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Abstract

The performance of sentence representation001
has been remarkably improved by the frame-002
work of contrastive learning. However, recent003
works still require full fine-tuning, which is004
quite inefficient for large-scaled pre-trained lan-005
guage models. To this end, we present a novel006
method which freezes the whole language007
model and only optimizes the prefix deep con-008
tinuous prompts. It not only tunes around 0.1%009
parameters of the original language model, but010
avoids the cumbersome computation of search-011
ing handcrafted prompts. Experimental results012
show that our proposed DCPCSE outperforms013
the state-of-the-art method SimCSE by a large014
margin. We raise the performance of unsuper-015
vised BERTbase and supervised RoBERTalarge016
by 2.24 and 1.00 points, respectively. Our code017
will be released at Github.018

1 Introduction019

Sentence representation learning is a vital problem020

in natural language processing (NLP) and has wide021

real-life applications including large-scale seman-022

tic similarity comparison, information retrieval, etc023

(Reimers and Gurevych, 2019a).024

Benefited from large pre-trained language mod-025

els, the performance of sentence representation026

learning has been further boosted with addition027

supervision. However, the naïve sentence embed-028

dings derived from these over-parameterized mod-029

els prone to be collapsed (Chen and He, 2021),030

resulting in high similarity between any two sen-031

tences. Recently, contrastive learning based on032

the idea of pulling semantically close samples to-033

gether and pushing apart dissimilar samples in the034

vector space (Chen et al., 2020) has achieved ex-035

traordinary success in learning universal sentence036

embeddings. Works such as ConSERT (Yan et al.,037

2021) and SimCSE (Gao et al., 2021) apply various038

ways to construct proper positive pairs, and regard039

the in-batch examples as negatives. Nonetheless,040

Figure 1: Deep continuous prompt framework for con-
trastive learning of sentence embeddings. We freeze the
transformer parameters (the blue blocks) and only op-
timize the prefix deep continuous prompts (the orange
blocks).

they still require to fine tune the whole pre-trained 041

model, which is quite inefficient especially for mod- 042

els consisting of billions of parameters like T5-11B 043

(Raffel et al., 2020). Considering the online setting 044

where tasks arrive in a stream, it is particularly use- 045

ful to store only a small number of parameters for 046

each task rather than training an entire new model. 047

Prompting, which freezes all parameters of a pre- 048

trained language model and adapts it as a predictor 049

through completion of a cloze task, has become 050

a new paradigm in NLP (Liu et al., 2021a). For 051

example, in sentiment analysis, we can concatenate 052

the text with a prompt “[X] the movie is [MASK].” 053

and ask the pre-trained language model to predict 054

the masked token. Then the predicted probabili- 055

ties of “good” and “bad” being the masked token 056

can be used to predict the sample’s label. How- 057

ever, discovering the optimal prompt manually for 058

specific tasks could be quite challenging, even for 059

experienced prompt designers. To address this is- 060

sue, plenty of prompt engineering methods have 061

been proposed, which can be divided into two cate- 062

gories: discrete prompts and continuous prompts. 063

Discrete prompts aim to search for a sequence of 064

discrete trigger tokens through data-driven opti- 065

mization (Schick and Schütze, 2020a,b; Shin et al., 066
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2020), while continuous prompts differentially op-067

timize continuous token embeddings (Li and Liang,068

2021a; Zhong et al., 2021; Liu et al., 2021b), whose069

effects will be propagated upward to all transformer070

activation layers and rightward to subsequent to-071

kens. Compared with discrete prompts, continu-072

ous prompts are much more time-efficient and less073

likely to fall into local optima due to the expansion074

of the search space.075

Inspired by continuous prompts, we propose076

DCPCSE, a deep continuous prompt framework077

for contrastive learning of sentence embeddings, as078

Figure 1 shows. By adding multi-layer trainable079

dense vectors as prompts to the input sequence, we080

train our whole architecture based on the idea of081

constractive learning, while keeping all parameters082

of the pre-trained model frozen. In other words, the083

input embeddings as well as each layer’s hidden084

embeddings of continuous prompts are optimized,085

which enables more direct impact on the loss func-086

tion and is easier to converge. Additionally, we087

find that multi-task learning by combining con-088

trastive learning objective with an auxiliary masked089

langauge model (MLM) objective enables the lan-090

guage model to obtain a better sentence representa-091

tion with a rich association among the continuous092

prompts, especially for the unsupervised setting.093

We conduct comprehensive experiments on094

seven standard semantic textual similarity (STS)095

tasks. Our proposed DCPCSE substantially sur-096

passes SimCSE with only 0.1% parameters tuned.097

Under the unsupervised setting, DCPCSE achieves098

a 78.49 and 77.93 averaged Spearman’s correlation099

using BERTbase and RoBERTabase respectively, a100

2.24 and 1.36 points improvement compared to101

SimCSE. In the supervised setting, DCPCSE out-102

performs SimCSE by 0.78 on BERTlarge and 1.00103

on RoBERTalarge.104

2 Deep Continuous Prompt Framework105

In this section, we illustrate how to encode sen-106

tences into embedding vectors through our pro-107

posed model and how to train it.108

2.1 Sentence Embedding Encoder109

Given a pre-trained language model M, a common110

method to encode a sentence into an embedding111

vector is to map the sequence of tokens {x1, ..., xn}112

to input embeddings {e(x1), ..., e(xn)} first, and113

then feed these embeddings through multiple trans-114

former layers (Vaswani et al., 2017). The sen-115

tence representation could be acquired by taking 116

the [CLS] token embedding of the last layer or 117

taking average of all token embeddings. 118

In our architecture depicted in Figure 1, l train- 119

able dense vectors {p1, ..., pl} are added as contin- 120

uous prompts to the input sequence, whose dimen- 121

sions are identical to M’s input embeddings. In- 122

spired by Perfix-Tuning (Li and Liang, 2021b), the 123

hidden embeddings of these continuous prompts 124

in all transformer layers are also optimized during 125

training, which means they are independent to each 126

other interlayers rather than being computed by 127

previous layers. Trainable embeddings added to 128

each layers can have more direct impact on the loss 129

function, which benefits a smoother optimization. 130

We choose to take the [CLS] representation from 131

the last layer as the sentence embedding. Note that 132

all the parameters of pre-trained language models 133

are fixed, thus reducing the number of tunable pa- 134

rameters to around 0.1%. 135

2.2 Multi-task Learning 136

Contrastive learning objective We follow the 137

contrastive learning framework in (Gao et al., 138

2021): given a set of paired sentences D = 139{
(Xi, X

+
i )

}m

i=1
where Xi and X+

i are semanti- 140

cally related, we regard X+
i as "positive" of Xi 141

and other sentences in the same mini-batch as "neg- 142

atives". Let hi and h+
i denote the representations of 143

Xi and X+
i , then the training objective for a single 144

sample in a mini-batch of size N is: 145

ℓCL = − log
expsim(hi,h+

i ) /τ∑N
j=1 exp

sim(hi,h+
j ) /τ

146

where τ is a temperature hyperparameter and 147

sim(h1,h2) is the cosine similarity function. 148

MLM objective To ensure the association among 149

the pseudo prompt tokens {p1, ..., pl}, we also con- 150

sider leveraging an auxiliary MLM objective pro- 151

posed by (Devlin et al., 2019) and denote it as 152

ℓMLM . That is, 15% tokens of each sequence are 153

randomly chosen for prediction. The i-th chosen 154

token xi is replaced by (1) the [MASK] token 80% 155

of the time (2) a random token 10% of the time 156

(3) itself 10% of the time. The effectiveness of the 157

auxiliary MLM objective is discussed in 3.3. 158

Finally, the overall training objective becomes: 159

ℓ = ℓCL + λℓMLM 160

λ = 0.1 ∗ decay_rate
global_step
decay_step 161
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised models

BERTbase
‡ (first-last-avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

BERTbase-flow‡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
ConSERT-BERTbase

§ 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE-BERTbase

‡ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SCPCSE-BERTbase 64.28 78.97 70.51 78.45 75.71 76.33 68.73 73.28
DCPCSE-BERTbase 73.03 85.18 76.70 84.19 79.69 80.62 70.00 78.49

SimCSE-BERTlarge
‡ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41

DCPCSE-BERTlarge 73.34 85.90 77.10 85.26 80.08 80.96 73.28 79.42
SimCSE-RoBERTabase‡ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57

DCPCSE-RoBERTabase 70.57 81.91 74.60 82.90 80.96 82.84 71.70 77.93

Supervised models

SBERTbase
† 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89

SBERTbase-flow‡ 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERTbase-whitening‡ 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
ConSERT-BERTbase

§ 74.07 83.93 77.05 83.66 78.76 81.36 76.77 79.37
SimCSE-BERTbase

‡ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
DCPCSE-BERTbase 75.58 84.33 79.67 85.79 81.24 84.25 80.79 81.65

SimCSE-BERTlarge
‡ 75.78 86.33 80.44 86.60 80.86 84.87 81.14 82.21

DCPCSE-BERTlarge 77.97 86.54 81.04 86.33 81.81 85.24 81.31 82.89
SimCSE-RoBERTabase‡ 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52

DCPCSE-RoBERTabase 76.75 85.86 80.98 86.51 83.51 86.58 80.41 82.94
SimCSE-RoBERTalarge‡ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

DCPCSE-RoBERTalarge 79.14 88.64 83.73 87.33 84.57 87.84 82.07 84.76

Table 1: The performance comparison of our DCPCSE and previous state-of-the-art models on seven STS tasks.
The reported score is Spearman correlation magnified by a factor of 100. †: results from Reimers and Gurevych,
2019b; ‡: results from Gao et al., 2021; §: results from Yan et al., 2021.

where the weight of MLM loss λ decays exponen-162

tially as the training progresses, which forces the163

model to focus more and more on the main target.164

The decay_rate and decay_step are set to 0.95 and165

100 empirically.166

3 Experiments167

3.1 Setups168

Datasets We use seven standard STS datasets169

including STS tasks 2012-2016 (Agirre et al., 2012,170

2013, 2014, 2015, 2016), STS Benchmark (Cer171

et al., 2017) and SICK-Relatedness (Marelli et al.,172

2014) for our experiments. Each sample in these173

datasets contains a pair of sentence as well as a174

semantic similarity score ranging from 0 to 5.175

Baselines To verify the validity of our proposed176

architecture, we mainly choose two post-process177

methods BERT-flow (Li et al., 2020) and BERT-178

whitening (Su et al., 2021) as well as two con- 179

trastive learning based methods ConSERT (Yan 180

et al., 2021) and SimCSE (Gao et al., 2021) as 181

baselines. 182

Training Details We obtain pre-trained check- 183

points of BERT (Devlin et al., 2019) (uncased) or 184

RoBERTa (Liu et al., 2019) (cased) from Hugging- 185

face 1. Note that we only make the parameters of 186

deep continuous prompts trainable, all parameters 187

of pre-trained models are frozen during training. 188

Following SimCSE (Gao et al., 2021), we use the 189

same datasets to train our unsupervised models and 190

supervised models. All the experiments are con- 191

ducted on two Nvidia 3090 GPUs. More training 192

details can be found in Appendix A. 193

1https://huggingface.co/models
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3.2 Main Results194

Table 1 summarizes the evaluation results on seven195

STS tasks. Our proposed DCPCSE can substan-196

tially surpass the previous state-of-the-art Sim-197

CSE in both unsupervised and supervised set-198

tings. Specifically, our unsupervised DCPCSE199

outperforms SimCSE by 2.24% on BERTbase,200

1.36% on RoBERTabase and 1.01% on BERTlarge201

respectively. In terms of supervised setting,202

DCPCSE achieves slight improvements on base203

models (0.08% for BERTbase and 0.42% for204

RoBERTabase) but significant improvements on205

large models (0.78% for BERTlarge and 1.00% for206

RoBERTalarge). This is in line with the finding that207

prompt tuning can be more efficient as the model208

parameters scale up (Lester et al., 2021).209

3.3 Ablation Study210

What if we only make the input embeddings211

of continuous prompts trainable? Following212

P-tuning (Liu et al., 2021c), we define "shallow"213

continuous prompt as follows:214

[p1] ... [pm] [X] [pm+1] ... [pl] [MASK]215

where X denotes the token sequence, [p1], ..., [pl]216

are dense vectors with the same dimension as the217

language model’s input embedding. After initializ-218

ing each [pi] with the pre-trained input embedding,219

we keep all other model parameters fixed and only220

tune these shallow continuous prompts. Eventually,221

the output [MASK] representation is regarded as222

the sentence embedding. We apply this architecture223

to contrastive learning of sentence embeddings and224

name it as SCPCSE. The experimental settings are225

in Appendix A.226

From Table 1, it can be clearly seen227

that SCPCSE-BERTbase underperforms DCPCSE-228

BERTbase by 5.21 points, which validates the ne-229

cessity of multi-layer continuous prompts.230

Prompt length Here we investigate how differ-231

ent prompt length affects our models. Figure 2232

shows that at first the performance of the model233

rises steadily as the length of the prompt increases;234

after the length reaches 10, the score begins to fluc-235

tuate around 78%. It is interesting to observe that236

even if only one deep continuous prompt is added,237

our DCPCSE is still able to outperform SimCSE238

by 0.25 points.239

Multi-task learning During experiments, we240

found that the auxiliary MLM objective is quite241

Figure 2: Test performance with various length of deep
continuous prompts based on unsupervised DCPCSE-
BERTbase.

effective for RoBERTa models under the unsuper- 242

vised setting, as Table 2 shows. Without the MLM 243

loss, the performance of unsupervised DCPCSE- 244

RoBERTabase even drops 8.69 points. It is reason- 245

able that the MLM objective is capable of prevent- 246

ing the model from being trapped into local optima 247

as the training progresses.

BERTbase RoBERTabase

w/ MLM 78.10 77.93
w/o MLM 78.49 69.24

Table 2: Ablation study of the MLM auxiliary objective
in unsupervised DCPCSE. The results are based on the
test set of seven STS tasks.

248

4 Conclusion 249

In this paper, we present DCPCSE, a deep contin- 250

uous prompt framework for constrastive learning 251

of sentence embeddings. Compared with previous 252

works which fine tune the whole language model, 253

our architecture not only optimizes nearly 0.1% pa- 254

rameters, but avoids the cumbersome computation 255

of searching handcrafted prompts. More impor- 256

tantly, our models can achieve new state-of-the-art 257

performance, which significantly improves Sim- 258

CSE in both unsupervised and supervised settings. 259

DCPCSE has the potential to be a comprehensive 260

alternative for fine-tuning and a strong baseline in 261

the area of sentence representation. 262
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A Experiment Details 441

For SCPCSE, we initialize the input embeddings 442

with the manual template This sentence : "[X]" 443

means [MASK]. The batch size, learning rate, 444

epoch and valid steps we use are 256, 1e-3, 5 and 445

125, respectively. Other settings are the same as 446

those in SimCSE. 447

For DCPCSE, the maximum sequence length 448

is set to 32. We use the temperature τ = 0.05 449

for all the experiments. Grid-search of batch size 450

∈ {64, 128, 256, 512} and learning rate ∈ {5e-3, 451

1e-2, 3e-2} is carried out on on STS-B development 452

set. The hyperparameters of unsupervised setting 453

and supervised setting are listed in Table 3 and 454

4, respectively. "Muiti-task" means whether the 455

MLM objective is used. 456

Unsupervised
BERT RoBERTa

base large base large

Batch size 256 256 64 64
Learning rate 3e-2 3e-2 3e-2 1e-2
Prompt length 16 10 14 10
Muiti-task False False True True
Epoch 1 1 1 1
Valid steps 125 125 125 125

Table 3: Hyperparameters for our method in unsuper-
vised setting.

Supervised
BERT RoBERTa

base large base large

Batch size 256 256 256 256
Learning rate 5e-3 5e-3 1e-2 5e-3
Prompt length 12 12 10 10
Muiti-task False False False False
Epoch 10 10 10 10
Valid steps 125 125 125 125

Table 4: Hyperparameters for our method in supervised
setting.

6

http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393

