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ABSTRACT

For multi-stage recommenders in industry, a user request would first trigger a
simple and efficient retriever module that selects and ranks a list of relevant items,
then the recommender calls a slower but more sophisticated reranking model that
refines the item list exposure to the user. To consistently optimize the two-stage re-
trieval reranking framework, most efforts have focused on learning reranker-aware
retrievers. In contrast, there has been limited work on how to achieve a retriever-
aware reranker. In this work, we provide evidence that the retriever scores from the
previous stage are informative signals that have been underexplored. Specifically,
we first empirically show that the reranking task under the two-stage framework is
naturally a noise reduction problem on the retriever scores, and theoretically show
the limitations of naive utilization techniques of the retriever scores. Following
this notion, we derive an adversarial framework DNR that associates the denoising
reranker with a carefully designed noise generation module. The resulting DNR
solution extends the conventional score error minimization loss with three aug-
mented objectives, including: 1) a denoising objective that aims to denoise the
noisy retriever scores to align with the user feedback; 2) an adversarial retriever
score generation objective that improves the exploration in the retriever score space;
and 3) a distribution regularization term that aims to align the distribution of gener-
ated noisy retriever scores with the real ones. We conduct extensive experiments
on three public datasets and an industrial recommender system, together with
analytical support, to validate the effectiveness of the proposed DNR. The code is
released athttps://github.com/maowenyu—-11/DNR.

1 INTRODUCTION

Recommender systems aim to generate personalized item lists and maximize users’ engagement.
For large-scale item pools, industrial solutions |Ricci et al.|(2022); |Liu et al.| (2025)) typically use a
two-stage retriever-reranker architecture. The retriever efficiently narrows down a large item pool to a
manageable relevant candidate set. The reranker then uses a more sophisticated model to reorder the
candidates into an optimal list-wise order. To optimize the two-stage framework towards a consistent
goal of recommendation (e.g., aligning with user behavior or preference) across all stages, the
majority of efforts have been focusing on learning a reranker-aware retriever |Gallagher et al.[(2019);
Xu et al.| (2024a). However, there is limited work on how to achieve a retriever-aware reranker.

For the latter reranker |Carbonell & Goldstein|(1998); Jin et al.| (2008)); [Pei et al.| (2019); [Liu et al.
(2022), early studies propose to re-score the retrieval items [Jin et al.|(2008); |A1 et al.|(2018); |Pei et al.
(2019) by modeling the mutual influences among candidate items. Recent state-of-the-art approaches
find it more effective to formulate the reranking task as a list generation problem |Shi et al.|(2023));
Ren et al.| (2024); Lin et al.| (2024), where the lists with better list-wise rewards are given higher
generation probability. Yet, existing methods largely overlook the potential of initial retriever scores,
which may offer rich prior information for the reranker stage. In practice, a straightforward approach
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to leverage initial retriever scores is to directly include them as extra input features of the model,
which shows promise to improve reranking performance as in Figure[Ta] Still, as we will illustrate in
section[3.2] this naive solution might be far from exploiting this retriever information effectively to
align with user feedback, which is addressed by the following contributions in this work.

Formulating reranking as a noise reduction problem: The retriever stage typically employs
a simpler model than the reranker to process large candidate pools, given computational budget
constraints. In contrast, the reranker, operating on a much smaller candidate set, can use a more
sophisticated architecture and thus achieves significantly higher accuracy (Figure [Ib). What
follows is an empirical assumption that there is higher noise in the retriever scores than the reranker
scores, which naturally indicates a noise reduction process of the reranking stage. This noise reduction
pattern is also evident when we observe the changes in the embedding representations of ground
truth target items. We show evidence by comparing Figure[Ic|and Figure[Id] where the same set of
retrieved candidates is not distinguished well by the retriever, but the target items are better predicted
by the reranker, in terms of the embedding space. The reranker’s noise is more concentrated near
zero than the retriever’s (Figure[Ie), further confirming the reranker acts as a denoising model for the
retriever’s noise. However, due to the uncertainty inherent in noisy retriever scores, denoising based
on these scores may misalign with the system-wide goal of aligning with user behavior. Thus, we
argue that learning a noise-aware reranker is crucial for achieving a retriever-aware reranker.
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Figure 1: (a) The informative retriever score and (b-d) noise reduction nature of reranking. The
reranker in this example uses transformer model to select the top-20 items from the candidates.
“Rerank w/ s” represents using retriever scores as additional item features for the reranker. The black
shaded circles in (c) and (d) represent the retriever’s selection of candidate items, and the green
shaded circle in (d) represents those of the reranker for exposure. (e) compares the noise distribution
(distance between predicted scores and ground-truth labels) of the retriever and the reranker.

The proposed solution: Motivated by the previous analysis, we propose an adversarial framework,
which formulates a denoising neural reranker (DNR) with a carefully designed noise generation
module, which introduces unseen noise to users’ feedback to augment the distribution modeling of
retriever scores. We theoretically show that the user behavior alignment goal can be decomposed into
three learning objectives in our solution framework: 1) a denoising objective that aims to denoise the
noisy retriever scores under both observed and synthetic retriever scores; 2) an adversarial objective
that encourages the noise generator to synthesize adversarial samples that are hard to denoise, which
in turn improves the reranker’s effectiveness; and 3) a score distribution regularization term that aims
to align the distribution between synthetic retriever scores with the real retriever scores.

We conduct empirical experiments on three public datasets and an industrial recommender system to
verify the superiority of DNR against naive utilization strategies of retriever scores, as well as leading



Denoising Neural Reranker for Recommender Systems

reranker models. Additionally, we find that the three proposed learning objectives in the adversarial
denoising framework yield better recommendation performance than a single denoising objective.

2 RELATED WORK

2.1 MULTI-STAGE RECOMMENDATION

Modern content-intensive web services with large candidate pools typically employ multi-stage
recommender systems Qin et al.|(2022); |[Zheng et al.|(2024); ILiu et al.|(2022) (also known as cascade
ranking |Liu et al.| (2017); |Gallagher et al.| (2019) process) to balance accuracy and efficiency under
strict latency constraints. Each stage progressively narrows down the candidate set while employing
increasingly sophisticated models. While most existing work focuses on independently optimizing
individual stages (e.g., retrieval [Wang et al.| (20115 [2017)) or the reranking stage [Liu et al.| (2022);
Pei et al.|(2019)), recent studies explore joint optimization across the entire pipeline |Gallagher et al.
(2019); Q1n et al.| (2022); |Xu et al.|(2024b)). These approaches leverage later-stage models to guide
earlier-stage learning, improving overall coherence and performance Zhao et al|(2023); Xu et al.
(20244a). In contrast, our work takes a complementary direction——using earlier-stage scores to
regulate later-stage optimization.

2.2 RERANKING STRATEGIES

In sequential recommendation, re-ranking |Pei et al.| (2019); Huzhang et al.| (2023)); |Ai et al.| (2018)
aims to refine the initial ranking list generated by a previous retrieval stage. Existing re-ranking
approaches can be broadly categorized into the following paradigms. Single-point re-scoring methods
Kang & McAuley|(2018)); Zhuang et al.| (2018]) independently predict a refined score for each item
and re-rank them accordingly. While efficient, they ignore dependencies between items, potentially
leading to suboptimal list-level performance. Unlike single-point approaches, list-refinement methods
Pei et al.| (2019); A1 et al.| (2018)); |Xi et al.| (2022) explicitly model mutual influences between
items by treating the pre-ranked candidate list as input. Techniques such as Transformer-based
architectures |Pei et al.| (2019) capture user preferences to optimize the list holistically. Generator-
evaluator methods [Huzhang et al.| (2023); |Shi et al.| (2023)) first generate multiple candidate lists
and then evaluate them using a learned utility function to select the best one. They can effectively
generate a high-quality recommendation list but suffer from the increasing computational cost due to
the generation-evaluation loop. Emerging techniques leverage diffusion models Lin et al.|(2024); |L1
et al.| (2024) to generate refined item lists by iteratively denoising a ranking distribution, which excels
in capturing complex user preferences.

2.3 ADVERSARIAL LEARNING

Adversarial learning Lowd & Meek|(2005) has emerged as a powerful technique for data augmentation
in recommendation systems, improving the model robustness and generalization. By leveraging
generative adversarial networks (GANs) [Wang et al.|(2017)) or adversarial training |He et al.| (2018);
Tang et al.| (2020), these methods synthesize high-quality user-item interactions or perturb existing
data to enhance model robustness. For instance, IRGAN |Wang et al.| (2017) employs a minimax
game between a generator (sampling hard negative items) and a discriminator (distinguishing real
from synthetic interactions) to improve ranking performance. Similarly, AdvIR [Park & Chang
(2019) introduces adversarial perturbations to embedding spaces, forcing the model to learn more
generalizable representations. These methods demonstrate that adversarial learning can not only
augment training data but also enhance models’ robustness. Our method is designed to add noise
by adversarial learning, which can enhance the reranker’s effectiveness in denoising the pre-ranking
scores to align with user feedback.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

For a given user request u (which may contain information about the candidate items Z(u) =
{1,142, - ,in} retrieved by the retriever, user profile features, and user interaction history), we
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Figure 2: Overall framework of multi-stage recommender system (on the left) and the noise reduction
formulation of our method, DNR.

observe the following during data collection: 1) The corresponding (continuous) retriever scores of
Z(u) are Xy, = [@iy, Tiy, - -+ x4, ] € [0,1]™, which essentially describe the user preference prediction
in the view of the retriever; 2) The ground truth user feedback (i.e., binary labels such as click, watch,
share, etc.) of the candidate set, i.e., z, = [z, Zi,, " , 2i,] € {0, 1}™. Note that for recommender
systems that further select K items after the reranking process, we may never observe the positive
user feedback for the remaining n — K items. From a probabilistic viewpoint, we can assume zero
labels as defaults for these items, since passing the reranking process is the premise of observing the
user feedback signals.

The Noise Reduction Task: In our formulation, the overall recommendation-feedback process
u — X — z (where x and z are random variables for retriever scores and user feedback) involves
an initial retriever py(x|u), which serves as the retriever score generation prior (and is assumed
non-optimizable in the reranking task). The learnable reranker gy (z|x, u) serves as the conditional
user feedback likelihood estimator that predicts the user feedback z given the retriever scores x and
the user context u, i.e., Z ~ gp(:|Xy, u). Given an observed feedback z,,, the learning goal adopts the
general data log likelihood maximization objective:

maxlog p(z,[u, 0) )
where the predicted likelihood p(z,|u, 8) for the observed user feedback z,, is determined by the
retriever py, the reranker gy, and the user request u.

Note: For simplicity of the presentation, we omit the user condition term u for the remainder of the
paper (e.g., we will denote the retriever as py(x), the reranker as gg(z|x,,), and simplify the learning
goal as maxy log p(z,,)), since we adopt an analysis framework on the user request level.

3.2 ANALYTICAL LIMITATION OF DIRECT OPTIMIZATION METHODS

As we have mentioned in section [I] involving retrieval scores as input is beneficial for existing
reranking methods. Regardless of the reranker design, the corresponding objective function is:
»Cdirect = _Ex~px [lOg q0 (Zu‘x)} 2

which maximizes the user behavior alignment conditioned on the given retrieval scores. As a special
case, according to the binary nature of z,,, we can simplify the learning objective as standard binary
cross-entropy (BCE) loss. Theoretically, we can find that Lge, Optimizes an upper bound of the
negative data log likelihood (details in Appendix [B.2):

- Ing(Zu) = Lairect + L1 + Lo

Ly = Exp, [mg q"(Z“"‘))} 3)

pzlx(zu|X
Ly = _DKL( X(X)Hp)dZ(XlZu))-

4
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where p,x represents the ground-truth user feedback probability and py, represents the posterior
distribution of retriever scores conditioned on user feedback, both terms are not related to the reranker
qo, and they are merely determined by the retriever prior and the user. Intuitively, smaller values of
L, and Ly make the solution of Eq.(Z)) more aligned with the goal of Eq.(I). However, these two
terms are not fully controlled by the direct optimization framework, potentially causing significant
misalignment between Eq.(2) and Eq.(I). This will lead to a discrepancy between the final reranking
results and user feedback, and thus, the suboptimal recommendation performance.

3.3 IMPLEMENTING NOISE GENERATOR FOR THE POSTERIOR

To overcome the aforementioned limitations, we propose to complement the denoising reranker
¢e with a noise generator f,(-|z,). Formally, we generate noise with € ~ f, and add it to the
user feedback to form the synthetic retriever score posterior py(x|z,,), taking insight from the
reparameterization trick Kingma & Welling| (2014):

x! = (1 = \e)zy + Ack, 4)

u

where the generated noise € represents the noisy behavior in retriever scores x/,, A. represents the
proportion of noise in the generated retriever scores. We denote the generation process as X,, ~ Dy,
which is analogous to the sampling process with ground truth posterior (assumed unknown and
intractable), i.e., x ~ py,. For implementation, we investigate two choices of noise generator fg:

* Heuristic Generator: This option uses a non-parametric noise generator fge‘"is‘ic with a manually
designed distribution. For example, we can adopt random Gaussian noise similar to/Ho et al.[(2020);
Li et al.|(2024)), but we notice that this is not a good representation of the noise in retriever scores.
Intuitively, given the binary user feedback signals, a natural assumption of the retriever prior is the
Beta distribution, i.e., , the conjugate prior and the posterior for binary variables (i.e., bernoulli
or binomial distribution) are both beta distribution, where we can derive the heuristic solution
as € ~ Beta(a, 8). For simplicity, one may set & = 8 = 0.5 to approximate the uncertainty.
In practice, we find that it is also beneficial to set o and 3 that align with the observed noise
distribution in the data.

* Model-based Generator: While the heuristic generator is effective in our empirical study, we are
skeptical of whether the manually designed heuristic noise generator is optimal for augmenting
the retriever score distribution. Since the prior noise distribution is uncertain, it is necessary to
learn this distribution adaptively and personally. To achieve a more precise estimation, we design a
learnable model fg“’del, with parameter ¢, that will be optimized along with the reranker (details in
the next section). The generated noise € should also be aligned with the observed distribution, and
it also participates in an adversarial training objective in order to better explore the retriever score
space, which in turn improves the reranker’s effectiveness. As the noise is learned, \. requires
no manual adjustment and can be treated as 1. As we will show in Section this choice is
empirically better than the heuristic generator.

3.4 OVERALL LEARNING FRAMEWORK

In this section, we show how to optimize the user feedback alignment goal, i.e., Eq.(I) by simulta-
neously learning the denoising reranker and the adversarial noise generator. Specifically, we can
decompose the negative log-likelihood objective into three loss terms (derivation in Appendix [B.1)):

- Ing(Zu) = »Cz + »Cadv + Cx + 5)(
Ez = _Ex~p¢ {IOg 4o (zu|X)}

0 (Zux) } ®)
)

Paix (Zu X
£, = Dia (po(x[z.) <)

which consists of an augmented denoising loss term L, an adversarial noise generation loss L4y,
and a score distribution regularization term £y. We will illustrate the details of these three terms
in the following sections. The additional term 6 = —Dxy.(py(x|2y ) ||px.(%|2.)) < 0 represents

Lagy = IEx~p¢ |:10g
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the negative divergence between the generated noisy retriever scores pg and the corresponding real
Pxiz- This term is not directly optimizable due to the unknown py,, but we expect to achieve a small
divergence in §, with the optimization of the other three terms, so that the overall optimization is
aligned with the goal of Eq.(T).

Denoising with Augmented Retriever Scores: £, in Eq.(5) denotes the denoising loss under
the noisy retriever scores generated by the noise generator. Specifically, we can first synthesize
x,, ~ Pg(-|2w) as the generated retriever scores according to Eq.(@), then pass them into the reranker
qo for the prediction of user feedback z,, and £, only updates 6. The optimization can also be
simplified into the BCE loss with z,, as labels. Note that the generated scores x/,, different from the
observed x,,, essentially serve as the augmented scores that the initial retriever would have produced
given the user request. This means that the reranker will be aware of the noisy behavior of the
retriever. Combining with the direct optimization, we have the final denoising loss for the reranker:

EO = Edirect + )\mﬁzy (6)

where )\, controls the magnitude of the augmentation, and the parameters of the noise generator
fo are fixed. Additionally, our model-agnostic framework does not restrict the architecture of the
denoising reranker gy, as we will show in section[4.3] one can adopt various backbones, including
PRM Pei et al.|(2019) and PIER [Shi et al.| (2023).

Adversarial Noise Learning: £ 4, describes how the reranker gy behaves differently from the user
feedback under the viewpoint of the synthetic retriever scores. In practice, this term is expected to
be small since the ratio qg(2z,|X)/px(2.]|x) 2 1 in major cases due to the user feedback alignment
of Eq.(6) and the augmented objective £,. Nevertheless, in the view of generated noisy retriever
scores, we can see that L,4, encourages adversarial samples of x that produce small ratios of
q0(2u|X) /Dax (2, |x). In other words, a better p, should be able to explore and synthesize retriever
scores that are incorrectly denoised by the reranker gy. For the heuristic noise generator f;‘*“ri“ic, it

is not optimizable once « and 3 are chosen. In contrast, for the model-based generator f;j“’de], we
follow the intuition of adversarial case exploration, and approximate L,qy by first fixing the reranker
and then optimizing the generator with an adversarial loss:

minlog gy (2. X, ™)

We implement the model-based generator fg“’del by a 2-layer MLP and directly output x/, using
Eq.(@), so that the end-to-end learning becomes feasible for Eq.(7). In cases where the noise generator
is not directly optimizable, one may have to consider other alternatives like reparameterization tricks
Kingma & Welling| (2014) or policy gradient[Silver et al.| (2014). Notably, £,4, does not encourage
over-exploration of x/,, which may negatively impact the learning of the reranker. In such cases, the
synthetic scores are unrealistically different from the real retriever scores, diverging from the user
feedback, inducing small p,x and large g (z,|X)/pax(Z.|X), violating Lqy.

Noise Regularization: £, aims to reduce the divergence between the synthetic retriever score
distribution pg and the real retriever score prior distribution py. Intuitively, this term favors the
synthetic score distribution py that can mimic the noisy behavior of the real retriever’s scores px. For
implementation, we first synthesize the retriever score x/, with Eq.(@) and calculate the distributional
difference between synthetic scores from pg and retriever scores from pyx. Then, we minimize this
difference to approximate the distribution-level KL divergence.

Again, given that the heuristic noise generator fge”ri“ic is not optimizable by the objectives in Eq (3)),
it might not be the optimal choice for augmenting the retriever score distribution. As a consequence,
this could lead to recommendations that are not in alignment with user feedback. For the training of
the model-based noise generator f(';“’de', we first adopt the heuristic generator in the first A, epochs
to ensure learning stability of reranker gy throughout £, then engage the adversarial learning of
L.4v and the optimization of L, afterward, switching the generation of € from heuristic generator to
model-based generator. We present the algorithm of our training procedure in Appendix [C]

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions:
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* RQI1: How does DNR perform compared with leading rerankers in recommendation systems?
* RQ2: How does the denoising formulation compare to other methods of using retriever scores?
* RQ3: Can the denoising formulation generalize to reranker backbones other than PRM?

* RQ4: How does the heuristic noise generator’s performance compare to that of the adversarial
model-based generator?

* RQ5: How does different objectives in DNR contribute to the performance?

* RQ6: How sensitive is DNR to the hyperparameters \., A,,,, and A.?

4.1 EXPERMENTAL SETTINGS

Datasets. We conduct experiments on three real-world datasets, including ML-1M Harper & Konstan
(2016), Kuaivideo |Liu et al.|(2025)), and Amazon-books|Ni et al.[(2019). The detailed description and
the statistics of the processed datasets for both the retriever and the reranker stages are presented in
Appendix [D.1] For the online experimental verification, please refer to Appendix [E.6

Baselines: We compare the performance of DNR with four categories of recommendation methods
in our reranking task, including traditional recommenders (i.e., SASRec |[Kang & McAuley| (2018)),
Caser [Tang & Wang| (2018]), GRU4Rec Hidasi et al.| (2016}, and MiDNN [Zhuang et al.| (2018)),
which individually predict the scores of candidate items and rank them accordingly; list-refinement
methods (i.e., DLCM A1 et al.| (2018)), SetRank [Pang et al.| (2020), PRM Pei et al.| (2019), and MIR
Xi et al.[(2022))), which encode the mutual inference in candidate items and refine the rankings based
on this information; generator-evaluator methods (i.e., EGRerank Huzhang et al.|(2023)), Pier|Shi
et al.[(2023)), and NAR4Rec Ren et al.| (2024)), which generate multiple reranked item lists and
evaluate them to select the best one for users; and diffusion-Based methods (i.e., DiffuRec|Li et al.
(2024) and DCDR |Lin et al.| (2024))) which utilize diffusion models to generate items or lists for
recommendation. Detailed information for our baselines is presented in Appendix [D.3]

Implementation Details: Our experiments are implemented on Nvidia A40 GPUs with Python 3.8
and PyTorch 1.12. We construct the retriever stage with the collaborative filtering method |Koren et al.
(2009)) to obtain the initial retriever scores for the top-50 candidate items. The detailed setting and
experimental results of the retriever stage are presented in Appendix [E.T] The reranker reorders these
items filtered by retrievers and selects the top K = 6 for display. The dimension of rerankers’ hidden
embedding is 128 across all models, and all models are trained until convergence. The learning
rate and weight decay are tuned within the range of [0.01,0.001,0.0001] and [0, 0.1, 0.01, 0.001],
respectively. We tune the hyperparameters with A\, € [0.1,1.0], \,,, € [0.1,1.0], and A. € [0,200].
The optimal hyperpapemters adopted for our experimental results are presented in Appendix

Evaluation Metrics: Following common practices, we employ Hit Ratio@6 (H@6), NDCG@6
(N@6), MAP@6 (M@6), F1 @6, and AUC for performance evaluation of the reranker stage. Although
not the focus of this paper, we adopt the AUC metric to evaluate the performance of the retriever
stage. And the retriever is fixed during training of rerankers.

4.2 MAIN RESULTS (RQ1)

We compare the performance of our proposed DNR with multiple leading baselines and the results
are detailed in Table “DNR-G” and “DNR-B” denote using two alternatives of fge”“““ to generate
Gaussian noise and Beta noise, respectively, before switching to the model-based noise generator
fg“’d"‘l in the epoch \.. We can observe that the generator-evaluator-based methods (i.e., EGRerank
Huzhang et al.| (2023)), Pier|Shi et al.|(2023)), and NAR4Rec Ren et al.[(2024)) achieve comparable
performance among the multiple baselines, validating the effectiveness of the generator-evaluator
paradigm in the reranker stage. In comparison, our DNR solutions consistently outperform the
state-of-the-art baselines across the three benchmarks. This highlights the superiority of our noise
reduction formulation and the significance of improving reranker effectiveness with three objectives
in adversarial learning.
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Table 1: Overall performance of different methods for the reranking recommendation. The best
scores are in bold and the best baseline scores are underlined, respectively. All improvements are
statistically significant with student t-test p < 0.05.

ML-1M Kuaivideo Book
Methods

H@6 N@6 M@6 F1I@6 AUC H@6 N@6 M@6 F1@6 AUC H@6 N@6 M@6 Fl@6 AUC

SASRec 59.79 72.16 61.84 65.41 8598 36.72 54.01 41.66 43.00 77.86 60.27 69.32 58.17 62.44 83.64
Caser 58.60 71.34 60.55 64.14 86.53 36.66 54.04 41.65 43.93 78.39 59.92 69.31 58.06 62.09 84.21
GRU4Rec 58.07 69.91 59.03 63.47 86.74 37.28 54.39 42.20 43.66 74.67 53.69 59.24 46.71 55.65 81.19
MiDNN  56.86 70.30 59.28 62.16 86.87 37.32 54.56 42.38 43.72 74.73 60.28 69.61 58.58 62.45 83.02

DLCM  62.31 73.87 63.82 67.96 89.35 39.69 60.67 48.90 46.61 75.80 66.80 75.88 65.39 69.28 91.93
SetRank 59.35 73.10 62.51 64.72 88.84 44.75 64.39 51.88 52.59 89.93 66.15 75.70 64.84 68.64 92.01
PRM 60.09 72.85 62.21 65.51 88.20 39.92 5593 42.97 46.18 85.15 67.86 76.88 66.44 70.42 92.00
MIR 62.22 7433 6447 6797 87.76 37.01 55.79 43.16 44.50 79.95 66.08 71.48 56.62 68.62 91.82

EGRank 62.76 74.75 64.97 68.46 88.72 40.09 59.01 47.52 47.06 77.44 70.73 80.75 72.40 73.33 89.40
Pier 62.74 7599 6598 68.74 90.43 4535 65.11 52.55 53.35 90.93 71.14 80.22 71.62 73.74 92.26
NAR4Rec 62.81 75.01 6542 68.31 8830 44.31 63.83 51.45 52.08 89.94 70.08 79.46 70.69 72.66 92.44
MG-E 63.53 76.18 66.52 69.37 89.08 46.89 66.19 53.75 55.26 90.16 70.63 79.81 71.07 73.20 90.21

DiffuRec 62.16 75.80 66.28 67.83 91.48 40.78 61.16 50.77 48.00 81.08 58.62 68.77 57.25 60.79 84.74
DCDR 60.79 73.21 62.57 66.58 89.01 43.86 63.52 50.92 51.66 89.92 65.84 70.36 54.76 67.33 88.07

DNR-G  64.891 77.671 68.001 70.711 92.751 49.614 69.601 57.671 58.391 93.201 74.831 82.571 74.241 77.657 94.461
DNR-B  64.231 77.124 67.301 70.011 92.081 50.301 70.151 58.121 59.161 93.387 75.501 83.531 75.541 78.301 94.231

4.3 ABLATION STUDY (RQ2, RQ3, RQ4, & RQ5)

RQ2 & RQ3: To investigate different ways to leverage retriever scores, we develop three variants
for leveraging retriever scores as rerankers’ input: “c score” refers to leveraging a concatenate
operation to combine the score features with encoded user states from users’ interaction history;
“+ score” denotes incorporating the score feature with user states by a simple addition; “w score”
represents adopting the initial retriever scores as the weights of candidate items. The frameworks
of the three variants are shown in Appendix [D.4] To validate the generalizability of DNR across
different reranker backbones, we conduct experiments comparing our three variants and DNR itself
when using PRM Pei et al.|(2019) and Pier |Shi et al.| (2023) as the underlying rerankers, respectively.
We report the experimental results in Table @ The variants “c score”, “+ score”, and “w score” all
achieve superior performance compared to the base reranker backbone, confirming that incorporating
retriever scores into the reranking stage yields tangible benefits. Moreover, our DNR outperforms
all three variants, underscoring denoising formulation as a more effective strategy for leveraging
retriever scores. Importantly, DNR delivers consistent improvements across both backbones, thereby
validating the generalizability of our denoising formulation for reranking architectures.

RQ4: To further investigate different noise generators, we conduct ablation experiments on the
heuristic noise generators that generate noise from the Gaussian distribution and Beta distribution,
denoted as “w/ G” and “w/ B” respectively. The results are presented in Table[3] By comparing “w/ G”
with “DNR-G or comparing “w/ B” with “DNR-B”, we can see that our DNR framework—equipped
with a model-based noise generator for adversarial learning—consistently outperforms counterparts
using heuristic noise generators.

RQS5: To compare different learning objectives in Eq.(3), we first observe that “w/ G” and “w/B”
methods outperform the PRM baseline, indicating the effectiveness of £,, which uses the heuristic
noise generator to augment the learning of reranker. Then, all “w/o L,q4,” alternatives and “w/o Ly”
alternatives appear to downgrade the effectiveness of the full implementation of DNR. All these
observations validate the effectiveness of the derived terms in Eq.(3).
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Table 2: Ablation Study for the different ways of leveraging the retriever scores on both PRM and
Pier reranker backbones.

Methods ML-1M Kuaivideo Book

H@6 N@6 M@6 Fl@6 AUC H@6 N@6 M@6 Fl@6 AUC H@6 N@6 M@6 Fl@6 AUC

PRM  60.09 72.85 6221 6551 88.20 39.92 5593 42.97 46.18 85.15 67.86 76.88 6644 70.42 92.00
cscore  62.501 76.731 67.361 68.29 91.351 46.201 67.581 56.311 54.251 85.761 69.711 77.991 68.201 72.291 92.151
+score  62.691 76.057 66.481 68.361 90.771 45.831 66.77+ 56.251 53.971 83.47 71.501 81.181 72.721 74.18+ 91.41
wscore 62.481 76.687 67.341 68.191 87.20 46.821 66.941 54.771 55.001 84.05 72.731 82.211 74.15} 75.451 91.81
DNR 6423 77.12 67.30 70.01 92.08 50.30 70.15 58.12 59.16 93.38 75.50 83.53 75.54 78.30 94.23

Pier 6274 7599 6598 68.74 90.43 4535 65.11 52.55 53.35 90.93 71.14 80.22 71.62 73.74 92.26
cscore  62.33 76517 66.951 69.181 90.551 46.281 66.091 53.981 53.761 90.56 71.887 81.021 73.151 74.32+ 91.89
+score  62.58 76.187 66.521 68.851 90.31 46.831 68.214 55.881 54.667 91.82 71.274 80.701 72.791 T4.15+ 92.281
w score 62.981 76.667 67.161 69.371 90.581 45.761 66.824 54.551 5333 90.45 72.031 81.561 74.741 75324 92.331

DNR 63.41 77.28 68.02 70.22 91.97 48.89 69.35 57.76 56.02 92.38 73.68 82.61 74.82 76.88 93.78

Table 3: Ablation Study for DNR alternatives. “G w/o L,q,” and “B w/o L,q,” represent DNR-G or
DNR-B paradigms without adversarial noise learning objective; “G w/o L, and “B w/o L” refer to
DNR-G or DNR-B paradigms without the noise regularization.

ML-1M Kuaivideo Book
Methods
H@6 N@6 M@6 F1@6 AUC H@6 N@6 M@6 Fl@6 AUC H@6 N@6 M@6 F1@6 AUC
PRM 60.09 72.85 62.21 65.51 88.20 39.92 55.93 4297 46.18 85.15 67.86 76.88 66.44 70.42 92.00
w/ G 63.36 76.69 66.82 69.34 91.98 47.84 67.34 5527 56.28 92.43 73.38 81.32 72.89 76.18 93.38
w/ B 63.65 76.90 67.01 69.64 90.85 48.83 68.71 56.60 57.45 92.73 73.42 81.20 72.74 76.23 93.46

G wlo Lygy 63.71 76.57 66.61 69.43 92.14 48.75 68.70 56.57 57.34 92.21 73.83 81.89 73.27 76.60 93.62
Gwlo Lx 6347 7643 66.43 69.19 91.90 48.88 69.10 57.18 57.57 92.69 73.99 82.01 73.44 76.76 94.29
DNR-G 64.89 77.67 68.0 70.71 92.75 49.61 69.60 57.67 58.39 93.20 74.83 82.57 74.24 77.65 94.46

B w/o Lagy 63.65 76.90 67.01 69.64 90.85 49.55 69.84 58.04 58.31 9291 74.71 82.49 74.14 77.52 94.01
Bw/oLx 6332 76.62 66.76 69.29 90.60 49.96 69.93 58.00 58.77 92.81 74.42 82.20 73.74 77.23 93.96
DNR-B 64.23 77.12 67.30 70.01 92.08 50.30 70.15 58.12 59.16 93.38 75.50 83.53 75.54 7830 94.23

4.4  SENSITIVITY ANALYSIS (RQ6)

We conduct sensitivity analysis for ., A,,, and A, for both DNR-G and DNR-B, and present the
results in Figure[3] When adjusting \,,,, A is fixed at 40; when adjusting A, Ay, is fixed at 0.3. For A,
adjustments, \,,, and ). are set to 0.6 and 80, respectively. While the Beta noise generally performs
better than Gaussian noise in most settings, as shown in Table 2] there exist some common patterns
in these hyper-parameters: 1) all parameters appears to have an optimal value within the searched
region, indicating the effectiveness of including each corresponding designs, i.e., A for the synthetic
noisy scores in Eq.(d), A, for the combined denoising loss Eq.(6), and A, for the switching from
heuristic noise generator to model-based one; 2) Over-amplifying these hyper-parameters results in
the downgrade of the rerank performance, indicating the significance of keeping a balance between
the involved components. Additionally, the analysis of ). in the left plot of Figure [3[ shows that using
the model-based noise generator can further enhance the performance over the heuristic one.

5 CONCLUSION

In this paper, we provide evidence that the initial retriever scores are informative for the latter reranker
stage in the multi-stage recommender system. To formulate the relationship between retriever
and reranker scores, we view the reranker as a noise reduction task from the retriever scores and
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Figure 3: Sensitivity analysis of hyperparameters (i.e., A\., Ay, and \.) for our method on the
Kuaivideo dataset.

propose DNR. To fully explore the score space, we propose the framework of DNR, adding noise
to generate retriever scores as augmentation and then denoising them to align with user feedback.
While a heuristic design of the noise distribution can effectively improve the model performance
(e.g., Gaussian or Beta distribution), we prove that adversarially learns a denoising reranker and
a noise generator for the retriever stage can further boost the reranker’s performance. Theoretical
analysis and empirical validation across three public datasets demonstrate the effectiveness of the
noise reduction formulation and the design of our DNR.

ETHICS STATEMENT.

This work is designed to explore the significance of retriever scores for the reranker, formulating the
reranker as a denoising process of retriever scores with an adversarial framework. We do not foresee
any direct, immediate, or negative societal impacts of our research.

REPRODUCIBILITY STATEMENT.

All the results in this work are reproducible. We have discussed the optimal hyperparameters and the
details on devices and software environments in Section .T]and Appendix [D.2] For reproducibility,
we release the code at https://github.com/maowenyu—11/DNR
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A NOTATIONS

symbol | description
u user request information including profile features and interaction history
b 4 random variables of retriever scores on the candidate item set
z random variables of user feedback on the candidate item set
Xy, Zoy observed retriever scores and user feedback in data
X!, the generated retriever scores from the learned or heuristic posterior model ¢
qo the probabilistic representation of the reranker model
Do the probabilistic representation of the posterior
fo the noise generator that implements the posterior
Dx the probabilistic representation of the non-optimizable retriever
Dxlz the posterior of a given reranker
Daix the probabilistic representation of ground truth user feedback
L girect the standard user feedback alignment loss given the retriever scores
2 the user feedback alignment loss given generated retriever scores from posterior
Laay the adversarial loss that encourages the posterior to generate irregular noises
Ly the regularization of posterior
Ae the hyperparameter that controls the magnitude of noise injection in Eq.(@)
Am the hyperparameter that balances Lgirec; and £, when learning the reranker
Ae the hyperparameter that determines which epoch switches the noise generator
Table 4: List of Notations
B PROOFS

B.1 DERIVATION OF THE THREE OBJECTIVES IN OUR SOLUTION

In this section, we illustrate the derivation of the Eq.(3). Similar to the variational Bayesian inference
Kingma & Welling|(2014), we start by analyzing the KL divergence between the real retriever scores

and synthetic noisy scores:

Note that a key difference between Eq.(8)) and the conventional derivation in[Kingma & Welling|(2014)
is that the variational posterior ¢ is not a latent factor encoder that reduces noise and dimensions, but
an explicit noise generator that mimics the behavior of retriever scores. In terms of the denoising
problem formulation, it is also similar to a one-step diffusion, but with a key difference in that the real
retriever scores x,, are not sampled by a manually defined distribution. Instead, an existing retriever

[ Pxi1z\X|Zy,
D (xl2)s (x) = —Ep [l 22
[ P(X,2y)
=—E, |log ———2 —1]
py | 10, PoX[7) ogp(zu)}
[ log p(x, Zu)
re —logqu(XIzu)} +logp(zu),

Px serves as the prior distribution.
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Then, rearranging the terms of Eq.(8), we can derive the corresponding objectives that influence the
data likelihood as follows:

— log p(z.,)
=~ Buy, [108 202 Do (gt x12)
— By, [o8 pun(2a/)] + Drt (9 (x12)[p1() — it (po(xlz) [puc(xl2.)) (©)

q0(Zu /%)

pzlx(zu|X)} + Dk (po (x|24) [px (%))

= — Exwp, [ 108 46(2u|X)] + Ex~p, [log

= Dx.(po (x|20) [ Pxz(x|24))

which is equivalent to Eq.(5). It generally follows the derivation of the evidence lower bound in
variational auto-encoders, except that we further decompose the first reconstruction term into the

augmented denoising loss £, = —Exp, [log qg(zu|x)] and the adversarial learning loss L4y =
Exnpy [log ;}T ((zz“ ‘I};))] . Intuitively, when gy is closely aligned with the real user feedback distribution

Dax, the adversarial term L,q, will be close to zero. Minimizing £,q, would encourage the noise
generator f, to find samples where gg and p,x behave differently.

B.2 THE ANALYTICAL LIMITATION OF STANDARD RERANKING MODELS

In this section, we formally analyze the Eq.(3). Recall that the direct optimization goal Lgirect|x=x, =
—Ex, ~p, [l0g go(2z,|x,)], where the observed x,, only comes from the retriever prior p, without
posterior modeling. Note that we additionally define p, as the ground-truth user feedback probability
and py, as the posterior distribution of retriever scores conditioned on user feedback. Both p,x and
Pxlz are not related to the reranker gy, and they are merely determined by the retriever prior and the
user. Then, we can extract the user behavior alignment error of gy as follows and derive its relation to
the goal of maxy log p(z,,):

qo\Zy | Xy
—Ex,~p, 108 Go(zu|xu)] = —Ex,~p, [1og p|((z|x))] — Ex,~p, [108 paix (Zu[Xu )]
ZIX u U
_ qG(Zu|Xu) _
= B op,[l0g ST 4 Dk (py ) (b)) — Tog ()

= — logp(zu) = - ]Exurvpx [10!%; qde (Zu|xu)] + ]ExuwpX |:1Og

qe (Zu|xu) :|
pzlx(zu Ixu>
— Dxr (px (Xu) ”pxlz(xu ‘Zu)) .
(10)
which corresponds to Eq.(3).

As we have discussed in section @ the direct optimization of the first term Lgje might cause
misalignment with the data likelihood maximization goal, since the observed data does not provide
sufficient information about the retriever score distribution and the reranker is unaware of the noise
patterns in the retriever score space. In contrast, our proposed solution solves this limitation by
collaboratively learning the noise generator fy along with the reranker. The resulting objectives in
Eq.(3) intentionally find a synthetic noisy score distribution p, that aligns with the real retriever score
distribution and explores adversarial cases in which the reranker fails to accurately denoise into user
feedback (details in Section [3.4).

C LEARNING ALGORITHM
We present the overall learning process of our method in Algorithm T}
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Algorithm 1: Training procedures of DNR

Input: Hyperparameters A., A, and \,,, initial reranker 6 and noise generator ¢
Output: Optimized denoising reranker gy and the noise generator f.

1: for Epoch ¢ do

2: if¢ > A, then

3: for Each sample (u, x,, z,) do
4: Generate € ~ fgmdel for given u and z,, and form synthetic noisy scores x|, with Eq (@)
5: Optimize reranker 6 based on Ly;
6: Optimize noise generator ¢ based on L4, and Ly;
7: end for
8: else
9: for Each sample (u, x,,, z,,) do
10: Sample € ~ fge“mtic for given u and z,, and form synthetic noisy scores x, with Eq (@)
11: Optimize reranker 6 based on Ly;
12: end for
13:  endif
14: end for

D DETAILED SETTINGS FOR OFFLINE EXPERIMENTS

D.1 DATASETS

The ML-1M dataset is a public benchmark in the field of recommender systems, comprising 1 million
ratings from 6,040 users across more than 3,900 movies. The Kuaivideo dataset is sourced from
Kuaishou, a popular short-video app with over 300 million active users daily. The Amazon Books
dataset is a comprehensive collection of product reviews specifically focused on books available
on Amazon. For all datasets, we initially process by eliminating users and items with fewer than
20 interactions, to avoid the cold-start issue. For the retriever stage, we split the data into train and
test subsets at a ratio of 8:2, where each sample is composed of interaction history and an item for
prediction. For the reranker stage, we sort the interactions in chronological order, using the last six
interactions as the item list revealed to users after reranking. We present the statistics of the processed
datasets for the retriever and reranker stages in Table [5|and Table [6] respectively.

Table 5: Dataset Statistics for Retriever Stage Table 6: Dataset Statistics for Reranker Stage
Dataset #Users #Items  # Actions Dataset #Users #Items # Sequences
ML-IM 6,020 3,043 995,154 ML-IM 6,022 3,043 161,646
Kuaivideo 89,310 10,395 3,270,132 Kuaivideo 89,416 10,395 513,010
Amazon-Toys 35,732 38,121 1,960,674 Amazon-Toys 35,736 38,121 311,386

D.2 HYPERPARAMETERS SETTING

Here we present the optimal hyperparameters’ settings in Table

D.3 BASELINES

We detail the compared baselines of our main experiments in the following, including traditional
recommenders, list-refinement methods, generator-evaluator methods, and diffusion-based methods.
Traditional Recommenders: predict the scores of candidate items and rank them accordingly.

* SASRec Kang & McAuley| (2018)) proposes a self-attention based sequential recommendation
model (SASRec) that captures long-term semantics and short-term dynamics using an attention
mechanism.

* Caser|Tang & Wang|(2018)) introduces a convolutional sequence embedding recommendation model
that captures sequential patterns using convolutional filters applied to latent space embeddings.
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Table 7: Hyperparameter setting for DNR on different datasets

Datasets ML-1M  Kuaivideo  Book
Ac 0.4 0.3 0.5
Am 0.4 0.6 0.4
Ae 40 80 100
weight_decay 0.001 0.001 0
dropout 0.3 0.3 0.5
batch_size 2048 2048 2048
emb_dim 128 128 128

* GRU4Rec Hidasi et al.| (2016) apply recurrent neural networks (RNNs) to session-based recom-
mendations, addressing the challenge of short user sessions without long-term profiles.

* MiDNN |Zhuang et al.| (2018)) proposes a global optimization framework for e-commerce search
ranking that considers mutual influences between items, using extended features and sequence
generation to optimize ranking and maximize overall utility.

List-Refinement Methods: encode the item lists from the previous stage and refine the rankings
based on this information.

* DLCM|Ai et al.|(2018) leverages local ranking context from top-retrieved documents to refine initial
ranking lists. The model uses a recurrent neural network to capture document interactions and an
attention-based loss function, significantly improving performance over traditional learning-to-rank
methods.

» SetRank Pang et al.|(2020) introduces a neural learning-to-rank model that learns a permutation-
invariant ranking function directly on document sets. Utilizing multi-head self-attention blocks,
SetRank captures cross-document interactions and achieves robust performance across varying
input sizes.

* PRM [Pei et al.|(2019)) addresses personalized re-ranking in recommendation systems by incorporat-
ing user-specific preferences into the re-ranking process. It considers user behavior and candidate
list, enhancing both relevance and personalization in the final recommendations.

* MIR [Xi et al.|(2022) proposes to capture complex interactions between user actions and candidate
list features across multiple levels, improving the accuracy and relevance of recommendations
through a hierarchical reranking approach.

Generator-Evaluator Methods: generate multiple ranked item lists and evaluate them to select the
best one for users.

* EGRerank Huzhang et al.| (2023) proposes an evaluator-generator framework for learning-to-
rank (LTR) in e-commerce applications. The framework includes an evaluator that evaluates
recommendations involving context, a generator that maximizes the evaluator score through
reinforcement learning, and a discriminator that ensures the generalization of the evaluator.

* Pier|Shi et al.|(2023) follows a two-stage architecture with a Fine-grained Permutation Selection
Module (FPSM) and an Omnidirectional Context-aware Prediction Module (OCPM). FPSM selects
top-K candidate permutations based on user interest using SimHash, while OCPM evaluates these
permutations with an omnidirectional attention mechanism.

* NAR4Rec|Ren et al.[(2024) explores the use of non-autoregressive generative models for re-ranking
in recommendation systems, addressing challenges such as sparse training samples and dynamic
candidates by introducing a matching model, unlikelihood training to distinguish feasible sequences,
and contrastive decoding to capture item dependencies.

Diffusion-Based Methods: utilize diffusion models to generate items or lists for recommendation.

* DiffuRec|Li et al.|(2024) incorporates a diffusion process to inject noise into target item embeddings
and a reverse process to reconstruct the target item representation.
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Figure 4: Different ways to leverage retriever scores.

* DCDR |Lin et al.|(2024) introduces a new framework that leverages diffusion models for the
reranking stage in recommendation systems. DCDR extends traditional diffusion models with a
discrete forward process and a conditional reverse process to generate high-quality item sequences.

D.4 IMPLEMENTATION OF DIVERSE STRATEGIES FOR LEVERAGING RETRIEVER SCORES

Here, we present the detailed implementation of different ways to leverage retriever scores in Figure
[D:4] The left one refers to “c score”, which leverages a concatenate operation to combine the score
features with encoded user states from users’ interaction history. The moderate one represents “+
score”, which incorporates the score feature with user states by a simple plus operation. The right
one is the “w score”, which adopts the initial candidate score as the weight of candidate items.

E COMPLEMENTARY EXPERIMENTAL ANALYSIS

E.1 EXPERIMENTS OF RETRIEVER STAGE

Detailed Experimental Settings for Retriever Stage

We implement the retriever stage with the MF method Koren et al.|(2009), which aims to improve the
click rate performance. The dimension of the item embedding is 128, and the learning rate is 0.001.
We randomly select negative items to train the MF method, enhancing the retriever’s performance
despite the item sparsity.

Experimental results of Retriever Stage

Here, we present the detailed results of the retriever stage in Table 8]

Table 8: Performance of the retriever stage, which adopts the matrix factorization (MF) model to rate
and select the top-50 items from full item set.

Datasets ML-1M Kuaivideo Book

AUC 79.20% 89.62% 88.82%

E.2 VISUALIZATION OF LEARNED NOISES

To visualize the generated noise distribution, we compare the density curve of the generated noise
from different noise generators, including Gaussian noise, Beta noise, and learning-based noise. As
demonstrated in Figure 3] the distribution of learned noise is more aligned with the distribution of
true noise between retriever scores and user feedback. This means that the resulting posterior with
model-based noise sampler better reduces the divergence term dx in Eq.(3), and potentially improve
the alignment between our proposed solution with the three objectives and the data log-likelihood
maximization goal.
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Figure 5: The visualization of generated noise from different variants.

E.3 PERFORMANCE ON DIFFERENT SETTINGS OF BETA-DISTRIBUTION

The U-shaped Beta distribution in our paper is motivated by the binary nature of the user feedback
scores and the uncertain initial guess, and it is already empirically outperforming the Gaussian distri-
bution in our experiments. Since the heuristically designed beta distribution is not guaranteed to be
optimal — unlike the model-based noise generator, whose learned noise distribution is demonstrated
to be closer to the real noise distribution.

To explore different Beta distributions, we conducted additional experiments with DNR that used
a beta distribution Beta(2, 5), i.e., DNR-BL, which is more aligned with the true noise distribution
as well as our model-based generator (as shown in Figure[5), before switching to the model-based
generator in epoch \.. Empirically, the results are presented in Table[9]

Table 9: Experiments with the beta distribution replicate the learned distribution.

ML-1M Kuaivideo Book
Methods
NDCG@6 MAP@6 NDCG@6 MAP@6 NDCG@6 MAP@6
DNR-B 77.12 67.30 70.15 58.12 83.53 75.54
DNR-BL 77.43 67.49 71.10 59.61 83.68 75.79

We can observe that using this more "aligned" beta distribution (i.e., , DNR-BL) before epoch A,
offers a slight improvement compared to using the U-shaped Beta (i.e., DNR-B) before \.. This
reinforces our main claim: adopting a model-based noise generator to learn and regularize noise
distribution, aligning it more closely with the ground-truth noise distribution.

E.4 DETAILED RESULTS OF SENSITIVITY ANALYSIS

Here, we present the detailed results of the sensitivity analysis for different datasets in Figure [6]
Figure[7} and Figure ]

E.5 EXPERIMENTS ON LARGER RERANKER BACKBONES

DNR is a backbone-agnostic framework for reranking tasks, utilizing and denoising the noisy scores
from the previous retrieval stage through adversarial learning. Recently, LLMs have become a
powerful tool for reranking tasks. However, text-based LLM4Rerank is not comparable in our setting
offline or online, due to the lack of rich textual information (such as detailed item descriptions) that
LLM-based rerankers fundamentally rely on. To evaluate the effectiveness of DNR in large models,
we scaled up our PRM baseline by significantly increasing the number of its Transformer layers,
serving as a “larger model” for comparison. We then tested our DNR framework, using this scaled-up
PRM as its reranker backbone. The results are presented in the table[T0]

We can observe that scaling up the backbone may improve the reranking result, comparing the larger
PRM with the original PRM, or comparing the larger DNR with the original DNR. Additionally, our
original DNR outperforms the scaled-up “larger model” baseline (larger PRM); The DNR framework
may also generalize well to a larger model.
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Table 10: Experiments on larger models (expand transformers of PRM to 10 layers) with ML-1M
dataset.

Methods ML-IM

HR@6 NDCG@6 MAP@6 Fl@6 AUC
original PRM 60.09 72.85 62.21 65.51  88.20
original PRM+DNR  64.89 77.67 68.00 70.71  92.75
larger PRM 62.95 76.09 66.72 68.61  88.68
larger PRM+DNR 65.87 78.72 69.33 7195 89.19

E.6 ONLINE A/B TEST

To better investigate the effectiveness of our DNR in an online environment, we conduct an A/B test
on an industrial platform with video feeds to 100+ millions of users daily.

Detailed Experimental Settings for Online Test The multi-stage pipeline of the online system
consists of three stages: retrieval, ranking, and reranking. In the final reranking stage, the top-6 items
for user exposure are selected from a candidate set of 50 items generated by the ranking stage. During
the ranking process, a scoring model computes multi-dimensional features for each item. Among
these, we utilize PCTR(predicted probability that the video will be watched for more than 3 seconds)
as the primary retrieval score x,,, which corresponds to the “realshow” metric in the online system.
Note that the final reranking stage considers the combination of the retrieval stage and the middle
ranking stage as a holistic previous stage, so the output PCTR scores from the ranking stage are
considered as “retrieval score” in this final stage. DNR is applied to generate a new set of scores for
50 selected items and the top-6 items are chosen as the final exposure.

Experiment Results For our online experiments, the total traffic is randomly divided, with 12.5%
allocated to the DNR method and 12.5% to the baseline method. Each experiment is conducted for
at least 7 days to ensure the reliability of the results. The DNR method demonstrates a significant
improvement in realshow(, i.e., the cumulative number of videos watched by users), increasing it by
1.089%. These results indicate that the DNR method can estimate PCTR more accurately, which is
strongly correlated with realshow. Additionally, the industrial recommendation environment involves
various other metrics in addition to the realshow metric, including but not limited to app usage
time, watch time, share-rate, like-rate, and comment-rate. We provide the corresponding results
in Table [TT] We can see that, in our scenario, watch-time and share-rate are slightly negatively
impacted, while like-rate and comment-rate are slightly positively impacted, indicating a potential
trade-off between metrics. Notably, while the watch time exhibited a slight decrease, we additionally
observed that the long-term DAU slightly increased by 0.01% [-0.012%,+0.012%], which is nearly
reaching a statistically significant improvement. This potentially suggests that the slight reduction
in viewing duration is likely attributable to users exploring a broader range of clicked videos, while
more significant long-term indicators remain positive. Beyond these, the impact on all other metrics
is not statistically significant, which validates the effectiveness of our method. It is worth noting that
achieving performance gains across all online metrics is inherently a multi-objective challenge—an
area that remains a key focus for future work. Additionally, we believe applying DNR to other xTR
signals (e.g., watch time and share-rate) holds significant potential for further improvements.

E.7 EXPERIMENTS ON DIVERSE RETRIEVERS

To better illustrate the generalizability of DNR across different retrievers, we implemented the
dual-tower (DT) model as a stronger retriever. The comparison results in the retrieval stage are
summarized in Table[I2] and the comparison results in the reranking stage are summarized in Table
[I3] We can see that DT+DNR outperforms DT+PRM, validating the generalizability of our method
and the sustained advantage of the denoising framework.

Theoretically, there will always be an empirical error that upper bounds the overall recommender
system, which aims to minimize the "optimizable error", and there will be no room for the reranker
to "denoise the scores" if the retriever itself achieve this bound. Yet, this theoretical bound is still
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Figure 6: Sensitivity of DNR to the hyperparameter A\, on different datasets, which controls the
degree of noise injection.
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Figure 7: Sensitivity of DNR to the hyperparameter ). on different datasets, which decides the
epochs where the adversarial learning starts.
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Figure 8: Sensitivity of DNR to the hyperparameter \,, on different datasets, which controls the
magnitude of the augmentation.

21



Denoising Neural Reranker for Recommender Systems

metric \ performance boost \ statistically significant (p < 0.05)
overall app-time -0.011% no
realshow +1.089% yes
watch-time -0.091% no
share-rate -0.758% no
like-rate +0.609% no
comment-rate +0.574% no
save-rate -0.690% no
profile-click-rate +0.129% no
Long term DAU +0.01 % yes

Table 11: Extended online A/B test results.

impractical for a single retriever in most industrial platforms, due to various reasons including (but
not limited to) the computational bottleneck, multi-task trade-off, and filtering on large-scale dynamic
candidate pool. A more advanced retriever means a smaller remaining error that can be optimized,
which indicates that the reranker will solve a simpler denoising problem and simpler reranker design.
In this case, a diminishing marginal gain only indicates a diminishing computational requirement in
the reranking stage. In general, the advantage of the denoising formulation is maintained regardless
of the retriever employed.

Table 12: The AUC performance of the different retrievers, including the matrix factorization (MF)
model and dual-tower model.

ML-1IM Kuaivideo Book

MF 79.20% 89.62% 88.82%
DT 79.86% 90.38%  90.0%

Table 13: The performance comparison of rerankers on different retrievers.

Methods ML-1M Kuaivideo Book
NDCG@6 MAP@6 NDCG@6 MAP@6 NDCG@6 MAP@6

MF+PRM 72.85 62.21 55.93 42.97 76.88 66.44
MF+PIER 75.99 65.98 65.11 52.55 80.22 71.62
MF+DNR 77.67 68.00 70.15 58.12 83.53 75.54
DT+PRM 76.68 67.37 65.77 5341 81.18 72.72
DT+PIER 76.36 66.35 68.34 56.26 81.55 72.79
DT+DNR 77.96 68.78 70.96 58.87 84.42 77.11

E.8 EXPERIMENTS ON DNR’S DIVERSITY

Since biases in the retriever’s scores may not align with ground-truth user preferences, they will
be "denoised" if they constitute noise in the score signal. Unlike alternative methods that leverage
retriever scores directly, DNR’s primary advantage lies in denoising unreliable scores enabled by its
noise-aware training paradigm, as evidenced by Table[2] For example, a specific user may not like a
certain video even if it is popular. When the noise-aware DNR finds this noise and corrects it, the
resulting prediction becomes more accurate, more personalized, and more diverse.

We conduct additional experiments on the diversity of the final recommendations by comparing
the Coverage@1 and coverage @6 metrics of the rerankers’ outputs. As shown in Table the
experimental results demonstrate that DNR’s denoising capability enables it to mitigate incorrect
biases in retriever scores, thereby achieving greater diversity compared to baseline rerankers (e.g.,
PRM and PIER).
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Table 14: The diversity performance comparison of DNR and different rerankers.

ML-1M Kuaivideo Book
Methods

Cel C@6 NCe@l C@o6 Cel C@o6

PRM 0.5366 0.9080 0.7609 0.9648 0.4364 0.8584
Pier 0.5429 09073 0.7554 09571 0.4238 0.8663
DNR 0.5626 09109 0.7923 09702 0.4786 0.8721

E.9 COMPUTATIONAL ANALYSIS

Theoretically, our method does not change the computational cost during inference since we can
adopt the same reranking model structure (e.g., PRM |Pei et al|(2019)). In the training phase, we
include an additional noise generator that may require O(1) computational overhead, whose cost
depends on the generator’s structure. Empirically, the generator does not have to be sophisticated,
and the computational overhead can be trivial compared to the reranker’s training.

To better demonstrate computational cost, we compare the per-epoch training time of DNR against
several baseline rerankers, including PRM |Pei et al.| (2019), Pier |Shi et al.| (2023)), DCDR |Lin et al.
(2024), and a "w/ score" variant—where retriever scores are directly used as input to the reranker. In
table[I5] we present the time cost comparison for different reranker baselines in each training epoch.
The variant “w/ score” denotes methods incorporating retriever scores as input features, regardless of
the specific integration method (e.g., concatenation, plus, or weighted combination). Our proposed
DNR demonstrates competitive training efficiency, with time costs comparable to both PRM and w/
score baselines across all datasets (ML-1M, KuaiVideo, and Book). This validates the computational
efficiency of our approach while maintaining competitive performance.

Table 15: Comparison of time costs.

Datasets ML-IM  Kuaivideo Book

PRM 01mOl1s 02m21s 01m42s
Pier 01m54s 04mlls 02m36s
DCDR 02m27s 04m58s 03m02s
w/ score  01mO03s 02m49s 01m46s
DNR 01m06s 03m12s 01m51s

F LIMITATION AND DISCUSSION

F.1 LIMITATIONS

Computational Cost: Compared to a direct optimization framework with Eq.(2) that only learns 6,
our framework requires extra efforts to train a posterior model ¢ (if using learnable posterior) with
three additional loss terms to back-propagate. This might multiply the training cost for several folds.
Fortunately, ¢ is not involved in inference, so the inference cost stays the same.

F.2 FUTURE DIRECTIONS

Multi-task Scenarios: When a user can engage with an item with multiple behaviors (e.g., like
and share a news story), DNR may adapt to this scenario by simply formulating a multi-dimensional
response space for z,, and x,,. Yet, different behavior signals may typically follow a heterogeneous
distribution where a uniform modeling technique might become sub-optimal. Additionally, the
problem may become even more sophisticated when there exist multiple retrievers that estimate the
same metric, especially in industrial settings. In this case, one may have to come up with a more
articulated integration method to clarify the connections between the user feedback and different
retriever scores. Thus, we believe it is worth further investigating how the proposed framework may
accommodate the multi-task solutions.
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Joint Optimisation of Multi-stages: Since our “retriever-aware reranker” is a complementary
piece to the “reranker-aware retriever” work, we believe optimizing the two components end-to-end
jointly is a very promising direction for future research. The potential lies in tackling the core multi-
stage challenges: effectively aligning the divergent training objectives, reliably back-propagating
non-uniform feedback signals across the stages, and allowing flexible model switch for any stage.

Multi-stage vs. End-to-End: Recent advances in end-to-end recommenders have witnessed
significant advances, and evidence |Deng et al.|(2025) has shown that end-to-end recommenders are
potentially more effective since they no longer need to worry about the consistency challenge in the
multi-stage framework. Yet, there is still no evidence of a general superiority comparing these two
paradigms, and there is still no optimal solution for a fully consistent multi-stage recommender.

G USE OF LLMS

Large language models (LLMs) were used only to aid writing polish—including refining sentence
phrasing, logical flow, and prose clarity—without altering original meanings or technical details.
LLMs did not participate in core research tasks (e.g., experiment design, data processing, model
training, result analysis, or drafting key technical content).
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