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ABSTRACT

Image super-resolution (SR), aiming to restore accurate high-resolution images
from low-resolution ones, plays a pivotal role in image processing. However,
the performance of SR models is often hindered by conventional data augmenta-
tion and data degradation techniques. Conventional data augmentation methods
for SR are typically limited to geometric transformations, lacking semantic rich-
ness. Traditional data degradation methods simulate degradation through a series
of blurring, noise addition, compression, and resizing processes, lacking the com-
plexity essential for robust model training. In this paper, based on pre-trained
large-scale text-to-image diffusion models, we propose a novel data augmentation
method and an innovative data degradation method in SR modeling. Our data
augmentation method utilizes Stable Diffusion to modify image content at the
semantic level for controlled data augmentation, enriching training datasets with
nuanced variations while preserving the quality of the original images. Moreover,
after fine-tuning Stable Diffusion with domain-matched data we further enhance
the augmentation efficacy. Besides, by carefully designing control signals, our
data degradation method utilizes diffusion to emulate degradation, simulating var-
ious unknown input corruptions to improve the performance of SR models across
unfamiliar image degradation patterns. Our data augmentation method improves
PSNR by 0.8 dB on the FFHQ dataset and by 0.28 dB on the Mangal(09 dataset
for the SR tasks. Meanwhile, our data degradation technique has proven effective
in significantly reducing artifacts in real-world SR imagery, distinctly exceeding
the performance of traditional ones.

1 INTRODUCTION

Image super-resolution (SR), the task of reconstructing high-resolution images from their low-
resolution counterparts, is pivotal in various fields, including medical imaging, satellite imagery, and
video enhancement (Yang et al.,|2007; Nasrollahi & Moeslund, 2014} Ledig et al.,2016). Data aug-
mentation (DA) is crucial in SR modeling, particularly in scenarios with limited data, as it enhances
dataset diversity, improves model generalization, and reduces overfitting. However, conventional
geometric transformation-based DA techniques for the SR task (such as flipping and 90-degree ro-
tation (Timofte et al., 2015)) often provide limited enhancement.

Intuitively, data augmentation is used to teach a model about invariances in the data domain (Cubuk
et al.| [2019), which helps shape a model’s capacity to discern underlying patterns. Although tradi-
tional DA techniques for SR are effective at introducing geometric variability, they usually fail to
provide rich semantic information and complex variations presented in real-world scenarios. The up-
per right portion of Figure|[T]illustrates traditional DA methods’ limitations in enhancing the model’s
image restoration performance in facial SR tasks. Though DA methods such as noise addition, color
transformations, brightness/contrast adjustments, and more complex methods (Devries & Taylor,
2017; Yun et al., 2019} |[Zhang et al.,|2017a; Hendrycks & Dietterich, 2019) have been widely pro-
posed for high-level vision tasks, DA in low-level vision remains largely unexplored. Considering
the importance of both local and global pixel relationships in low-level vision tasks (Yoo et al.,
2020), applying DA strategies designed for high-level tasks directly to SR may degrade the quality
of training data and negatively impact the efficacy of the SR models. For instance, the Jitter method
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Figure 1: The left side highlights the main differences between our diffusion-based data augmenta-
tion and degradation methods and those of conventional approaches. The top row on the right side
presents the facial image restoration results of the HiFaceGAN model (Yang et al., 2020b), com-
paring the use of traditional data augmentation methods with the use of Stable Diffusion. It can be
observed that employing Stable Diffusion for data augmentation significantly enhances the fidelity
of the SR outcomes. The bottom row on the right side demonstrates the restoration results of the
SwinIR model (Liang et al. [2021)) on real-world images, comparing the construction of HQ-LQ
training data pairs using traditional degradation methods with those using Stable Diffusion. It is
observed that employing Stable Diffusion for data degradation significantly reduces artifacts in the
SR outcomes.

may disrupt the color space of images, violating the color patterns observed in the physical world,

and the Image Erasing method (Zhong et al., 2017} [Singh et al., 2018}, [Chen et al.|[2020) could lead

to the elimination of crucial information, adversely affecting the model’s performance (Kumar et al.,

2023).

Blind super-resolution (blind SR), aiming to super-resolve low-quality (LQ) images with unknown
data degradation (DD) 2021), contrasts with non-blind approaches that depend on ex-
plicit degradation information. Image degradation in the real world is often complex and not eas-
ily mimicked by direct mathematical models. This includes degradations caused by photographic
equipment, such as camera blur, sensor noise, sharpening artifacts, and those resulting from the cap-
ture process, like motion blur. Furthermore, multiple sharing of the same image over networks can
lead to cumulative quality loss. The lower right portion of Figure [T] illustrates that when the data
degradation process of real-world images is ideally assumed to be bicubic downsampling, the SR
model’s restoration results in a higher incidence of artifacts.

Current blind SR methods can be broadly categorized into explicit and implicit modeling techniques
Wang et al.| [2021)), according to the ways of degradation modeling. Explicit modeling approaches
(Zhang et al.|[2017b}|Gu et al.}[2019; Michaeli & Irani, 2013 Bell-Kligler et al.,[2019; [Shocher et al.}

017;|Cheng et al.|[2020)) rely on predefined degradation representations (blur, noise, JPEG compres-
sion, etc.), which, while straightforward, are frequently too idealized to hold true for the complex
real-world degradation 2021). Implicit modeling techniques, which utilize Generative
Adversarial Networks (GANs) to simulate degradation processes by learning data distributions, re-
quire complex network designs and substantial computational resources (Yuan et al., 2018}, [Fritsche|
et al., 2019; [Wei et al, [2020). While these methods are effective, their adaptability is constrained by
the specific degradations present in the training data. Furthermore, the work of aligning high-quality
(HQ) images with their LQ counterparts is laborious and time-consuming, resulting in a paucity of
datasets that cover the breadth of real-world degradations.




Under review as a conference paper at ICLR 2025

Fortunately, recent breakthroughs in large-scale text-to-image models have introduced exciting new
possibilities for image modification (Fan et al.,2023). As an influential model in this domain, Stable
Diffusion (SD) has the remarkable ability to take an original image and, according to textual prompts
and modification strength, apply various transformations to generate a new image.

In this work, we propose a novel data augmentation method and an innovative data degradation
method in SR modeling. Based on Stable Diffusion models, our DA method effectively enriches
the training datasets with diverse image variations, improving the generalizability of SR models on
previously unseen data. Meanwhile, our DD method utilizes SD models to synthesize realistic HQ-
LQ training pairs through the diffusion models’ characteristic process of initial diffusion followed
by denoising. It provides a fresh source of degradation knowledge for blind SR models that rely on
learning from limited datasets to cope with unknown corruptions.

The primary contributions of this work are as follows:

* To the best of our knowledge, in the realm of super-resolution tasks, we are the first to
propose the utilization of Stable Diffusion for data augmentation and degradation.

* We employ Stable Diffusion for semantic-level image content modification, achieving con-
trolled data augmentation that introduces abundant variations to training datasets without
compromising the original image quality, thereby boosting SR performance. Additionally,
we fine-tune the SD model to align with the data distribution of specific domains, further
enhancing SR performance through targeted data augmentation.

* We expand the use of Stable Diffusion to simulate controlled data degradation, thereby
fortifying SR models against the variabilities and corruptions encountered in real-world
imaging. This approach substantially minimizes restoration artifacts.

2 RELATED WORK

The pursuit of image SR has been a longstanding challenge in the field of computer vision. Tra-
ditional SR methods have transitioned from interpolation-based to learning-based approaches, with
convolutional neural networks (CNNs) like SRCNN (Dong et al.| [2014)), EDSR (Lim et al.,|[2017)),
and SRGAN (Ledig et al.|2016) marking significant advances in quality through complex LR to HR
mapping. Attention mechanisms, as introduced in the Transformer, further enhanced SR by focus-
ing on multi-scale features (Chen et al., 2023} Zhang et al., 2023} |Cao et al., 2021} |Li et al.| 2024;
Yang et al.|, 2020a)), achieving state-of-the-art reconstruction at the time. The Swin Transformer’s
hierarchical design and shift window mechanism have notably improved SR by capturing long-range
dependencies, modeling both global and local contexts effectively (Liang et al., 2021; |Conde et al.,
2022;|Choi et al.} 2022)), and setting new benchmarks in the field.

The core idea of data augmentation is to enhance the adequacy and diversity of training data through
the creation of synthetic datasets (Yang et al.,|2022)), and incorporating potential invariances through
DA is often more tractable than directly encoding them into the model architecture (Cubuk et al.,
2019). Despite its importance, current DA methods for the SR task are primarily limited to geo-
metric transformations, such as scaling, flipping and 90-degree rotation, which do not substantially
contribute to semantic diversity in the dataset. This restricts the model’s ability to learn complex
mappings between LQ and HQ images, which is vital for accurate SR (Kumar et al., 2023} Rus-
sakovsky et al.,[2014).

Beyond the constraints of traditional data augmentation methods, the understanding of how HQ
images degrade to LQ images in most SR approaches is predicated on an ideal bicubic downsam-
pling kernel, which deviates from actual degradation scenarios in the real world. Towards filling
this gap, blind SR has garnered significant attention due to its ability to enhance image resolution
without explicit knowledge of the degradation process. Blind SR techniques can be categorized into
three primary classes: explicit modeling with external datasets, explicit modeling with single-image
statistics, and implicit modeling through data distribution learning (Liu et al.,[2021).

External Dataset-based Explicit Modeling: Methods like SRMD (Zhang et al., |2017b)) and IKC
(Gu et al., |2019) use diverse datasets in the training process to adapt to various blur and noise con-
ditions. They perform well on trained degradations but struggle with novel ones. Single-Image
Statistic-based Explicit Modeling: Approaches such as NPBSR (Michaeli & Irani,|2013)), Kernel-
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GAN (Bell-Kligler et al., 2019), ZSSR (Shocher et al.,|2017), and DGDML-SR (Cheng et al.| [2020)
exploit image internal statistics for kernel estimation and SR without external data. They rely on the
presence of recurring image patches, which may be scarce in diverse or monotonous images. Im-
plicit Modeling via Data Distribution Learning: CinCGAN (Yuan et al., 2018), FSSR (Fritsche
et al.,[2019), and DASR (Wei et al., 2020) use GANSs to implicitly learn degradation models from ex-
ternal datasets. They generate LR images with realistic degradations for SR training but can produce
artifacts unsuitable for real-world use.

3 PROPOSED METHOD

In the realm of super-resolution, such a low-level vision task, we are the first to propose leveraging
the content generation capability of Stable Diffusion to implement both data augmentation and data
degradation processes. The proposed data augmentation method depicted in Figure[2A]is utilized to
enrich the training dataset, thereby enhancing the SR model’s image restoration capability in unseen
scenarios. Meanwhile, our data degradation method depicted in Figure 2B]is employed to diversify
the degradation forms in the HQ-LQ image pairs of training data, thus improving the SR model’s
performance on tasks with unknown degradation types.

3.1 CONTROLLED DATA AUGMENTATION METHOD

In contrast to high-level vision tasks, SR places a higher demand on the quality, particularly the
resolution, of images in the training set. Higher-quality training images contain more visually pleas-
ing texture details, which contribute to better model training outcomes. Therefore, to preserve the
quality of images, data augmentation for SR typically introduces only geometric transformations.
However, such methods are insufficient to augment the information contained in images, thereby
inadequately enhancing the richness of the dataset. More complex augmentation methods, like
noise addition, color transformations, and brightness/contrast adjustments, may disrupt the local
and global relationships among pixels, thus they are not suitable for the SR task. Therefore, there
is a need for a data augmentation method that preserves image quality, effectively increases image
information, and ideally is convenient to operate.

Diffusion models learn the underlying data distribution through successive iterations of forward
diffusion and reverse denoising. This process enables the efficient generation of a diverse set of
samples, closely aligning with the target data distribution. Stable Diffusion serves as a large-scale
pre-trained text-to-image diffusion model that encapsulates extensive image prior information. Our
data augmentation method aims to infuse image prior information inherent in Stable Diffusion into
the original images during the modification process, thereby enriching the information content of
the training data.

Figure illustrates our DA workflow. Stable Diffusion takes an original H x W image from
the training dataset and, guided by control signals such as textual prompts, negative prompts, and
modification strength, encodes the image into a noisy latent space. Then it predicts and removes
this noise based on the provided control signals, producing an enhanced latent representation. A
decoder subsequently reconstructs this representation into an augmented image of the same H x W
dimensions, introducing content variations while preserving image clarity.

As depicted in Figure[2A] with the textual prompt set to “yellow ducks, with high resolution,” nega-
tive prompts including “blurry, noisy, deformed, poor details, distorted, flat, jarring, pixelated,” and
a modification strength of 0.6, the original image is transformed into three distinct images. Among
these modifications, the kumquats in the original image are converted into some yellow ducks to
varying extents, achieving a unique effect unattainable by conventional data augmentation methods.
Following DA, the modified images are downsampled to create their LQ counterparts. Subsequently,
random cropping is applied to the HQ-LQ image pairs within the same region, yielding image pairs
with appropriate size to train SR models. Prior to these steps, fine-tuning the Stable Diffusion ac-
cording to the distribution of input images’ domain and employing it for data augmentation further
enhances the SR outcomes.

It is worth noting that our data augmentation process is independent of traditional ones. Applying
conventional DA techniques to images either before or after utilizing our method is entirely feasible
and may yield enhanced augmentation outcomes.
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(B) The proposed Data Degradation method

Figure 2: Demonstration of the proposed data augmentation and data degradation method in SR
modeling. As shown in subfigure (A), our data augmentation method leverages the generative capa-
bilities of Stable Diffusion to modify original images, yielding « (the expansion factor) augmented
outcomes, by appropriately setting prompts, negative prompts, and modification strength. Then,
downsample the augmented results to obtain corresponding low-quality (LQ) images. Each pair of
high-quality (HQ) and LQ images, after random cropping, is utilized to train the SR model. Fine-
tuning the Stable Diffusion on data from the same domain as the input images yields better aug-
mentation outcomes. Meanwhile, as shown in subfigure (B), our data degradation method utilizes
Stable Diffusion to directly effectuate degradation on the original images by appropriately setting
prompts, negative prompts, and strength. Subsequently, after the requisite downsampling process,
the original images and their downsampled counterparts form HQ-LQ image pairs. After random
cropping and transformation-based data augmentation, which includes random flipping and random
90-degree rotation, these pairs are sent to train the SR model.
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3.2 CONTROLLED DATA DEGRADATION MODULE

Degradation information, as knowledge embedded in the training data, plays a crucial guiding role
in the process of recovering HQ images from LQ ones. Existing blind SR works either model real-
world image degradations as straightforward blends of blurring, noise, and JPEG compression, or
utilize GANSs to learn more implicit degradation patterns from limited datasets. The former approach
is often overly idealized, failing to capture complex degradation processes, while the latter tends
to be computationally expensive and limited to the degradations present within training datasets,
with poor generalization to out-of-distribution images. It is worth noting that, to the best of our
knowledge, training datasets containing precisely paired HQ-LQ images generated by real-world
degradation processes are exceedingly rare. Therefore, we require data degradation methods that
more effectively simulate the complex degradation processes in real-world scenarios.

We observed that when the modification strength is set to a low value (such as 0.05), the alter-
ations made by Stable Diffusion to the original image manifest as random, yet subtle, distortions
and blurring of textural details, without significant changes to the overall semantic information and
color space of the image. The local and global relationships between pixels remain essentially un-
changed. This observation has inspired us to explore whether the image modification process of
Stable Diffusion could serve as a form of data degradation. Figure [2B|illustrates our methodology
for inducing degradation in HQ images. Given an image of dimensions H x W from the dataset,
the SD model is guided by specific prompts, negative prompts, and a carefully calibrated modifi-
cation strength—our experience indicates that a lower modification strength tends to yield superior
outcomes.

As shown in Figure with the prompt set to “degraded, add noise to the image, blurry, organic
painting, matte painting, bold shapes, hard edges,” a negative prompt of “poor details,” and a mod-
ification strength of 0.05, subtle changes are introduced to the textural details of the lightning rod
on the roof, while the overall image maintains a high degree of consistency with the original one.
The outputs of Stable Diffusion, after an essential downsampling process, serve as the LQ images,
with the original images acting as the HQ ones. The HQ-LQ image pairs, after random cropping
and transformation-based data augmentation, ultimately serve as training data for SR models.

It is noteworthy that, just like our proposed data augmentation method, our data degradation process
is also independent of traditional DD processes. Applying conventional DD techniques to images
either before or after utilizing our method is entirely feasible and can effectively address more com-
plex real-world degradation scenarios.

4 EXPERIMENTS

In this section, we delineate the training datasets and corresponding parameter configurations of
Stable Diffusion tailored for various downstream scenarios. These scenarios encompass SR tasks for
facial images, anime images, and blind SR tasks for real-world images. Moreover, a set of ablation
experiments, focusing on the expansion factor, whether the SD model has been fine-tuned, and
the modification strength, demonstrate the individual impact of these factors on data augmentation
effects.

4.1 SUPER-RESOLUTION TASK FOR FACIAL IMAGES

When exploring the efficacy of our proposed data augmentation method for facial SR tasks, we select
the HiFaceGAN and ESRGAN (Wang et al., [2018)) as base models for the reconstruction of HQ
facial images. Traditional DA methods typically include only random horizontal flipping, without
additional forms of augmentation, which is attributed to the distinctive structure of the human face.
We design comprehensive comparative experiments for analysis. The original training data consists
of 10,000 images from the FFHQ (Karras et al., 2018)) dataset, while the testing data includes an
additional 1,000 images from the FFHQ dataset and 2,000 images from the VGGFace2 (Cao et al.,
2017) dataset. The DA conditions for each experimental group are as follows:

(1) As a fundamental control group, only random horizontal flipping is utilized to augment the
original images in the training set, with each image corresponding to a single augmented result. The
augmented training data still consists of 10,000 images. For these results, we utilize 4x bicubic
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Table 1: Results on FFHQ and VGGFace?2.

Base Model Data Augmentation Test Set/Data Degradation PSNRT  SSIMT FID] LPIPS| DISTS] NIQE|

FFHQ/4x 3082 08526 1024 0.0828 00830  3.67
Transformation-based FFHQ/4-8x 2886 07971 4178 02099 01589 548

HiFaceGAN VGGFace2/dx 2895 08164 4000 01271 03558 475
FFHQ/4x 3162 08640 114 00889 00803  4.09

Diffusion-based (Ours) FFHQ/4-8x 2905 08029 47.16 02242 01613 621

VGGFace2/dx 2060 08292 2132 0.341 03557 511

Transformation-based FFHQ/4x 2032 08148 859 00811 00716 347

ESRGAN VGGFace2/4x 2528 06926 7050 02812 02178 504
. FFHQ/4x 2063 0819 992 0088 00797 357

Diffusion-based (Ours) VGGFace2/4x 2566 07065 67.07 02834 02122 535

downsampling to construct its corresponding LQ image. The SR model’s total number of epochs
was set to 50, with all 10,000 augmented image pairs being fed into the model in each epoch.

(2) We fine-tuned the SD model using 30,000 facial images from the CelebAMask-HQ dataset (Lee
et al., |2019), aiming to enhance its ability to generate more realistic facial textures and details.
For data augmentation, each original image in the training set was processed by the fine-tuned SD
model with the prompt set to “a picture of natural and detailed human face with high resolution,” and
the negative prompt as “blurry, noisy, deformed, poor details, distorted, flat, jarring, pixelated.” The
modification strength was randomly set between 0 and 0.55, with each original image corresponding
to ten augmented results. The augmented training data expanded to 100,000 images. For each image
in the set, we utilize 4x bicubic downsampling to construct its corresponding LQ image. The SR
model’s total epoch count was set to 5, feeding all 100,000 augmented training images into the
model in each epoch, thereby ensuring that the total number of iterations was equivalent to that in

group (1).

Further details on the experimental settings and results of additional groups are presented in the
ablation study section.

As demonstrated in Table [T} our DA method outperforms traditional approaches in terms of PSNR
and SSIM, leading to significant improvements in SR performance.

4.2 SUPER-RESOLUTION TASK FOR ANIME IMAGES

In exploring the effectiveness of our proposed data augmentation method for anime image SR tasks,
we select the SwinlR and HAT (Chen et al., 2022) as base models for the reconstruction of HQ
anime images. Traditional data augmentation techniques include random horizontal flipping, ran-
dom vertical flipping, and random 90-degree rotations.

We design sufficient comparative experiments for analysis. The original training data consists of
5,800 images from the animeSR dataset (Ye, 2021), while the testing data includes another 650
images from the animeSR dataset, 109 images from the Mangal09 (Matsui et al., [2015) dataset
and 1,000 images from the iCartoonFace (Zheng et al., [2019) dataset. The DA conditions for each
experimental group are as follows:

(1) Serving as a fundamental control group, a combination of random horizontal flipping, random
vertical flipping, and random 90-degree rotation is utilized to augment the original images in the
training set, with each image corresponding to a single augmented result. The augmented training
data is maintained at 5,800 images. The total number of iterations for the SR model’s training is set
to 500,000, repeatedly learning from these 5,800 images.

(2) The Stable Diffusion model is employed for data augmentation of the original images. When
each image is processed by Stable Diffusion, the prompt is set to “an image of Cartoon, with high
resolution,” and the negative prompt is “blurry, noisy, deformed, poor details, distorted, flat, jarring,
pixelated.” The modification strength is set to a random number between 0 and 0.3, with each origi-
nal image corresponding to ten augmented results. The augmented training data expands to include
58,000 images. The total number of iterations for the SR model’s training is set to 500,000 as well.
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Table 2: Results on animeSR, Mangal09 and iCartoonFace.

Base Model ~ Scale Data Augmentation Test Set PSNRT SSIMtT LPIPS] DISTS] NIMA?T

animeSR 3235 09395  0.0722  0.1013 4.87
Transformation-based Mangal09 31.02 0.9351  0.0753 0.0922 5.09
iCartoonFace  33.31 0.9494  0.0556  0.1284 4.18

SwinIR 2x
animeSR 3249 09389  0.0857 0.1060 4.62
Diffusion-based (Ours) Mangal09 31.30 0.9443  0.0820 0.0794 5.16
iCartoonFace  34.21 0.9537  0.0581 0.1115 4.18
animeSR 2832 0.8649 0.1532  0.1718 4.99
Transformation-based Mangal09 24.84 0.8501  0.1591 0.1414 5.32
HAT ax iCartoonFace  29.52  0.8982  0.1148  0.1690 443

animeSR 2855  0.8688 0.1660  0.1718 4.78
Diffusion-based (Ours) Mangal09 24.75 0.8546  0.1683 0.1426 5.33
iCartoonFace ~ 30.00  0.9022 0.1149  0.1589 4.27

Further details on the experimental settings and results of additional groups are presented in the
ablation study section.

As demonstrated in Table 2] our DA method outperforms traditional approaches in terms of PSNR,
SSIM, and some other metrics, leading to improvements in SR performance to some extent.

4.3 BLIND SUPER-RESOLUTION TASK FOR REAL-WORLD IMAGES

When exploring the efficacy of our proposed data degradation method for blind SR tasks in real-
world scenarios, we select the SwinlR and MambalR (Guo et al.l 2024) as base models for the
reconstruction of HQ images. Traditional DD methods include bicubic downsampling, noise addi-
tion, and blurring, among others.

We design a series of comparative experiments: the HQ images are sourced from the cropped DIV2K
dataset, totaling 27,000 images, while the testing data includes 3,000 images from the ADE20K
dataset (Zhou et al.| 2016)). The data degradation conditions for each group are as follows:

(1) As a fundamental control group, we utilize solely downsampling to reduce the size of HQ images,
resulting in 27,000 pairs of HQ-LQ images.

(2) We initially employ Stable Diffusion for data degradation of HQ images with prompts set to
“degraded, add noise to the image, blurry, organic painting, matte painting, bold shapes, hard edges,”
and a negative prompt of “poor details,” with modification strength randomly set between 0 and 0.1.
Subsequently, the outputs of SD are further downsampled to reduce size.

(3) As an enhanced control group, we first apply 4x bicubic downsampling to degrade HQ images,
followed by downsampling to reduce size.

(4) We begin with Stable Diffusion with the same settings as in (2). Then, we apply 4x bicubic
downsampling to the outputs of SD, concluding with downsampling to reduce size.

(5) As another enhanced control group, we first add random noise to degrade the HQ images, fol-
lowed by downsampling to reduce size.

(6) We first employ Stable Diffusion with the same settings as in (2). Then, we add random noise to
the outputs of SD, followed by downsampling to reduce size.

In practical scenarios, when we deal with images from real-world scenes, they are already the re-
sults of unknown degradation processes, so no one truly knows what their corresponding HQ ground
truths are. Therefore, in our experiments, we treat all images from the testing dataset as LQ im-
ages obtained through unknown degradation processes and use various SR models to restore them.
The visual quality of the SR results is the most critical criterion for evaluating the effectiveness of
the restoration. Figures and respectively present the restoration results from SwinIR and
MambalR on ADE20K. The bottom rows on the right side of the two figures employ our proposed
method. It can be observed that incorporating Stable Diffusion for data degradation significantly
reduces artifacts in the restoration results compared to their standard counterparts in the rows above.
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Figure 3: A visual demonstration of the SwinIR and MambalR models’ performance in restoring im-
ages with unknown degradation from real-world scenarios, trained using HQ-LQ pairs constructed
from various data degradation methods. (a) resizing (downsampling), (b) first employing Stable
Diffusion then resizing, (c) first using 4x bicubic downsampling then resizing, (d) first employing
Stable Diffusion then using 4x bicubic downsampling and resizing, (e) first adding noise then resiz-
ing, (f) first employing Stable Diffusion then adding noise and resizing.

4.4 ABLATION INVESTIGATION

We conduct ablation studies to investigate the impact of three key factors on SR outcomes: the
expansion factor, the fine-tuning of Stable Diffusion, and the modification strength.

4.4.1 THE EXPANSION FACTOR

In the domain of SR, such a low-level vision task, traditional data augmentation methods based on
geometric transformations not only struggle to enrich the information within the original images
but also yield a limited number of augmentation outcomes. For instance, when the augmentation
method involves a combination of random horizontal and vertical flips, a single original image can
be expanded to at most four results. In contrast, Stable Diffusion, due to the randomness inherent
in its diffusion and denoising processes, can expand a single original image into an infinite number
of results. Table [3] shows the anime SR results from SwinlR, indicating that a higher expansion
factor typically yields better results. The BOLD and UNDERLINE in the table indicates the best
and second best results respectively.

4.4.2 FINE-TUNED OR NOT FINE-TUNED

Apart from the textual prompts, negative prompts, and modification strength settings, the inherent
characteristics of Stable Diffusion itself can also influence the final SR outcomes. These character-
istics are primarily determined by the specific network architecture of SD and the data used for its
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Table 3: Different expansion factor. Table 4: Fine-tuned or not
Data Expansion Test Set/ PSNR SSIM Data Fine-t Test Set/ PSNRY SSIM
Augmentation  Factor scale g T Augmentation me-tune Data Degradation g
animeSR/2x  32.35 0.9395 FFHQ/4x 30.82 0.8526
Transformation 1 Mangal09/2x  31.02 0.9351 Transformation - FFHQ/4-8x 28.86 0.7971
iCartoonFace/4x 28.65 0.8844 VGGFace2/4x  28.95 0.8164
animeSR/2x  32.49 0.9397 FFHQ/4x 31.28 0.8574
Diffusion (Ours) 1 Mangal09/2x  31.04 0.9429 Diffusion (Ours)  w/o FFHQ/4-8x 29.01 0.8007
iCartoonFace/4x 28.76 0.8816 VGGFace2/4x  29.23 0.8201
animeSR/2x  32.49 0.9389 FFHQ/4x 31.24 0.8575
Diffusion (Ours) 10 Mangal09/2x  31.30 0.9443 Diffusion (Ours)  w/ FFHQ/4-8x  29.04 0.8022
iCartoonFace/4x 29.40 0.8916 VGGFace2/4x  29.28 0.8223

Table 5: Impact of different Modification Strength on facial SR task

Data Augmentation Strength ~ Test Set/Data Degradation PSNR1  SSIMt FID| LPIPS| DISTS], NIQE|

FFHQ/4x 30.82  0.8526 10.24  0.0828  0.0830 3.67

Transformation-based - FFHQ/4-8x 2886  0.7971 41.78 0.2099  0.1589 5.48
VGGFace2/4x 2895  0.8164 40.00 0.1271 0.3558 4.75

FFHQ/4x 31.10 08591 14.37  0.0995 0.0959 4.10

Diffusion-based (Ours) 0-0.3 FFHQ/4-8x 2886  0.7994 4451 0.2200  0.1651 5.67
VGGFace2/4x 29.17  0.8211 31.70 0.1291 0.1324 5.05

FFHQ/4x 31.01 0.8552 10.24  0.0840  0.0850 3.83

Diffusion-based (Ours)  0.3-0.6 FFHQ/4-8x 2893  0.8003 41.81 0.2155 0.1614 5.72
VGGFace2/4x 29.24  0.8222 2741 0.1276  0.1275 4.89

FFHQ/4x 3096  0.8569 12.42  0.0940  0.0937 3.90

Diffusion-based (Ours) 0.6-1 FFHQ/4-8x 2885  0.7980 43.87 0.2170  0.1642 5.05
VGGFace2/4x 29.15  0.8212 25.07 0.1290  0.1300 4.86

pre-training. In this work, we take a data-driven approach and fine-tune the SD model using 30,000
facial images from CelebAMask-HQ. The results from HifaceGAN shown in Table @] indicate that
using fine-tuned SD for data augmentation typically further enhances the performance of SR models.

4.4.3 THE MODIFICATION STRENGTH

In the application of Stable Diffusion for data augmentation, the modification strength is an im-
portant parameter that significantly influences the resulting images. An increased strength value
bestows greater “creativity” on the model, yielding images that diverge from the original; a value
of 1.0 implies near-total disregard for the initial image. Conversely, a reduced strength value gen-
erates images that closely resemble the original. Table[5]shows the impact of different modification
strengths on the facial SR results when using HiFaceGAN. It can be observed that a modification
strength range of 0.3 to 0.6 may be more suitable for the facial SR task.

5 CONCLUSION

Our exploration of the Stable Diffusion models in super-resolution tasks has yielded promising re-
sults, highlighting their potential in data augmentation and data degradation. The novel approach
of utilizing Stable Diffusion for data augmentation and degradation has significantly enriched the
content and degradation information within the training datasets, thereby achieving superior gener-
alization and restoration quality. This work not only advanced the state-of-the-art in image SR but
also laid the groundwork for future research on Stable Diffusion in other low-level vision tasks.

A plethora of experimental results has led us to believe that refining strategies for controlling signals
such as textual prompts, along with more advanced generative models, will yield further exciting
benefits. As we delve deeper into the field of imaging science, the role of large-scale pre-trained
text-to-image models becomes increasingly crucial. Our findings set a new precedent in the field,
advocating for the integration of powerful generative techniques to craft robust visual algorithms
capable of meeting the complexities of contemporary imaging demands.
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A APPENDIX

In the appendix, we first present additional experimental results to complement the content of the
main text. These include SR results for anime images (A.1), experiments exploring the impact of
the expansion factor during data augmentation on facial SR task (A.2), and more blind SR outcomes
for real-world images (A.3). The remainder of this section (A.4) details the implementation of our
experiments.

A.1 RESULTS OF ANIME SR TASK

Table [6] presents a more detailed analysis of the anime SR experiment results, demonstrating our
data augmentation method’s significant advantage in the more challenging 4x SR task.

Table 6: Anime SR results on animeSR, Mangal09 and iCartoonFace.

Base Model Data Augmentation Scale Test set PSNRT SSIMtT LPIPS) MUSIQT DISTS] NIMA?T

animeSR 32.35 0.9395  0.0722 59.40 0.1013 4.87
2x Mangal09 31.02 09351 0.0753 72.89 0.0922 5.09
iCartoonFace  33.31 0.9494  0.0556 51.27 0.1284 4.18

Transformation-based

animeSR 27.67  0.8523  0.1892 47.82 0.1857 4.59
4x Mangal09 25.25 0.8477  0.1677 67.66 0.1341 5.37
SwinIR iCartoonFace  28.65 0.8844  0.1343 45.19 0.1617 4.18

animeSR 3249 09389  0.0857 55.64 0.1060 4.62
2x Mangal09 31.30  0.9443  0.0820 70.85 0.0794 5.16
iCartoonFace  34.21  0.9537  0.0581 47.76 0.1115 4.18

animeSR 28.07  0.8573  0.1984 46.43 0.1834 4.46
4x Mangal09 2550  0.8525 0.1738 66.22 0.1368 5.37
iCartoonFace  29.40  0.8916  0.1319 43.02 0.1536 4.10

Diffusion-based (Ours)

animeSR 3436 09524  0.0617 61.52 0.1082 5.09
2x Mangal09 3097  0.9479  0.0708 72.10 0.0927 5.10
iCartoonFace  35.06 0.9592  0.0492 50.69 0.1224 4.32

animeSR 2832  0.8649  0.1532 57.11 0.1718 4.99
4x Mangal09 2484  0.8501  0.1591 71.68 0.1414 5.32
HAT iCartoonFace  29.52  0.8982  0.1148 51.17 0.1690 4.43

animeSR 33.46 09470  0.0726 58.57 0.1038 4.85
2x Mangal09 31.37 09478  0.0718 71.95 0.0855 5.13
iCartoonFace  35.20  0.9589  0.0484 48.42 0.1065 4.20

animeSR 28.55  0.8688  0.1660 53.02 0.1718 4.78
4x Mangal09 2475  0.8546  0.1683 69.63 0.1426 5.33
iCartoonFace ~ 30.00  0.9022  0.1149 48.19 0.1589 427

Transformation-based

Diffusion-based (Ours)

A.2 IMPACT OF THE EXPANSION FACTOR ON FACIAL SR TASK

Table [/] illustrates the impact of the expansion factor during data augmentation on facial SR out-
comes, revealing that a higher expansion factor generally leads to greater improvements in SR per-
formance. The BOLD and UNDERLINE in the table indicates the best and second best results
respectively. Stable Diffusion can augment an original image by arbitrary multiples, an advantage
not present in traditional data augmentation methods.

A.3 BLIND SR RESULTS FOR REAL-WORLD IMAGES

Figures ] and 5 respectively demonstrate the impact of different HQ-LQ training data pair construc-
tions on the image restoration performance of models when using SwinlR and MambalR as base
models. It is observed that incorporating the image modification operations of Stable Diffusion dur-
ing the degradation process from HQ to LQ images can cover more unknown degradations present
in real-world scenarios, thereby enhancing the SR models’ restorative performance and significantly
reducing artifacts in the restoration outcomes.
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Table 7: Facial SR results on FFHQ and VGGFace?.

Base Data Expansion Test set PSNRT SSIMt FID, LPIPS, DISTS, NIQE/
Model Augmentation Factor Data Degradation g T + 4 + Q

FFHQ/4x 30.82  0.8526 1024  0.0828  0.0830  3.67
Transformation-based 1 FFHQ/4-8x 28.86 0.7971 41.78  0.2099 0.1589 548
VGGFace2/4x 2895 08164 40.00 01271 03558 475
HiFaceGAN FFHQ/4x 3124 08575 1347 01008  0.0945  3.94
Diffusion-based (Ours) 1 FFHQ/4-8x 29.04 08022 4870 02276 0.1675  5.82
VGGFace2/4x 2928  0.8223 2540 0.1392 03569  4.88
FFHQ/4x 3162  0.8640 1140 0.0889  0.0803  4.09
Diffusion-based (Ours) 10 FFHQ/4-8x 29.05 0.8029 47.16 02242 0.1613 621
VGGFace2/4x  29.60  0.8292 2132 0.1341 03557 5.1
Transformation-based . FFHQ/4x 2932 08148 859 00811 00716 347
ranstormation-base VGGFace2/4x 2528  0.6926 70.50 02812 02178  5.04
ESRGAN e FFHQ/4x 2922 0.8093 11.12 01026 0.0870  3.52
Diffusion-based (Ours) ! VGGFace2/4x  25.55  0.6994 6613 02883 02133 540
Diftusion-based (Ours) 0 FFHQ/4x 2963 0.8196 9.92 0.0886 0.0797  3.57

VGGFace2/4x 25.66  0.7065 67.17 0.2834  0.2122 5.35

A.4 EXPERIMENTAL IMPLEMENTATION

A.4.1 DIFFUSION-BASED DATA AUGMENTATION AND DEGRADATION

In this work, we employed Stable Diffusion for controlled data augmentation and degradation.
We have utilized “CompVis/stable-diffusion-v1-4” (available at https://huggingface.co/
CompVis/stable-diffusion-v1-4) and “runwayml/stable-diffusion-v1-5”. Although the
model parameters for “runwayml/stable-diffusion-v1-5” are currently inaccessible due to certain
reasons, updated versions of Stable Diffusion continue to be trained and released (can be found on
website https://huggingface.co/). We believe that with the ongoing updates and advance-
ments of Stable Diffusion, its advantages in data augmentation will become even more pronounced.

A.4.2 SUPER-RESOLUTION

In this work, we utilized the HiFaceGAN, ESRGAN, SwinlR, HAT, and MambalR as base models
for various super-resolution tasks.

HiFaceGAN is available at https://github.com/Lotayou/Face—Renovation| and
https://github.com/XPixelGroup/BasicSR.

ESRGAN is available at https://github.com/XPixelGroup/BasicSR.

SwinlR is available at https://github.com/JingyunlLiang/SwinIR and https://
github.com/XPixelGroup/BasicSR.

HAT is available at ht tps://github.com/XPixelGroup/HAT.
MambalR is available at ht tps://github.com/csguoh/MambalR.

16


https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/
https://github.com/Lotayou/Face-Renovation
https://github.com/XPixelGroup/BasicSR
https://github.com/XPixelGroup/BasicSR
https://github.com/JingyunLiang/SwinIR
https://github.com/XPixelGroup/BasicSR
https://github.com/XPixelGroup/BasicSR
https://github.com/XPixelGroup/HAT
https://github.com/csguoh/MambaIR

Under review as a conference paper at ICLR 2025

S
e
-~

LQ Input (b) Our method-1 (d) Our method-2 (f) Our method-3
(A)

LQ Input (b) Our method 1 (d) Our method-2 (f) Our method-3

B)

i

Figure 4: A visual demonstration of SwinIR’s performance in restoring images with unknown degra-
dation from real-world scenarios, trained using HQ-LQ pairs constructed from various data degra-
dation methods. (a) resizing (downsampling), (b) first employing Stable Diffusion then resizing, (c)
first using 4x bicubic downsampling then resizing, (d) first employing Stable Diffusion then using
4x bicubic downsampling and resizing, (e) first adding noise then resizing, (f) first employing Stable
Diffusion then adding noise and resizing.
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(¢) Standard method-2

LA

(d) Our method-2
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LQ Input (b) Our method-1 (d) Our method-2
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Figure 5: A visual demonstration of the MambalR’s performance in restoring images with unknown
degradation from real-world scenarios, trained using HQ-LQ pairs constructed from various data
degradation methods. (a) resizing (downsampling), (b) first employing Stable Diffusion then resiz-
ing, (c) first using 4x bicubic downsampling then resizing, (d) first employing Stable Diffusion then
using 4x bicubic downsampling and resizing.
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