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Abstract 1 

Prior efforts in building computer-assisted 2 

pronunciation training (CAPT) systems 3 

often treat automatic pronunciation 4 

assessment (APA) and mispronunciation 5 

detection and diagnosis (MDD) as separate 6 

fronts. APA aims to provide multiple 7 

pronunciation aspect scores across diverse 8 

linguistic levels, while MDD focuses 9 

instead on pinpointing the precise phonetic 10 

errors made by non-native language 11 

learners. However, a full-fledged CAPT 12 

system should integrate both features 13 

simultaneously. To address this pressing 14 

need, we in this work first propose 15 

HMamba, a novel hierarchical selective 16 

state space method that jointly tackles APA 17 

and MDD tasks. In addition, to enhance 18 

model performance, we introduce a novel 19 

loss function, decoupled cross-entropy loss 20 

(deXent), specifically tailored for the 21 

MDD task to facilitate better supervised 22 

label learning. A comprehensive set of 23 

empirical results carried out on the 24 

speechocean762 benchmark dataset 25 

demonstrate the effectiveness of our 26 

approach in multi-aspect multi-granular 27 

assessments. Furthermore, our proposed 28 

approach also yields considerable 29 

improvement in MDD performance over a 30 

competitive baseline, achieving an F1-31 

score of 63.32%. 32 

1 Introduction 33 

In this era of globalization and technologization, 34 

computer-assisted pronunciation training (CAPT) 35 

systems have emerged as an appealing alternative 36 

to meet the surging demand for second language 37 

(L2) learning. In comparison with traditional 38 

curriculum learning, CAPT offers advantages in 39 

terms of time-efficiency and cost-effectiveness. 40 

More importantly, it redefines the conventional 41 

pedagogical method from teacher-directed to self-42 

directed learning, thereby providing a stress-free 43 

environment for L2 learners (Eskenazi et al., 2009). 44 

In addition, CAPT applications have achieved 45 

significant success in various commercial sectors 46 

or testing services, such as Duolingo (McCarthy et 47 

al., 2021) and the SpeechRater engine (Zechner et 48 

al., 2009) developed by Educational Testing 49 

Service (ETS). Typically, a de-facto archetype 50 

system for CAPT encompasses a “reading-aloud” 51 

scenario, where a non-native speaker is given a text 52 

prompt and instructed to pronounce it correctly. In 53 

this context, previous literature roughly divides 54 

applications of CAPT into two categories: 55 

HMamba: Towards Multifaceted Computer-assisted Pronunciation  
Training Leveraging Hierarchical Selective State Space Model  

and Decoupled Cross-entropy Loss 
 
 
 

Anonymous ACL submission 
 
 
 
 
 

 
Figure 1: A running example depicts the evaluation 
differences between APA and MDD systems in the 
reading-aloud scenario. 
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automatic pronunciation assessment (APA) and 56 

mispronunciation detection and diagnosis (MDD), 57 

with each category dedicated to specific facets of 58 

pronunciation training. APA aims to evaluate the 59 

L2 learners’ spoken proficiency by providing fine-60 

grained feedback on various aspect assessments 61 

(e.g., accuracy, fluency) across multiple linguistic 62 

levels (e.g., utterance level, word level) (Kheir et 63 

al., 2023). To evaluate the extent of L2 learners’ 64 

spoken proficiency, APA systems typically employ 65 

scoring models that are either jointly trained (Gong 66 

et al., 2022; Chao et al., 2022) or jointly exploit 67 

multiple regressors (Bannò et al., 2022a; Bannò 68 

and Matassoni, 2022b) to generate scores for each 69 

aspect. As such, users can receive multi-aspect 70 

assessment scores predicted by an APA system, as 71 

illustrated in the example shown in Figure 1. 72 

Compared with APA, MDD focuses more on non-73 

native speakers’ phonetic errors (Chen and Li, 74 

2016). These errors usually have clear-cut 75 

distinctions between correct and incorrect 76 

pronunciations, and can be easily quantified 77 

through deletions, substitutions, and insertions. 78 

Therefore, MDD is often more deterministic than 79 

APA. For instance, a number of MDD models are 80 

capitalized on classifier-based approaches (Truong 81 

et al., 2004; Strik et al., 2009; Harrison et al. 2009), 82 

enabling precise identification of the exact 83 

positions where pronunciation errors occur within 84 

an utterance. This capability provides L2 learners 85 

with specific feedback on discrepancies between 86 

intended pronunciation and actual pronunciation. 87 

Albeit the phonetic (segmental) errors are 88 

crucial in the initial stages of non-native language 89 

learning, prosodic (suprasegmental) errors may 90 

often cause detrimental impact on the perception of 91 

fluency and lead to poor intelligibility (Chen and 92 

Li, 2016). This effect may be more pronounced in 93 

learning stress-timed languages like English 94 

compared with syllable-timed languages such as 95 

Chinese (Ding and Xu, 2016). To tackle this 96 

problem, APA can play a pivotal role by offering 97 

prosodic assessment or intonation assessment for 98 

L2 learners. For example, Lin et al. (2021a) 99 

introduced rhythm rubrics to predict sentence-level 100 

stress in L2 English, demonstrating a strong 101 

correlation with the prosody scores assessed by the 102 

human experts. In addition, Arias et al. (2010) 103 

proposed text-independent systems for assessing 104 

intonation and stress, focusing on measuring the 105 

similarity between a student’s intonation or stress 106 

curve and that of a reference response. 107 

On these grounds, it is evident that both APA and 108 

MDD are indispensable ingredients of CAPT, 109 

playing complementary roles in its success. 110 

However, previous studies on APA and MDD 111 

appear to have developed independently, with 112 

limited research exploring their integration or 113 

combined use. Ryu et al. (2023) proposed a joint 114 

model for APA and MDD, leveraging knowledge 115 

transfer and multi-task learning. Their findings 116 

revealed high negative correlations between 117 

several assessment scores and mispronunciations, 118 

suggesting that the human assessors may be 119 

influenced by phonetic errors when evaluating 120 

overall proficiency scores for various aspects. 121 

While jointly modeling both tasks can achieve 122 

better performance than a single task, only 123 

utterance-level holistic scores are considered in 124 

their experiments. In order to provide more 125 

comprehensive and fine-grained feedback for L2 126 

learners, other granularities, such as the phone or 127 

word level, should also be aptly modeled. In this 128 

paper, we propose a novel hierarchical selective 129 

state space model, dubbed HMamba, for 130 

multifaceted CAPT. Unlike previous studies that 131 

used Transformer-based structures (Gong et al., 132 

2022; Chao et al., 2022; Do et al., 2023a), 133 

HMamba leverages Mamba (Gu and Dao, 2023), a 134 

selective state space model (SSM) approach, is 135 

capable of addressing both APA and MDD tasks 136 

simultaneously. Being aware of linguistic hierarchy, 137 

HMamba can render the intrinsic multi-layer 138 

speech structure and provide more detailed, multi-139 

granular pronunciation assessments while offering 140 

accurate mispronunciation feedback. 141 

The main contributions of this paper can be 142 

summarized as follows:   143 

1. We introduce HMamba, a unified and 144 

linguistically hierarchy-aware model that jointly 145 

tackles APA and MDD tasks, achieving superior 146 

overall performance compared to prior arts that 147 

are either single-task or multi-task models.  148 

2. We propose a novel loss function, decoupled 149 

cross-entropy loss (termed deXent), which 150 

effectively addresses the inherent issue of text 151 

prompt-aware MDD methods. Additionally, 152 

deXent is feasible and well-suited for optimizing 153 

the MDD performance, particularly in striking 154 

the balance between precision and recall. 155 

3. To the best of our knowledge, this is the first 156 

work to adopt and extend Mamba in the APA and 157 

MDD tasks for comprehensive CAPT. 158 
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2 Methodology  159 

2.1 Problem Definition 160 

Considering an input time sequence of speech 161 

signal 𝐮 uttered by an L2 learner and a reference 162 

text prompt 𝐩  that contains 𝑁 -length canonical 163 

phone sequence 𝐩 = {𝑝0, 𝑝1,… , 𝑝𝑁−1}, we adopt 164 

a set of feature extractors along with an aligner to 165 

extract an acoustic feature sequence 𝐗 =166 

{𝐱0, 𝐱1,… , 𝐱𝑁−1}  that aligned with 𝐩  from 𝐮 . 167 

Our model aims to address APA and MDD tasks 168 

simultaneously but with separate processing flows: 169 

First, we define 𝐺  as a set of linguistic 170 

granularities, and for each granularity 𝑔 ∈ 𝐺  the 171 

model manages to predict a set of aspect scores 172 

𝐬𝑔 = {𝑠0
𝑔, 𝑠1

𝑔,… , 𝑠𝑀𝑔−1
𝑔 }, where 𝑀𝑔  refers to the 173 

number of aspect scores of target granularity 𝑔. In 174 

this work, 𝐺 = {𝑔𝑝ℎ𝑛, 𝑔𝑤𝑟𝑑, 𝑔𝑢𝑡𝑡}, where we have 175 

granularities of 𝑔𝑝ℎ𝑛  (phone level), 𝑔𝑤𝑟𝑑  (word 176 

level), and 𝑔𝑢𝑡𝑡 (utterance level) for the APA task. 177 

Meanwhile, the model also requires to detect error 178 

states 𝐞 = {𝑒0, 𝑒1,… , 𝑒𝑁−1}  with respect to 𝐩 179 

and in turn generate the correct diagnostic output 180 

𝐲 = {𝑦0, 𝑦1,… , 𝑦𝑁−1} , where 𝑦𝑛  denotes the 181 

realized phone of the learner corresponds to 𝑝𝑛. 182 

2.2 Hierarchical Selective State Space Model 183 

In this subsection, we elucidate the details of the 184 

proposed model, HMamba, which is devised as a 185 

hierarchical structure built upon the paradigm of 186 

selective SSM. An overview of the complete 187 

architecture is depicted in Figure 2. Specifically, 188 

HMamba leverages the APA and MDD modules, 189 

which contain multiple regressors and a classifier, 190 

respectively. These modules collectively generate 191 

the corresponding aspect score sequence 𝐬𝑔  for 192 

each linguistic granularity 𝑔 , as well as the 193 

phonetic error states 𝐞  and diagnosis 𝐲 . 194 

Furthermore, each classifier and regressor is 195 

implemented with a simple feed-forward network 196 

(FFN). 197 

 
Figure 2: An overall architectural overview of HMamba, which consists of a bottom-up hierarchical modeling 
structure with several Mamba blocks across three levels (viz. phone, word, and utterance levels) that can perform 
multi-granular APA and MDD in parallel.  



4 
 
 

Acoustic Feature Extraction: In order to portray 198 

the non-native speaker’s pronunciation quality, 199 

previous studies on either APA or MDD generally 200 

adopt a pre-trained acoustic model to extract 201 

goodness of pronunciation (GOP)-based features 202 

(Witt and Young, 2000; Hu et al., 2015; Shi et al., 203 

2020). However, these GOP-based features merely 204 

offer the segmental-level information that may not 205 

be amenable for capturing the prosodic errors of an 206 

L2 learner. Given this limitation, apart from GOP, 207 

we utilize a pre-trained acoustic model as an 208 

aligner to identify phone boundaries (including 209 

silence), facilitating the extraction of other 210 

prosodic features such as the phone duration and 211 

statistics of root mean squared energy (Dong et al., 212 

2024). To alleviate the low-resourced data problem 213 

(Chao et al., 2022), we also consider other self-214 

supervised learning (SSL) features including 215 

wav2vec 2.01  (Baevski et al., 2020), HuBERT 2 216 

(Hsu et al., 2021), and WavLM3 (Chen et al., 2022). 217 

All these features are then concatenated and 218 

subsequently projected through a linear layer to 219 

form a sequence of acoustic features 𝐗 . The 220 

transformation of each time step 𝑡 is given by: 221 

𝐚𝑡 = [𝐚𝑡
𝑔𝑜𝑝; 𝐚𝑡

𝑑𝑢𝑟; 𝐚𝑡
𝑒𝑛𝑔; 𝐚𝑡

𝑤2𝑣; 𝐚𝑡
ℎ𝑏𝑡; 𝐚𝑡

𝑤𝑙𝑚] (1) 

𝐱𝑡 = 𝐖𝐚𝑡 + 𝐛 (2) 

where 𝐖 and 𝐛 are trainable parameters. Notably, 222 

a dropout rate of 10% is applied to all SSL features 223 

prior to the concatenation due to the discrepancy in 224 

dimensionality between these and other features. 225 

Phonological Feature Extraction: In addition to 226 

acoustic cues, a common practice in CAPT is to 227 

inject the phonological information by introducing 228 

the reference text prompt features such as 229 

canonical phoneme embeddings (Gong et al., 230 

2022), context-aware sup-phoneme embeddings 231 

(Chao et al., 2023), and vowel/consonant 232 

embeddings (Fu et al., 2021). In contrast to 233 

previous studies (Gong et al., 2022; Chao et al., 234 

2022; Do et al., 2023a), we extract the canonical 235 

phoneme embeddings 𝐄𝑝ℎ𝑛 from 𝐩 using a phone 236 

embedding layer that includes the silence (SIL) 237 

information, which has been shown to be crucial 238 

when evaluating a learner’s spoken proficiency. In 239 

addition, an absolute positional embedding 𝐄𝑎𝑏𝑠 240 

 
1https://huggingface.co/facebook/wav2vec
2-large-xlsr-53 
2https://huggingface.co/facebook/hubert-
large-ll60k 

and a relative position embedding 𝐄𝑟𝑒𝑙  are 241 

extracted. Distinct from 𝐄𝑎𝑏𝑠 , 𝐄𝑟𝑒𝑙  denotes 242 

relative positions of phones in a word using tokens 243 

such as begin [B], internal [I], end [E], and 244 

single-phone word [S] tokens. For special cases 245 

of silence positions, we explicitly categorize them 246 

as either long silence [LS] or short silence [SS] 247 

based on their duration. According to the guideline 248 

suggested by ETS (Evanini et al., 2015), positions 249 

with a silence duration exceeding 0.495 seconds 250 

are assigned to [LS]; otherwise, they are assigned 251 

to [SS]. Finally, all these embedding features are 252 

point-wise added to 𝐗 to obtain phone-level input 253 

features for subsequent modeling: 254 

𝐇𝑔0
𝑝ℎ𝑛 = 𝐗 + 𝐄𝑝ℎ𝑛 + 𝐄𝑎𝑏𝑠 + 𝐄𝑟𝑒𝑙 (3) 

Mamba Blocks: Recently, the state space model 255 

(SSM) and its variants have gained widespread 256 

adoption for sequence modeling. Among them, 257 

Mamba (Gu and Dao, 2023) has shown outstanding 258 

performance over Transformer (Vaswani et al., 259 

2017) across various domains and tasks, including 260 

natural language processing (NLP) (Gu and Dao, 261 

2023), computer vision (CV) (Zhu et al., 2024), and 262 

also speech processing (Zhang et al., 2024). 263 

Different from previous SSM instantiations, 264 

Mamba features an input-dependent selection 265 

mechanism and a hardware-aware algorithm, 266 

allowing for efficient input information filtering by 267 

dynamically adjusting the SSM parameters based 268 

on the input data. This also facilitate faster 269 

recurrent computation of the model using scan. 270 

Nevertheless, the original Mamba conducts causal 271 

computations in a unidirectional manner, relying 272 

solely on historical information, which prevents it 273 

from capturing global dependencies as effectively 274 

as the multi-head self-attention (MHSA) module 275 

involved in Transformer. To address this, we 276 

explore bidirectional variant of Mamba as the basic 277 

modeling block. In this approach, we replace the 278 

MHSA module in the Transformer encoder with a 279 

bidirectional Mamba layer, as depicted in Figure 2. 280 

Specifically, for input 𝐇𝑔𝑖  to the Mamba block at 281 

granularity level 𝑔, the output 𝐇𝑔𝑖+1  of the block is: 282 

𝐇′𝑔𝑖 = BiMamba(LayerNorm(𝐇𝑔𝑖)) + 𝐇𝑔𝑖 (4) 

𝐇𝑔𝑖+1 = FFN(LayerNorm(𝐇′𝑔𝑖)) + 𝐇′𝑔𝑖 (5) 

3https://huggingface.co/microsoft/wavlm-
large 
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where BiMamba denotes the bidirectional Mamba 283 

layer and FFN refers to the feed-forward module, 284 

respectively. Notably, there are several studies 285 

investigating the bidirectional processing of 286 

Mamba (Liang et al., 2024; Zhang et al., 2024; 287 

Jiang et al., 2024). In this work, we use a similar 288 

structure as Jiang et al. (2024) to implement the 289 

bidirectional Mamba layer. For input 𝐍𝑔𝑖  from the 290 

output of layer normalization of 𝐇𝑔𝑖  to a 291 

bidirectional Mamba layer, the corresponding 292 

output 𝐌𝑔𝑖  is computed as follows:  293 

𝐙𝑔𝑖 = Linear(𝐍𝑔𝑖) (6) 

𝐒𝑔𝑖 → = Linear(𝐍𝑔𝑖),   𝐒𝑔𝑖 ← = Flip(𝐒𝑔𝑖 →) (7) 

!		
𝐂𝑔𝑖→ = Conv1D→(𝐒𝑔𝑖→)
𝐂𝑔𝑖← = Conv1D←(𝐒𝑔𝑖←)

 (8) 

{  𝐎
𝑔𝑖 → = 𝜎(𝐙𝑔𝑖) ⨂ SSM→(𝐂𝑔𝑖 →)

𝐎𝑔𝑖 ← = 𝜎(𝐙𝑔𝑖) ⨂ SSM←(𝐂𝑔𝑖 ←)
 (9) 

𝐌𝑔𝑖 = Linear(12 𝐎𝑔𝑖 → + 1
2Flip(𝐎𝑔𝑖 ←)) (10) 

where 𝐒𝑔𝑖 →  and 𝐒𝑔𝑖 ←  denote the forward and 294 

backward sequence features, respectively. 295 

Specifically, 𝐒𝑔𝑖 ← is derived from 𝐒𝑔𝑖 →  by a 296 

flipping operation Flip(∙). Conv1D(∙), 𝜎(∙), and 297 

SSM(∙) represents the 1-D convolution, activation 298 

function, and selective SSM algorithm described in 299 

Mamba (Gu and Dao, 2023), respectively. 300 

Hierarchical Mamba: Since the speech signals 301 

are typically distinguished by the complex 302 

hierarchical composition, prior studies (Do et al., 303 

2023a; Chao et al., 2023) have suggested that 304 

hierarchical modeling structures is more amenable 305 

than parallel modeling structures (Gong et al., 306 

2022). To capture the linguistic hierarchy while 307 

retaining the cross-aspect relations within the same 308 

linguistic unit, we design and instantiate our model 309 

with a hierarchical structure and introduce Mamba 310 

blocks to model the global dependencies at each 311 

granularity level. More concretely, our approach 312 

generates finer granularity scores at the lower 313 

layers and coarser granularity scores at the higher 314 

layers, as exhibited in Figure 2. In phone-level 315 

modeling, we first use 𝐇𝑔0
𝑝ℎ𝑛

 as the input into 𝐿𝑝-316 

layer Mamba blocks to obtain the phone-level 317 

contextualized representations 𝐇𝑔𝐿𝑝
𝑝ℎ𝑛

: 318 

𝐇𝑔𝐿𝑝
𝑝ℎ𝑛

= MambaBlock𝑝ℎ𝑛(𝐇𝑔0
𝑝ℎ𝑛

) (11) 

Subsequently, 𝐇𝑔𝐿𝑝
𝑝ℎ𝑛

 are then propagated forward 319 

into the APA module and the MDD module for 320 

solving a regression and a sequence classification 321 

problem, respectively. The APA module contains 322 

one regressor that aims to predict the phone-level 323 

aspect score 𝑠0
𝑔𝑝ℎ𝑛

(accuracy). On the other hand, 324 

the MDD module comprises a classifier and a 325 

softmax function that cooperatively learn a 326 

distribution 𝑦�̂�  over the phoneme classes 𝐶  for 327 

each time step 𝑡 . The diagnosis 𝑦𝑡  can then be 328 

identified by applying the argmax function to 𝑦�̂�. In 329 

this work, we streamline the MDD task by treating 330 

it as a process of free phone recognition (Li et al., 331 

2015). As a result, we can directly detect the 332 

corresponding error state 𝑒𝑡 by comparing 𝑦𝑡 with 333 

𝑝𝑡  , eliminating the need for a separate detection 334 

module. Meanwhile, the resulting 𝐇𝑔𝐿𝑝
𝑝ℎ𝑛

is served 335 

as  𝐇𝑔0
𝑤𝑟𝑑  for subsequent modeling. 336 

In word-level modeling, 𝐿𝑤 -layer Mamba 337 

blocks are first adopted and followed by a 1-D 338 

convolution layer to capture the local dependencies 339 

(Lee, 2016). The reason for utilizing the 340 

convolution layer is that the convolution operation 341 

can accommodate different realizations of the same 342 

underlying phone from various L2 speakers, 343 

thereby mitigating the temporal variability. The 344 

word-level representations 𝐇𝑔𝐿𝑤
𝑤𝑟𝑑

 can be derived 345 

as follows: 346 

𝐇′𝑔𝐿𝑤
𝑤𝑟𝑑

= MambaBlock𝑤𝑟𝑑(𝐇𝑔0
𝑤𝑟𝑑) (12) 

𝐇𝑔𝐿𝑤
𝑤𝑟𝑑

= Conv1D𝑤𝑟𝑑(𝐇′𝑔𝐿𝑤
𝑤𝑟𝑑

) (13) 

To obtain word-level aspect scores, we put 347 

𝐇𝑔𝐿𝑤
𝑤𝑟𝑑

into the word-level APA module which 348 

contains three regressors to predict the word-level 349 

aspect scores 𝑠0
𝑔𝑤𝑟𝑑

, 𝑠1
𝑔𝑤𝑟𝑑

, 𝑠2
𝑔𝑤𝑟𝑑

 (accuracy, stress, 350 

and total scores), respectively. To facilitate training 351 

efficiency, we propagate the word score to each of 352 

its phones during the training stage. In the inference 353 

phase, we ensure consistency by averaging the 354 

outputs corresponding to each word. In addition, 355 

𝐇𝑔𝐿𝑤
𝑤𝑟𝑑

is viewed as 𝐇𝑔0
𝑢𝑡𝑡  for further modeling. 356 

As for the utterance-level assessments, instead 357 

of prepending the [CLS] tokens to learn the 358 

utterance-level representation (Gong et al., 2022), 359 

we explore pooling-based approaches to aggregate 360 

the hidden information. To this end, we utilize an 361 

attention pooling layer similar to Peng et al. (2022). 362 

Specifically, assuming that a 𝑑-dimensional input 363 
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sequence to the attention pooling layer is 364 

𝐡0, 𝐡1  … , 𝐡𝑇 −1 , the pooling output is 𝐡 =365 

∑ 𝛼𝑖𝐡𝑖
𝑇 −1
𝑖=0 , where 𝛼𝑖 is calculated as follows:  366 

𝛼𝑖 = exp (𝐰𝑇 𝐪𝑖/𝜏)
∑ exp (𝐰𝑇 𝐪𝑗/𝜏)𝑇 −1

𝑗=0  
 (14) 

where 𝐰  is a learnable vector, 𝐪  is the 367 

concatenated scores of [𝑠0
𝑔𝑝ℎ𝑛

, 𝑠0
𝑔𝑤𝑟𝑑

, 𝑠1
𝑔𝑤𝑟𝑑

, 𝑠2
𝑔𝑤𝑟𝑑

], 368 

and 𝜏  is a controllable temperature hyperparameter. 369 

The whole process of utterance-level modeling can 370 

then be formulated as follows: 371 

𝐇𝑔𝐿𝑢
𝑢𝑡𝑡

= MambaBlock𝑢𝑡𝑡(𝐇𝑔0
𝑢𝑡𝑡) (15) 

𝐡𝑔𝑢𝑡𝑡 = AttentionPooling𝑢𝑡𝑡(𝐇𝑔𝐿𝑢
𝑢𝑡𝑡

) (16) 

After obtaining 𝐇𝑔𝐿𝑢
𝑢𝑡𝑡

from 𝐿𝑢 -layer Mamba 372 

blocks, 𝐡𝑔𝑢𝑡𝑡  is derived through the attention 373 

pooling layer to predict the utterance-level aspect 374 

scores 𝑠0
𝑔𝑢𝑡𝑡

, 𝑠1
𝑔𝑢𝑡𝑡

, 𝑠2
𝑔𝑢𝑡𝑡

, 𝑠3
𝑔𝑢𝑡𝑡

, 𝑠4
𝑔𝑢𝑡𝑡

 (accuracy, 375 

completeness, fluency, prosody, and total scores) 376 

via an utterance-level APA module which contains 377 

five regressors corresponding to each score. 378 

2.3 Optimization 379 

Automatic Pronunciation Assessment Loss: In 380 

the proposed model, each APA module is 381 

optimized using Mean Square Error (MSE). The 382 

loss for multi-aspect multi-granular assessment, 383 

ℒ𝐴𝑃𝐴, is calculated by assigning weights to each 384 

granularity level 𝑔: 385 

ℒ𝐴𝑃𝐴 = ∑ 𝜔𝑔
𝑔∈𝐺

∙
1

𝑁𝑔
∑ ∙ℒ𝑔𝑘

𝑁𝑔−1

𝑘=0
 (17) 

where 𝜔𝑔  and 𝑁𝑔  are the tunable parameter and 386 

number of aspect scores at granularity level 𝑔 , 387 

respectively. ℒ𝑔𝑘
 refers to the MSE loss computed 388 

for 𝑘-th aspect score at granularity level 𝑔. 389 

Mispronunciation Detection and Diagnosis Loss: 390 

To be in line with previous MDD studies, our 391 

model incorporates canonical phoneme 392 

embeddings to enhance text prompt-awareness. 393 

Despite some performance improvements, the 394 

mismatch between the L2 learner’s realized phones 395 

and canonical phones can still cause some 396 

deteriorating effects. This discrepancy can 397 

introduce inaccurate predictions that may 398 

potentially affect the overall quality of phonetic 399 

analysis. To mitigate this negative impact, we 400 

devise a new loss function tailored for the MDD 401 

task, as illustrated in Figure 3. Specifically, we first 402 

decouple the original cross-entropy loss into two 403 

separate losses, one for mispronunciations and the 404 

other for correct pronunciations: 405 

ℒ𝑋𝑒𝑛𝑡
𝑚𝑖𝑠 = − ∑ log(𝑦�̂�[𝑦𝑡])

𝑡∈ℳ
 (18) 

 ℒ𝑋𝑒𝑛𝑡
ℎ𝑖𝑡 = − ∑ log(𝑦�̂�[𝑦𝑡])

𝑡∈ℋ
 (19) 

where ℳ  and ℋ  are mispronunciation and 406 

correct pronunciation positions, respectively, and 407 

𝑦�̂�[𝑦𝑡] is the predicted probability of the true label 408 

𝑦𝑡  at time step 𝑡. After obtaining two decoupled 409 

losses, we re-weight them using the following 410 

formulation: 411 

ℒ𝑀𝐷𝐷
 = ℒ𝑋𝑒𝑛𝑡

ℎ𝑖𝑡 + (𝜇ℎ

𝜇𝑚)𝛼 ℒ𝑋𝑒𝑛𝑡
𝑚𝑖𝑠  (20) 

where 𝜇𝑚  and 𝜇ℎ  denote the frequency of the 412 

mispronunciations and correct pronunciations in 413 

the training set, respectively, and 𝛼  controls the 414 

weight magnitude. After that, we use ℒ𝑀𝐷𝐷
  to 415 

optimize the MDD module, and the overall loss 416 

thus can be expressed by: 417 

ℒ = ℒ𝐴𝑃𝐴 + 𝛽 ∙ℒ𝑀𝐷𝐷 (21) 

where 𝛽 is a tunable parameter. 418 

3 Experimental Setup 419 

3.1 Dataset and Evaluation Metrics 420 

We conducted experiments on speechocean762, a 421 

widely-used open-source dataset curated for APA 422 

and MDD research (Zhang et al., 2021). The 423 

dataset consists of 5,000 English-speaking 424 

recordings from 250 Mandarin L2 learners, divided 425 

equally into training and test sets. For the APA task, 426 

pronunciation proficiency scores were assessed at 427 

 

Figure 3: Difference between (a) the original cross-
entropy loss and (b) the decoupled cross-entropy loss, 
given the text prompt “crime.” 
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various linguistic granularities and across different 428 

pronunciation aspects. Each score is evaluated by 429 

five experienced experts using standardized rubrics. 430 

For the MDD task, the dataset provides an extra 431 

mispronunciation transcription annotated using a 432 

set of 46 phones. This set comprises 39 phones 433 

from the CMU dictionary4, 6 L2-specific phones, 434 

and a [unk] token for unknown phones. Notably, 435 

there are no insertion errors in the utterances, and a 436 

[DEL] token is introduced to mark deletion errors 437 

of L2 learners. Therefore, the realized phones can 438 

be aligned with canonical phones in this dataset. 439 

The evaluation metrics employed include the 440 

Pearson Correlation Coefficient (PCC) and Mean 441 

Square Error (MSE) for the APA task. On the other 442 

hand, we use precision, recall, F1-score, and phone 443 

error rate (PER) to evaluate the MDD performance, 444 

so as to be in accordance with prior studies. 445 

3.2 Implementation Details 446 

For input feature extraction, we adopt a publicly 447 

available acoustic model5 to extract GOP features, 448 

which also serves as an aligner for force alignment. 449 

Subsequently, the phone-level duration, energy 450 

statistics, and SSL features are computed by a time 451 

aggregation method (Kim et al., 2022) according to 452 

the alignment. The resulting acoustic features 𝑋 453 

and all embeddings are 128 dimensions. For all 454 

Mamba blocks, we set the number of hidden units 455 

to 128 and use a kernel size of 4 for the 1-D 456 

convolution. The SSM modules follow the original 457 

configuration used in Mamba. 𝐿𝑝, 𝐿𝑤, 𝐿𝑢 are set 458 

to 3, 1, 1, respectively. In addition, the word-level 459 

 
4 http://www.speech.cs.cmu.edu/cgi-
bin/cmudict 

1-D convolution has 256 kernels, each with a size 460 

of 3. Regarding hyperparameters, 𝜏  in attention 461 

pooling layer is set to 1.0. The combining weights 462 

𝜔𝑔 for APA loss are uniformly set to 1.0 for each 463 

granularity level 𝑔. Parameters 𝛼 and 𝛽 are tuned 464 

to be 0.7 and 0.003, respectively. To ensure the 465 

validity of our experimental results, we conducted 466 

5 independent trials for each experiment, running 467 

20 epochs with different seeds. The metrics for 468 

each task are reported as the average of these trials. 469 

3.3 Compared Baselines 470 

For the APA task, we compare our proposed 471 

approach, HMamba, with various cutting-edge 472 

baselines which can be categorized into two 473 

families: single-aspect (or partial-aspect) 474 

pronunciation assessment models or multi-granular 475 

multi-aspect pronunciation assessment models. 476 

The first group includes the Deep Feature (Lin et 477 

al., 2021b), HuBERT Large (Kim et al., 2022), and 478 

Joint-CAPT-L1 (Ryu et al., 2023). The second 479 

group encompasses LSTM, GOPT (Gong et al., 480 

5 https://kaldi-asr.org/models/m13 

Model Year 
Phone Score Word Score (PCC) Utterance Score (PCC) 

MSE↓ PCC↑ Accuracy↑  Stress↑  Total↑  Accuracy↑  Completeness↑  Fluency↑  Prosody↑  Total↑ 

Deep Feature 2021 - - - - - - - - - 0.720 

HuBERT Large  2022 - - - - - - - 0.780 0.770 - 

Joint-CAPT-L1 2023 - - - - - 0.719 - 0.775 0.773 0.743 

LSTM 2022 0.089 0.591 0.514 0.294 0.531 0.720 0.076 0.745 0.747 0.741 

GOPT 2022 0.085 0.612 0.533 0.291 0.549 0.714 0.155 0.753 0.760 0.742 

3M 2022 0.078 0.656 0.598 0.289 0.617 0.760 0.325 0.828 0.827 0.796 

HiPAMA 2023 0.084 0.616 0.575 0.320 0.591 0.730 0.276 0.749 0.751 0.754 

3MH 2023 0.071 0.693 0.682 0.361 0.694 0.782 0.374 0.843 0.836 0.811 

HMamba 2024 0.063 0.732 0.701 0.309 0.710 0.802 0.210 0.846 0.841 0.825 

Table 1: APA performance evaluations of our model and all strong baselines on the speechocean762 test set. 

Model 
Mispronunciations 

PER ↓ 
Precision ↑ Recall ↑ F1 ↑ 

Joint-CAPT-L1 26.70% 91.40% 41.50% 9.93% 

HMamba 64.50% 62.34% 63.32% 2.78% 

Table 2: MDD performance evaluations of our model, 
compared with a representative multi-task approach 
(Ryu et al., 2023) on the speechocean762 test set. 
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2022), 3M (Chao et al., 2022), HiPAMA (Do et al., 481 

2023a), and 3MH (Chao et al., 2023). As for the 482 

MDD task, we compare HMamba with the Joint-483 

CAPT-L1 model, as to our knowledge it is the only 484 

attempt that jointly addresses the APA and MDD 485 

tasks with the speechocean762 dataset. 486 

4 Experimental Results and Discussion 487 

4.1 APA Performance 488 

In Table 1, we compare the APA performance of 489 

HMamba with other competitive baselines, leading 490 

to several key observations. Firstly, it is notable that 491 

our approach, HMamba, consistently outperforms 492 

all other methods in nearly all assessment tasks, 493 

particularly in terms of accuracy scores at phone, 494 

word, and utterance levels. This improvement 495 

stems from the joint modeling paradigm of APA 496 

and MDD, highlighting that pronunciation 497 

assessment can also benefit from phonetic error 498 

discovery, consistent with prior research findings. 499 

In addition, by adopting SSL features, HMamba 500 

along with other approaches like HuBERT Large, 501 

3M, and 3MH, achieves significant improvements 502 

over the other APA methods in terms of utterance-503 

level assessments. In comparison to other 504 

hierarchical models such as HiPAMA and 3MH, 505 

HMamba leverages an SSM structure instead of the 506 

Transformer structure, demonstrating superior 507 

performance on a variety of assessment tasks. 508 

Furthermore, due to severe imbalance issues in the 509 

aspects of utterance completeness and word stress, 510 

where over 90% of assessments consistently 511 

receive the highest score (Do et al., 2023b), our 512 

approach slightly falls behind the other approaches. 513 

4.2 MDD Performance 514 

In the second set of experiments, we evaluate the 515 

MDD performance of HMamba by comparing it 516 

with another advanced multi-task learning 517 

approach, Joint-CAPT-L1. As shown in Table 2, 518 

HMamba achieves a significant improvement in 519 

terms of F1-score over Joint-CAPT-L1, with a 520 

relative increase of 21.82%. Additionally, there is a 521 

marked reduction in PER by 7.15%. These 522 

substantial enhancements demonstrate that 523 

HMamba can produce more robust and reliable 524 

mispronunciation detection and diagnosis results. 525 

4.3 Effects of Decoupled Cross-entropy Loss 526 

On the grounds of the distinct improvements in the 527 

MDD performance, we further analyze the 528 

underlying effects of proposed decoupled cross-529 

entropy loss on model performance. As illustrated 530 

in Table 3, training a text prompt-aware MDD 531 

model using the original cross-entropy often yields 532 

high precision but low recall. This is because the 533 

model primarily relies on input canonical phones, 534 

leading it to predict prior phones and overlook the 535 

actual mispronunciations of a learner. Such a model 536 

may not be suitable for educational settings where 537 

accurately detecting potential mispronunciations is 538 

critical. To remedy this, the proposed decoupled 539 

cross-entropy loss provides a feasible solution. By 540 

adjusting the weighting factor 𝛼 , we can better 541 

strike the balance between precision and recall, 542 

thus optimizing the MDD performance. This 543 

flexibility is particularly prominent across different 544 

CAPT applications. For example, in a clinical 545 

setting such as speech therapy, prioritizing 546 

precision can help prevent incorrect diagnoses of 547 

speech disorders. 548 

5 Conclusion 549 

In this paper, we have presented a novel 550 

hierarchical selective state space model (dubbed 551 

HMamba) for multifaceted CAPT application. 552 

Extensive experimental results substantiate the 553 

viability and efficacy of the proposed method 554 

compared to several top-of-the-line approaches in 555 

terms of both the APA and MDD performance. In 556 

future work, we envisage mitigating the issue of 557 

data imbalance from an optimization perspective. 558 

In addition, another key area for future research 559 

involves tackling the assessment of open-response 560 

scenarios in CAPT. 561 

Loss 𝛼 
Mispronunciations 

PER ↓ 
Precision ↑ Recall ↑ F1 ↑ 

Xent - 74.15% 40.21% 52.12% 2.58% 

deXent 

0.3 68.60% 55.74% 61.49% 2.62% 

0.5 63.51% 61.43% 62.32% 2.83% 

0.7 64.50% 62.34% 63.32% 2.78% 

0.9 57.73% 70.11% 63.19% 3.14% 

Table 3: Comparison of MDD performance between the 
original cross-entropy loss (Xent) and proposed 
decoupled cross-entropy loss (deXent). 
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Limitations 562 

Lack of Accent Diversity. The dataset used in this 563 

study comprises only Mandarin L2 learners, 564 

limiting the generalizability of the proposed model. 565 

As a result, it may be inapplicable when assessing 566 

L2 learners with diverse accents. This lack of 567 

accent diversity could lead to biases and 568 

inaccuracies in pronunciation assessment for 569 

learners from different linguistic backgrounds. 570 

Limited Interpretability. The proposed model is 571 

designed to replicate expert annotations without 572 

relying on manual assessment rubrics or external 573 

knowledge databases, which makes it challenging 574 

to provide clear and reasonable explanations for the 575 

assessment results. This lack of interpretability 576 

may hinder its acceptance and trustworthiness 577 

among educators and learners who require 578 

transparent and justifiable assessments.  579 

Limited Generalizability This research is 580 

centered on the “reading-aloud” pronunciation 581 

training scenario, where it is assumed that the L2 582 

learner accurately pronounces a predetermined text 583 

prompt. This narrow focus limits the applicability 584 

of our models to other learning contexts, such as 585 

spontaneous speech or open-ended conversations. 586 

Ethics Statement 587 

We acknowledge that all co-authors of this work 588 

comply with the ACL Code of Ethics and adhere to 589 

the code of conduct. Our experimental corpus, 590 

speechocean762, is widely used and publicly 591 

available, and we believe there are no potential 592 

risks associated with this work. 593 
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