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ABSTRACT

Understanding the complex dynamics of neural network training remains a central
challenge in deep learning research. Work rooted in statistical physics has identified
phases and phase transitions in neural network (NN) models, where models within
the same phase exhibit similar characteristics but qualitatively differ across phases.
A prominent example is the double-descent phenomenon. Recognizing these
transitions is essential for building a deeper understanding of model behavior and
the underlying mechanics. So far, these phases are typically studied in isolation
or in specific applications. In this paper, we show that phase transitions are a
widespread phenomenon. However, identifying phase transitions across different
methods requires populations that cover different phases. For that reason, we
introduce Phase Transition Model Zoos, a structured collection of neural networks
trained on diverse datasets and architectures. These model zoos are carefully
designed to help researchers systematically identify and study phase transitions
in their methods. We demonstrate the relevance of phase transitions across
multiple applications, including fine-tuning, transfer learning, out-of-distribution
generalization, pruning, ensembling, and weight averaging. The diversity of
applications underscores the universal nature of phase transitions and their impact
on different tasks. By providing the first structured dataset specifically designed
to capture phase transitions in NNs, we offer a valuable tool for the community to
systematically evaluate machine learning methods and improve their understanding
of phase behavior across a wide range of applications and architectures.

1 INTRODUCTION

Neural network (NN) research has made considerable progress in recent years. To continue making
sustainable progress in NN research, there is a need for thorough understanding of methods.
Currently, proposed methods are usually evaluated on a few datasets, or on leaderboards with a few
models. While it has become standard practice to report performance averaged over several random
seeds, these single performance metrics lead to very sparse feedback in a very complex hypothesis
and methods space and ultimately a gap in understanding. Addressing this challenge requires
systematic evaluation that strategically covers the hyperparameter and model space, demonstrating
where a method succeeds or fails in different regimes.

Identifying Phase Transitions in Neural Networks To identify relevant regimes and necessary
hyperparameter variations for method evaluation, phase transitions in neural networks provide
a useful perspective. Phase transitions have been studied extensively in the machine learning
literature (Schwarze et al., {1992} Seung et al.,|1992; Martin & Mahoneyl 2019aib). Within phases,
models are relatively homogeneous, with abrupt changes from one phase to the next. One example for
such a phase transition is the double descent (Nakkiran et al.,|2019), which describes the transition
from high to low generalization error with increasing model capacity. Other work describes the
transitions between where different NN methods perform well or fail: in training (Zhou et al., [2024)),
ensembling (Theisen et al., [2023), pruning (Zhou et al., |2023), etc. Notably, while phases exist
in performance metrics, loss landscape metrics, as well as downstream applications, they do not
necessarily overlap. For instance, ensembling reduces the sensitity to training parameters, while
pruning benefits from noisier pretraining. Therefore, identifying the phases and phase transitions
in methods and how different methods affect them provides a more robust evaluation signal than
individual data points that may lie in any of the phases.
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Figure 1: Varying hyperparameters load and temperature parameters reveal phases and phase
transitions in neural networks, as introduced in Section 2} These phases exist in the outcome of
training (left figure) , describing the transition from low to high accuracy. Phases can also be identified
in loss-landscape metrics, like the eigenvalues of the hessian to estimate curvature (second from left).
Methods applied on pre-trained models, like ensembling (second from right) or weight averaging
(right) likewise contain phase transitions as explored in Section[d To systematically evaluate neural
network methods, evaluating in different phases and localizing phase transitions is necessary.

Testing Methods on Populations of Neural Networks Evaluating methods for phase transitions
does present its own challenges, however. In particular, many machine learning methods depend
on pre-trained models. The phase transitions of these methods depend on the phase transitions
of the pre-trained models. The exploration of the phase distribution in these methods requires
systematic evaluation over different pre-trained models - model populations. However, the quality
of the feedback and scope of phase exploration depends on the diversity of the population. Most
freely accessible models are part of large public repositories like Hugging Face or
the PyTorch model hub (Pytorch). Within those collections, however, models are of varying quality
and mostly unstructured, making systematic evaluation a challenge. Structured populations have
been published as model zoo datasets (Schiirholt et al., [2022b}, [Croce et al.| [2020; [Ouyang et al
[2022; [Honegger et all 2023). These studies, however, consider the diversity of the model in their
populations only in terms of their generating factors. Phase transitions are not explicit target for
these datasets and therefore only occur incidentally. To systematically evaluate methods for phase
transitions in pre-trained models, there is therefore a need for populations with systematic variations
that covers a broad range of phases.

Contributions As a step towards robust evaluation, we present our Phase Transition Model Zoos
dataset. The dataset contains populations of trained models, containing ResNet and ViT architectures
of varying sizes, trained on SVHN, CIFAR10, CIFAR100 or TinyImagenet (Netzer et al., 2011},
[Krizhevsky & Hinton| 2009} [Le & Yang| [2013). For each dataset-architecture combination, we have
carefully trained grids of models with variations s.t. they contain the known phase transitions. We
validate the phase transition with known descriptive loss landscape metrics and annotate the models
with them. The model zoos contain a total of 1829 models between 11K and 360M parameters. To
the best of our knowledge, this is the largest structured dataset of models.

Furthermore, we demonstrate the importance of phase transitions as well as the usefulness of our
datasets to identify them. We evaluate several fundamental neural network methods on them and
show that phase transitions appear in fine-tuning, transfer-learning, pruning, ensembling and weight
averaging, some of which have to the best of our knowledge not been previously documented. We
provide an overview of the results in Figure m Ensembling, for instance, is known to improve
robustness and decrease noisiness, which manifests in a larger high performance phase compared
to pre-trained models. Other methods show phases that distinctly overlap loss landscape metrics.
Weight averaging can be expected to improve performance in one regime towards the top of the
grid, and not improve performance in the other. This example shows that since different phases
behave qualitatively differently, systematic method evaluation should cover these different regimes
and identify the phase transitions.

The Phase Transition Model Zoos repesents a large collection of models, with the potential of being
highly valuable to methods that leverage diverse and structured populations of NNs. In particular,
as it is systematically generated to cover the different phases, it can help researchers systematically
identify phase transitions in their methods, and comprehensively benchmark those. We hope this will
allow for better understanding of the layout of phases in methods, how different methods affect the
phase distribution, what the underlying mechanics for it are, and how to improve over them.
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2 LOSS LANDSCAPE TAXONOMY

Phases in Neural Networks loss landscapes The motivation for introducing phases and phase
transitions in NN loss landscapes is rooted in statistical mechanics, where such phenomena explain
qualitative changes in system behavior (Martin & Mahoney, 2019a). Phases represent distinct
regions in the parameter space where the system’s properties are homogeneous or change smoothly,
while phase transitions mark abrupt changes in these properties. In NNs, phases manifest in terms
of generalization performance. A prominent example for such a phase transition is the double
descent pheonmenon (Nakkiran et al.,[2019), a phase transition along the load axis (Liao et al., |2020;
Derezinski et al.| 2020). Similar empirical observations have been made recently on the emergent
behaviors of large language models (Wei et al., 2022)), in which non-smooth transitions can occur
when some training hyperparameters (such as the model size) are modified. However, it is not
conclusive whether these emergent behaviors are indeed sharp phase transitions or merely due to
specific ways of experimental measurements (Schaeffer et al.,|2024). These phases and transitions
are expected due to the complex, high-dimensional nature of NN optimization, where varying control
parameters like data noise and training iterations can lead to qualitatively different behaviors, akin to
physical systems undergoing phase changes. Motivated by statistical physics, Martin & Mahoney
(2019a)) identify two main types of hyperparameters in NN training: the noisiness of the training
process, dubbed temperature, and the amount of data relative to the size of the model, dubbed
relative load. Using that notion, distinct phases with qualitatively different model properties on
the temperature-load landscape can be identified (Yang et al., [2021)). Interestingly, the phases and
phase transitions can be linked to the structure of the loss landscape (Yang et al.| 2021). Specifically,
metrics such as the training loss, the sharpness of local minima, and mode connectivity or prediction
similarity computed on the training data can be used to identify the phase of a model. This, in turn,
allows for inference of model quality and the design of training algorithms that adapt when the phases
change (Zhou et al., 2023).

Loss landscape metrics [Yang et al.| (2021) categorize phases in load-temperature variations
using four metrics. The first metric is the training loss, which evaluates whether the training data
is interpolated. The other metrics describe the sharpness of the local minima, the similarity between
models trained using different random seeds, and the connectivity between different local minima of
the loss landscape. It should be noted that|Yang et al.| (2021) used a certain set of metrics to measure
these loss landscape properties, but there are alternative metrics available. For example, the sharpness
of local minima can be measured using adaptive sharpness metrics (Andriushchenko et al., 2023}
Kwon et al.|[2021)), while similarity can be measured using disagreement (Theisen et al.|[2023]).

We define the loss landscape metrics following|Yang et al.|(2021). Let & € R™ denote the learnable
weight parameter, £ be the loss function. We compute metrics using the train set unless stated
otherwise.

Hessian-based metrics The Hessian matrix H at a given point 6 can be represented as
V2L(0) € R™*™. The largest eigenvalue Aoy (H) and trace Tr(H) are used to summarize the
local curvature properties in a single value. Specifically, a larger value of the top eigenvalue or trace
indicates greater sharpness.

Mode connectivity The mode connectivity assesses the presence of low-loss paths between different
local minima and reflects how well different solutions are connected in the parameter space, indicating
smoother and more generalizable loss landscapes. It is common to fit Bézier curves (v, (t) — piece-
wise linear curves with trainable nodes — between two models @ and 8’, and subsequently compute
mode connectivity mc as

ne(6,0') = 3 (£(0) + £(8) — Ll (),

where ¢* = argmin | $(L£(0) + £(6")) — L(74(t))|- Here, mc < 0 indicates a loss barrier between
t

the two models and hence poor connectivity. mc > 0 reveals lower loss regions between the models
which indicates poor training. mc ~ 0 indicates well-connected models.

CKA similarity Centered Kernel Alignment (CKA) (Kornblith et al.l2019a) is used to evaluate the
similarity between representations learned by different NNs, providing a measure of consistency and
robustness in feature learning. CKA helps to understand how similar the learned representations are
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across different minima, linking representation similarity to landscape structure and generalization
performance. The CKA between output logits X and Y generated by 6 and €’ is computed as

HSIC(K, L)
a =
V/HSIC(K,K) - HSIC(L, L)

where HSIC is the Hilbert-Schmidt Independence Criterion and K and L are the Gram matrices of X
and Y, respectively.

Phase taxonomy Based on loss landscape metrics, the Legend: @ One model trained with a unique

NN hyperparameter space is divided into five distinct ra”}‘i‘;lm Seeil
ase

phases, as depicted in Figure

e Phase I (underfitted & undersized): Train loss is
high; Hessian metrics are relatively large (indicated by a
rugged basin); Mode connectivity is negative (indicated
by a barrier between two local minima).

* Phase II (underfitted): Train loss is high; Hessian met-
rics are relatively large; Mode connectivity is positive.

e Phase III (undersized): Train loss is small; Hessian
metrics are relatively small (smooth basin); Mode
connectivity is negative.

* Phase I'V-A (generalizing): Train loss is small; Hessian
metrics are relatively small; Mode connectivity is
near-zero (no barrier between minima); CKA similarity
is relatively large. Figure 2: Five-phase taxonomy in

* Phase IV-B (overfitted): Train loss is small; Hessian NN  hyperparameter space (Yang
metrics are relatively small; Mode connectivity is let al| 2021), varied by load-like and
near-zero; CKA similarity is relatively small. temperature-like parameters. Our zoos

cover all five phases.

Temperature

3 PHASE TRANSITION MODEL ZOOS

To create a population of models that covers relevant phases and can be used to evaluate for phase
transitions, we train strucured populations of NNs with several architectures on different datasets
following the blueprint introduced by |Unterthiner et al.|(2020). Within each model zoo population,
we systematically vary load-like and temperature-like hyperparameters to realize all of the phases.
For every model in the zoo, our dataset includes multiple checkpoints (i.e. saved model weights),
at different training epochs. We annotate these samples with performance metrics (training and test
loss and accuracy), as well as the loss landscape metrics outlined in Section 2] We further track loss
and accuracy on train, test, and — if available — validation sets. In the following, we first detail our
model zoo generation scheme. Subsequently, we analyze our models with conventional performance
metrics, but also with loss landscape metrics to quantify the qualitative diversity of our zoos and
validate that all of the phases are realized.

3.1 MODEL ZOOS GENERATION

We create 10 zoos from combinations between two architectures {ResNet, ViT} of different sizes and
four standard computer vision datasets {SVHN, CIFAR-10, CIFAR-100, TinyImagenet}. Details on
the model zoos configurations can be found in Table[I]in the Appendix. We choose ResNet (He et al.}
2016) and ViT (Dosovitskiy et al., 2021} architectures for the zoos because of their proliferation
in computer vision to achieve representative populations. Importantly, ResNet and ViT architectures
allow smooth scaling of model width and thus model capacity for the same architecture without the
need to adjust the learning scheme. The selection of datasets follows the same logic. We emphasize
that our model zoo blueprint is not limited to either specific architectures nor to computer vision tasks.

To obtain models in all phases, we introduce specific variations in the training hyperparameters.
Previous work identifies the phases on the surface spanned by load-like and temperature-like hyperpa-
rameters (Martin & Mahoney}, 2019a;;|Yang et al., 2021) The load-like parameters can be understood
as the amount training data relative to the model capacity. Temperature represents the noisiness of
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Figure 3: Performance and loss landscape metrics for the CIFAR-100 ResNet-18 model zoo. (a): test
accuracy and phases of models in the zoo. (b): training loss; (c-g) different loss landscape metrics in-

troduced in Section@ Our model zoos cover all phases identified in previous work (Yang et al.,|2021).

the training process. Following previous work, we realize variations in load by changing the model
width. Increasing the model width increases model capacity and thus decreases the relative load.
By varying the width, we achieve variations in model capacity without changing the architecture or
having to adapt the training scheme. In ResNets, the width directly refers to the number of channels.
In ViTs, we realize width by changing the model_dim parameter, i.e. the size of intermediate
representations. To realize variations in temperature, we choose to adapt the batch-size. Here, lower
batch-size increases the noisiness of the training updates and this increases temperature. For every
combination on the grid, we train three different models using random seeds {1,2,3}. All other
hyperparameters are kept constant between the models.

3.2 PHASES SYSTEMATICALLY EMERGE IN EVERY Z00O

The model zoos are designed to cover different phases. In the following, we validate phase coverage
by testing for the phases introduced by summarized in Section 2] Full phase plots
for all 10 zoos and further details can be found in Appendix [A.3] Our experiments demonstrate
that phase transitions are consistently present in the training of neural networks across all models
and datasets evaluated, with the exact phase layout affected by the architecture, dataset, and data
augmentation strategies. The specific characteristics of these phases remain consistent with the
four-phase taxonomy outlined in previous studies, validating our experiment setup.

As illustrated in Figure [3] and in Figures the phases manifest clearly in the combination of
loss landscape metrics such as Hessian trace, mode connectivity, and CKA similarity. In particular,
Phase I'V-B, associated with the best test accuracy, is marked by low loss and high generalization
performance. On the ResNet zoos, our results reveal that learning rate decay plays a significant
role in shaping the phase distribution. Specifically, decaying the learning rate by 1le4 under cosine
annealing increases the area of Phase IV (well-trained regime) while reducing the presence of Phase
II (under-trained regime), as the effect of batch size variations diminishes. This may be an indication
for why learning rate decay is so successful. Our experiments show, that the phase transitions
generalize across different datasets, architectures and training regimes. ViTs trained without strong
data augmentation show an interesting additional sharp transition from phase II to phase IV, see
Figure[IT] Adding strong data augmentation appears to smoothen that transition again, but affects
mode connectivity and sharpness, see Figure [I4]

The presence of the different phases and transitions across all combinations of architectures and
datasets studied validates the use of load-like and temperature-like hyperparameters for a systematic
evaluation of the training dynamics. By incorporating awareness of phase transitions, training
strategies can be better optimized for generalization and robustness, offering a valuable tool for
improving both research methodologies and practical machine learning applications.
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4 PHASE TRANSITIONS IN NEURAL NETWORK METHODS

In this paper, we argue that phase transitions are a widespread phenomenon across a variety of
NN methods. In this section, we put that position to the test and illustrate the relevance of phase

transitions across multiple applications.

In the following, we demonstrate phase transitions in several
fundamental ML methods, to demonstrate (i) the existence of
these phase transitions in these methods, and (ii) validate that
they can be identified using our phase transition model zoos. The
diversity of applications underscores the universal nature of phase
transitions and their impact on different methods.

4.1 FINE TUNING

Fine-tuning pre-trained models is a widely used technique for
improving model performance on new tasks or adjusting to dis-
tribution shifts(Yosinski et al, 2014). However, fine-tuning is
also sensitive to the initial state of the pre-trained model, and
the phase of the pre-trained model can significantly influence the
final performance after fine-tuning.

In this context, phases can be expected to manifest in two ways: (i)
in the fine-tuning configuration itself, where varying hyperparam-
eters like learning rate or batch size affect the training dynamics,
and (ii) in the phase of the pre-trained model, which directly
impacts the performance of the fine-tuned model. These two
sources of phase behavior are critical, as fine-tuning is essentially
a continuation of training from a specific initialization.

Given the prevalence of fine-tuning from pre-trained models
taken from model hubs, understanding the phase of the pre-

Figure 4: VIT - CIFAR-10 zoo
phase plot. Top: Test accuracy on
CIFAR10. Bottom: Test accuracy
on STL-10.
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trained model is essential for predicting how well a model will adapt to the target task. To investigate
this, we fine-tuned models from two pre-trained zoos (trained on CIFAR-10) onto STL-10. We
kept the fine-tuning setup constant to isolate the effects of the phase of the pre-trained model on

the fine-tuning outcome.

Our results show that the fine-tuned models exhibit clear phase
transitions in their performance, and these phases overlap sub-
stantially with the phases of the pre-trained models, see Figures
[l O and [TT] This highlights that the phase of the pre-trained
model plays a crucial role in determining the phase and, conse-
quently, the performance of the fine-tuned model. For instance,
models that were pre-trained in Phase IV (well-trained regime)
continued to exhibit strong generalization when fine-tuned, while
models from under-trained phases (e.g., Phase II) struggled to
adapt, leading to poorer fine-tuning performance.

While our fine-tuning setup was kept intentionally simple, more
sophisticated fine-tuning methods could likely shift the phase
distribution. Evaluating these methods for phase transitions, as
enabled by our model zoos, would provide valuable insights into
the impact of different fine-tuning strategies.

4.2 TRANSFER LEARNING

While fine-tuning is commonly used for specialization in the
same task, transfer learning is a powerful approach for adapting
pre-trained models to new tasks or datasets. That way, it allows
models trained on general tasks to be transferred to more specific
or domain-specific applications (Yosinski et al} 2014}, [Kornblith|

Figure 5: ResNetl8 - Tiny-
Imagenet zoo phase plot. Top:
Test accuracy on TI. Bottom: Test
accuracy on STL-10.
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et al.,[2019b; Recht et al.,|2019). This scheme has proven highly successful, particularly in scenarios
where labeled data is limited. However, as with fine-tuning, the success of transfer learning depends
on the training configuration but also on the phase of the pre-trained model.

To identify the impact of the pre-trained model, we focus on how the pre-trained model’s phase
influences the outcome. To explore this, we transfer two model populations trained on TinyImageNet
to CIFAR-10 and STL-10, keeping the transfer configuration constant to isolate the effects of pre-
training phase.

Our results show distinct phase transitions in transfer learning, though the phases do not fully
overlap with those of the pre-trained models, see Figures 3] [[5]and [T} Choosing the best pre-trained
model does not result in the best transfer-learned model. Indeed, lower pretraining temperature
seems to help transfer performance. Task alignment and complexity may influence this, with closer
tasks suggesting greater phase overlap, while more distant or complex tasks would favor models
in lower-temperature phases.

This demonstrates that phase transitions are present in transfer learning but are more complex than in
fine-tuning. Benchmarking transfer learning strategies using phase-aware model zoos provides deeper
insight into how pre-trained models adapt to diverse tasks, guiding more effective transfer practices.

4.3 PRUNING

Model pruning is a common strategy to reduce the size of trained  Fjgure 6: ResNetl8 - CIFAR10
models, making them more efficient for deployment in resource- 700 phase plot. Top: Test accu-
constrained environments such as mobile devices and edge com- racy of individual models. Bot-
puting (Lecun et al., [1989; |Han et al., 2015} [Frankle & Carbin, tom: Test accuracy of models af-
2019; Molchanov et al.| 2017). Typically, pruning has a notice-  ter pruning with 80% pruning ra-
able impact on performance only at high pruning ratios, where tjo.

a significant proportion of weights are removed.

Since pruning operates on pre-trained models, we find that the Bézler Mode Connectivity mc

phase of the pre-trained model can significantly influence the
pruning outcome. We conduct uniform magnitude pruning on the
CIFAR-10 ResNet18 model zoo, removing 80% of the weights
per layer and evaluating the pruned models, see Figure [6] As
expected, the results reveal clear phase transitions. Larger models
exhibit a higher capacity for pruning while maintaining perfor-
mance, but importantly, the temperature of the pre-trained model
plays a crucial role. Models pre-trained in higher-temperature
phases (Phase II and IV-A) tend to perform better post-pruning
compared to those from lower-temperature phases. The phase
suggests a connection to not only model size, but also mode
connectivity.

Training Batch Size
=
)
©
|

(NN
Model Width

Pruning Test Acc

60

This demonstrates that selecting the best model before pruning
does not necessarily result in the best post-pruning outcome. The
complex phase transitions observed suggest that phase-aware 1024
pruning could lead to more effective strategies for optimizing 2 4 8 16 32 64 128256
models in deployment. Evaluating phase transitions in pruning Model Width
offers a valuable tool for understanding how pre-trained model

properties interact with pruning methods.
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=
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©

4.4 ENSEMBLING

Ensembling models by averaging model predictions is well known to improve robustness in various
tasks (Hansen & Salamon, 1990). However, the success of ensembling depends on the models used,
suggesting that their phases are crucial for effective ensemble performance.
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Previous work (Theisen et al.} [2023)) has shown that phase tran- Figure 7: ResNet18 - CIFAR10
sitions play a significant role in ensembling, outlining condi- zoo phase plot. Top: Test accu-
tions under which ensembling leads to improvements. To eval- racy of individual models. Bot-
uate this, we replicate these findings using models from the tom: Test accuracy of ensembles.
Resnet18 zoo trained on CIFAR10, averaging models with the

same temperature-load combination across three random seeds. Test Acc - CIFAR10
Our results reveal distinct phase transitions, confirming that en- 085
sembles composed of models from specific phases exhibit better & 080
robustness and generalization, see Figure[7]and [T} In particular, & 075
models from higher-temperature phases tend to produce more s 070
robust ensembles, while those from lower phases may lead to £ [ | 063
diminished performance gains. 060
0.55
This highlights the importance of considering model phases when Model Width
constructing ensembles. Benchmarking ensembles using phase- Ensembling Test Acc
aware model zoos provides a systematic approach to understand-
ing how phase interactions affect ensemble outcomes, guiding 085
more effective ensemble strategies. < 0.80
g 0.75
4.5 WEIGHT AVERAGING £ 00
= .
While ensembling combines predictions, weight averaging 1024 0.65

directly combines model weights, offering benefits such as 2 4 8 16 32 64128256
improved in- and out-of-domain performance without increasing Model width
inference costs (Wortsman et al, 2022b} [Guo et all, [2023).

However, weight averaging is sensitive to the alignment of model parameters, and inconsistent results
have been observed depending on model initialization and optimization choices
[2022)). Understanding the phases of models being averaged is particularly important for ensuring
robustness and reproducibility in these methods.

Previous work has demonstrated that the  Figure 8: ResNet18 - CIFAR10 zoo phase plots with

success of weight averaging is influenced  performance and loss landscape metrics for weight
by the structure of the loss landscape, averaging.

including metrics like mode connectivity

and Hessian trace (Wortsman et al., [2022a). Test Acc ATest Accuracy; Git Re-Basin

To investigate this further, we apply || [ .,
-0.8 02
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weight averaging to models from our
Model Width Model Width

CIFAR-10 ResNet-18 zoo, examining how
phases affect the success of averaging.
Specifically, we average weights in two
ways: (i) across 5 epochs within the same

model (Wortsman et al,[2022b}), (ii) across
log (|TrV2L|) - Train A Test Acc Wise-FT

models within the same temperature- .

. . . . h b -0.12
load cell, which we align using Git e 10
Re-Basin (Ainsworth et al}}, 2022). ‘ 7 2 008
Our results reveal distinct phase transitions e ZZi
that correlate with loss landscape metrics s 002
(see Figure [Bl PHI7). Averaging over . 000

epochs improves performance in early 2 48 lo 32 641202 2 4 8 lo 32 6412025
phases (I and II), where the Hessian trace

is large, while averaging across seeds

using Git Re-Basin alignment negatively impacts performance in Phases I and III, where mode
connectivity is poor.

Training Batch Size
Training Batch Size

Training Batch Size
Training Batch Size

These findings underscore the importance of considering the phase of models in weight averaging
to ensure reproducibility and robustness. The phase-dependent performance variations suggest that
aligning models purely based on initialization may not be sufficient. Our dataset, with its detailed
phase annotations, provides a valuable resource for further investigation into how phases influence the
success of weight averaging, enabling more robust and generalizable model combination strategies.
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5 APPLICATIONS FOR POPULATION BASED METHODS

Our dataset offers diverse opportunities for research beyond evaluation and the identification of
phase transitions, particularly for methods that leverage populations of models and could benefit
from annotated phase and loss landscape metrics. Here, we outline some of these applications.

5.1 POPULATION-BASED TRAINING

Population-based methods for hyperparameter tuning have shown great promise (Jaderberg et al.,
2017; |L1 et al.| 2020), yet they typically rely solely on validation performance for guidance. Our
dataset provides loss landscape metrics, such as Hessian trace and mode connectivity, which could be
used to guide models toward optimal phases during training. Recent works have demonstrated that
leveraging such metrics can improve hyperparameter tuning efficiency and training outcomes (Zhou
et al.} 2023} Yao et al., [2018). Our model zoos, with multiple checkpoints and variations, offer a rich
resource to explore these dynamics and further optimize population-based methods.

5.2 MODEL ANALYSIS

Predicting model properties based on weight statistics, without relying on test data, is an emerging
field of research (Eilertsen et al., [2020; |Unterthiner et al.| [2020). Our dataset, which includes detailed
annotations of loss landscape metrics across different phases, is ideal for training robust predictors
that generalize across diverse model populations. This could lead to improved methods for predicting
generalization power (Jiang et al.l 2020) or detecting adversarial backdoors (Langosco et al., [2023).
Additionally, approximating expensive metrics such as mode connectivity through weight-based
predictors could reduce the computational cost of model analysis.

5.3 WEIGHT GENERATION

Learned weight generation is another promising application of our dataset. Recent works have
explored generative models for neural network weights (Peebles et al.,|2022; Schiirholt et al., 2022a;
Soro et al.l 2024). By conditioning weight generation on phase and loss landscape metrics, as
provided by our model zoos, future methods could produce models that are better aligned with
specific target tasks or robustness criteria. Our dataset offers the diversity required to train such
methods, moving beyond the relatively homogeneous datasets used in prior work.

6 DISCUSSION

Limitations In this work, the Phase Transition Model Zoos are limited to classification models
in the computer vision domain. We focus on one domain to achieve better coverage for different
computer vision datasets and architectures. Our work presents itself as a first step to make model
zoos comprehensively cover phase transitions for a variety of applications, and we leave its extension
to other tasks and domains for future work.

Conclusion The Phase Transition Model Zoos represent the largest structured collection of models
annotated with detailed loss landscape metrics. With it, we provide the research community with
a powerful tool to explore and benchmark neural network performance across different phases. By
systematically covering phase transitions, it allows the study of robustness, generalization, and failure
modes of deep learning methods in a much more nuanced, comprehensive and reliable way.

We demonstrate the relevance of phase transitions by identifying phases in experiments on fine-tuning,
transfer learning, pruning, ensembling, and weight averaging. We show that these phases significantly
affect performance and that their impact varies from one method to another, offering valuable insights
beyond conventional performance metrics.

With this work, we encourage the ML community to leverage phase awareness in their evaluations,
moving beyond single-point performance metrics and toward a deeper understanding of model behav-
ior. Our dataset offers a foundation for advancing methods in population-based training, model anal-
ysis, and weight generation, contributing to more robust and generalizable machine learning models.
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A DATASET DOCUMENTATION

A sample of the phase transition model zoo dataset can be downloaded anonymously from
https://drive.proton.me/urls/V2E66KY0JIJM#Pg5M06URN4EN. Further instructions
to explore, visualize or use the zoos can be found in the supplementary material and the corresponding
README . md.

A.1 MODEL Z00 CONTENTS

In the main paper, we described the generation of the model zoos as well as explored their performance
and phase information. Here, we detail the contents of the datasets. A model zoo contains a set of
trained Neural Network models. For each of the zoos, we fix architecture and task combinations and
introduce variations in temperature-like and load-like parameters. We realize temperature variations
by varying the batch-size, and load variations by varying the model width. We chose the training
parameters and variation range such that the phases and phase transitions described by Yang et.
al (Yang et al.,[2021)) can be observed. We repeat each temperature-load combination with seeds
{1,2, 3} to compute loss landscape metrics and get robust results.

For every model sample, there are model state checkpoints at intervals throughout training. The
checkpoints are in PyTorch format, which uses pickle to save ordered dicts. We will provide code
to convert the checkpoints to framework-neutral file formats. We annotate these samples with
performance metrics (training and test loss and accuracy), as well as the loss landscape metrics
(hessian eigenvalues, Bézier mode connectivity, CKA similarity). We add additional results like
model averaging performance, where applicable to individual models. The model zoos are generated
with ray.tune [H and largely follow their experiment structure. Each model in a population is
contained in one folder. Checkpoints are kept in subfolders for the corresponding epochs. Each model
is annotated with a config. json file to re-create the model exactly. Performance metrics are
tracked for every epoch and saved in a results. json file for every model. For a subset of epochs,
we add loss-landscape metrics. All model zoos contain full meta-data configs and self-contained
Pytorch code, s.t. they can be re-instantiated exactly, re-trained, or fine-tuned. All code to train
grids, evaluate, compute loss landscape metrics and model averaging is available alongside the data.
Further, we provide code to i) recreate the model zoo datasets, ii) compute loss-landscape metrics, iii)
load the models, iv) re-create the figures in the main paper. In order to allow easy use of the dataset,
we plan to make adequate PyTorch dataset classes available upon publication.

This section will be updated upon dataset publication. Indeed, several statements are intentionally left
vague as of now. Our dataset is large, and will require a careful choice on what to include in order to
balance the dataset utility with its size. This will influence, in particular, the number of checkpoints
we include per model.

A.2 MODEL Z00 GENERATION

We generated the dataset for common computer vision tasks and architectures to maximize applica-
bility to the community. We fixed the load-temperature grids by exploring the boundary cases first
and establishing the presence of phase transitions, then filling in more resolution. We chose batch
size as the temperature-like hyperparameter, and model width as the load-like hyperparameter: they
are easy to vary and close to the practice. The amount of data is usually fixed, and learning rates
are often scheduled and kept non-constant. The full list of model zoo hyperparameters is given in
Table[l] We used Random Cropping, horizontal flipping and random rotations for all model zoos.
Training ViTs on CIFAR100 required stronger data augmentation to achieve competitive performance.
Therefore, we have applied a combination of random cropping, random erasing, color jitter, and
RandAugment (Cubuk et al.,|2019). After the initial tuning of the grids, the training of the model
zoos was done on 16 DGX H100 GPUS in 20 days. The computation of loss landscape metrics was
performed on the same hardware in 7 days.

'"https://docs.ray.io/en/latest/tune/index.html
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Table 1: Full list of hyperparameters of the model zoos. Variations between models are indicated by
{...}. Width indicates the width of the first residual block. From that, we follow the same scaling
factor as the standard ResNet.

Base Architecture ResNet-18, ResNet-50 ViT

Datasets SVHN, CIFAR10, CIFAR100, TinyImagenet CIFAR10, CIFAR100
Activation ReLU ReLU

Initialization Kaiming Uniform Kaiming Uniform
Optimizer SGD ADAMW

Learning Rate 0.1 6e — 3

Momentum 0.9

WD 5e — 4 CIFARI10: 5e — 4. CIFAR100: 5e¢ — 2
LR Schedule OneCycleLR with Cosine Annealing OneCycleLR with Cosine Annealing
Width 2,4,8,16, 32, 64, 128, 256 6,12, 24, 48, 60, 96, 192
Batch Size 8, 16, 32, 64, 128, 256, 512, 1024 8, 16, 32, 64, 128, 256, 512
Seeds 0,1,2 0,1,2
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Figure 9: Weight averaging results for the CIFAR-10 ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.

A.3 MODEL ZOO EVALUATION

In this section, we test the general validity of the trained models as representatives of real-world
models in a structured dataset. An overview of the models at the end of training is given in Table
The results confirm that models are trained to competitive performance for their respective size. More
nuanced information on the distribution of model performance on the temperature-load grid is shown
in Figures [9] through [I8] Similar to previous work, the zoos show distinct low train-loss regions,
with smaller embedded regions within that generalize well. Test performance generally improves
with decreasing load (increasing width), with a distinct peak phase where temperature and load are
low enough, but not too low. The generalization gap correspondingly shows a superposition of both
patterns. Further applications or loss landscape metrics likewise show clear phase transitions.

Table 2: Conventional Performance Metric Distribution of Model Zoos.

Model Data Train Loss Test Loss Train Acc Test Acc GGap
p + o [min,max] p + o [min,max] £ o [min,max] p + o [min,max] £ o [min,max]

ResNetl8 SVHN  0.1020.11 [0.00,0.38] 0.15--0.04 [0.11,0.27] 0.97--0.03 [0.88,1.00] 0.96=-0.01 [0.92,0.97] 0.012-0.02 [-0.04,0.03]
ResNet50 SVHN  0.062-0.07 [0.00,0.24] 0.14-20.02 [0.11,0.18] 0.98--0.02 [0.93,1.00] 0.972-0.01 [0.95,0.97] 0.012-0.02 [-0.02,0.03]

ResNetl8 CIFARIO 0.0820.19 [0.00,0.66] 0.67-£0.34 [0.32,1.98] 0.972-0.06 [0.77,1.00] 0.822-0.08 [0.65,0.91] 0.16=-0.07 [0.04,0.35]
ResNet50 CIFARIO 0.0420.09 [0.00,0.52] 0.60-£0.30 [0.27,1.69] 0.99-£0.03 [0.82,1.00] 0.84=:0.07 [0.64,0.92] 0.15=:0.06 [0.05,0.33]

ResNet18 CIFAR100 0.45+0.79 [0.00,2.48] 2.0240.54 [1.24,3.89] 0.88+0.21 [0.35,1.00] 0.5340.12 [0.29,0.69] 0.3540.15[0.01,0.67]
ResNet50 CIFAR100 0.35+0.68 [0.00,4.61] 1.78+0.55 [1.18,4.61] 0.9140.18 [0.01,1.00] 0.5740.11 [0.01,0.70] 0.34£0.14 [-0.01,0.67]

ResNet18 TI 1.20£1.06 [0.01,3.42] 1.91£0.48 [1.29,3.22] 0.71£0.25 [0.23,1.00] 0.55+0.12 [0.26,0.70] 0.16=£0.15 [0.03,0.41]
ResNet50 TI 1.05£0.96 [0.00,3.55] 1.85+£0.51 [1.21,3.63] 0.74+£0.22 [0.21,1.00] 0.57+£0.11 [0.22,0.72] 0.1740.15 [-0.02,0.49]

VIT  CIFARIO 0.77240.83 [0.00,2.18] 1.724:0.45 [0.71,2.96] 0.7120.31 [0.17,1.00] 0.59--0.23 [0.10,0.82] 0.130.10 [-0.01,0.27]
VIT  CIFARI00 2.9640.94 [1.21,4.32] 2.72--0.82 [1.74,4.15] 0.37-£0.24 [0.06,0.88] 0.432-0.22 [0.09,0.72] -0.05--0.07 [-0.13,0.16]
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Figure 10: Weight averaging results for the CIFAR-10 ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy.
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Figure 11: Weight averaging results for the CIFAR-10 ViT model zoo, showing distinct phase
transitions in performance based on averaging strategy.
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Figure 12: Weight averaging results for the CIFAR-100 ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.

15



Under review as a conference paper at ICLR 2025

A Test Acc Wise-FT

Train Loss Test Acc CKA Similarity log ([Trv2L) - Train

30 (| o2 -0125
06 o8 9
g 25 g g g g -0.100
o @ & 07 @ i
£ 20 g5 05§ £ 8 £ 0.075
2 E % 06 & K
3 5 8 3 8 , 8
= @ = o o 0050
£ £ s 2 os £ g
£ w0 £ = £ £
g g g 04 E 6 8 0.025
-05 03
1 03 5 0.000
Model Width Model Width Model Width Model Width Model Width
Train Acc Generalization Gap Bézier Mode Connectivity mc log (|Trv2L|) - Test - A Test Accuracy; Git Re-Basin
] oe ] ] 12 ] 02
3y 08 87 o5 &~ L E 8
» - - e u @ o3
§ § 04§ -0 g bl
3 0 & i H 0 o3
° 2 03 o ° s 2 04
£ £ £ -0 £ £
5 g 02 &1 § § -05
& 04 £ o & & 8 =
1 -a0
-7 -06
I 00 . g L
~T e 23Ry ~T e 23Ry NTe 2R3y g NTe ey NT e 2R
Model Width Model Width Model Width Maodel Width Maodel Width

Figure 13: Weight averaging results for the CIFAR-100 ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy.
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Figure 14: Weight averaging results for the CIFAR-100 ViT model zoo, showing distinct phase
transitions in performance based on averaging strategy.
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Figure 15: Weight averaging results for the Tiny-Imagenet ResNet-18 model zoo, showing distinct
phase transitions in performance and loss-landscape metrics.
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Figure 16: Weight averaging results for the Tiny-Imagenet ResNet-50 model zoo, showing distinct
phase transitions in performance based on averaging strategy.
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Figure 17: Weight averaging results for the SVHN ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.
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Figure 18: Weight averaging results for the SVHN ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy. Note that extreme values for low width and
batch size distort the appearence of the phase plots.
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A.4 INTENDED USES

The dataset is a repository of trained deep-learning models with phase transitions. It is mainly
intended to study phase transitions on populations of neural network models. For every model,
we include multiple checkpoints, representing different training epochs, to allow for the study of
the training procedure. We also provide loss landscape metrics, to allow researchers to relate their
findings with the structure of the loss landscape. The dataset is intended to allow researchers to (i)
identify phases in different model properties or applications like the weight averaging examples in
the main paper; and (ii) evaluate existing methods that rely on pre-trained models systematically
on models of different phases, to get a better understanding under which conditions methods can
be expected to perform well. Further examples of applications of our dataset are presented in our
publication: model training, model property prediction, model generation, model combination, etc.

Please note that this dataset is intended for research on populations of models, not to further improve
performance on specific computer vision tasks directly. The models in our zoo were selected for
their diversity in phases, not optimized for performance on their specific datasets; there may exist
generating factors combinations achieving better performance with similar architectures.

The dataset is entirely synthetic and does not contain personally identifiable information or offensive
content. Authors bear all responsibility in case of violation of rights.

A.5 HOSTING, LICENSING, AND MAINTENANCE PLAN

The dataset will be made publicly available and licensed under the Creative Commons Attribution
4.0 International license (CC-BY 4.0). We refrain from publishing the dataset during the review
process to ensure double-blind reviewing. The dataset will be published after the completion of
the review process, for the camera-ready version. We provide representative samples of the
dataset to the reviewers via anonymous uploads. We will incorporate reviewer feedback for
the published version of the dataset. This dataset documentation will be updated to include the
corresponding links and information.

We plan on using Zenodo for data hosting. It provides persistent identifiers (DOI), long-term hosting
guarantees for at least 20 years, and dataset versioning. We will collect information on the dataset,
links to the data, code, and projects with the dataset on a hosted website. Upon publication, code
to use the datasets will be made available, including multi-purpose dataset metadata like croissant.
We will maintain the datasets if necessary. We further plan on extending the dataset towards more
architectures, tasks, and domains, and invite the community to engage.

Code to recreate, correct, adapt, or extend the datasets will be provided in a GitHub repository, such
that maintenance can be taken over by the community at need. The GitHub repository allows the
community to discuss, interact, add, change, or fork the code.
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