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1 Abstract

Prior efforts in building computer-assisted
pronunciation training (CAPT) systems
often treat automatic pronunciation
assessment (APA) and mispronunciation
detection and diagnosis (MDD) as separate
fronts. APA aims to provide multiple
pronunciation aspect scores across diverse
linguistic levels, while MDD focuses
10 instead on pinpointing the precise phonetic
1 errors made by non-native language
12 learners. However, a full-fledged CAPT
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13 system should integrate both features
14 simultaneously. To address this pressing
15 need, we in this work first propose
16 HMamba, a novel hierarchical selective

17 state space method that jointly tackles APA
18 and MDD tasks. In addition, to enhance

19 model performance, we introduce a novel
20 loss function, decoupled cross-entropy loss
21 (deXent), specifically tailored for the
22 MDD task to facilitate better supervised
23 label learning. A comprehensive set of
2 empirical results carried out on the
25 speechocean762  benchmark  dataset
26 demonstrate the effectiveness of our
27 approach in multi-aspect multi-granular
28 assessments. Furthermore, our proposed
29 approach  also  yields considerable
30 improvement in MDD performance over a
31 competitive baseline, achieving an F1-

32 score of 63.32%.

;31 Introduction

s In this era of globalization and technologization,
35 computer-assisted pronunciation training (CAPT)
36 systems have emerged as an appealing alternative
a7 to meet the surging demand for second language
3 (L2) learning. In comparison with traditional
30 curriculum learning, CAPT offers advantages in
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Figure 1: A running example depicts the evaluation
differences between APA and MDD systems in the
reading-aloud scenario.

«0 terms of time-efficiency and cost-effectiveness.
4 More importantly, it redefines the conventional
2 pedagogical method from teacher-directed to self-
43 directed learning, thereby providing a stress-free
a2 environment for L2 learners (Eskenazi et al., 2009).
ss In addition, CAPT applications have achieved
46 significant success in various commercial sectors
a7 Or testing services, such as Duolingo (McCarthy et
ss al., 2021) and the SpeechRater engine (Zechner et
s al.,, 2009) developed by Educational Testing
so Service (ETS). Typically, a de-facto archetype
s1 system for CAPT encompasses a “reading-aloud”
s2 scenario, where a non-native speaker is given a text
s3 prompt and instructed to pronounce it correctly. In
s this context, previous literature roughly divides
ss applications of CAPT into two categories:
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ss automatic pronunciation assessment (APA) and
s7 mispronunciation detection and diagnosis (MDD),

10e  On these grounds, it is evident that both APA and
10e MDD are indispensable ingredients of CAPT,

ss with each category dedicated to specific facets of 110 playing complementary roles in its success.

so pronunciation training. APA aims to evaluate the
s L2 learners’ spoken proficiency by providing fine-
o1 grained feedback on various aspect assessments
e (e.g., accuracy, fluency) across multiple linguistic
s levels (e.g., utterance level, word level) (Kheir et
e al., 2023). To evaluate the extent of L2 learners’
ss spoken proficiency, APA systems typically employ
ss scoring models that are either jointly trained (Gong
o7 et al., 2022; Chao et al., 2022) or jointly exploit
s multiple regressors (Banno et al., 2022a; Banno
o and Matassoni, 2022b) to generate scores for each
70 aspect. As such, users can receive multi-aspect
71 assessment scores predicted by an APA system, as
72 illustrated in the example shown in Figure 1.
72 Compared with APA, MDD focuses more on non-
72 native speakers’ phonetic errors (Chen and Li,
75 2016). These errors usually have clear-cut
76 distinctions  between correct and incorrect
77 pronunciations, and can be easily quantified
7s through deletions, substitutions, and insertions.
79 Therefore, MDD is often more deterministic than
so APA. For instance, a number of MDD models are
a1 capitalized on classifier-based approaches (Truong
a2 et al., 2004; Strik et al., 2009; Harrison et al. 2009),
ss enabling precise identification of the exact
s positions where pronunciation errors occur within
s5 an utterance. This capability provides L2 learners
ss with specific feedback on discrepancies between
e7 intended pronunciation and actual pronunciation.

Albeit the phonetic (segmental) errors are
8o crucial in the initial stages of non-native language
o0 learning, prosodic (suprasegmental) errors may

88

o1 often cause detrimental impact on the perception of ,,,

o2 fluency and lead to poor intelligibility (Chen and
o3 Li, 2016). This effect may be more pronounced in
o learning  stress-timed languages like English
o5 compared with syllable-timed languages such as
96 Chinese (Ding and Xu, 2016). To tackle this
o7 problem, APA can play a pivotal role by offering
o prosodic assessment or intonation assessment for
9o L2 learners. For example, Lin et al. (2021a)
100 introduced rhythm rubrics to predict sentence-level
101 stress in L2 English, demonstrating a strong
102 correlation with the prosody scores assessed by the
10s human experts. In addition, Arias et al. (2010)
104 proposed text-independent systems for assessing
105 intonation and stress, focusing on measuring the
106 similarity between a student’s intonation or stress
107 curve and that of a reference response.

111 However, previous studies on APA and MDD
appear to have developed independently, with
limited research exploring their integration or
112 combined use. Ryu et al. (2023) proposed a joint
115 model for APA and MDD, leveraging knowledge
1 transfer and multi-task learning. Their findings
17 revealed high negative correlations between
several assessment scores and mispronunciations,
suggesting that the human assessors may be
120 influenced by phonetic errors when evaluating
121 overall proficiency scores for various aspects.
122 While jointly modeling both tasks can achieve
123 better performance than a single task, only
124 utterance-level holistic scores are considered in
125 their experiments. In order to provide more
126 comprehensive and fine-grained feedback for L2
learners, other granularities, such as the phone or
128 word level, should also be aptly modeled. In this
20 paper, we propose a novel hierarchical selective
state space model, dubbed HMamba, for
131 multifaceted CAPT. Unlike previous studies that
132 used Transformer-based structures (Gong et al.,
133 2022; Chao et al., 2022; Do et al., 2023a),
132 HMamba leverages Mamba (Gu and Dao, 2023), a
135 selective state space model (SSM) approach, is
136 capable of addressing both APA and MDD tasks
simultaneously. Being aware of linguistic hierarchy,
13s HMamba can render the intrinsic multi-layer
speech structure and provide more detailed, multi-
120 granular pronunciation assessments while offering
accurate mispronunciation feedback.
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The main contributions of this paper can be
summarized as follows:

14s 1. We introduce HMamba, a unified and
linguistically hierarchy-aware model that jointly
tackles APA and MDD tasks, achieving superior
overall performance compared to prior arts that
are either single-task or multi-task models.

142

We propose a novel loss function, decoupled
cross-entropy loss (termed deXent), which
effectively addresses the inherent issue of text
prompt-aware MDD methods. Additionally,
deXent is feasible and well-suited for optimizing
the MDD performance, particularly in striking
the balance between precision and recall.

To the best of our knowledge, this is the first

work to adopt and extend Mamba in the APA and
MDD tasks for comprehensive CAPT.
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Figure 2: An overall architectural overview of HMamba, which consists of a bottom-up hierarchical modeling
structure with several Mamba blocks across three levels (viz. phone, word, and utterance levels) that can perform

multi-granular APA and MDD in parallel.
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2 Methodology

2.1 Problem Definition

16

o

Considering an input time sequence of speech
signal u uttered by an L2 learner and a reference
text prompt p that contains N -length canonical
phone sequence p = {py, Py, --- s Pn_1 }> We adopt
a set of feature extractors along with an aligner to
extract an acoustic feature sequence X =
{X¢,Xq,...,Xy_q} that aligned with p from u.
Our model aims to address APA and MDD tasks
simultaneously but with separate processing flows:
First, we define G as a set of linguistic
granularities, and for each granularity g € G the
model manages to predict a set of aspect scores
s? = {s3,s7,..., 5%/1971}’ where M, refers to the
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172 number of aspect scores of target granularity g. In
175 this work, G = {gP"", g¥"¢, g**}, where we have
176 granularities of gP"" (phone level), g*"¢ (word
177 level), and g“!* (utterance level) for the APA task.

17 Meanwhile, the model also requires to detect error
179 states € = {eg, eq,...,ey_1} with respect to p
10 and in turn generate the correct diagnostic output
181y = {Yos Y1, Yn_1} » Where y, denotes the
182 realized phone of the learner corresponds to p,, .

183 2.2

184 In this subsection, we elucidate the details of the
185 proposed model, HMamba, which is devised as a
186 hierarchical structure built upon the paradigm of
1e7 selective SSM. An overview of the complete
188 architecture is depicted in Figure 2. Specifically,
1es HMamba leverages the APA and MDD modules,
190 which contain multiple regressors and a classifier,
191 respectively. These modules collectively generate
192 the corresponding aspect score sequence s? for
193 each linguistic granularity g, as well as the
102 phonetic error states e and diagnosis y .
105 Furthermore, each classifier and regressor is
16 implemented with a simple feed-forward network
197 (FFN).

Hierarchical Selective State Space Model



108 Acoustic Feature Extraction: In order to portray
10 the non-native speaker’s pronunciation quality,
200 previous studies on either APA or MDD generally
201 adopt a pre-trained acoustic model to extract
202 goodness of pronunciation (GOP)-based features
203 (Witt and Young, 2000; Hu et al., 2015; Shi et al.,
204 2020). However, these GOP-based features merely
205 offer the segmental-level information that may not
206 be amenable for capturing the prosodic errors of an
207 L2 learner. Given this limitation, apart from GOP,
208 we utilize a pre-trained acoustic model as an
200 aligner to identify phone boundaries (including
210 silence), facilitating the extraction of other
211 prosodic features such as the phone duration and
212 statistics of root mean squared energy (Dong et al.,
213 2024). To alleviate the low-resourced data problem
214 (Chao et al., 2022), we also consider other self-
215 supervised learning (SSL) features including
216 wav2vec 2.0' (Baevski et al., 2020), HuBERT?
217 (Hsuetal., 2021), and WavLM? (Chen et al., 2022).
218 All these features are then concatenated and
219 subsequently projected through a linear layer to
220 form a sequence of acoustic features X . The
221 transformation of each time step ¢ is given by:

a, = [afol); aglur; afng; a}uQv; a?bt; a;ulm] (1)
x, = Wa,+Db )

222 where W and b are trainable parameters. Notably,
223 a dropout rate of 10% is applied to all SSL features
224 prior to the concatenation due to the discrepancy in
225 dimensionality between these and other features.

226 Phonological Feature Extraction: In addition to
227 acoustic cues, a common practice in CAPT is to
228 inject the phonological information by introducing
220 the reference text prompt features such as
230 canonical phoneme embeddings (Gong et al.,
231 2022), context-aware sup-phoneme embeddings
232 (Chao et al., 2023), and vowel/consonant
233 embeddings (Fu et al, 2021). In contrast to
234 previous studies (Gong et al., 2022; Chao et al.,
235 2022; Do et al., 2023a), we extract the canonical
23 phoneme embeddings EP"™ from p using a phone
237 embedding layer that includes the silence (SIL)
238 information, which has been shown to be crucial
230 when evaluating a learner’s spoken proficiency. In
220 addition, an absolute positional embedding E***

'https://huggingface.co/facebook/wav2vec
2-large-xlsr-53
https://huggingface.co/facebook/hubert-
large-1160k

2erand a relative position embedding E™ are
212 extracted. Distinct from E®* | E™ denotes
243 relative positions of phones in a word using tokens
244 such as begin [B], internal [I], end [E], and
245 single-phone word [S] tokens. For special cases
226 Of silence positions, we explicitly categorize them
247 as either long silence [LS] or short silence [SS]
245 based on their duration. According to the guideline
220 suggested by ETS (Evanini et al., 2015), positions
250 with a silence duration exceeding 0.495 seconds
251 are assigned to [L.S]; otherwise, they are assigned
252 to [SS]. Finally, all these embedding features are
253 point-wise added to X to obtain phone-level input
254 features for subsequent modeling:

Hggh" =X+ Ephn + Eabs + Erel

3)

255 Mamba Blocks: Recently, the state space model
256 (SSM) and its variants have gained widespread
257 adoption for sequence modeling. Among them,
255 Mamba (Gu and Dao, 2023) has shown outstanding
250 performance over Transformer (Vaswani et al.,
260 2017) across various domains and tasks, including
261 natural language processing (NLP) (Gu and Dao,
262 2023), computer vision (CV) (Zhu et al., 2024), and
263 also speech processing (Zhang et al., 2024).
264 Different from previous SSM instantiations,
26s Mamba features an input-dependent selection
266 mechanism and a hardware-aware algorithm,
267 allowing for efficient input information filtering by
26s dynamically adjusting the SSM parameters based
260 on the input data. This also facilitate faster
270 Tecurrent computation of the model using scan.
271 Nevertheless, the original Mamba conducts causal
272 computations in a unidirectional manner, relying
273 solely on historical information, which prevents it
274 from capturing global dependencies as effectively
275 as the multi-head self-attention (MHSA) module
276 Involved in Transformer. To address this, we
277 explore bidirectional variant of Mamba as the basic
27s modeling block. In this approach, we replace the
279 MHSA module in the Transformer encoder with a
280 bidirectional Mamba layer, as depicted in Figure 2.
281 Specifically, for input HY% to the Mamba block at
262 granularity level g, the output HY%+ of the block is:

H'9 = BiMamba(LayerNorm (H?Y)) + H9 (4)
H9%+1 = FFN(LayerNorm(H’%)) + H'% (5)

Shttps://huggingface.co/microsoft/wavlm-
large



. . g . phn
283 where BiMamba denotes the bidirectional Mamba +1s Subsequently, H%» are then propagated forward

284 layer apd FFEN refers to the feed-forward modqle, 10 into the APA module and the MDD module for
285 respectively. Notably, there are several studies

286 investigating the Dbidirectional processing of
27 Mamba (Liang et al., 2024; Zhang et al., 2024;
28 Jiang et al., 2024). In this work, we use a similar gPhn
260 structure as Jiang et al. (2024) to implement the *** 3SPECt SCOre 5 (accurac.y). On the ?ther hand,
200 bidirectional Mamba layer. For input N9 from the **° the MDD mo@ule COmPprIses a c.lass1ﬁer and a
21 output of layer normalization of HY% to a softmax function that cooperatively learn a

22 bidirectional Mamba layer, the corresponding ** distribution g, over the phoneme classes C' for
205 output M is computed as follows: 228 each time step ¢. The diagnosis y, can then be

Z9: = Linear(IN9:)

a21 solving a regression and a sequence classification
s22 problem, respectively. The APA module contains
323 one regressor that aims to predict the phone-level

220 identified by applying the argmax function to g,. In

6) . this work, we streamline the MDD task by treating
Gi= s g G — Tl (QGi— s31 it as a process of free phone recognition (Li et al.,
S Linear(N%), S Flip(S%7) (7) 32 2015). As a result, we can directly detect the
C%" = ConvlD ™ (S% ) s33 corresponding error state e, by comparing y, with
Yt = COHVlDF(Sgi(ﬁ> s34 P, , eliminating the need for a separate detection

phn
33 module. Meanwhile, the resulting H?Z» is served

{ 0%~ = o(Z%) ® SSM™(C¥ )

09 (Z9) ® SSM (Co) (9) e as H9™ for subsequent modeling.
k2 f— O- 2 2

sz In word-level modeling, L, -layer Mamba
. 1 1. s38 blocks are first adopted and followed by a 1-D

9i — Z09% 7 4+ = 9i < 10 )
M L1near(2 0%+ 2 Flip(07)) (19) s30 convolution layer to capture the local dependencies
200 where S%~ and S%¢ denote the forward and *° (Lee, 2016). The reason for utilizing the
s backward  sequence  features,  respectively. ' convolution layer is that the convolution operation
206 Specifically, S% is derived from S%~ by a %2 can accommodate different realizations of the same

207 flipping operation Flip(-). Conv1D(-), o(-), and underlying phone from various L2 speakers,

208 SSM(+) represents the 1-D convolution, activation
290 function, and selective SSM algorithm described in 345 word-level representations HY%. can be derived

a2 thereby mitigating the temporal variability. The

s00 Mamba (Gu and Dao, 2023), respectively. s as follows:

01 Hierarchical Mamba: Since the speech signals H9% = MambaBlock,,,., (H Td) (12)
s02 are typically distinguished by the complex v v

s03 hierarchical composition, prior studies (Do et al., HYw = ConvlD,,,,(H"?%w ) (13)

s04 2023a; Chao et al., 2023) have suggested that ., To obtain word-level aspect scores, we put
w0s hierarchical modeling structures is more amenable | yys¥7% ;0 the word-level APA module which

ws than parallel modeling .stru.ctqres .(Gong et a.l., a49 contains three regressors to predict the word-level

307 2022). To capture the linguistic hierarchy while wrd  gurd  gurd
ss0 aspect scores 57,87, sY

s0s Tetaining the cross-aspect relations within the same 0 1 2

a00 linguistic unit, we design and instantiate our mode

| @51 and total scores), respectlvely To facilitate training
210 with a hierarchical structure and introduce Mamba = €fficiency, we propagate the word score to each of
a11 blocks to model the global dependencies at eac

h 2 its phones during the training stage. In the inference
s12 granularity level. More concretely,

our approach ** phase, we ensure consistency by averaging the
313 generates finer granularity scores at the lower

355 outputs corresponding to each word. In addition,
s12 layers and coarser granularity scores at the higher ss6 HY%w is viewed as %' for further modeling.
a15 layers, as exhibited in Flgure 2. In phone-level =7 As for the utterance-level assessments, instead
sss of prepending the [CLS] tokens to learn the

417 layer Mamba blocks to obtain the phone- level 350 utterance-level representation (Gong et al., 2022),
phn 360 we explore pooling-based approaches to aggregate

g
s1s contextualized representations H™“» 361 the hidden information. To this end, we utilize an

s62 attention pooling layer similar to Peng et al. (2022).
) (1) Specifically, assuming that a d-dimensional input

(accuracy, stress,

316 modeling, we first use H%"" as the input into L,,-

phn

phn
H’2» = MambaBlock,,,,, (H%

phn



36

&

sequence to the attention pooling layer is
hy,h; ...,h; ;, the pooling output is h =

T-1
2izo

365

a;h;, where o; is calculated as follows:

exp (w'q,/7)

366

R — | T (14)
ST Texp (wray/7)
s where w is a learnable vector, q is the
phn wrd wrd wrd
ses concatenated scores of [s§,s7  ,s7 55 ],

and 7 is a controllable temperature hyperparameter.
The whole process of utterance-level modeling can
then be formulated as follows:

369
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HYL% = MambaBlock,,,(H% ") (15)

wtt utt

h9"" = AttentionPooling,,,(H.»)  (16)

After obtaining HY%. from L, -layer Mamba
blocks, h?""" is derived through the attention
pooling layer to predict the utterance-level aspect
utt utt utt utt

g g g g
81 58y 583 58, (accuracy,

completeness, fluency, prosody, and total scores)
via an utterance-level APA module which contains
five regressors corresponding to each score.
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a9 2.3 Optimization

ss0 Automatic Pronunciation Assessment Loss: In
ss1 the proposed model, each APA module is
optimized using Mean Square Error (MSE). The
loss for multi-aspect multi-granular assessment,
sea L4 py, 18 calculated by assigning weights to each
granularity level g:

Lapa = ng ’

geG

38

N

383

385

1 Ngfl
— Nz (17)

sss where w, and N, are the tunable parameter and

se7 number of aspect scores at granularity level g,
respectively. £, refers to the MSE loss computed

388

aso for k-th aspect score at granularity level g.

390
391 To be in line with previous MDD studies, our
32 model  incorporates  canonical ~ phoneme
embeddings to enhance text prompt-awareness.
Despite some performance improvements, the
395 mismatch between the 1.2 learner’s realized phones
and canonical phones can still cause some
deteriorating effects. This discrepancy can
introduce inaccurate predictions that may
potentially affect the overall quality of phonetic
analysis. To mitigate this negative impact, we
s01 devise a new loss function tailored for the MDD
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Figure 3: Difference between (a) the original cross-
entropy loss and (b) the decoupled cross-entropy loss,
given the text prompt “crime.”

a0z task, as illustrated in Figure 3. Specifically, we first
s0s decouple the original cross-entropy loss into two
a04 separate losses, one for mispronunciations and the
a05 other for correct pronunciations:

LRy = — Z log (¥, [v:]) (18)
teM

(J})L(iént = Z log (¥, [v.]) (19)
teH

s0s where M and J{ are mispronunciation and
s07 correct pronunciation positions, respectively, and
w08 Y, [y, 1s the predicted probability of the true label
a00 Y, at time step t. After obtaining two decoupled
210 losses, we re-weight them using the following

411 formulation:
h

Lypp = £§(int + (5_m)a ’C;r{iit (20)
> where ™ and p" denote the frequency of the
413 mispronunciations and correct pronunciations in
14 the training set, respectively, and « controls the
+15 weight magnitude. After that, we use £, to
416 optimize the MDD module, and the overall loss
217 thus can be expressed by:

L= Laps+ B Lypp

41s where (3 is a tunable parameter.

e2y)

#9 3  Experimental Setup

20 3.1 Dataset and Evaluation Metrics

221 We conducted experiments on speechocean762, a
422 widely-used open-source dataset curated for APA
23 and MDD research (Zhang et al., 2021). The
224 dataset consists of 5,000 English-speaking
425 recordings from 250 Mandarin L2 learners, divided
a26 equally into training and test sets. For the APA task,
427 pronunciation proficiency scores were assessed at

6
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Phone Score Word Score (PCC) Utterance Score (PCC)

Vodel Year MSE| PCCT | Accuracy? StressT Totall | Accuracy? CompletenessT FluencyT ProsodyT Totall
Deep Feature 2021 - - - - - - - - - 0.720
HuBERT Large 2022 - - - - - - - 0.780  0.770 -
Joint-CAPT-L1 2023 - - - - - 0.719 - 0.775  0.773  0.743
LST™M 2022 0.089 0.591 0.514  0.294 0.531 0.720 0.076 0.745  0.747 0.741
GOPT 2022 0.085 0.612| 0.533 0291 0.549 | 0.714 0.155 0.753  0.760 0.742
3M 2022 0.078 0.656 | 0.598 0.289 0.617 | 0.760 0.325 0.828  0.827 0.796
HiPAMA 2023 0.084 0.616 | 0.575 0320 0.591 0.730 0.276 0.749  0.751 0.754
3MH 2023 0.071 0.693 0.682  0.361 0.694 | 0.782 0.374 0.843  0.836 0.811
HMamba 2024 0.063 0.732| 0.701  0.309 0.710 | 0.802 0.210 0.846 0.841 0.825

Table 1: APA performance evaluations of our model and all strong baselines on the speechocean762 test set.

various linguistic granularities and across different

.. . Mispronunciations
pronunmapon aspects. Each score is eYaluated jby Model PER |
five experienced experts using standardized rubrics. Precision T Recall T F17
For the MDD task, the dataset provides an extra
mispronunciation transcription annotated using a Jont-CAPT-L1 ~ 26.70%  91.40% 41.50% 9.93%
set of 46 phones. This set comprises 39 phones

HMamba 64.50%  62.34% 63.32% 2.78%

from the CMU dictionary®, 6 L2-specific phones,
and a [unk] token for unknown phones. Notably,
there are no insertion errors in the utterances, and a
[DEL] token is introduced to mark deletion errors
of L2 learners. Therefore, the realized phones can

Table 2: MDD performance evaluations of our model,
compared with a representative multi-task approach
(Ryu et al., 2023) on the speechocean762 test set.

be aligned with canonical phones in this dataset.
The evaluation metrics employed include the
Pearson Correlation Coefficient (PCC) and Mean
Square Error (MSE) for the APA task. On the other
hand, we use precision, recall, F1-score, and phone
error rate (PER) to evaluate the MDD performance,
so as to be in accordance with prior studies.

460 1-D convolution has 256 kernels, each with a size
w1 of 3. Regarding hyperparameters, 7 in attention
a2 pooling layer is set to 1.0. The combining weights
s63 w, for APA loss are uniformly set to 1.0 for each
ss4 granularity level g. Parameters o and /3 are tuned

a5 to be 0.7 and 0.003, respectively. To ensure the
s66 validity of our experimental results, we conducted

s67 5 independent trials for each experiment, running
ses 20 epochs with different seeds. The metrics for
a6 each task are reported as the average of these trials.

3.2 Implementation Details

For input feature extraction, we adopt a publicly
available acoustic model’ to extract GOP features,
which also serves as an aligner for force alignment.

Subsequently, the phone-level duration, energy ,;, For the APA task, we compare our proposed
statistics, and SSL features are computed by a time ,,, approach, HMamba, with various cutting-edge
aggregation method (Kim et al., 2022) according to ,;; baselines which can be categorized into two
the alignment. The resulting acoustic features X ,;, families:  single-aspect  (or  partial-aspect)

and all embeddings are 128 dimensions. For all ,;; pronunciation assessment models or multi-granular
Mamba blocks, we set the number of hidden units ,;; multi-aspect pronunciation assessment models.
to 128 and use a kernel size of 4 for the 1-D ,;; The first group includes the Deep Feature (Lin et
convolution. The SSM modules follow the original ,;; al., 2021b), HuBERT Large (Kim et al., 2022), and
configuration used in Mamba. L,,, L,,, L, are set 4 Joint-CAPT-L1 (Ryu et al., 2023). The second
to 3, 1, 1, respectively. In addition, the word-level 40 group encompasses LSTM, GOPT (Gong et al.,

a0 3.3  Compared Baselines

“http://www.speech.cs.cmu.edu/cgi- Shttps://kaldi-asr.org/models/ml3

bin/cmudict



231 2022), 3M (Chao et al., 2022), HIPAMA (Do et al.,
a2 2023a), and 3MH (Chao et al., 2023). As for the
sss MDD task, we compare HMamba with the Joint-
ssa CAPT-L1 model, as to our knowledge it is the only
attempt that jointly addresses the APA and MDD
as6 tasks with the speechocean762 dataset.

485

487

4 Experimental Results and Discussion

w3 4.1  APA Performance

a0 In Table 1, we compare the APA performance of
HMamba with other competitive baselines, leading
to several key observations. Firstly, it is notable that
our approach, HMamba, consistently outperforms
all other methods in nearly all assessment tasks,
s04 particularly in terms of accuracy scores at phone,
205 word, and utterance levels. This improvement
stems from the joint modeling paradigm of APA
and MDD, highlighting that pronunciation
assessment can also benefit from phonetic error
discovery, consistent with prior research findings.
In addition, by adopting SSL features, HMamba
along with other approaches like HuBERT Large,
3M, and 3MH, achieves significant improvements
over the other APA methods in terms of utterance-
level assessments. In comparison to other
hierarchical models such as HIPAMA and 3MH,
HMamba leverages an SSM structure instead of the
Transformer structure, demonstrating superior
sos performance on a variety of assessment tasks.
Furthermore, due to severe imbalance issues in the
aspects of utterance completeness and word stress,
st where over 90% of assessments consistently
s12 receive the highest score (Do et al., 2023b), our
approach slightly falls behind the other approaches.
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4.2 MDD Performance

514

In the second set of experiments, we evaluate the
MDD performance of HMamba by comparing it
si7 with  another advanced multi-task learning
approach, Joint-CAPT-L1. As shown in Table 2,
HMamba achieves a significant improvement in
s20 terms of Fl-score over Joint-CAPT-L1, with a
s21 relative increase of 21.82%. Additionally, there is a
marked reduction in PER by 7.15%. These
substantial enhancements demonstrate that
s22 HMamba can produce more robust and reliable
s2s mispronunciation detection and diagnosis results.
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s26 4.3 Effects of Decoupled Cross-entropy Loss

s27 On the grounds of the distinct improvements in the
s2s MDD  performance, we further analyze the

Mispronunciations
Loss o PER !
Precision T Recall T F17
Xent - 74.15%  40.21% 52.12% 2.58%
0.3 68.60%  55.74% 61.49% 2.62%
0.5 63.51% 61.43% 62.32% 2.83%
deXent
0.7 64.50%  62.34% 63.32% 2.78%
0.9 5773%  7011% 63.19% 3.14%

Table 3: Comparison of MDD performance between the
original cross-entropy loss (Xent) and proposed
decoupled cross-entropy loss (deXent).

s20 underlying effects of proposed decoupled cross-
entropy loss on model performance. As illustrated
in Table 3, training a text prompt-aware MDD
model using the original cross-entropy often yields
high precision but low recall. This is because the
model primarily relies on input canonical phones,
leading it to predict prior phones and overlook the
actual mispronunciations of a learner. Such a model
may not be suitable for educational settings where
accurately detecting potential mispronunciations is
critical. To remedy this, the proposed decoupled
cross-entropy loss provides a feasible solution. By
adjusting the weighting factor o, we can better
strike the balance between precision and recall,
ss3 thus optimizing the MDD performance. This
sas flexibility is particularly prominent across different
sas CAPT applications. For example, in a clinical
sa6 setting  such as speech therapy, prioritizing
s47 precision can help prevent incorrect diagnoses of
sss speech disorders.

s20 5 Conclusion

sso In this paper, we have presented a novel
ss1 hierarchical selective state space model (dubbed
ss2 HMamba) for multifaceted CAPT application.
sss Extensive experimental results substantiate the
ss« viability and efficacy of the proposed method
sss compared to several top-of-the-line approaches in
sse terms of both the APA and MDD performance. In
ss7 future work, we envisage mitigating the issue of
sss data imbalance from an optimization perspective.
sso In addition, another key area for future research
se0 involves tackling the assessment of open-response
se1 scenarios in CAPT.



se2 Limitations

sez Lack of Accent Diversity. The dataset used in this
study comprises only Mandarin L2 learners,
limiting the generalizability of the proposed model.
ses As a result, it may be inapplicable when assessing
L2 learners with diverse accents. This lack of
accent diversity could lead to biases and
inaccuracies in pronunciation assessment for
learners from different linguistic backgrounds.
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565

567
568
569

570

Limited Interpretability. The proposed model is
designed to replicate expert annotations without
s73 relying on manual assessment rubrics or external
s72 knowledge databases, which makes it challenging
s7s to provide clear and reasonable explanations for the
assessment results. This lack of interpretability
s77 may hinder its acceptance and trustworthiness
among educators and learners who require
s7o transparent and justifiable assessments.

571

572

576

578

Limited Generalizability This research is
centered on the “reading-aloud” pronunciation
ss2 training scenario, where it is assumed that the L2
learner accurately pronounces a predetermined text
ssa prompt. This narrow focus limits the applicability
of our models to other learning contexts, such as
spontaneous speech or open-ended conversations.
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Ethics Statement

58
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We acknowledge that all co-authors of this work
comply with the ACL Code of Ethics and adhere to
so0 the code of conduct. Our experimental corpus,
speechocean762, is widely used and publicly
available, and we believe there are no potential
ses Tisks associated with this work.

588

589

591

59

N

s« References

s95 Juan Pablo Arias, Nestor Becerra Yoma, and Hiram
Vivanco. 2010. Automatic intonation assessment for
computer aided language learning. Speech
Communication, volume 52, pages 254-267.

Stefano Banno, Bhanu Balusu, Mark Gales, Kate Knill,
and Konstantinos Kyriakopoulos. 2022a. View-
specific assessment of L2 spoken English. In
Proceedings of the Annual Conference of the
International Speech Communication Association
(INTERSPEECH), pages 4471-4475.

596
597
598

599
600
601
602
603
604

eos Stefano Bannd and Marco Matassoni. 2022b.
Proficiency assessment of L2 spoken English using
wav2vec 2.0. In Proceedings of IEEE Spoken
Language Technology Workshop (SLT), pages 1088-
1095.

606

607

608

609

s10 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for  self-supervised learning of  speech
representations. In Proceedings of the Conference
on Neural Information Processing Systems
(NeurlIPS), pages 12449-12460.

616 Fu An Chao, Tien Hong Lo, Tzu I. Wu, Yao Ting Sung,
Berlin Chen. 2022. 3M: An effective multi-view,
multigranularity, and multi-aspect modeling
approach to English pronunciation assessment. In
Proceedings of the Asia-Pacific Signal and
Information Processing Association Annual Summit
and Conference (APSIPA ASC), pages 575-582.

Fu-An Chao, Tien-Hong Lo, Tzu-I Wu, Yao-Ting Sung,
Berlin Chen. 2023. A hierarchical context-aware
modeling approach for multi-aspect and multi-
granular pronunciation assessment. In Proceedings
of the Annual Conference of the International
Speech Communication Association
(INTERSPEECH), pages 974-978.

630 Nancy F. Chen, and Haizhou Li. 2016. Computer-
assisted pronunciation training: From pronunciation
scoring towards spoken language learning. In
Proceedings of the Asia-Pacific Signal and
Information Processing Association Annual Summit
and Conference (APSIPA ASC), pages 1-7.

611

617
618
619
620
621
622

623
624
625
626
627
628
629

631
632
633
634
635

s Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu
Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu,
Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian
Wu, Michael Zeng, Xiangzhan Yu, and Furu Wei.
2022. Wavlm: Large-scale self-supervised pre-
training for full stack speech processing. [EEE
Journal of Selected Topics in Signal Processing,
volume 16, number 6, pages 1505-1518.

6.

@

637
638
639
640

644

s45 Heejin Do, Yunsu Kim, and Gary Geunbae Lee. 2023a.
Hierarchical pronunciation assessment with multi-
aspect attention. In Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1-5.

Heejin Do, Yunsu Kim, and Gary Geunbae Lee. 2023b.
Score-balanced loss for multi-aspect pronunciation

646

647

648
649

650

651

es2  assessment. In Proceedings of the Annual
ess  Conference of the International  Speech
ess  Communication Association (INTERSPEECH),

655

pages 4998-5002.

es6 Hongwei Ding, Xinping Xu. 2016. L2 English rhythm
in read speech by Chinese students. In Proceedings
of the Annual Conference of the International
Speech Communication Association
(INTERSPEECH), pages 2696-2700.

657
658
659
660

Bin Dong, Qingwei Zhao, Jianping Zhang, and

Yonghong Yan. 2004. Automatic assessment of
pronunciation quality. In Proceedings of IEEE

661

662

663



ees  International Symposium on Chinese Spoken

Language Processing (ISCSLP), pages 137-140.

665

e Maxine Eskenazi. 2009. An overview of spoken
language technology for education. Speech
Communication, volume 51, pages 832—-844.

667
668

eso Keelan Evanini, Michael Heilman, Xinhao Wang, and
Daniel Blanchard. 2015. Automated scoring for the
TOEFL Junior® comprehensive writing and
speaking test. ETS Research Report Series

2015(1):1-11.

670
671
672
673

674 Kaiqi Fu, Jones Lin, Dengfeng Ke, Yanlu Xie, Jinsong
Zhang, and Binghuai Lin. 2021. A full text-
dependent end to end mispronunciation detection
and diagnosis with easy data augmentation
techniques. arXiv preprint arXiv:2104.08428.

675
676
677
678

679 Yuan Gong, Ziyi Chen, Iek-Heng Chu, Peng Chang,
and James Glass. 2022. Transformer-based multi-
aspect multigranularity non-native English speaker
pronunciation assessment. In Proceedings of the
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
7262-7266.

ess Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752.

680

681

682

683

684

685

687

688

6

®

ss0  Kushal Lakhotia, Ruslan Salakhutdinov, and
Abdelrahman Mohamed. 2021. Hubert: Self-

supervised speech representation learning by

691
692
693
eos  Tramsactions on Audio, Speech, and Language

Processing, volume 29, pages 3451-3460.

695

s96 Alissa M. Harrison, Wai-Kit Lo, Xiao-Jun Qian, and
Helen Meng. 2009. Implementation of an extended
recognition network for mispronunciation detection
and diagnosis in computer-assisted pronunciation
training. In Proceedings of the Workshop on Speech
and Language Technology in Education (SLaTE),
pages 45-48.

697

698

699

700

701

702

7

o

s Wenping Hu, Yao Qian, Frank K. Soong, and Yong
Wang. 2015. Improved mispronunciation detection
with deep neural network trained acoustic models
and transfer learning based logistic regression
classifiers. Speech Communication, volume 67,
pages 154-166.

704
705
706
707
708

700 Xilin Jiang, Cong Han, and Nima Mesgarani. Dual-
path mamba: Short and long-term bidirectional
selective structured state space models for speech
separation. 2024. arXiv preprint arXiv:2403.18257.

710
71
712

713 Yassine Kheir, Ahmed Ali, and Shammur Chowdhury.
2023. Automatic pronunciation assessment - a
review. In Findings of the Association for
Computational Linguistics: EMNLP, pages 8304—
8324.

714

715

716

"7

o Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,

masked prediction of hidden units. IEEE/ACM ™7

71s Eesung Kim, Jae-Jin Jeon, Hyeji Seo, Hoon Kim. 2022.
Automatic pronunciation assessment using self-
720 supervised speech representation learning. In
Proceedings of the Annual Conference of the
International Speech Communication Association
(INTERSPEECH), pages 1411-1415.

719

721
722
723

722 Ann Lee. 2016. Language-independent methods for
computer-assisted pronunciation training, Ph.D.
thesis, Massachusetts Institute of Technology.

725
726

727 Aobo Liang, Xingguo Jiang, Yan Sun, Xiaohou Shi,
and Ke Li. 2024. Bi-Mamba4TS: Bidirectional
720 mamba for time series forecasting. arXiv preprint
0 arXiv:2404.15772.

728

=

731 Binghuai Lin, Liyuan Wang, Hongwei Ding, Xiaoli
Feng. 202la. Improving L2 English rhythm
evaluation with automatic sentence stress detection.
In Proceedings of IEEE Spoken Language

Technology Workshop (SLT), pages 713-719.

732
733
734
735

736 Binghuai Lin and Liyuan Wang. 2021b. Deep feature

737 transfer learning for automatic pronunciation

73e  assessment. In Proceedings of the Annual
e Conference of the International  Speech
740 Communication Association (INTERSPEECH),
741 pages 4438-4442.

742 Kun Li, Xiaojun Qian, Shiying Kang, Pengfei Liu, and
Helen Meng. 2015. Integrating acoustic and state-
transition models for free phone recognition in L2
English speech using multi-distribution deep neural
networks. In Proceedings of the Workshop on
Speech and Language Technology in Education

(SLaTE), pages. 119-124.

743
744
745
746

748

749 Arya D. McCarthy, Kevin P. Yancey, Geoffrey T.
LaFlair, Jesse Egbert, Manqgian Liao, and Burr
Settles. 2021. Jump-starting item parameters for
adaptive language tests. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 883—899.

750
751
752
753
754

7s5 Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji
Watanabe. 2022. Branchformer: Parallel mlp-
attention architectures to capture local and global
context for speech recognition and understanding.
In Proceedings of the International Conference on
Machine Learning (PMLR), pages 17627-17643.

756
757
758
759
760

761 Hyungshin Ryu, Sunhee Kim, and Minhwa Chung.
2023. A joint model for pronunciation assessment
and mispronunciation detection and diagnosis with

+  multi-task learning. In Proceedings of the Annual

Conference  of the International  Speech

6 Communication Association (INTERSPEECH),

pages 959-963.

762

763

7

o

765

7

o

767

Jiatong Shi, Nan Huo, and Qin Jin. 2020. Context-
aware goodness of pronunciation for computer-
assisted pronunciation training. In Proceedings of
the Annual Conference of the International Speech

768
769
770
771

10



772

773

Communication Association (INTERSPEECH),
pages 3057-3061.

774 Helmer Strik, Khiet Truong, Febe De Wet, and Catia

775

776

77

778

779

780

781

7

®

2

Cucchiarini. 2009. Comparing different approaches
for automatic pronunciation error detection. Speech
Communication, volume 51, number 10, pages 845-
852.

Khiet Truong, Ambra Neri, Catia Cucchiarini, and

Helmer Strik. 2004. Automatic pronunciation error
detection: an  acoustic-phonetic  approach.
InSTIL/ICALL Symposium.

783 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

784

785

786

787

788

Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Conference on
Neural Information Processing Systems (NeurlPS),
pages 5998-6008.

7o Anjana S. Vakil and Jirgen Trouvain. 2015.

790

791

792

7

©

3

794

795

796

797

7

©

8

7

©

9

800

801
802

8

o

3

8

=]
&

805

806

807

“Automatic classification of lexical stress errors for
German CAPT,” in Proceedings of the Workshop on
Speech and Language Technology in Education
(SLaTE), pages 47— 52.

Silke M. Witt and Steve J. Young. 2000. Phone-level

pronunciation scoring and assessment for
interactive language learning. Speech
Communication, volume 30, pages 95-108.

Klaus Zechner, Derrick Higgins, Xiaoming Xi, and

David M. Williamson. 2009. Automatic scoring of
non-native spontaneous speech in tests of spoken
English. Speech Communication, volume 51,
number 10, pages 883-895.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong

Wang, Wenyu Liu, and Xinggang Wang. 2024.
Vision mamba: Efficient visual representation
learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417.

sos Xiangyu Zhang, Qiquan Zhang, Hexin Liu, Tianyi

809

810

811

812

8

=

3

814

815

816

817

818

819

820

Xiao, Xinyuan Qian, Beena Ahmed, Eliathamby
Ambikairajah, Haizhou Li, and Julien Epps. 2024.
Mamba in Speech: Towards an alternative to self-
attention. arXiv preprint arXiv:2405.12609.

Junbo Zhang, Zhiwen Zhang, Yongqing Wang,

Zhiyong Yan, Qiong Song, Yukai Huang, Ke Li,
Daniel Povey, and Yujun Wang. 2021.
Speechocean762: An open-source non-native

English speech corpus for pronunciation assessment.

In Proceedings of the Annual Conference of the
International Speech Communication Association
(INTERSPEECH), pages 3710 -3714.

11



