Efficient Rashomon Set Approximation for Decision

Trees
Zakk Heile Varun Babbar
Department of Computer Science Department of Computer Science
Duke University Duke University
Durham, NC 27708 Durham, NC 27708
zakk.heile@duke.edu varun.babbar@duke.edu
Hayden McTavish Cynthia Rudin
Department of Computer Science Department of Computer Science
Duke University Duke University
Durham, NC 27708 Durham, NC 27708
hayden.mctavish@duke.edu cynthia@cs.duke.edu
Abstract

Standard machine learning pipelines often admit many near-optimal models. These
“Rashomon sets” pose a range of challenges and opportunities for uncertainty-aware,
robust decision making. They allow incorporation of domain knowledge and user
preferences that would otherwise be difficult to specify directly in an objective, and
they quantify diversity among valid models and their predictions for a given training
dataset and objective function. However, the applicability of Rashomon sets has
been limited by computational intractability. Computation of Rashomon sets even
for simple, interpretable model classes like sparse decision trees continues to
require immense memory and runtime resources. We present LicketyRESPLIT, an
algorithm to approximate this Rashomon set with orders of magnitude improvement
in runtime and memory usage. We validate that LicketyRESPLIT regularly recovers
almost all of the full Rashomon set. This work dramatically expands the ability of
researchers and practitioners to model the Rashomon set for real-world datasets.

1 Introduction

Model selection is crucial to any machine learning pipeline. The Rashomon effect [5], coined by Leo
Breiman, theorizes that there exist many equally good predictive models for a given dataset and
objective function. For model selection in the Rashomon paradigm, we to first enumerate the set of
all plausible models that fit the data well (i.e., the Rashomon set) and then select the model that aligns
best with user needs. Users may want to find the model that maximizes fairness, obeys causal hypothe-
ses, makes use of certain features, and follows certain structural constraints. All these modeling goals
becomes simple when the Rashomon set has been enumerated, because only a simple loop through it
is required to optimize any secondary objective. The exact method for uncovering this Rashomon set
depends on the model class being considered. For instance, Rashomon sets of generalized additive
models (GAMs) can be efficiently approximated by sampling around a convex hyperboloid centered
at the optimal weight vector [[19]. Uncovering the Rashomon set for discrete, non-parametric
model classes such as decision trees, however, can be a massive computational undertaking both in
runtime and memory owing to the NP-hard nature of the underlying problem. As an example, [10]
show that the size of the search space of decision trees of depth 4 with 20 features is ~ 8.4 x 108 trees.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.

Although the recent TreeFARMS algorithm [18]] can exactly uncover this set, its runtime and mem-
ory requirements scale exponentially with the depth budget. Babbar et al. [2] proposed a set of
approaches called Sparse Lookahead for Interpretable Trees (SPLIT), LicketySPLIT, and Rashomon
Estimation with SPLIT (RESPLIT) which incorporate a lookahead depth in their search to find
well-performing decision trees much faster than exact approaches. Among these, RESPLIT was
designed to approximate Rashomon sets, while SPLIT and LicketySPLIT return a single tree. We
show in this paper, however, that RESPLIT uses more memory than needed and can be sped up
substantially while simultaneously producing a more complete approximation of the Rashomon set.

Inspired by the polynomial-time nature of the LicketySPLIT algorithm [2] used to find a single
tree, we generalize this approach and propose a new family of polynomial-time Rashomon set
approximation algorithms called LicketyRESPLIT. Our algorithms recursively find the set of near-
optimal splits conditioned on the subsequent behaviour of easy to compute oracles. LicketyRESPLIT
achieves orders-of-magnitude improvements in both runtime and memory efficiency compared to
TreeFARMS and RESPLIT, while still recovering nearly the full Rashomon set.

2 Related Work

Decision trees have been established for decades as interpretable, scalable classifiers, with widely
cited implementations such as CART [5]] and C4.5 [15]. These greedy approaches build trees from
the root, adding splits one a time according to heuristics. While these greedy heuristics were useful
in the 1980’s and 90’s, their accuracy is lower than that of modern decision tree methods.

Researchers have substantially improved the accuracy of individual sparse decision trees via global
optimization of performance and sparsity, alongside a range of techniques for computational efficiency
(3L 8L 1114 (17, 8L 112 [1]]. This optimization structure can be extended to find all trees within epsilon
of the optimal objective - that is, the Rashomon set of trees [18]. This approach enables a range of
powerful downstream applications, from adding robustness to variable importance [9] to allowing
customization and control to domain experts and practitioners [[16]]. These advances are incredible,
but struggle to scale to larger practical datasets, being combinatorially complex in memory and
runtime, particularly with respect to the number of features in the dataset.

A range of approaches have improved the scalability of optimal decision tree algorithms: through
handling continuous features [[13}|6], or incorporating carefully founded heuristics [[14}4,[7]. However,
relatively few have extended these advances to computational benefits for computing Rashomon sets,
which is can be complex given the distinct nature of the optimization task.

Of particular relevance are the LicketySPLIT and RESPLIT algorithms from [2]]. The authors extend
a two-step tree optimization algorithm to Rashomon set computation - this approach, RESPLIT,
improves runtime by an order of magnitude but remains quite computationally complex. The paper
also includes a polynomial-time recursive formulation to learn sparse trees that are consistently
superior to standard greedy approaches and on par with globally optimal algorithms on practical
datasets. This LicketySPLIT approach requires a number of nontrivial adjustments to extend to
Rashomon sets, but yields substantial improvements in memory and runtime requirements.

3 Methodology

Let F be a model class of decision trees limited to some depth d. Let D = {(z;,y;)}", be a
dataset of size n, where y; € {0,1} and each x; € {0,1}"* has k binary features (discretized by
any binarization method). Let Obj(f, D) measure the quality of a tree f € F. Let S(f) denote the
number of leaves in f. We use an objective which penalizes the number of misclassifications as well
as a constant penalty A multiplied by the number of leaves in the tree, as done in [12} 14} [2]]:

Obi(f, D) = AS() + 3 3" 1{1(e) #).

The Rashomon set can be defined as R, (F,D) := {f € F|Obj(f,D) < eups}, with cardi-
nality |R., (F,D)|. For convenience, we sometimes omit the additional notation and use R
and |R|. For our empirical experiments, we define a multiplicative epsilon, such that g, =
(1 + gmu]t) minfEf Ob.](f7 D)

Algorithm 1 LICKETYRESPLIT(D, d, A, B)

Require: Dataset D, remaining depth d, regularization A\, budget B
A0
2: for b € {0,1} do

3: Cy < LEAFCOST(D, A, b)
4: if Cy, < B then
5: A+ AU {LEAF(b, Cp)} > Leaf in budget: add as valid tree for this subproblem
6: end if
7: end for
8: ifd =0 or B < 2\ then
9: return A > No budget or depth for splits
10: end if

11: for each feature j do
12: (D, DRr) < PARTITION(D, j)

13: Ly, + LICKETYSPLIT(Dp, A, d — 1) > Algorithm 3 in [2]] to find a single tree
14: Lp < LICKETYSPLIT(Dg, A,d — 1)

15: if L;, + Ly > B then continue > LicketySPLIT pruning
16: end if

17: L + LICKETYRESPLIT(Dy,,d—1,\, B — Lr) > Recurse on left based on a guess for the
right subproblem

18: R < LICKETYRESPLIT(Dpg,d—1, A, B — MINOBJ(L)) > Recurse on right with exact
budget based on left

19: if MINOBJ(R) < Ly then > Recurse on left again with larger budget
20: L <+ LICKETYRESPLIT(Dp,d—1, A, B— MINOBI(R))
21: end if

22: A« AU{NODE(f,!,r, OBI({)+OBI(r)) : {€L, r€R, OBI({)+0BI(r)< B} >
Cartesian product of left/right solutions, filtering to stay within budget

23: end for

24: return A > The final Rashomon Set

Initialize: Call once with B < (1 4 ¢) - LICKETYSPLIT(D, A, d).

LicketyRESPLIT is defined in Algorithm[I] though in practice we represent the set of trees using a
compact trie-based structure (as in [[18]]) to share common subtrees and reduce memory usage. At
each node, we consider all features and prune any split whose LicketySPLIT-completed cost would
exceed the budget; the budget starts at the Rashomon threshold obtained by treating the LicketySPLIT
tree as the reference solution. Later, if trees that improve on that are found, the output can be filtered
accordingly.

Whereas normally the memory and runtime requirements on Rashomon set construction can be
arbitrarily larger than the size of the Rashomon set, LicketyRESPLIT takes memory and runtime
linear in the size of the Rashomon set approximation it finds. We demonstrate this in the following
theorems (which are proven in the appendix) and empirically in Section 4]

Theorem 3.1. Given a dataset D of size n with k features, LicketyRESPLIT with F corresponding to
all trees within depth budget d can find a Rashomon set R., (F, D) in O(|R|nk3d?) time.

Theorem [3.1] shows that LicketyRESPLIT’s runtime is polynomial in the size of the recovered
set, number of samples, binarized features, and maximum depth—a much stronger bound than for
TreeFARMS or RESPLIT. The approach also enables scalable memory:

Theorem 3.2. Given a dataset D of size n with k features, and denoting S(f) as the number of
leaves in tree f, a memory-efficient implementation of LicketyRESPLIT can find a Rashomon set

R., (F,D) using O (nk‘ +2 ter S(f)) memory, with the runtime complexity in Theorem

Theorem 3.2]tells us that LicketyRESPLIT can be upper bounded with memory complexity corre-
sponding to the size of its input and the size of the set of trees it finds. In practice, our implementation
uses additional memory for caching and reuse. While the asymptotic runtime is unchanged, caching
accelerates practical runtime by exploiting repeated subproblems in LicketyRESPLIT’s execution.

4 Results

We compare LicketyRESPLIT to TreeFARMS and RESPLIT across a range of benchmark datasets,
evaluating runtime, peak memory usage, and Rashomon set quality in terms of precision and recall.

Table 1: Comparison of runtime (s) and maximum memory consumption (MB) of LicketyRESPLIT,
TreeFARMS, and RESPLIT. LicketyRESPLIT is an order of magnitude faster than TreeFARMS on
larger datasets and uses 100x less memory. All results use A = 0.01, ey = 0.01, max depth = 5.

Dataset LicketyRESPLIT (ours) TreeFARMS RESPLIT

Time / RAM Time / RAM Time / RAM
Bike 18.8 / 438 685/51714 184 /528
Bank 123/776 OOM 238 /2079
Compas 8.9/390 50/ 3054 6.0/402
Covertype 507 /1793 1819/ 67635 1295 /2974
Heloc 58.9/571 OOM 34.3/545.2
Student 1.7/370 351/4673 4.0/382
Wine 14.5/ 425 2493 /113244 19.0/571

Table |1| shows that LicketyRESPLIT consistency outperforms both TreeFARMS and RESPLIT
in terms of runtime and memory efficiency. For instance, on the Bike dataset, LicketyRESPLIT

completes in <20 seconds using only 438MB of memory, compared to ~700 seconds and over S0GB
for TreeFARMS.

Table 2: Precision and recall of LicketyRESPLIT and RESPLIT versus TreeFARMS. Metrics are
reported as mean =+ standard error across 10 bootstraps. All results use A = 0.01, €y = 0.01,
and maximum depth = 5. The slack column allows for trees to be an additive 0.01 outside the true
Rashomon set and be counted in it: e4ps, stack = 0.01 + (1 4 emure) min ye 7 Obj(f, D).

Dataset LicketyRESPLIT (ours) RESPLIT

Precision Precgjack Recall Precision Precgpack Recall
Adult 1+0 1+0 1£+0 0+0 1+0 0+0
Bike 1+0 1+0 1+0 0.201 £ 0.133 0.230 £ 0.129 0.368 + 0.066
Compas 0.910+0.030 1+0 0.920 4+ 0.035 0911 £+ 0.049 1+0 0.374 £ 0.137
Covertype 1+0 1+0 1+0 1+0 1+0 1+0
Spambase 1+0 1+0 0.964 +0.023 0+0 0.914 £+ 0.046 0+0
Wine 1+0 1£0 09=+0.071 1+0 1+0 0.9 £ 0.071

Table 2] shows that LicketyRESPLIT was able to enumerate almost all of the Rashomon set on
all of our benchmark datasets. While LicketyRESPLIT has no guarantee of optimality, it reliably
achieves nearly perfect precision and recall whenever TreeFARMS is tractable. In contrast, RESPLIT
frequently fails to recover any of the true Rashomon set (see Spambase, Adult), though it does return
a large number of slightly lower-quality trees that fit within the slack given.

5 Conclusion

We introduce LicketyRESPLIT, a novel polynomial time, memory efficient Rashomon set estimation
algorithm. LicketyRESPLIT performs one step lookahead at every node in the search process, finding
splits which are within the Rashomon bound given the performance of an oracle subroutine. We
show that using the high performing O(nk2d?) LicketySPLIT algorithm oracle from [2] enables
efficient search whilst retaining near-optimality. We empirically demonstrate that LicketyRESPLIT
is an order of magnitude faster than TreeFARMS and often 1-2x as fast as RESPLIT on a wide
variety of datasets. It also uses 100x less memory than TreeFARMS and 1-2x less memory than
RESPLIT. LicketyRESPLIT also recovers almost the entire Rashomon set, demonstrating near perfect
precision and recall across all datasets tested. We expect future work to consider generalizations of
LicketyRESPLIT, including performance under different oracle subroutines and a broader theoretical
and empirical characterization of runtime and memory improvements for larger scale tabular datasets.

Acknowledgments

We acknowledge funding from the the U.S. Department of Energy under DE-SC0023194, and the
National Institute On Drug Abuse of the National Institutes of Health under ROIDA054994. Content
does not necessarily represent official views of the United States Government nor any agency thereof.

References

[1] Gaél Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3146-3153, 2020.

[2] Varun Babbar, Hayden McTavish, Cynthia Rudin, and Margo Seltzer. Near-optimal decision
trees in a SPLIT second. In Forty-second International Conference on Machine Learning, 2025.

[3] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106:1039—
1082, 2017.

[4] Guy Blanc, Jane Lange, Chirag Pabbaraju, Colin Sullivan, Li-Yang Tan, and Mo Tiwari.
Harnessing the power of choices in decision tree learning. Advances in Neural Information
Processing Systems, 36, 2024.

[5] Leo Breiman. Classification and regression trees. Routledge, 1984.

[6] Catdlin E Brita, Jacobus GM van der Linden, and Emir Demirovi¢. Optimal classification
trees for continuous feature data using dynamic programming with branch-and-bound. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 11131-11139,
2025.

[7] Emir Demirovi¢, Emmanuel Hebrard, and Louis Jean. Blossom: an anytime algorithm for
computing optimal decision trees. In International Conference on Machine Learning, pages
7533-7562. PMLR, 2023.

[8] Emir Demirovi¢, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao, and Peter J Stuckey. Murtree: Optimal decision trees via
dynamic programming and search. Journal of Machine Learning Research, 23(26):1-47, 2022.

[9] Jon Donnelly, Srikar Katta, Cynthia Rudin, and Edward P. Browne. The rashomon importance
distribution: Getting rid of unstable, single model-based variable importance, 2024.

[10] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32, pages 7265-7273. Curran Associates, Inc.,
2019.

[11] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in
neural information processing systems, 32, 2019.

[12] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and
scalable optimal sparse decision trees. In International Conference on Machine Learning, pages
6150-6160. PMLR, 2020.

[13] Rahul Mazumder, Xiang Meng, and Haoyue Wang. Quant-BnB: A scalable branch-and-bound
method for optimal decision trees with continuous features. In International Conference on
Machine Learning, volume 162, pages 15255-15277. PMLR, 17-23 Jul 2022.

[14] Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia
Rudin, and Margo Seltzer. Fast sparse decision tree optimization via reference ensembles. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 9604-9613,
2022.

[15] J Ross Quinlan. C4.5: Programs for Machine Learning. Elsevier, 2014.

[16] Cynthia Rudin, Chudi Zhong, Lesia Semenova, Margo Seltzer, Ronald Parr, Jiachang Liu, Srikar
Katta, Jon Donnelly, Harry Chen, and Zachery Boner. Amazing things come from having many
good models. arXiv preprint arXiv:2407.04846, 2024.

[17] Jacobus van der Linden, Mathijs de Weerdt, and Emir Demirovi¢. Necessary and sufficient con-
ditions for optimal decision trees using dynamic programming. Advances in Neural Information
Processing Systems, 36:9173-9212, 2023.

[18] Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo Seltzer, and Cynthia Rudin. Exploring
the whole rashomon set of sparse decision trees. Advances in neural information processing
systems, 35:14071-14084, 2022.

[19] Chudi Zhong, Zhi Chen, Jiachang Liu, Margo Seltzer, and Cynthia Rudin. Exploring and
interacting with the set of good sparse generalized additive models. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

A Proofs

Lemma A.1. Given a dataset of size n and a depth budget d, the runtime cost of evaluating all initial
splits given LicketySPLIT completions is O(nk3d?) where k is the number of candidate features
considered for splitting.

Proof of LemmalA.1I} Theorem 6.4 in [2] shows that the cost of finding the optimal LicketySPLIT
tree for a dataset of size n is O(nk2d?). We need to run LicketySPLIT for each of the left and right

subproblems for each of the k candidate splits at the start, leading to a runtime of O (Zle néef "K2d2+

nr 9" k242) for finding the best split, where n./* and n7""* are the sizes of the left and right

subproblems respectively induced by the i*" split. Since néef (s nzig " — n, the runtime expression

simplifies to O(nk3d?). O

Theorem 3.1. Given a dataset D of size n with k features, LicketyRESPLIT with F corresponding to
all trees within depth budget d can find a Rashomon set R.,, (F, D) in O(|R|nk3d?) time.

Proof of Theorem[3.1] We first prove this result in a special case of Algorithm[I] where line 20 does
not run; that is, we do not recurse with a larger budget.

Consider the search trie created by LicketyRESPLIT. In this case, each node corresponds to a
subproblem defined by the sequence of splits leading to it, and there is no evaluation of the same
subproblem with different budgets. By construction, LicketyRESPLIT only expands those splits
whose LicketySPLIT completions remain in the Rashomon set (based on the budget allocation
procedure in Algorithm [T)).

Fix a level d’ < d of the trie. Let ug denote the number of candidate splits selected by LicketyRES-
PLIT for expansion. For each split 1 < ¢ < uy with subproblem size n;, we must (i) generate its
left and right subproblems, and (ii) evaluate LicketySPLIT completions over all k possible splits
on each side (in order to select the next batch of candidate splits). From Lemma[AT] this requires
O(n;k3(d — d')?) time per split, so the total cost at level d’ is:

O(Znik3(d—d’)2> M
i=1

Since only splits corresponding to trees guaranteed to be in the Rashomon set appear in the trie, the
combined subproblem sizes at any level d’ cannot exceed n|R|. We can see this as follows:

Ug/
ST SIS SR @
=1 tree tER splits in ¢ at level d’
- Y n &)
tree tER
=n|R)|. “

Therefore, the total runtime is bounded by

d g d
SN niki(d—d)? <Y |Rnk*(d - d')?)
d’'=11i=1 d’'=1
< |R|nk3d?. (6)

Now, consider the case where line 20 runs—that is, LicketyRESPLIT is run on the left subproblem
with a larger budget (note that if the minimum objective is still the LicketySPLIT objective, the
enumeration on the left subproblem is not rerun). In order for this larger budget to have been set, it
implies that there exist at least two trees for the right subproblem (the LicketySPLIT tree and the new
minimum-objective tree) that could be combined with the LicketySPLIT tree for the left to be within
the budget for the subproblem.

Recall that LicketyRESPLIT has a key invariant: any solution to a subproblem not pruned is part
of at least one tree in the Rashomon set (this follows from LicketyRESPLIT’s construction - it
only expands splits whose LicketySPLIT completions are within the budget). So in our new call
of LicketyRESPLIT, we know that every subproblem visited is a part of a solution with the new
minimum-objective tree on the right. And every subproblem visited in the original LicketyRESPLIT
call on the left is part of a solution with the LicketySPLIT tree on the right, so we know we’re not
double counting solutions.

Thus, even though we may solve a subproblem multiple times with different budgets, the number of
times a subproblem (a sequence of splits) is solved is never more than the number of trees it appears
in.

This fact implies that the combined subproblem sizes at any level d’ cannot exceed n|R|—the sum
of all subproblem sizes across the Rashomon-set trees found for that depth—because any distinct
subproblem is solved once, and any subproblem shared by ¢ trees is solved no more than ¢ times.
Thus, even in this case, the size of subproblems solved is bounded by the same quantity, and as such,
the asymptotic runtime is as well.

O

Lemma A.2. Given a dataset of size n with k binary features, the memory cost of LicketySPLIT[2]
algorithm can be limited to O(nk).

Proof. We can show this by induction:

Inductive hypothesis: Let ¢ be some fixed constant. Given that LicketySPLIT called with remaining
depth d — 1 and any dataset of dimension n; x k, with n; < n takes memory no greater than
c(n1k + 1), we want to show that LicketySPLIT with depth d and any dataset of dimension ng X k,
with ng < n, takes memory no greater than c(nqk + 1).

Pick c such that the original dataset size is < cnk (and all subsets of size n; are similarly of size
< ¢n;k) and the storage required for a few constants is < c.

Base case: When the remaining depth budget is 0, LicketySPLIT requires no additional memory
beyond its input dataset (size < cnok) and a constant (size < ¢); all that is required is to compute the
leaf objective, corresponding to the minimum of the number of positive vs negative entries in label y.
So the memory cost is not greater than c¢(nk + 1).

Inductive step: When depth is > 0, LicketySPLIT must call a greedy subroutine for the left and right
children from every possible binary feature split. For a given potential split, the required memory is
no more than cnok + ¢: we need only provide the left and right training data subsets to the greedy
algorithms, and store the sum of the resulting objectives. By going through one split at a time, and
just tracking the best objective so far and the corresponding feature, LicketySPLIT can do this without
persisting more than constant memory. Once the optimal split is known, LicketySPLIT then constructs
the left and right subproblems corresponding to that split (still with total size matching the original
dataset size, which is < cnsk). LicketySPLIT then must run LicketySPLIT with one fewer depth
for the left and right subproblems of the selected split. Note that each of the two subproblems has a
number of samples no greater than ns — 1, because the optimal split must place at least one sample in
each subproblem. So, by the inductive hypothesis, each split requires < ¢((ny — 1)k 4+ 1) = ¢(nak)
memory to be solved individually. After one subproblem is solved, the memory used for it can be

freed except for a single constant, and we can solve the other subproblem with < ¢(nsk) memory. In
total, we use < ¢(ngk + 1) memory, as required. (Note that once these two LicketySPLIT approaches
are ready to be called, no other information needs to be persisted in memory - LicketySPLIT will just
return the sum of these two calls. So the total amount of information in memory remains bounded by
cnk + c).

Therefore, by induction the total memory use for any LicketyRESPLIT call is bounded by cnk + c,
and thus in O(nk). O

Theorem 3.2. Given a dataset D of size n with k features, and denoting S(f) as the number of
leaves in tree f, a memory-efficient implementation of LicketyRESPLIT can find a Rashomon set

R.,.(F,D) using O (nk; +2 ter S(f)) memory, with the runtime complexity in Theorem

Proof. First note from Lemma [A.2]that the LicketySPLIT subroutine (from [2]) requires only O(nk)
memory to run. Also note that its result can be given as just a single float corresponding to the
objective.

Now, when we run LicketyRESPLIT, at each node we visit, we just need to know which splits result
in LicketySPLIT objectives below the epsilon bound. So for each potential split, we need to run
LicketySPLIT on the left and right subproblems (with O(nk) memory total), then check if that falls
within the absolute epsilon bound. If it does, then we will save the resulting subproblems from this
split, and later visit those nodes to continue LicketyRESPLIT. This will be an additional two nodes
we need to persist in the dependency graph. However, every time this happens (increasing the total
storage used by 2), the total sum of nodes in trees across the entire Rashomon set will also increase
by at least 2, since at least one tree with this split (the one found by LicketyRESPLIT) will fall within
the absolute epsilon bound, and that tree will have at least one internal or leaf node corresponding to
each of these two nodes, since it includes this split.

In order to keep the information stored in each node efficient, we use the following structure (assuming
we have one global copy of the entire dataset provided as input). Consider a node to be active only
if we are visiting that node currently (that is, we are mid-execution of Algorithm|I]at that node), or
if we are visiting one of its child nodes. When a node is active, we persist information about the
row indices corresponding to the data subset used in that node. We can still efficiently determine the
row indices relevant for any child just using these row indices, the original dataset, and the binary
splitting feature, so the runtime is not affected. We also maintain memory efficiency: we only have
O(d) nodes active at once, so the total memory required to persist these row indices is O(nd); since
we cannot have a depth greater than the number of binary features, that means the memory required
is under O(nk), and does not affect asymptotic complexity. Once we are done visiting a node, we
don’t need to visit it again and can safely stop persisting the memory needed for its row indices[l_-]

So the total information we persist is just:

1. A single copy of the original dataset

2. the dependency graph structure, which can be constructed to only include nodes with a
constant amount of storage space, where there are no more nodes in the dependency graph
than there are nodes (split nodes or leaves) across the whole Rashomon set.

3. Row indices for currently active subproblems in the dependency graph.

Since the number of leaves and internal nodes is bounded by twice the number of leaves, we know
object (2) is O(D_,cr S(t)). We know object (1) is O(nk), so combining them we have proven our
claimed memory complexity. (Note that (3) is also within O(nk) so does not affect the complexity).

O

'This is slightly complicated by the third pass of LicketyRESPLIT, i.e. line 20 of Algorithm however,
it does not affect the asymptotic complexity if we reconstruct the relevant row indices a second time when
revisiting the left side with a second pass.

B Trie Representation

In practice, rather than explicitly forming the filtered Cartesian product of all feasible left/right
subtrees at a given subproblem, we represent each subproblem solution as a trie structure. This lets
us represent the entire Rashomon set implicitly, without materializing every tree in memory, while
still supporting efficient operations like extracting a specific tree by index or sampling from the set
when it is large.

Each subproblem stores a Trie node T' with: (i) a budget B(T'), (ii) a multiset Obj(7") mapping
objective values to counts of trees achieving them, (iii) a minimum objective MinObj(T"), and (iv)
children consisting of either LEAF(b, ¢) (prediction b € {0, 1}, loss ¢) or SPLIT(f, L, R) (feature
f, left/right subtries L, R). A split’s count of feasible trees is the number of left/right pairs whose
summed loss is < B(T).

By storing the distribution of objective values in each Trie node, we can efficiently retrieve the i
tree according to a canonical ordering. During extraction, we impose an ordering based on increasing
objective value, using feature order and other attributes as tiebreakers.

We replace line 5 and line 20 in Algorithm [I] with a call to the AddLeaf and AddSplit subroutines,
respectively.

Algorithm 2 ADDLEAF(T, b,)

Require: Trie node T, label b € {0, 1}, loss ¢
1: Append LEAF(b, £) to T.children
2: T.MinObj < min(7.MinObj, ¢)
3: T.0bj[] < T.Obj[] + 1

Algorithm 3 ADDSPLIT(T, f, L, R)
Require: Trie node T with budget B(T); feature f; left/right subtries L, R

1: Append SPLIT(f, L, R) to T.children

2: T.MinObj « min (T.ManbJ7 MinObj(L)+MinObj(R))
3: ¢+ 0

4: for each ({1, ny) in L.Obj do

5: for each (¢, nr) in R.Obj do

6: bVl +/tp

7: if ¢ < B(T) then

8: T.0bj[f] + T.Obj[{] + ny, - ng

9: c<c+nr-npr
10: end if
11: end for
12: end for
13: The appended split stores num_valid_trees < ¢

The TreeFARMS algorithm uses a similar storage mechanism with efficient algorithms to sample
trees from the Rashomon set in the event that the Rashomon set is too large to store in memory
[L8]. We store very similar metadata to be able to facilitate this sampling, and as such, extraction
algorithms follow directly from the paper.

C Caching

In our experiments, we make extensive use of caching to reuse oracle objectives from previously
solved subproblems. While this caching mechanism can be disabled, Table|l{shows that LicketyRE-
SPLIT requires less than 1.8 GB of memory even with caching enabled. Consequently, we retain
caching in all reported experiments, as it improves runtime with negligible memory overhead.

The LicketySPLIT algorithm and the greedy subroutine described in [2] are both best implemented
recursively. Given this, when we query the LicketySPLIT oracle, we can cache the numerical
objective for each subproblem the recursive procedures explore.

In practice, this means that when a split calls the LicketySPLIT oracle to evaluate its objective, the
result and intermediate results are stored for reuse. If LicketyRESPLIT does not prune that split,
then those left and right LicketySPLIT calls will be guaranteed to be queried, and thus we can save
computation. Additionally, this will save computation anytime the same subproblem is reached from
a different sequence of splits.

Likewise, as any trie returned for a (subproblem, depth, budget) is guaranteed to be in the Rashomon
set, we can store a pointer to it for that subproblem. If the exact triple is obtained via a path of
LicketyRESPLIT recursive calls, we can reuse it. Additionally, we can reuse tries at the same
subproblem solved with a greater depth and budget by truncating them.

10

	Introduction
	Related Work
	Methodology
	Results
	Conclusion
	Proofs
	Trie Representation
	Caching

