2025). This topic has been studied from
many different perspectives (Augenstein et al., 2023; Sahoo et al., 2024; Huang et al., 2025). This is
also related to the setting of selective prediction, where models can abstain from answering a query
(Varshney et al., 2022; Kamath et al., 2020).

Another complementary direction to reducing hallucinations is improving model calibration (Guo
et al., 2017), i.e., aligning the model’s confidence with the actual likelihood of correctness. This is
particularly relevant to our work, as KLLMs are designed to abstain more readily from misinforma-
tion and benefit from mechanisms that quantify uncertainty. Prior approaches to calibration often op-
erate at the logit level through post-hoc transformations (Desai & Durrett, 2020; Jiang et al., 2021),
or rely on uncertainty estimation methods (Kuhn et al., 2023). More recent research has explored
leveraging language models themselves for calibration, either by fine-tuning on correctness-labeled
data (Kadavath et al., 2022a; Lin et al., 2022), prompting or in-context learning strategies (Cohen
et al., 2023a; Alivanistos et al., 2022), or zero-shot instruction-oriented setups (Cohen et al., 2023b;
Dhuliawala et al., 2023; Feng et al., 2024), as well as through consistency sampling (Yoran et al.,
2023). Other approaches go further by exploiting internal representations for uncertainty classifica-
tion (Azaria & Mitchell, 2023), introducing explicit tokens for abstention or uncertainty (Lu et al.,
2022; Cohen et al., 2024b), or curating specialized datasets to train models to refuse unanswerable
queries (Zhang et al., 2024; Cohen et al., 2025).

6 CONCLUSION

In this work, we introduced KnowledgeLess Language Models (KLLMs), a class of models de-
liberately trained to minimize reliance on parametric factual knowledge while retaining structural
and linguistic understanding. Our experiments show that KLLMs maintain strong downstream per-
formance, reduce hallucinations, and exhibit improved calibration, highlighting their reliability and
suitability for high-stakes applications. By decoupling structural competence from memorized world
knowledge, KLLMs offer practical advantages, including reduced pretraining costs, lower environ-
mental impact, and enhanced adaptability for task-specific fine-tuning. These properties make them
particularly promising for agentic applications, where models must act as adaptive, goal-driven sys-
tems that ground reasoning in validated context and interact dynamically with users or external tools.
Looking forward, RAG or other tool-use approaches could enable KLLMs to access high-fidelity
knowledge dynamically, combining robustness against hallucination with factual grounding. Evalu-
ating these models in real-world interactive settings will further reveal their capabilities, reliability,
and alignment under open-ended deployment scenarios. Overall, KLLMs provide a promising path-
way toward language models that are competitive, controllable, and practically deployable across
diverse domains.
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A APPENDIX: ANONYMIZATION DETAILS

Entity Recognition. Table 8 lists the entity types detected in the entity recognition phase, among
which we only consider genuine named entities for anonymization, while retaining numeric values
in the text.

Named Entity Types

Entity Type Description
PERSON People, including fictional
NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc.
ORGANIZATION Companies, agencies, institutions, etc.
GPE Countries, cities, states
LOCATION Non-GPE locations, mountain ranges, bodies of water
PRODUCT Vehicles, weapons, foods, etc.
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language

Number-Related Value Categories

Value Type Description
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage (including “%”)
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL ”first”, ”second”
CARDINAL Numerals that do not fall under another type

Table 8: OntoNotes Entity Types (adapted from Weischedel et al. 2011b): Our anonymization strat-
egy anonymizes named entities but not numerical values.

Adding New Identification Tokens to the Vocabulary. In order to identify each of the specific
entities within a document, we assign a specific identity token additionally to the entity type de-
scription (Section 2). Ideally, the generated tokens should exhibit maximal randomness to ensure
minimal semantic overlap with any existing tokens in the language. To achieve this, we generate
100 novel tokens, each consisting of a randomly constructed string of 10 characters. Each character
is sampled uniformly from a set comprising uppercase letters and digits. The choice of 100 tokens
reflects a balance between distinctiveness—ensuring that each entity in a document can be uniquely
identified—and frequency, such that each token occurs sufficiently often for the model’s learned
semantics to remain effectively random.

B APPENDIX: PRETRAINING LOSS

For further analysis, in Figures 2 and 3, we plot the loss curves of our KLLM pretraining using
Llama-3.2-1B.

During training, we observe that the non-anonymized baseline consistently achieves lower loss val-
ues compared to the anonymized models, with convergence occurring after less than one epoch. This
behavior is expected, as explicit entity references provide stronger predictive cues than anonymized
placeholders. For instance, predicting the continuation of “Barack Obama was born in ...” is consid-
erably easier than for the anonymized variant “Person74 was born in ...”. The same holds for “The
iPhone was developed by ...” in comparison with “Product42 was developed by ...”. A second factor
contributing to this gap is that descriptive phrases referring to entities (e.g., “the 44th President of
the United States”) are notably easier for the baseline model than for the knowledge-less version,
which lacks entity-specific grounding. Finally, some loss discrepancies stem from limitations of
our anonymization procedure itself, as the entity recognizer occasionally fails to anonymize certain
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Figure 2: Training loss curves of the KLLM as
well as of the baseline, for the Llama-3.2-1B
architecture

Figure 3: Evaluation loss curves of the KLLM
as well as of the baseline, for the Llama-3.2-1B
architecture

mentions, leaving them as direct predictive cues. Together, these factors explain both the lower loss
values and the earlier stagnation of the non-anonymized baseline.
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