
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEL ZOOS FOR BENCHMARKING
PHASE TRANSITIONS IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the complex dynamics of neural network training remains a central
challenge in deep learning research. Work rooted in statistical physics has identified
phases and phase transitions in neural network (NN) models, where models within
the same phase exhibit similar characteristics but qualitatively differ across phases.
A prominent example is the double-descent phenomenon. Recognizing these
transitions is essential for building a deeper understanding of model behavior and
the underlying mechanics. So far, these phases are typically studied in isolation
or in specific applications. In this paper, we show that phase transitions are a
widespread phenomenon. However, identifying phase transitions across different
methods requires populations that cover different phases. For that reason, we
introduce Phase Transition Model Zoos, a structured collection of neural networks
trained on diverse datasets and architectures. These model zoos are carefully
designed to help researchers systematically identify and study phase transitions
in their methods. We demonstrate the relevance of phase transitions across
multiple applications, including fine-tuning, transfer learning, out-of-distribution
generalization, pruning, ensembling, and weight averaging. The diversity of
applications underscores the universal nature of phase transitions and their impact
on different tasks. By providing the first structured dataset specifically designed
to capture phase transitions in NNs, we offer a valuable tool for the community to
systematically evaluate machine learning methods and improve their understanding
of phase behavior across a wide range of applications and architectures.

1 INTRODUCTION

Neural network (NN) research has made considerable progress in recent years. To continue making
sustainable progress in NN research, there is a need for thorough understanding of methods.
Currently, proposed methods are usually evaluated on a few datasets, or on leaderboards with a few
models. While it has become standard practice to report performance averaged over several random
seeds, these single performance metrics lead to very sparse feedback in a very complex hypothesis
and methods space and ultimately a gap in understanding. Addressing this challenge requires
systematic evaluation that strategically covers the hyperparameter and model space, demonstrating
where a method succeeds or fails in different regimes.

Identifying Phase Transitions in Neural Networks To identify relevant regimes and necessary
hyperparameter variations for method evaluation, phase transitions in neural networks provide
a useful perspective. Phase transitions have been studied extensively in the machine learning
literature (Schwarze et al., 1992; Seung et al., 1992; Martin & Mahoney, 2019a;b). Within phases,
models are relatively homogeneous, with abrupt changes from one phase to the next. One example for
such a phase transition is the double descent (Nakkiran et al., 2019), which describes the transition
from high to low generalization error with increasing model capacity. Other work describes the
transitions between where different NN methods perform well or fail: in training (Zhou et al., 2024),
ensembling (Theisen et al., 2023), pruning (Zhou et al., 2023), etc. Notably, while phases exist
in performance metrics, loss landscape metrics, as well as downstream applications, they do not
necessarily overlap. For instance, ensembling reduces the sensitity to training parameters, while
pruning benefits from noisier pretraining. Therefore, identifying the phases and phase transitions
in methods and how different methods affect them provides a more robust evaluation signal than
individual data points that may lie in any of the phases.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Varying hyperparameters load and temperature parameters reveal phases and phase
transitions in neural networks, as introduced in Section 2. These phases exist in the outcome of
training (left figure) , describing the transition from low to high accuracy. Phases can also be identified
in loss-landscape metrics, like the eigenvalues of the hessian to estimate curvature (second from left).
Methods applied on pre-trained models, like ensembling (second from right) or weight averaging
(right) likewise contain phase transitions as explored in Section 4. To systematically evaluate neural
network methods, evaluating in different phases and localizing phase transitions is necessary.

Testing Methods on Populations of Neural Networks Evaluating methods for phase transitions
does present its own challenges, however. In particular, many machine learning methods depend
on pre-trained models. The phase transitions of these methods depend on the phase transitions
of the pre-trained models. The exploration of the phase distribution in these methods requires
systematic evaluation over different pre-trained models - model populations. However, the quality
of the feedback and scope of phase exploration depends on the diversity of the population. Most
freely accessible models are part of large public repositories like Hugging Face (Wolf et al., 2020) or
the PyTorch model hub (Pytorch). Within those collections, however, models are of varying quality
and mostly unstructured, making systematic evaluation a challenge. Structured populations have
been published as model zoo datasets (Schürholt et al., 2022b; Croce et al., 2020; Ouyang et al.,
2022; Honegger et al., 2023). These studies, however, consider the diversity of the model in their
populations only in terms of their generating factors. Phase transitions are not explicit target for
these datasets and therefore only occur incidentally. To systematically evaluate methods for phase
transitions in pre-trained models, there is therefore a need for populations with systematic variations
that covers a broad range of phases.

Contributions As a step towards robust evaluation, we present our Phase Transition Model Zoos
dataset. The dataset contains populations of trained models, containing ResNet and ViT architectures
of varying sizes, trained on SVHN, CIFAR10, CIFAR100 or TinyImagenet (Netzer et al., 2011;
Krizhevsky & Hinton, 2009; Le & Yang, 2015). For each dataset-architecture combination, we have
carefully trained grids of models with variations s.t. they contain the known phase transitions. We
validate the phase transition with known descriptive loss landscape metrics and annotate the models
with them. The model zoos contain a total of 1829 models between 11K and 360M parameters. To
the best of our knowledge, this is the largest structured dataset of models.

Furthermore, we demonstrate the importance of phase transitions as well as the usefulness of our
datasets to identify them. We evaluate several fundamental neural network methods on them and
show that phase transitions appear in fine-tuning, transfer-learning, pruning, ensembling and weight
averaging, some of which have to the best of our knowledge not been previously documented. We
provide an overview of the results in Figure 1. Ensembling, for instance, is known to improve
robustness and decrease noisiness, which manifests in a larger high performance phase compared
to pre-trained models. Other methods show phases that distinctly overlap loss landscape metrics.
Weight averaging can be expected to improve performance in one regime towards the top of the
grid, and not improve performance in the other. This example shows that since different phases
behave qualitatively differently, systematic method evaluation should cover these different regimes
and identify the phase transitions.

The Phase Transition Model Zoos repesents a large collection of models, with the potential of being
highly valuable to methods that leverage diverse and structured populations of NNs. In particular,
as it is systematically generated to cover the different phases, it can help researchers systematically
identify phase transitions in their methods, and comprehensively benchmark those. We hope this will
allow for better understanding of the layout of phases in methods, how different methods affect the
phase distribution, what the underlying mechanics for it are, and how to improve over them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 LOSS LANDSCAPE TAXONOMY

Phases in Neural Networks loss landscapes The motivation for introducing phases and phase
transitions in NN loss landscapes is rooted in statistical mechanics, where such phenomena explain
qualitative changes in system behavior (Martin & Mahoney, 2019a). Phases represent distinct
regions in the parameter space where the system’s properties are homogeneous or change smoothly,
while phase transitions mark abrupt changes in these properties. In NNs, phases manifest in terms
of generalization performance. A prominent example for such a phase transition is the double
descent pheonmenon (Nakkiran et al., 2019), a phase transition along the load axis (Liao et al., 2020;
Derezinski et al., 2020). Similar empirical observations have been made recently on the emergent
behaviors of large language models (Wei et al., 2022), in which non-smooth transitions can occur
when some training hyperparameters (such as the model size) are modified. However, it is not
conclusive whether these emergent behaviors are indeed sharp phase transitions or merely due to
specific ways of experimental measurements (Schaeffer et al., 2024). These phases and transitions
are expected due to the complex, high-dimensional nature of NN optimization, where varying control
parameters like data noise and training iterations can lead to qualitatively different behaviors, akin to
physical systems undergoing phase changes. Motivated by statistical physics, Martin & Mahoney
(2019a) identify two main types of hyperparameters in NN training: the noisiness of the training
process, dubbed temperature, and the amount of data relative to the size of the model, dubbed
relative load. Using that notion, distinct phases with qualitatively different model properties on
the temperature-load landscape can be identified (Yang et al., 2021). Interestingly, the phases and
phase transitions can be linked to the structure of the loss landscape (Yang et al., 2021). Specifically,
metrics such as the training loss, the sharpness of local minima, and mode connectivity or prediction
similarity computed on the training data can be used to identify the phase of a model. This, in turn,
allows for inference of model quality and the design of training algorithms that adapt when the phases
change (Zhou et al., 2023).

Loss landscape metrics Yang et al. (2021) categorize phases in load-temperature variations
using four metrics. The first metric is the training loss, which evaluates whether the training data
is interpolated. The other metrics describe the sharpness of the local minima, the similarity between
models trained using different random seeds, and the connectivity between different local minima of
the loss landscape. It should be noted that Yang et al. (2021) used a certain set of metrics to measure
these loss landscape properties, but there are alternative metrics available. For example, the sharpness
of local minima can be measured using adaptive sharpness metrics (Andriushchenko et al., 2023;
Kwon et al., 2021), while similarity can be measured using disagreement (Theisen et al., 2023).

We define the loss landscape metrics following Yang et al. (2021). Let θ ∈ Rm denote the learnable
weight parameter, L be the loss function. We compute metrics using the train set unless stated
otherwise.

Hessian-based metrics The Hessian matrix H at a given point θ can be represented as
∇2

θL(θ) ∈ Rm×m. The largest eigenvalue λmax(H) and trace Tr(H) are used to summarize the
local curvature properties in a single value. Specifically, a larger value of the top eigenvalue or trace
indicates greater sharpness.

Mode connectivity The mode connectivity assesses the presence of low-loss paths between different
local minima and reflects how well different solutions are connected in the parameter space, indicating
smoother and more generalizable loss landscapes. It is common to fit Bézier curves (γϕ(t) — piece-
wise linear curves with trainable nodes — between two models θ and θ′, and subsequently compute
mode connectivity mc as

mc(θ,θ′) =
1

2
(L(θ) + L(θ′))− L(γϕ(t∗)),

where t∗ = argmin
t

∣∣ 1
2 (L(θ) + L(θ′))− L(γϕ(t))

∣∣. Here, mc < 0 indicates a loss barrier between

the two models and hence poor connectivity. mc > 0 reveals lower loss regions between the models
which indicates poor training. mc ≈ 0 indicates well-connected models.

CKA similarity Centered Kernel Alignment (CKA) (Kornblith et al., 2019a) is used to evaluate the
similarity between representations learned by different NNs, providing a measure of consistency and
robustness in feature learning. CKA helps to understand how similar the learned representations are

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

across different minima, linking representation similarity to landscape structure and generalization
performance. The CKA between output logits X and Y generated by θ and θ′ is computed as

cka =
HSIC(K,L)√

HSIC(K,K) · HSIC(L,L)

where HSIC is the Hilbert-Schmidt Independence Criterion and K and L are the Gram matrices of X
and Y, respectively.

 Load

Te
m

pe
ra

tu
re

Phase III

 Phase II

Phase IV-A

Phase IV-B

Phase I

One model trained with a unique
random seed

Legend:

Figure 2: Five-phase taxonomy in
NN hyperparameter space (Yang
et al., 2021), varied by load-like and
temperature-like parameters. Our zoos
cover all five phases.

Phase taxonomy Based on loss landscape metrics, the
NN hyperparameter space is divided into five distinct
phases, as depicted in Figure 2.

• Phase I (underfitted & undersized): Train loss is
high; Hessian metrics are relatively large (indicated by a
rugged basin); Mode connectivity is negative (indicated
by a barrier between two local minima).

• Phase II (underfitted): Train loss is high; Hessian met-
rics are relatively large; Mode connectivity is positive.

• Phase III (undersized): Train loss is small; Hessian
metrics are relatively small (smooth basin); Mode
connectivity is negative.

• Phase IV-A (generalizing): Train loss is small; Hessian
metrics are relatively small; Mode connectivity is
near-zero (no barrier between minima); CKA similarity
is relatively large.

• Phase IV-B (overfitted): Train loss is small; Hessian
metrics are relatively small; Mode connectivity is
near-zero; CKA similarity is relatively small.

3 PHASE TRANSITION MODEL ZOOS

To create a population of models that covers relevant phases and can be used to evaluate for phase
transitions, we train strucured populations of NNs with several architectures on different datasets
following the blueprint introduced by Unterthiner et al. (2020). Within each model zoo population,
we systematically vary load-like and temperature-like hyperparameters to realize all of the phases.
For every model in the zoo, our dataset includes multiple checkpoints (i.e. saved model weights),
at different training epochs. We annotate these samples with performance metrics (training and test
loss and accuracy), as well as the loss landscape metrics outlined in Section 2. We further track loss
and accuracy on train, test, and — if available — validation sets. In the following, we first detail our
model zoo generation scheme. Subsequently, we analyze our models with conventional performance
metrics, but also with loss landscape metrics to quantify the qualitative diversity of our zoos and
validate that all of the phases are realized.

3.1 MODEL ZOOS GENERATION

We create 10 zoos from combinations between two architectures {ResNet,ViT} of different sizes and
four standard computer vision datasets {SVHN,CIFAR-10,CIFAR-100,TinyImagenet}. Details on
the model zoos configurations can be found in Table 1 in the Appendix. We choose ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2021) architectures for the zoos because of their proliferation
in computer vision to achieve representative populations. Importantly, ResNet and ViT architectures
allow smooth scaling of model width and thus model capacity for the same architecture without the
need to adjust the learning scheme. The selection of datasets follows the same logic. We emphasize
that our model zoo blueprint is not limited to either specific architectures nor to computer vision tasks.

To obtain models in all phases, we introduce specific variations in the training hyperparameters.
Previous work identifies the phases on the surface spanned by load-like and temperature-like hyperpa-
rameters (Martin & Mahoney, 2019a; Yang et al., 2021) The load-like parameters can be understood
as the amount training data relative to the model capacity. Temperature represents the noisiness of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Performance and loss landscape metrics for the CIFAR-100 ResNet-18 model zoo. (a): test
accuracy and phases of models in the zoo. (b): training loss; (c-g) different loss landscape metrics in-
troduced in Section 2. Our model zoos cover all phases identified in previous work (Yang et al., 2021).

the training process. Following previous work, we realize variations in load by changing the model
width. Increasing the model width increases model capacity and thus decreases the relative load.
By varying the width, we achieve variations in model capacity without changing the architecture or
having to adapt the training scheme. In ResNets, the width directly refers to the number of channels.
In ViTs, we realize width by changing the model_dim parameter, i.e. the size of intermediate
representations. To realize variations in temperature, we choose to adapt the batch-size. Here, lower
batch-size increases the noisiness of the training updates and this increases temperature. For every
combination on the grid, we train three different models using random seeds {1, 2, 3}. All other
hyperparameters are kept constant between the models.

3.2 PHASES SYSTEMATICALLY EMERGE IN EVERY ZOO

The model zoos are designed to cover different phases. In the following, we validate phase coverage
by testing for the phases introduced by Yang et al. (2021) summarized in Section 2. Full phase plots
for all 10 zoos and further details can be found in Appendix A.3. Our experiments demonstrate
that phase transitions are consistently present in the training of neural networks across all models
and datasets evaluated, with the exact phase layout affected by the architecture, dataset, and data
augmentation strategies. The specific characteristics of these phases remain consistent with the
four-phase taxonomy outlined in previous studies, validating our experiment setup.

As illustrated in Figure 3 and in Figures 9-18, the phases manifest clearly in the combination of
loss landscape metrics such as Hessian trace, mode connectivity, and CKA similarity. In particular,
Phase IV-B, associated with the best test accuracy, is marked by low loss and high generalization
performance. On the ResNet zoos, our results reveal that learning rate decay plays a significant
role in shaping the phase distribution. Specifically, decaying the learning rate by 1e4 under cosine
annealing increases the area of Phase IV (well-trained regime) while reducing the presence of Phase
II (under-trained regime), as the effect of batch size variations diminishes. This may be an indication
for why learning rate decay is so successful. Our experiments show, that the phase transitions
generalize across different datasets, architectures and training regimes. ViTs trained without strong
data augmentation show an interesting additional sharp transition from phase II to phase IV, see
Figure 11. Adding strong data augmentation appears to smoothen that transition again, but affects
mode connectivity and sharpness, see Figure 14.

The presence of the different phases and transitions across all combinations of architectures and
datasets studied validates the use of load-like and temperature-like hyperparameters for a systematic
evaluation of the training dynamics. By incorporating awareness of phase transitions, training
strategies can be better optimized for generalization and robustness, offering a valuable tool for
improving both research methodologies and practical machine learning applications.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 PHASE TRANSITIONS IN NEURAL NETWORK METHODS

In this paper, we argue that phase transitions are a widespread phenomenon across a variety of
NN methods. In this section, we put that position to the test and illustrate the relevance of phase
transitions across multiple applications.

Figure 4: VIT - CIFAR-10 zoo
phase plot. Top: Test accuracy on
CIFAR10. Bottom: Test accuracy
on STL-10.

In the following, we demonstrate phase transitions in several
fundamental ML methods, to demonstrate (i) the existence of
these phase transitions in these methods, and (ii) validate that
they can be identified using our phase transition model zoos. The
diversity of applications underscores the universal nature of phase
transitions and their impact on different methods.

4.1 FINE TUNING

Fine-tuning pre-trained models is a widely used technique for
improving model performance on new tasks or adjusting to dis-
tribution shifts(Yosinski et al., 2014). However, fine-tuning is
also sensitive to the initial state of the pre-trained model, and
the phase of the pre-trained model can significantly influence the
final performance after fine-tuning.

In this context, phases can be expected to manifest in two ways: (i)
in the fine-tuning configuration itself, where varying hyperparam-
eters like learning rate or batch size affect the training dynamics,
and (ii) in the phase of the pre-trained model, which directly
impacts the performance of the fine-tuned model. These two
sources of phase behavior are critical, as fine-tuning is essentially
a continuation of training from a specific initialization.

Given the prevalence of fine-tuning from pre-trained models
taken from model hubs, understanding the phase of the pre-
trained model is essential for predicting how well a model will adapt to the target task. To investigate
this, we fine-tuned models from two pre-trained zoos (trained on CIFAR-10) onto STL-10. We
kept the fine-tuning setup constant to isolate the effects of the phase of the pre-trained model on
the fine-tuning outcome.

Figure 5: ResNet18 - Tiny-
Imagenet zoo phase plot. Top:
Test accuracy on TI. Bottom: Test
accuracy on STL-10.

Our results show that the fine-tuned models exhibit clear phase
transitions in their performance, and these phases overlap sub-
stantially with the phases of the pre-trained models, see Figures
4, 9 and 11. This highlights that the phase of the pre-trained
model plays a crucial role in determining the phase and, conse-
quently, the performance of the fine-tuned model. For instance,
models that were pre-trained in Phase IV (well-trained regime)
continued to exhibit strong generalization when fine-tuned, while
models from under-trained phases (e.g., Phase II) struggled to
adapt, leading to poorer fine-tuning performance.

While our fine-tuning setup was kept intentionally simple, more
sophisticated fine-tuning methods could likely shift the phase
distribution. Evaluating these methods for phase transitions, as
enabled by our model zoos, would provide valuable insights into
the impact of different fine-tuning strategies.

4.2 TRANSFER LEARNING

While fine-tuning is commonly used for specialization in the
same task, transfer learning is a powerful approach for adapting
pre-trained models to new tasks or datasets. That way, it allows
models trained on general tasks to be transferred to more specific
or domain-specific applications (Yosinski et al., 2014; Kornblith

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

et al., 2019b; Recht et al., 2019). This scheme has proven highly successful, particularly in scenarios
where labeled data is limited. However, as with fine-tuning, the success of transfer learning depends
on the training configuration but also on the phase of the pre-trained model.

To identify the impact of the pre-trained model, we focus on how the pre-trained model’s phase
influences the outcome. To explore this, we transfer two model populations trained on TinyImageNet
to CIFAR-10 and STL-10, keeping the transfer configuration constant to isolate the effects of pre-
training phase.

Our results show distinct phase transitions in transfer learning, though the phases do not fully
overlap with those of the pre-trained models, see Figures 5, 15 and 16. Choosing the best pre-trained
model does not result in the best transfer-learned model. Indeed, lower pretraining temperature
seems to help transfer performance. Task alignment and complexity may influence this, with closer
tasks suggesting greater phase overlap, while more distant or complex tasks would favor models
in lower-temperature phases.

This demonstrates that phase transitions are present in transfer learning but are more complex than in
fine-tuning. Benchmarking transfer learning strategies using phase-aware model zoos provides deeper
insight into how pre-trained models adapt to diverse tasks, guiding more effective transfer practices.

4.3 PRUNING

Figure 6: ResNet18 - CIFAR10
zoo phase plot. Top: Test accu-
racy of individual models. Bot-
tom: Test accuracy of models af-
ter pruning with 80% pruning ra-
tio.

Model pruning is a common strategy to reduce the size of trained
models, making them more efficient for deployment in resource-
constrained environments such as mobile devices and edge com-
puting (Lecun et al., 1989; Han et al., 2015; Frankle & Carbin,
2019; Molchanov et al., 2017). Typically, pruning has a notice-
able impact on performance only at high pruning ratios, where
a significant proportion of weights are removed.

Since pruning operates on pre-trained models, we find that the
phase of the pre-trained model can significantly influence the
pruning outcome. We conduct uniform magnitude pruning on the
CIFAR-10 ResNet18 model zoo, removing 80% of the weights
per layer and evaluating the pruned models, see Figure 6. As
expected, the results reveal clear phase transitions. Larger models
exhibit a higher capacity for pruning while maintaining perfor-
mance, but importantly, the temperature of the pre-trained model
plays a crucial role. Models pre-trained in higher-temperature
phases (Phase II and IV-A) tend to perform better post-pruning
compared to those from lower-temperature phases. The phase
suggests a connection to not only model size, but also mode
connectivity.

This demonstrates that selecting the best model before pruning
does not necessarily result in the best post-pruning outcome. The
complex phase transitions observed suggest that phase-aware
pruning could lead to more effective strategies for optimizing
models in deployment. Evaluating phase transitions in pruning
offers a valuable tool for understanding how pre-trained model
properties interact with pruning methods.

4.4 ENSEMBLING

Ensembling models by averaging model predictions is well known to improve robustness in various
tasks (Hansen & Salamon, 1990). However, the success of ensembling depends on the models used,
suggesting that their phases are crucial for effective ensemble performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: ResNet18 - CIFAR10
zoo phase plot. Top: Test accu-
racy of individual models. Bot-
tom: Test accuracy of ensembles.

Previous work (Theisen et al., 2023) has shown that phase tran-
sitions play a significant role in ensembling, outlining condi-
tions under which ensembling leads to improvements. To eval-
uate this, we replicate these findings using models from the
Resnet18 zoo trained on CIFAR10, averaging models with the
same temperature-load combination across three random seeds.

Our results reveal distinct phase transitions, confirming that en-
sembles composed of models from specific phases exhibit better
robustness and generalization, see Figure 7 and 11. In particular,
models from higher-temperature phases tend to produce more
robust ensembles, while those from lower phases may lead to
diminished performance gains.

This highlights the importance of considering model phases when
constructing ensembles. Benchmarking ensembles using phase-
aware model zoos provides a systematic approach to understand-
ing how phase interactions affect ensemble outcomes, guiding
more effective ensemble strategies.

4.5 WEIGHT AVERAGING

While ensembling combines predictions, weight averaging
directly combines model weights, offering benefits such as
improved in- and out-of-domain performance without increasing
inference costs (Wortsman et al., 2022b; Guo et al., 2023).
However, weight averaging is sensitive to the alignment of model parameters, and inconsistent results
have been observed depending on model initialization and optimization choices (Ainsworth et al.,
2022). Understanding the phases of models being averaged is particularly important for ensuring
robustness and reproducibility in these methods.

Figure 8: ResNet18 - CIFAR10 zoo phase plots with
performance and loss landscape metrics for weight
averaging.

Previous work has demonstrated that the
success of weight averaging is influenced
by the structure of the loss landscape,
including metrics like mode connectivity
and Hessian trace (Wortsman et al., 2022a).
To investigate this further, we apply
weight averaging to models from our
CIFAR-10 ResNet-18 zoo, examining how
phases affect the success of averaging.
Specifically, we average weights in two
ways: (i) across 5 epochs within the same
model (Wortsman et al., 2022b), (ii) across
models within the same temperature-
load cell, which we align using Git
Re-Basin (Ainsworth et al., 2022).

Our results reveal distinct phase transitions
that correlate with loss landscape metrics
(see Figure 8, 9-17). Averaging over
epochs improves performance in early
phases (I and II), where the Hessian trace
is large, while averaging across seeds
using Git Re-Basin alignment negatively impacts performance in Phases I and III, where mode
connectivity is poor.

These findings underscore the importance of considering the phase of models in weight averaging
to ensure reproducibility and robustness. The phase-dependent performance variations suggest that
aligning models purely based on initialization may not be sufficient. Our dataset, with its detailed
phase annotations, provides a valuable resource for further investigation into how phases influence the
success of weight averaging, enabling more robust and generalizable model combination strategies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 APPLICATIONS FOR POPULATION BASED METHODS

Our dataset offers diverse opportunities for research beyond evaluation and the identification of
phase transitions, particularly for methods that leverage populations of models and could benefit
from annotated phase and loss landscape metrics. Here, we outline some of these applications.

5.1 POPULATION-BASED TRAINING

Population-based methods for hyperparameter tuning have shown great promise (Jaderberg et al.,
2017; Li et al., 2020), yet they typically rely solely on validation performance for guidance. Our
dataset provides loss landscape metrics, such as Hessian trace and mode connectivity, which could be
used to guide models toward optimal phases during training. Recent works have demonstrated that
leveraging such metrics can improve hyperparameter tuning efficiency and training outcomes (Zhou
et al., 2023; Yao et al., 2018). Our model zoos, with multiple checkpoints and variations, offer a rich
resource to explore these dynamics and further optimize population-based methods.

5.2 MODEL ANALYSIS

Predicting model properties based on weight statistics, without relying on test data, is an emerging
field of research (Eilertsen et al., 2020; Unterthiner et al., 2020). Our dataset, which includes detailed
annotations of loss landscape metrics across different phases, is ideal for training robust predictors
that generalize across diverse model populations. This could lead to improved methods for predicting
generalization power (Jiang et al., 2020) or detecting adversarial backdoors (Langosco et al., 2023).
Additionally, approximating expensive metrics such as mode connectivity through weight-based
predictors could reduce the computational cost of model analysis.

5.3 WEIGHT GENERATION

Learned weight generation is another promising application of our dataset. Recent works have
explored generative models for neural network weights (Peebles et al., 2022; Schürholt et al., 2022a;
Soro et al., 2024). By conditioning weight generation on phase and loss landscape metrics, as
provided by our model zoos, future methods could produce models that are better aligned with
specific target tasks or robustness criteria. Our dataset offers the diversity required to train such
methods, moving beyond the relatively homogeneous datasets used in prior work.

6 DISCUSSION

Limitations In this work, the Phase Transition Model Zoos are limited to classification models
in the computer vision domain. We focus on one domain to achieve better coverage for different
computer vision datasets and architectures. Our work presents itself as a first step to make model
zoos comprehensively cover phase transitions for a variety of applications, and we leave its extension
to other tasks and domains for future work.

Conclusion The Phase Transition Model Zoos represent the largest structured collection of models
annotated with detailed loss landscape metrics. With it, we provide the research community with
a powerful tool to explore and benchmark neural network performance across different phases. By
systematically covering phase transitions, it allows the study of robustness, generalization, and failure
modes of deep learning methods in a much more nuanced, comprehensive and reliable way.

We demonstrate the relevance of phase transitions by identifying phases in experiments on fine-tuning,
transfer learning, pruning, ensembling, and weight averaging. We show that these phases significantly
affect performance and that their impact varies from one method to another, offering valuable insights
beyond conventional performance metrics.

With this work, we encourage the ML community to leverage phase awareness in their evaluations,
moving beyond single-point performance metrics and toward a deeper understanding of model behav-
ior. Our dataset offers a foundation for advancing methods in population-based training, model anal-
ysis, and weight generation, contributing to more robust and generalizable machine learning models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Redacted for double-blind submission.

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models
modulo Permutation Symmetries, September 2022.

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization. arXiv preprint
arXiv:2302.07011, 2023.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. RandAugment: Practical automated
data augmentation with a reduced search space, November 2019.

Michal Derezinski, Feynman T Liang, and Michael W Mahoney. Exact expressions for double
descent and implicit regularization via surrogate random design. Advances in neural information
processing systems, 33:5152–5164, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
In International Conference on Learning Representations, 2021.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
the classifier: Dissecting the weight space of neural networks. In ECAI 2020. IOS Press, February
2020.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. In International Conference on Learning Representations (ICLR), March 2019.

Hao Guo, Jiyong Jin, and Bin Liu. Stochastic weight averaging revisited. Applied Sciences, 13(5):
2935, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, 2015.

L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(10):993–1001, October 1990. ISSN 1939-3539. doi: 10.1109/34.58871.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Dominik Honegger, Konstantin Schürholt, Linus Scheibenreif, and Damian Borth. Eurosat Model
Zoo: A Dataset and Benchmark on Populations of Neural Networks and Its Sparsified Model
Twins. In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium,
pp. 888–891, July 2023. doi: 10.1109/IGARSS52108.2023.10283060.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Yiding Jiang, Pierre Foret, Scott Yak, Daniel M Roy, Hossein Mobahi, Gintare Karolina Dziu-
gaite, Samy Bengio, Suriya Gunasekar, Isabelle Guyon, and Behnam Neyshabur. Neurips 2020
competition: Predicting generalization in deep learning. arXiv preprint arXiv:2012.07976, 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of Neural
Network Representations Revisited. In PMLR, May 2019a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2661–2671, 2019b.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Canadian Institute for Advanced Research, 2009. URL http://www.cs.toronto.edu/
~kriz/cifar.html.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning, pp. 5905–5914. PMLR, 2021.

Lauro Langosco, Neel Alex, William Baker, David Quarel, Herbie Bradley, and David Krueger.
Detecting backdoors with meta-models. In NeurIPS 2023 Workshop on Backdoors in Deep
Learning-The Good, the Bad, and the Ugly, 2023.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann Lecun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Information
Processing Systems, 1989.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning.
Proceedings of Machine Learning and Systems, 2:230–246, 2020.

Zhenyu Liao, Romain Couillet, and Michael W Mahoney. A random matrix analysis of random
fourier features: beyond the gaussian kernel, a precise phase transition, and the corresponding
double descent. Advances in Neural Information Processing Systems, 33:13939–13950, 2020.

Charles H. Martin and Michael W. Mahoney. Rethinking generalization requires revisiting old ideas:
Statistical mechanics approaches and complex learning behavior, February 2019a.

Charles H. Martin and Michael W. Mahoney. Traditional and Heavy-Tailed Self Regularization in
Neural Network Models. In PMLR, January 2019b.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In International Conference on Learning Representations, 2017.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
Double Descent: Where Bigger Models and More Data Hurt, December 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de Mariscal, Constantin Pape, Tom Burke,
Carlos Garcia-López-de Haro, Craig Russell, Lucía Moya-Sans, Cristina De-La-Torre-Gutiérrez,
Deborah Schmidt, et al. Bioimage model zoo: a community-driven resource for accessible deep
learning in bioimage analysis. BioRxiv, pp. 2022–06, 2022.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
Learn with Generative Models of Neural Network Checkpoints, September 2022.

Pytorch. PyTorch Hub. https://pytorch.org/hub/.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i-Nieto, and Damian Borth. Hyper-Representations
as Generative Models: Sampling Unseen Neural Network Weights. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS), September 2022a.

11

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i-Nieto, and Damian Borth. Model
Zoos: A Dataset of Diverse Populations of Neural Network Models. In Thirty-Sixth Conference on
Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, September
2022b.

Holm Schwarze, Manfred Opper, and Wolfgang Kinzel. Generalization in a two-layer neural network.
Physical Review A, 46(10):R6185, 1992.

Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of learning
from examples. Physical review A, 45(8):6056, 1992.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based neural network weights generation. arXiv preprint arXiv:2402.18153, 2024.

Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, and Michael W. Mahoney. When
are ensembles really effective?, May 2023.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
Neural Network Accuracy from Weights. arXiv:2002.11448 [cs, stat], February 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: Averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust fine-tuning of zero-shot models. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2022b.

Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez, Kannan Ramchandran,
and Michael W Mahoney. Taxonomizing local versus global structure in neural network loss
landscapes. In Advances in Neural Information Processing Systems, volume 34, pp. 18722–18733.
Curran Associates, Inc., 2021.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. Advances in Neural Information Processing
Systems, 31, 2018.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Neural Information Processing Systems (NeurIPS), November 2014.

Yefan Zhou, Yaoqing Yang, Arin Chang, and Michael W Mahoney. A three-regime model of network
pruning. In International Conference on Machine Learning, pp. 42790–42809. PMLR, 2023.

Yefan Zhou, Jianlong Chen, Qinxue Cao, Konstantin Schürholt, and Yaoqing Yang. Md tree: a
model-diagnostic tree grown on loss landscape. In International Conference on Machine Learning,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATASET DOCUMENTATION

A sample of the phase transition model zoo dataset can be downloaded anonymously from
https://drive.proton.me/urls/V2E66KY0JM#Pq5M06URN4EN. Further instructions
to explore, visualize or use the zoos can be found in the supplementary material and the corresponding
README.md.

A.1 MODEL ZOO CONTENTS

In the main paper, we described the generation of the model zoos as well as explored their performance
and phase information. Here, we detail the contents of the datasets. A model zoo contains a set of
trained Neural Network models. For each of the zoos, we fix architecture and task combinations and
introduce variations in temperature-like and load-like parameters. We realize temperature variations
by varying the batch-size, and load variations by varying the model width. We chose the training
parameters and variation range such that the phases and phase transitions described by Yang et.
al (Yang et al., 2021) can be observed. We repeat each temperature-load combination with seeds
{1, 2, 3} to compute loss landscape metrics and get robust results.

For every model sample, there are model state checkpoints at intervals throughout training. The
checkpoints are in PyTorch format, which uses pickle to save ordered dicts. We will provide code
to convert the checkpoints to framework-neutral file formats. We annotate these samples with
performance metrics (training and test loss and accuracy), as well as the loss landscape metrics
(hessian eigenvalues, Bézier mode connectivity, CKA similarity). We add additional results like
model averaging performance, where applicable to individual models. The model zoos are generated
with ray.tune 1 and largely follow their experiment structure. Each model in a population is
contained in one folder. Checkpoints are kept in subfolders for the corresponding epochs. Each model
is annotated with a config.json file to re-create the model exactly. Performance metrics are
tracked for every epoch and saved in a results.json file for every model. For a subset of epochs,
we add loss-landscape metrics. All model zoos contain full meta-data configs and self-contained
Pytorch code, s.t. they can be re-instantiated exactly, re-trained, or fine-tuned. All code to train
grids, evaluate, compute loss landscape metrics and model averaging is available alongside the data.
Further, we provide code to i) recreate the model zoo datasets, ii) compute loss-landscape metrics, iii)
load the models, iv) re-create the figures in the main paper. In order to allow easy use of the dataset,
we plan to make adequate PyTorch dataset classes available upon publication.

This section will be updated upon dataset publication. Indeed, several statements are intentionally left
vague as of now. Our dataset is large, and will require a careful choice on what to include in order to
balance the dataset utility with its size. This will influence, in particular, the number of checkpoints
we include per model.

A.2 MODEL ZOO GENERATION

We generated the dataset for common computer vision tasks and architectures to maximize applica-
bility to the community. We fixed the load-temperature grids by exploring the boundary cases first
and establishing the presence of phase transitions, then filling in more resolution. We chose batch
size as the temperature-like hyperparameter, and model width as the load-like hyperparameter: they
are easy to vary and close to the practice. The amount of data is usually fixed, and learning rates
are often scheduled and kept non-constant. The full list of model zoo hyperparameters is given in
Table 1. We used Random Cropping, horizontal flipping and random rotations for all model zoos.
Training ViTs on CIFAR100 required stronger data augmentation to achieve competitive performance.
Therefore, we have applied a combination of random cropping, random erasing, color jitter, and
RandAugment (Cubuk et al., 2019). After the initial tuning of the grids, the training of the model
zoos was done on 16 DGX H100 GPUS in 20 days. The computation of loss landscape metrics was
performed on the same hardware in 7 days.

1https://docs.ray.io/en/latest/tune/index.html

13

https://drive.proton.me/urls/V2E66KY0JM#Pq5M06URN4EN
https://docs.ray.io/en/latest/tune/index.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 1: Full list of hyperparameters of the model zoos. Variations between models are indicated by
{...}. Width indicates the width of the first residual block. From that, we follow the same scaling
factor as the standard ResNet.

Base Architecture ResNet-18, ResNet-50 ViT
Datasets SVHN, CIFAR10, CIFAR100, TinyImagenet CIFAR10, CIFAR100

Activation ReLU ReLU
Initialization Kaiming Uniform Kaiming Uniform
Optimizer SGD ADAMW
Learning Rate 0.1 6e− 3
Momentum 0.9
WD 5e− 4 CIFAR10: 5e− 4. CIFAR100: 5e− 2
LR Schedule OneCycleLR with Cosine Annealing OneCycleLR with Cosine Annealing
Width 2, 4, 8, 16, 32, 64, 128, 256 6, 12, 24, 48, 60, 96, 192
Batch Size 8, 16, 32, 64, 128, 256, 512, 1024 8, 16, 32, 64, 128, 256, 512
Seeds 0, 1, 2 0, 1, 2

Figure 9: Weight averaging results for the CIFAR-10 ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.

A.3 MODEL ZOO EVALUATION

In this section, we test the general validity of the trained models as representatives of real-world
models in a structured dataset. An overview of the models at the end of training is given in Table 2.
The results confirm that models are trained to competitive performance for their respective size. More
nuanced information on the distribution of model performance on the temperature-load grid is shown
in Figures 9 through 18. Similar to previous work, the zoos show distinct low train-loss regions,
with smaller embedded regions within that generalize well. Test performance generally improves
with decreasing load (increasing width), with a distinct peak phase where temperature and load are
low enough, but not too low. The generalization gap correspondingly shows a superposition of both
patterns. Further applications or loss landscape metrics likewise show clear phase transitions.

Table 2: Conventional Performance Metric Distribution of Model Zoos.

Model Data Train Loss Test Loss Train Acc Test Acc GGap
µ ± σ [min,max] µ ± σ [min,max] µ ± σ [min,max] µ ± σ [min,max] µ ± σ [min,max]

ResNet18 SVHN 0.10±0.11 [0.00,0.38] 0.15±0.04 [0.11,0.27] 0.97±0.03 [0.88,1.00] 0.96±0.01 [0.92,0.97] 0.01±0.02 [-0.04,0.03]
ResNet50 SVHN 0.06±0.07 [0.00,0.24] 0.14±0.02 [0.11,0.18] 0.98±0.02 [0.93,1.00] 0.97±0.01 [0.95,0.97] 0.01±0.02 [-0.02,0.03]

ResNet18 CIFAR10 0.08±0.19 [0.00,0.66] 0.67±0.34 [0.32,1.98] 0.97±0.06 [0.77,1.00] 0.82±0.08 [0.65,0.91] 0.16±0.07 [0.04,0.35]
ResNet50 CIFAR10 0.04±0.09 [0.00,0.52] 0.60±0.30 [0.27,1.69] 0.99±0.03 [0.82,1.00] 0.84±0.07 [0.64,0.92] 0.15±0.06 [0.05,0.33]

ResNet18 CIFAR100 0.45±0.79 [0.00,2.48] 2.02±0.54 [1.24,3.89] 0.88±0.21 [0.35,1.00] 0.53±0.12 [0.29,0.69] 0.35±0.15 [0.01,0.67]
ResNet50 CIFAR100 0.35±0.68 [0.00,4.61] 1.78±0.55 [1.18,4.61] 0.91±0.18 [0.01,1.00] 0.57±0.11 [0.01,0.70] 0.34±0.14 [-0.01,0.67]

ResNet18 TI 1.20±1.06 [0.01,3.42] 1.91±0.48 [1.29,3.22] 0.71±0.25 [0.23,1.00] 0.55±0.12 [0.26,0.70] 0.16±0.15 [0.03,0.41]
ResNet50 TI 1.05±0.96 [0.00,3.55] 1.85±0.51 [1.21,3.63] 0.74±0.22 [0.21,1.00] 0.57±0.11 [0.22,0.72] 0.17±0.15 [-0.02,0.49]

VIT CIFAR10 0.77±0.83 [0.00,2.18] 1.72±0.45 [0.71,2.96] 0.71±0.31 [0.17,1.00] 0.59±0.23 [0.10,0.82] 0.13±0.10 [-0.01,0.27]
VIT CIFAR100 2.96±0.94 [1.21,4.32] 2.72±0.82 [1.74,4.15] 0.37±0.24 [0.06,0.88] 0.43±0.22 [0.09,0.72] -0.05±0.07 [-0.13,0.16]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Weight averaging results for the CIFAR-10 ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy.

Figure 11: Weight averaging results for the CIFAR-10 ViT model zoo, showing distinct phase
transitions in performance based on averaging strategy.

Figure 12: Weight averaging results for the CIFAR-100 ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 13: Weight averaging results for the CIFAR-100 ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy.

Figure 14: Weight averaging results for the CIFAR-100 ViT model zoo, showing distinct phase
transitions in performance based on averaging strategy.

Figure 15: Weight averaging results for the Tiny-Imagenet ResNet-18 model zoo, showing distinct
phase transitions in performance and loss-landscape metrics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 16: Weight averaging results for the Tiny-Imagenet ResNet-50 model zoo, showing distinct
phase transitions in performance based on averaging strategy.

Figure 17: Weight averaging results for the SVHN ResNet-18 model zoo, showing distinct phase
transitions in performance and loss-landscape metrics.

Figure 18: Weight averaging results for the SVHN ResNet-50 model zoo, showing distinct phase
transitions in performance based on averaging strategy. Note that extreme values for low width and
batch size distort the appearence of the phase plots.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 INTENDED USES

The dataset is a repository of trained deep-learning models with phase transitions. It is mainly
intended to study phase transitions on populations of neural network models. For every model,
we include multiple checkpoints, representing different training epochs, to allow for the study of
the training procedure. We also provide loss landscape metrics, to allow researchers to relate their
findings with the structure of the loss landscape. The dataset is intended to allow researchers to (i)
identify phases in different model properties or applications like the weight averaging examples in
the main paper; and (ii) evaluate existing methods that rely on pre-trained models systematically
on models of different phases, to get a better understanding under which conditions methods can
be expected to perform well. Further examples of applications of our dataset are presented in our
publication: model training, model property prediction, model generation, model combination, etc.

Please note that this dataset is intended for research on populations of models, not to further improve
performance on specific computer vision tasks directly. The models in our zoo were selected for
their diversity in phases, not optimized for performance on their specific datasets; there may exist
generating factors combinations achieving better performance with similar architectures.

The dataset is entirely synthetic and does not contain personally identifiable information or offensive
content. Authors bear all responsibility in case of violation of rights.

A.5 HOSTING, LICENSING, AND MAINTENANCE PLAN

The dataset will be made publicly available and licensed under the Creative Commons Attribution
4.0 International license (CC-BY 4.0). We refrain from publishing the dataset during the review
process to ensure double-blind reviewing. The dataset will be published after the completion of
the review process, for the camera-ready version. We provide representative samples of the
dataset to the reviewers via anonymous uploads. We will incorporate reviewer feedback for
the published version of the dataset. This dataset documentation will be updated to include the
corresponding links and information.

We plan on using Zenodo for data hosting. It provides persistent identifiers (DOI), long-term hosting
guarantees for at least 20 years, and dataset versioning. We will collect information on the dataset,
links to the data, code, and projects with the dataset on a hosted website. Upon publication, code
to use the datasets will be made available, including multi-purpose dataset metadata like croissant.
We will maintain the datasets if necessary. We further plan on extending the dataset towards more
architectures, tasks, and domains, and invite the community to engage.

Code to recreate, correct, adapt, or extend the datasets will be provided in a GitHub repository, such
that maintenance can be taken over by the community at need. The GitHub repository allows the
community to discuss, interact, add, change, or fork the code.

18

	Introduction
	Loss landscape taxonomy
	Phase transition model zoos
	Model zoos generation
	Phases Systematically Emerge in Every Zoo

	Phase Transitions in Neural Network Methods
	Fine Tuning
	Transfer Learning
	Pruning
	Ensembling
	Weight Averaging

	Applications for Population Based Methods
	Population-based training
	Model analysis
	Weight generation

	Discussion
	Dataset documentation
	Model Zoo Contents
	Model Zoo Generation
	Model zoo evaluation
	Intended uses
	Hosting, Licensing, and Maintenance Plan

