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Abstract
Large Language Model (LLM) judges exhibit
strong reasoning capabilities but are limited to
textual content. This leaves current automatic
Speech-to-Speech (S2S) evaluation methods
reliant on opaque and expensive Audio Lan-
guage Models (ALMs). In this work, we pro-
pose TRACE (Textual Reasoning over Audio
Cues for Evaluation), a novel framework that
enables LLM judges to reason over audio cues
to achieve cost-efficient and human-aligned
S2S evaluation. To demonstrate the strength
of the framework, we first introduce a Human
Chain-of-Thought (HCoT) annotation protocol
to improve the diagnostic capability of existing
judge benchmarks by separating evaluation into
explicit dimensions: content (C), voice quality
(VQ), and paralinguistics (P). Using this data,
TRACE constructs a textual blueprint of inex-
pensive audio signals and prompts an LLM to
render dimension-wise judgments, fusing them
into an overall rating via a deterministic pol-
icy. TRACE achieves higher agreement with
human raters than ALMs and transcript-only
LLM judges while being significantly more
cost-effective. We will release the HCoT anno-
tations and the TRACE framework to enable
scalable and human-aligned S2S evaluation.

1 Introduction

There has been rapid progress in speech-to-speech
(S2S) models in recent years (Défossez et al., 2024;
Fang et al., 2025; Zhan et al., 2025; Zeng et al.,
2024), offering a natural interface for spoken com-
munication with artificial assistants. However, the
current automatic S2S evaluation paradigms suffer
from critical drawbacks. Large Language Model
(LLM) judges used in S2S evaluation operate on
transcripts alone (Chen et al., 2024; Liu et al., 2025;
Hou et al., 2025), making them blind to crucial non-
linguistic speech cues such as sarcasm and emo-
tion. To address this, several recent works leverage
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Audio Language Models (ALMs) (Manakul et al.,
2025; Chiang et al., 2025; Jiang et al., 2025) which
are capable of processing raw audio for evaluation.
However, ALM judges are expensive, opaque, and
often still struggle to reason about non-linguistic
cues as we show in Sec. 4.
TRACE. To address the drawbacks of LLM and
ALM judges in S2S evaluation, we introduce
TRACE (Textual Reasoning over Audio Cues for
Evaluation), a two stage training-free framework
that provides auditable and cost-efficient speech
evaluation. Stage 1 compiles a textual blueprint
of inexpensive audio signals. Stage 2 provides an
LLM with the blueprint to produce dimension-wise
ratings which are fused into an overall judgment.
Existing Benchmark Pitfalls. To validate the
effectiveness of TRACE, we rely on publicly
available S2S human preference datasets, namely
SPEAKBENCH (Manakul et al., 2025) and S2S-
ARENA (Jiang et al., 2025). However, these
datasets only provide an overall pairwise rating, in
contrast to longstanding established speech label-
ing protocols that advocate for separate perceptual
scales (itu, 2003, 2021). These datasets also adopt
either no-tie or untyped tie protocols, each of which
induces its own failure modes:
• No-tie protocols force a winner when both can-

didate responses are poor.
• Untyped tie protocols (tie-allowed) do not distin-

guish whether both candidate responses are accept-
able or unacceptable.
We show in Sec. 3 that these artifacts make the
original dataset labels hackable by transcript-only
evaluators and underweight delivery.
A Standards Aligned Labeling Protocol. We in-
stead adopt a labeling protocol that follows the
spirit of ITU-T P.835 (separate perceptual scales)
and P.800 subjective methods (itu, 1996, 2003).
Concretely, our Human Chain-of-Thought (HCoT)
protocol elicits dimension-first pairwise judgments
for Content (C), Voice Quality (VQ), and Paralin-
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guistics (P) and an overall label with a typed-tie
labeling scheme (both_good, both_bad, or a win-
ner).
Why C, VQ, P? Foundational communication re-
search (Crystal, 1975) suggests that all spoken ex-
pression can be studied through linguistics and non-
linguistics. We map linguistics to Content (C), and
we break down non-linguistics into Voice Quality
(VQ) and Paralinguistics (P) since there is extensive
prior research on VQ (e.g., (Lo et al., 2019; Ravuri
et al., 2023; Wang et al., 2024a)). The C/VQ/P
demarcation is also used in benchmarks such as Vo-
calBench (Liu et al., 2025) and AudioJudge (Man-
akul et al., 2025), and each is operationalizable
with inexpensive signals at scale.
Contributions. We summarize our contributions
as follows:

1. HCoT: A dimension-first, typed-tie re-
annotation of SPEAKBENCH and S2S-
ARENA, yielding reliable, diagnostic labels
aligned with ITU-T guidance.

2. TRACE: A training-free, two-stage evalua-
tor that unlocks the reasoning power of text-
LLMs for speech evaluation.

3. Evidence: Compared to LLM and ALM base-
lines, TRACE attains higher agreement with
HCoT overall ratings and achieves strong fi-
delity on Paralinguistics, while being signifi-
cantly cheaper than ALMs.

4. Release: We release the HCoT re-annotations
and TRACE framework to support repro-
ducibility and future work.

2 Related Work

S2S Models. Recent advances in multimodal learn-
ing have enabled speech-to-speech voice assistants
(OpenAI et al., 2024; Comanici et al., 2025; Zhang
et al., 2023; Xie and Wu, 2024; Fang et al., 2025;
Défossez et al., 2024). A simple approach to S2S
models is to build a cascade system, wrapping an
LLM with automatic speech recognition (ASR) to
transcribe spoken input and text-to-speech (TTS) to
produce spoken output (Chen et al., 2024). While
straightforward to implement, cascade systems suf-
fer from excessive latency (Li and Grover, 2025),
error propagation from ASR (Min et al., 2025), and
limited access to paralinguistic information (Jiang
et al., 2025).

To address these limitations, recent models such
as LLaMA-Omni and Moshi (Fang et al., 2025;
Défossez et al., 2024) operate end-to-end, directly
modeling speech input and speech output through
discrete speech tokens or embeddings (Zhan et al.,
2025; Zeng et al., 2024; Wang et al., 2024b).
S2S Benchmarks. The rapid progress in S2S mod-
eling has motivated new benchmarks. Early ef-
forts such as VoiceBench (Chen et al., 2024) as-
sess general knowledge of S2S models using re-
sponse transcripts, while subsequent works (Liu
et al., 2025; Hou et al., 2025) incorporate objective
acoustic metrics such as word error rate (WER)
and emotion score. A complementary line of work
emphasizes human preference judgments. These
benchmarks (Jiang et al., 2025; Manakul et al.,
2025; Chiang et al., 2025) collect pairwise or point-
wise human ratings, providing valuable testbeds
for automatic evaluation methods that align with
human judgment. However, these datasets col-
lapse multiple perceptual dimensions into a single
overall score, reducing reliability and diagnostic
value. We address this gap by re-annotating exist-
ing benchmarks with dimension-wise ratings and
extending preference modeling (Rao and Kupper,
1967; Davidson, 1970) to include typed-ties.
S2S Auto-Raters. Several approaches have been
proposed for automatically evaluating S2S models.
One strategy is to use ASR to transcribe spoken
output and then prompt an LLM judge, yielding
a training-free baseline that is easy to scale but
blind to acoustic cues (Chen et al., 2024; Liu et al.,
2025; Hou et al., 2025). Another approach employs
ALMs that analyze audio directly and produce judg-
ments (Chiang et al., 2025; Manakul et al., 2025;
Jiang et al., 2025). A third line of work trains dedi-
cated evaluators via instruction tuning or reinforce-
ment learning from preference data (Ji et al., 2025;
Ge et al., 2025), which can better align with human
ratings but may not generalize to new domains.
Acoustic Metrics. Modern non-intrusive predic-
tors estimate perceptual speech quality without a
reference (Reddy et al., 2021; Mittag and Möller,
2021; Lo et al., 2019). Prior works from affec-
tive computing also provide feature sets for expres-
sive speech: the openSMILE toolkit (Eyben et al.,
2010), the eGeMAPS minimalistic acoustic param-
eter set (Eyben et al., 2016), and the ComParE chal-
lenge series (Schuller et al., 2013). Our acoustic
blueprints compile and reuse these features.
Text-to-Text Evaluation. There are a numerous
related works that use LLM judges to evaluate the



Figure 1: Bridging the Evaluation Gap. (A) The Status Quo: Current transcript-only LLM judges are blind to
paralinguistics whereas ALM judges are opaque and expensive, and benchmarks often force winners on noisy data.
(B) TRACE Framework: We introduce HCoT, a dimension-first speech labeling protocol, and TRACE. TRACE
extracts acoustic features into a structured blueprint, allowing text-LLMs to reason over audio for S2S evaluation.

output of text-to-text models (Zhong et al., 2022;
Liu et al., 2023; Saha et al., 2024; Li et al., 2024;
Arora et al., 2025). Some of these efforts draw
parallels with our work, pointing to the importance
of decomposing an evaluation metric into multiple
dimensions (Li et al., 2024) and taking a rubric-and-
aggregation approach (Saha et al., 2024). However,
these methods are constrained to textual inputs,
and they do not consider the unique challenges
of speech-to-speech evaluation such as tone, em-
phasis, intonation, rhythm, accent, voiced emotion,
etc., all of which are integral to speech interaction.
We bridge this gap by using lightweight, off-the-
shelf tools to extract audio primitives, which are
given to an LLM for dimension-wise evaluation.
This structured, multi-tool approach is designed
to address the unique challenges of speech evalua-
tion.

3 Method

Our objective is to develop an S2S auto-rater that is
efficient, human–centric, and accurate. We proceed
in two steps: (i) establish and align a multi-aspect
benchmark via Human Chain-of-Thought (HCoT)
re-annotation; (ii) evaluate TRACE against this
benchmark.

3.1 Existing Benchmark Pitfalls

We study the pairwise S2S evaluation setting us-
ing SPEAKBENCH (Manakul et al., 2025) and the
English subset of S2S-ARENA (Jiang et al., 2025).
SPEAKBENCH consists of spoken instructions call-
ing for certain types of content, paralinguistic fea-
tures, and vocal styles, while S2S-ARENA contains
explicit instructions, perception-probing tasks, and
real-life scenarios. Original overall-only labels in
both benchmarks exhibit two issues:

Accuracy (%)

Judge Type SpeakBench S2S-Arena

Random Guess 33.3 50.0
Audio Judge 51.4 (47.6–56.6) 78.6 (75.0–81.9)

LLM Judge 59.8 (55.8–64.6) 78.8 (74.7–82.4)

Table 1: Original labels are "hackable". Using Gem-
ini 2.5 Flash as the backbone, a text-only LLM Judge ex-
ceeds Audio Judge on SPEAKBENCH and S2S-ARENA
original labels, highlighting that the original labels over-
weight content. We therefore do not adopt the original
labels for benchmarking.

(1) Reliability. Protocols can misrepresent user ex-
perience: S2S-ARENA forces a winner even when
both responses are unacceptable; SPEAKBENCH

permits untyped ties that fail to distinguish whether
both responses are acceptable or unacceptable. On
our S2S-ARENA subset, we find that paralinguis-
tics is rated both-bad in a majority of examples
(≈55%, see Appendix Tab. 6), which explains why
forced-winner protocols fabricate superiority and
motivates our typed ties (both-good, both-bad).
(2) Multi-aspect validity. Humans judge speech
via separable dimensions (C, VQ, P). Under the
original labels, a transcript-only LLM judge can
match or outperform a more expensive ALM judge
(Tab. 1), indicating that existing benchmark labels
overweight textual content and underweight audio/-
paralinguistic factors; this undermines certification
of truly human-centric speech evaluators.

3.2 HCoT Protocol

To address these limitations, we introduce a Human
Chain-of-Thought (HCoT) annotation protocol.

Formally, a user audio input P elicits two can-
didate audio responses (A,B) from different S2S



Figure 2: The TRACE Architecture. Phase 1 (Signal Extraction): We extract inexpensive signals for Content
(ASR), Voice Quality (MOS predictors), and Paralinguistics (prosody, affect, energy etc.). Phase 2 (Inference):
These signals form a structured textual blueprint of audio cues, which is then passed to an LLM judge to make
dimension-wise decisions. The dimension-wise deicisons are fused via a deterministic tree to yield the final score.

systems. Under the HCoT protocol, expert raters
first produce dimension-first (DF) pairwise judg-
ments for Content (C), Voice Quality (VQ), and
Paralinguistics (P) followed by an an overall la-
bel Ŷ . The label space for the dimension-wise
and overall ratings indicates which response is
preferred or whether the pair forms a typed tie:
{1, 2, both-good, both-bad}. A typed tie discrimi-
nates a tie amongst {both-bad, both-good}. This
yields (i) an auditable path from parts to whole and
(ii) a clean separation of acceptability (pass/fail)
from superiority (which acceptable one is better):

f(P,A,B) →
{
Ŷ , ∆C , ∆V Q, ∆P

}
,

with ∆(•) ∈ {1, 2, both-good, both-bad}.
It is important to note that typed ties introduce a

hybrid absolute/relative grading scheme since the
both-bad threshold is absolute whereas picking a
winner is relative. To decouple these effects, a
rating is assigned (by a human or automatic judge)
in the following manner:

1. Decide if A is acceptable along the dimension
evaluated (C, VQ, P, or Overall).

2. Decide if B is acceptable along the dimension
evaluated (C, VQ, P, or Overall).

3. If exactly one is acceptable, return 1 or 2.

4. If both are unacceptable, return both-bad.

5. If both are acceptable, do a relative compari-
son and return 1, 2, or both-good.

This hybrid absolute → relative rating scheme
allows us to separate acceptable plateaus (both-
good) from unacceptable holes (both-bad), en-
abling diagnosis and meaningful reporting of ties.
Standards alignment. Our dimension-first label-
ing mirrors ITU–T guidance: P.835 advocates sep-
arate ratings for the speech signal, background
noise, and overall quality; P.800 enumerates core
subjective procedures (ACR/CCR/DCR); and P.808
specifies crowdsourced protocols with quality con-
trol (itu, 1996, 2003, 2021). This provides an ex-
ternal rationale for typed ties and for decoupling
acceptability (both-bad/both-good) from superior-
ity (winner).

3.3 The TRACE Auto-Rater
Architecture. TRACE is a two-stage, training-free
evaluator. Stage 1 extracts inexpensive audio sig-
nals for each dimension and assembles them into
a compact blueprint. Stage 2 prompts an LLM
with the blueprints to produce dimension-wise judg-
ments and reasoning for each rating (no overall
score is requested). A deterministic fusion rule
then maps (∆C ,∆V Q,∆P ) to the overall label Ŷ .
Stage 1: Evidence blueprint.

1 {
2 "A": {" asr_text ": "...",
3 "mos_overall ": 3.9,
4 "prosody ": {"pitch": 142, "rate

": 155}, "affect ": {"calm": 0.62}} ,
5 "B": {" asr_text ": "...",
6 "mos_overall ": 4.2,
7 "prosody ": {"pitch": 128, "rate

": 162}, "affect ": {"calm": 0.35}}
8 }

Listing 1: Truncated Exemplar



SPEAKBENCH

Pair 2-way 3-way 4-way

orig ↔ blind 92.8 (89.0-95.8) (N=237) 67.1 (62.9-71.2) (N=496) -
orig ↔ HCoT 94.2 (90.9-96.7) (N=274) 70.1 (65.9-74.1) (N=495) -
blind ↔ HCoT 97.5 (95.0-98.9) (N=278) 76.3 (72.5-80.0) (N=494) 74.9 (70.9-78.5) (N=494)

S2S-ARENA

Pair 2-way 3-way 4-way

orig ↔ blind 89.4 (82.9-94.3) (N=123) - -
orig ↔ HCoT 92.9 (86.7-96.5) (N=113) - -
blind ↔ HCoT 99.0 (94.1-100.0) (N=101) 88.9 (85.0-92.0) (N=314) 87.6 (83.4-90.8) (N=314)

Table 2: Human-human agreement (%) [95% CI] between label sets on overall decisions. 2-way: winners only
(ties dropped); 3-way: {1,2,tie} (typed ties collapsed); 4-way: {1,2,both_good,both_bad}.

For each response, we construct a structured
feature set capturing: Content (ASR transcript);
Voice Quality (objective speech-quality indicators);
Paralinguistics (prosodic descriptors, affect/intent
style cues, and simple accent proxies). For Con-
tent, we use the Whisper-large-v3 model (Rad-
ford et al., 2022). For Voice Quality we rely
on non-intrusive speech quality predictors (e.g.,
DNSMOS P.835), and for Paralinguistics we use
lightweight prosody/affect descriptors (Mittag and
Möller, 2021; Reddy et al., 2021; Eyben et al.,
2010, 2016; Ma et al., 2023).
Stage 2: LLM judgment (Dimension-First).

1 {
2 "prediction_content ": "1",
3 "prediction_vq ": "both_good",
4 "prediction_para ": "2",
5 "reasoning ": { "content ": "...", "vq":

"...", "para": "..." }
6 }

Listing 2: Per-Dimension Decisions (no overall
requested).

The LLM receives the user prompt and the two
candidate response blueprints. It is instructed to
output a structured JSON with per-dimension deci-
sions. This forces reasoning over distilled, human-
aligned signals rather than raw audio, improving in-
terpretability and stability while enabling the LLM
to reason over audio cues that are crucial for speech
evaluation.
Zero-shot fusion (algorithms in Appendix).
TRACE is training-free and uses a deterministic fu-
sion policy with one dataset-specific policy prior to
reflect benchmark intent, similar to previous works
(Lee et al., 2025). For SPEAKBENCH (instruction-
following), our fusion rule prioritizes content-first
and uses non-content dimensions as tie-breakers to
mirror the original dataset intent. For S2S-ARENA

(perception and delivery centric), many responses

suffer from paralinguistic failures that, in the con-
text typical of this dataset, render them completely
unacceptable. Therefore, we apply an acceptabil-
ity cap that forces the predicted overall rating to
be ⪯ ∆P and ∆C so that such responses are not
overrated. Full pseudocode appears in App. E.

3.4 Evaluation
Human–human reference. We report the in-
ter–human agreement for overall labels to contex-
tualize automatic judges and annotation strategies
(Tab. 2).
Metrics and uncertainty. Our primary endpoint is
4-way accuracy over {1, 2, both-good, both-bad}:

Acc =
1

N

N∑
i=1

1{Ŷi = Yi.}

We report 95% confidence intervals for overall la-
bel accuracy via paired non-parametric bootstrap,
preserving example-wise pairing across systems.

4 Results

We organize the results as follows: (i) validate
the HCoT benchmark; (ii) report top-line accura-
cies; (iii) show how TRACE uses delivery cues
(mechanism) and why it succeeds; (iv) quantify
cost-efficiency; (v) assess robustness (backbone)
and results relative to human-human agreement.
Unless otherwise specified, all experiments use
Gemini 2.5 Flash (Comanici et al., 2025) as the
backbone model.

4.1 Validation of HCoT Annotations
Annotation Protocol. Each dataset was rated in
three passes. First, a blind overall-first rating
captured the original human impression without
any dimensional guidance. Second, a full HCoT



Dataset Judge Content Voice Quality Paralinguistics Overall

SPEAKBENCH

Random Guess 25.0 25.0 25.0 25.0
Audio Judge 62.5 45.6 21.4 61.1 (56.7–65.4)
LLM Judge 60.4 39.8 29.8 62.7 (58.2–67.0)
TRACE 63.2 50.4 39.6 68.6 (64.3–72.7)
Human–human agreement 76.0 60.0 82.0 60.0

S2S-ARENA

Random Guess 25.0 25.0 25.0 25.0
Audio Judge 58.9 52.5 37.7 47.5 (42.4–52.7)
LLM Judge 57.0 55.1 35.4 45.9 (40.4–51.3)
TRACE 58.0 51.6 48.1 57.0 (51.6–62.4)
Human–human agreement 73.3 48.3 75.0 75.0

Table 3: Per-dimension and overall accuracy vs. HCoT. Using Gemini 2.5 Flash as the backbone, TRACE
improves VQ/P while maintaining Content parity on SPEAKBENCH, and yields the largest gains on Paralinguistics
for S2S-ARENA.

(Human Chain-of-Thought) re-annotation collected
dimension-first judgments for {C, VQ, P} and then
overall. Finally, we randomly resampled a subset
from each dataset and performed a second indepen-
dent HCoT rating to test repeatability and record
inter-human agreement.
Coherence. We verify that a simple multinomial lo-
gistic model using human (C, V Q,P ) reconstructs
the HCoT overall label at high accuracy on both
datasets, indicating overall is a low-noise function
of {C,VQ,P}. Typed ties and dataset-intent policies
(content-first on SPEAKBENCH; acceptability cap
on S2S-ARENA) make acceptability explicit and
eliminate forced-winner artifacts.
Reliability across datasets (Cohen’s κ). We quan-
tify inter-label agreement using Cohen’s chance-
corrected coefficient κ = po−pe

1−pe
, where po is ob-

served agreement and pe is the chance agreement
from rater marginals (Cohen, 1960). On SPEAK-
BENCH, blind↔HCoT agreement on the typed 4-
way overall label {1, 2, both_good, both_bad} is
κ = 0.651 (N=468; 95% CI [0.596, 0.702]). On
S2S-ARENA, blind↔HCoT (4-way) is κ = 0.796
(N=314; 95% CI [0.740, 0.849]).
Interpretation of κ: values 0.61–0.80 denote sub-
stantial and 0.81–1.00 almost perfect agreement
(Landis and Koch, 1977).

4.2 Overall and per-dimension performance
Tab. 3 summarizes accuracy against the HCoT la-
bels. TRACE improves VQ/P while maintaining
Content parity on SPEAKBENCH, and yields the
largest gains on Paralinguistics for S2S-ARENA.
We assessed paired differences between judges us-
ing two-sided McNemar tests (McNemar, 1947)
on item-wise correctness (vs. HCoT overall labels).
For S2S-ARENA, TRACE outperforms both the
audio-only and transcript-only judges (p<10−3 for

all comparisons), and remains significantly higher
than the LLM judge (p=0.0017). On SPEAK-
BENCH, TRACE also exceeds the LLM judge
(p=0.02) and the Audio Judge (p<10−3). These
tests confirm that observed gains are statistically
reliable.

As an ablation, we also try applying the majority
voting fusion rule from (Manakul et al., 2025) as
a fusion policy, in which a majority vote is taken
amongst {∆C ,∆V Q,∆P }. Results are reported in
Appendix Tab. 11. We observe that our acoustic
blueprint and our tree-based fusion rule have ad-
ditive benefits. Under either fusion rule, TRACE
outperforms its Audio-Judge and LLM-Judge coun-
terparts, and when applied on top of any judge
our tree-fusion rule outperforms its majority voting
counterpart.
What TRACE does and why it succeeds? We
probe how judges use audio cues with two probes
(same fusion rules as §3): (P1) a content-controlled
counterfactual (force Content=both_good and
record which dimension (if any) resolves the tie and
its decision accuracy); (P2) one-at-a-time ablations
(flip a single dimension to both_good and report
overall flip rate). We also analyze (P3) judge perfor-
mance when a legitimate winner exists and when
one does not. We use Y ⋆ to denote the ground-truth
overall label:

(P1) Content-controlled Counterfactual. Set
C̃ = both_good and compute Ỹ = f(C̃, V Q, P ).
We record which dimension resolves the tie (P if
P ∈ {1, 2} before V Q, else V Q if V Q ∈ {1, 2} ),
or tie if Ỹ = both_good.

(P2) One-at-a-time Ablations. For each D ∈
{C, V Q,P}, replace D←both_good and recom-
pute YD = f(C ′, V Q′, P ′). The flip rate for D is
Pr

[
YD ̸= f(C, V Q,P )

]
, quantifying dependence



Figure 3: P1 Counterfactual (SPEAKBENCH).
TRACE selectively uses delivery (VQ) to break seman-
tic ties (VQ share ≈23% vs. ∼3-5% for baselines).

Figure 4: P2 Flip Rates (S2S-ARENA). TRACE is
significantly more sensitive to Paralinguistics than LLM-
Judge or Audio Judge.

on that dimension.

(P3) Attributing Performance. We compute from
the fused overall prediction Ŷ (using the same fu-
sion policy as in the main evaluation) and the HCoT
overall label Y ⋆ ∈ {1, 2, both_good, both_bad}:

Pr
(
Ŷ ∈ {1, 2} | Y ⋆ = both_bad

)︸ ︷︷ ︸
Winner-on-bad (lower is better)

Pr
(
Ŷ = Y ⋆ | Y ⋆ ∈ {1, 2}

)︸ ︷︷ ︸
Winner-slice accuracy (higher is better)

.

Winner-on-bad measures fabricated winners on un-
acceptable pairs; winner-slice accuracy measures
correctness when a legitimate winner exists. To-
gether they explain why a judge’s overall improves
or degrades and complement P1–P2’s mechanism-
focused probes.
Takeaways. (i) Selective delivery use: on SPEAK-
BENCH, TRACE leans on VQ/P to resolve con-
tent ties far more often (Fig. 3). (ii) Fig. 4 re-
veals that TRACE is significantly more sensitive to
Paralinguistics compared to other judges, namely,
modifying Paralinguistics results in changing the
overall decision. (iii) Policy-aware fusion: on
S2S-ARENA, where both_bad pairs are common,
we see fabricated winners are suppressed, driving

Figure 5: P3 Attributing Performance (S2S-ARENA).
With many both-bad pairs (58%), TRACE cuts winner-
on-bad from ∼70–74% to 48.6%.

the overall gain (Fig. 5). TRACE reduces winner-
on-bad to 48.6% (Audio: 70.7%, LLM: 73.5%),
which largely explains its overall win (Tab. 3). The
trade-off is that, on the winner slice, TRACE’s ac-
curacy is 73.5% (Audio: 86.7%, LLM: 84.1%),
indicating headroom when good winners exist.
Efficiency and Scalability. TRACE operates on
inexpensive structured signals; Stage 1 features
are batchable and Stage 2 passes textual JSON
objects to an LLM. On SPEAKBENCH (GPT-4o),
TRACE is ∼3× cheaper than Audio Judge while
achieving higher overall accuracy (Tab. 4). See
Appendix Tab. 13 for a detailed breakdown of the
cost analysis.

Cost Audio Judge LLM Judge TRACE

GPU ($) 0.00 0.25 0.42
API ($) 12.53 2.51 3.73

Total ($) 12.532 2.763 4.158

Table 4: Cost on SPEAKBENCH with GPT-4o.
TRACE is∼3× cheaper than AudioJudge while remain-
ing more accurate.

Robustness (backbone). Replacing Gemini 2.5
Flash with GPT-4o preserves trends: TRACE wins
on non-content dimensions and overall (Tab. 5).

Judge Content VQ Para Overall

Audio Judge 51.4 39.1 17.2 53.4
LLM Judge 58.8 32.1 29.8 60.6
TRACE 58.0 50.0 36.2 62.1

Table 5: Backbone ablation with GPT-4o. TRACE
gains are robust across backbones (SPEAKBENCH).

Human-human agreement. Relative to the hu-
man–human upper bound (Tab. 3), TRACE ap-
proaches the lower edge on SPEAKBENCH and
closest to lower band on S2S-ARENA in compari-
son to other judge methods. The residual gap con-



Example — Capturing Paralinguistic Nuance (SpeakBench)
User Prompt. Recite the alphabet slowly and
deliberately, using a deep, authoritative voice
as if you are a movie trailer narrator.

Model 1 (Gemini 2.0 Flash). [Deep,
authoritative, human-like voice] A, B, C ... Z.
Is there anything else you need help with?

Model 2 (Cascade — GPT-4o + TTS).
[Robotic, unnatural voice] a hum in a deep
dramatic voice, A, B, C ... Z. This fall,
letters will never be the same.

HCoT–Human
C VQ P Overall

label both_good 1 1 1

Judge-Predictions
C VQ P Overall

Audio Judge 2 both_good 2 2

LLM Judge 2 2 2 2

TRACE 1 1 1 1

Example — User Tone Handling (S2S-Arena)
User Prompt. [Disgusted tone of voice] Dogs are
sitting by the door.

Model 1 (GPT-4o). [Neutral/happy tone of voice]
It sounds like they’re ready for a walk or eagerly
awaiting someone’s return. Dogs have a way of
knowing when something exciting is about to
happen. Are they waiting for you to take them out?

Model 2 (Cascade — GPT-4o + TTS).
[Neutral tone of voice] Maybe they’re waiting
for someone to take them for a walk.

HCoT–Human
C VQ P Overall

label both_good 1 both_bad both_bad

Judge-Predictions
C VQ P Overall

Audio Judge 1 1 both_good 1

LLM Judge 1 both_good both_good 1

TRACE 1 1 both_bad both_bad

Figure 6: TRACE mirrors human preference by leveraging VQ/P cues to break content ties (top), and correctly
flags emotionally inappropriate responses (bottom). Green = agree w/ human, red = disagree.

centrates where delivery is the sole differentiator
or rater criteria are stricter.
Qualitative case studies. A representative prompt
from SPEAKBENCH and S2S-ARENA (content
ties; delivery differs) shows TRACE is the only au-
tomatic judge to mirror human preference (Fig. 6).

5 Conclusion

We introduced HCoT and TRACE, a structured,
multi-aspect framework for evaluating speech-to-
speech systems that captures content, voice qual-
ity, and paralinguistic attributes. Our experiments
show that TRACE more accurately predicts hu-
man judgments across multiple dimensions, out-
performing approaches that rely on raw audio or
transcripts alone. TRACE is scalable, interpretable,
and flexible, enabling fine-grained evaluation of
speech systems. Future work includes extending
the framework to handle multilingual scenarios,
richer prosodic features, and real-time evaluation,
further bridging the gap between automatic judges
and human perception.

Limitations: While TRACE provides a struc-
tured, interpretable alternative to direct audio
or text-based evaluation, several limitations re-
main. First, our experiments are limited to English
datasets (SPEAKBENCH and S2S-ARENA); the
generality of the framework across languages and
cultural norms of expressivity remains to be tested.
Second, the current acoustic schema was designed
manually. Although it captures core perceptual di-
mensions (content, voice quality, paralinguistics),
it may omit finer-grained attributes that enable it
to handle edge cases. Future work could explore
data-driven schema induction that adapt the feature
extraction stage dynamically to new tasks. Finally,
TRACE relies on upstream automatic extractors
whose errors can propagate into the final judgment.
Addressing this dependency through calibration or
confidence weighting/optimization is a promising
future direction.

Ethical considerations: Our work pertains to
automatic evaluation of speech-to-speech voice as-
sistants. While there is great potential for voice
assistants to do at lot of good in the world (e.g.



accesibility, healthcare, therapy), there is also po-
tential for them to do harm. This could happen
intentionally when voice assistants are used for
malicious purposes (e.g. fraud, harassment, misin-
formation), or unintentionally when a flawed voice
assistant has harmful failure modes (e.g. giving bad
therapeutic advice). This makes the ethics of au-
tomated judges complex, as a flawed judge might
foster overconfidence in flawed voice assistants,
while a strong judge could accelerate the develop-
ment of strong voice assistants that could be used
for malicious purposes. It is important that these
issues are discussed and addressed both inside and
outside of the research community.
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7 Appendix

A Datasets

A.1 SpeakBench Dataset
The SpeakBench dataset (Manakul et al., 2025)
originally contains N = 508 examples. Each
example is a tuple (P,A,B) where P is a user
prompt, A is response candidate A, and B is re-
sponse candidate B. Each example also has a hu-
man label indicating either a winner or an untyped
tie, i.e., one of {A,B, tie}. We filter out exam-
ples that were used for few-shot prompting in the
original paper, leaving N = 497 examples.

A.2 S2S-Arena Dataset
The S2S-Arena dataset (Jiang et al., 2025) orig-
inally contains N = 457 examples. We restrict
ourselves to the English subset, which contains
N = 314 examples. Each example is a tuple
(P,A,B) where P is a user prompt, A is response
candidate A, and B is response candidate B. Each
example has a human label indicating a winner, i.e.,
either A or B.

B HCoT Re-Annotation

Annotation process. We annotate both the
SpeakBench and S2S-Arena dataset using our pro-
posed HCoT annotation protocol. Specifically, we
introduce dimension-wise annotations along Con-
tent, Voice Quality, and Paralinguistics, followed
by an overall rating. The overall and dimension-
wise labels either declare a winner among the
two response candidates, or they indicate both re-
sponses are good, or both responses are bad (typed
ties). Two annotators, both native English speak-
ers, independently annotated one of the two full
datasets following these guidelines. The instruc-
tions provided to the annotators are the same as the
instructions provided to the judge models (Tab. 7),
and the annotation results are summarized in Tab. 6.

Annotators. The two annotators are students
who are native English speakers. Recruitment was
informal, and as student workers they were compen-
sated for annotating via the same standard stipend
process as all other student labor. Both annotators
were made aware of how their ratings would be
used and consented to their use in this work and
their public release.

C Structured JSON Feature Vector

C.1 JSON Schema
Stage 1 of our proposed TRACE evaluator builds a
JSON feature vector for each audio response. The
schema of the JSON is shown in Fig. 7.

C.2 Features & Model Specifications
The JSON used to represent each audio response
contains several fields derived from both open-
source models and basic audio processing libraries.
The features and their sources are described below:

agent_response: A transcription of
the audio response generated by the
openai/whisper-large-v3 model (Hugging
Face).

agent_emotion: A vector of emotion scores com-
puted from the iic/emotion2vec_plus_large
model (Hugging Face).

agent_accent: A vector of accent
cosine similarity scores from the
Jzuluaga/accent-id-commonaccent_ecapa
model (Hugging Face).

agent_audio_quality: A set of audio quality
scores generated by DNSMOS and P.808-based
models from Reddy et al. (2021). It includes:

• DNSMOS_Personalized_Signal_Quality: Sig-
nal quality from DNSMOS (1–5).

• DNSMOS_Personalized_Background_Quality:
Background noise quality from DNSMOS
(1–5).

• DNSMOS_Personalized_Overall_Quality:
Overall naturalness and audio quality from
DNSMOS (1–5).

• P808_Overall_Quality: Overall audio qual-
ity following ITU-T P.808 recommendation
(1–5).

agent_audio_properties: Low-level acoustic
properties of the audio response extracted using
signal processing or audio analysis tools:

• Mean_Pitch_Hz, Std_Dev_Pitch_Hz,
Full_Pitch_Contour_Hz: Pitch statistics and
contour.

• Integrated_Loudness_LUFS,
Std_Dev_Loudness_LUFS,
Full_Loudness_Contour_LUFS: Loud-
ness statistics and contour.



Dataset Label Both Bad Winner Both Good

SPEAKBENCH

Content 86 293 118
Voice Quality 71 282 144
Paralinguistics 383 99 15
Overall 85 366 46

S2S-ARENA

Content 80 161 73
Voice Quality 14 138 162
Paralinguistics 173 91 50
Overall 181 113 20

Table 6: HCoT Annotation Counts. High prevalence of Paralinguistics both-bad in S2S-ARENA motivates typed
ties and the acceptability cap.

• Speech_Rate_WPM, Articula-
tion_Rate_WPM: Speech rate in words
per minute, including and excluding pauses.

These features are readily computed using ba-
sic Python libraries (e.g., librosa, aubio, and
pyloudnorm). They provide a structured represen-
tation of both the content and acoustic quality of
each agent response, allowing for detailed evalu-
ation along multiple dimensions. We provide an
example of the generated JSON file in Fig. 8.



1 {
2 "agent_response ": "a transcription of the response",
3 "agent_emotion ": "a vector of emotion scores for the agent 's response from the

emotion2vec model",
4 "agent_accent ": "a vector of cosine similarity scores for the agent 's accent",
5 "agent_audio_quality ": {
6 "DNSMOS_Personalized_Signal_Quality ": "signal quality score from DNSMOS

model (1-5, higher is better)",
7 "DNSMOS_Personalized_Background_Quality ": "background noise quality score

from DNSMOS model (1-5, higher is better)",
8 "DNSMOS_Personalized_Overall_Quality ": "overall naturalness and audio

quality score from DNSMOS model (1-5, higher is better)",
9 "P808_Overall_Quality ": "overall naturalness and audio quality score from P

.808 recommendation standard (1-5, higher is better)"
10 },
11 "agent_audio_properties ": {
12 "Mean_Pitch_Hz ": "mean pitch (fundamental frequency) of agent response",
13 "Std_Dev_Pitch_Hz ": "standard deviation in pitch",
14 "Full_Pitch_Contour_Hz ": "full pitch contour",
15 "Integrated_Loudness_LUFS ": "average loudness of the agent response measured

in LUFS",
16 "Std_Dev_Loudness_LUFS ": "standard deviation in loudness",
17 "Full_Loudness_Contour_LUFS ": "full loudness contour",
18 "Speech_Rate_WPM ": "speech rate in words per minute",
19 "Articulation_Rate_WPM ": "speech rate in words per minute excluding pauses

and gaps in speech"
20 }
21 }

Figure 7: JSON schema for audio responses.



1 {
2 "agent_response ": " Okay , I will do that for you. The sentence is, madam , in

Eden , I'm Adam. Now in reverse order it is, Adam , I'm in Eden , madam.",
3 "agent_emotion ": {
4 "angry": 0.0,
5 "disgusted ": 0.0,
6 "fearful ": 0.0,
7 "happy": 0.0,
8 "neutral ": 1.0,
9 "other": 0.0,

10 "sad": 0.0,
11 "surprised ": 0.0,
12 "unknown ": 0.0
13 },
14 "agent_accent ": {
15 "england ": 0.264,
16 "us": 0.691,
17 "canada ": 0.427,
18 "australia ": 0.313,
19 "indian ": 0.194,
20 "scotland ": 0.158,
21 "ireland ": 0.083,
22 "african ": 0.164,
23 "malaysia ": 0.243,
24 "newzealand ": 0.215,
25 "southatlandtic ": 0.223,
26 "bermuda ": 0.152,
27 "philippines ": 0.126,
28 "hongkong ": 0.256,
29 "wales": 0.182,
30 "singapore ": 0.127
31 },
32 "agent_audio_quality ": {
33 "DNSMOS_Personalized_Signal_Quality ": "4.48 / 5.00",
34 "DNSMOS_Personalized_Background_Quality ": "4.70 / 5.00",
35 "DNSMOS_Personalized_Overall_Quality ": "4.31 / 5.00",
36 "P808_Overall_Quality ": "4.20 / 5.00"
37 },
38 "agent_audio_properties ": {
39 "Mean_Pitch_Hz ": 139.38 ,
40 "Std_Dev_Pitch_Hz ": 25.25,
41 "Full_Pitch_Contour_Hz ": [
42 119.94 , 130.23 , 148.61 , 124.17 , 91.05, 123.88 , 120.5, 131.58 , 112.35 ,

131.03 ,
43 145.38 , 144.2, 185.4, 170.45 , 161.96 , 161.18 , 153.16 , 154.28 , 174.33 ,

101.06
44 ],
45 "Integrated_Loudness_LUFS ": -18.78,
46 "Std_Dev_Loudness_LUFS ": 4.2,
47 "Full_Loudness_Contour_LUFS ": [
48 -23.45, -20.35, -23.09, -28.69, -20.6, -23.38, -18.99, -27.6, -21.36,

-26.42,
49 -21.84, -25.28, -16.23, -17.19, -23.11, -10.25, -22.71, -18.09, -18.8,

-25.16
50 ],
51 "Speech_Rate_WPM ": 169.57 ,
52 "Articulation_Rate_WPM ": 206.35
53 }
54 }

Figure 8: Example of a JSON feature vector generated for a voice assistant response (SPEAKBENCH).



D Prompts

Stage 2 of our proposed TRACE evaluator pro-
vides the JSON feature vector for each candidate
response along with the user prompt to an LLM.
The LLM is prompted to generate dimension-wise
labels only. We also replicate this setup with a
transcript-only LLM baseline and an Audio LLM
Judge. The results of these experiments appear
in Tab. 3 and Tab. 5. The prompts used for these
experiments are shown in Tab. 7 and Tab. 8.

We also show in Tab. 1 that a transcript-only
LLM judge matches or beats an Audio LLM Judge
on SpeakBench and S2S-Arena using the original
dataset labels. The prompts used for this experi-
ment are provided in Tab. 9.



Prompt Type Prompt

System Prompt (Shared) You are an evaluator of audio outputs produced by different audio-capable large
language models. Your task is to compare two audio responses (Audio 1 and
Audio 2) generated according to a user’s instruction. Evaluate based on these
criteria:
1. Content
- Does the content fulfill the user’s request accurately?
- Did the content of the response appropriately address the user’s instruction?
2. Voice Quality
- How good is the voice quality of the response?
- Does it sound natural/human, does it mispronounce words, does it have pops or
echoes?
3. Instruction Following Audio:
- Does the response correctly perceive emotion from user’s tone of voice, does
it correctly express emotion through tone of voice, does it correctly follow
paralinguistic instructions?
- This includes both implicit audio instruction like emotional intelligence and
explicit audio instruction following.
Avoid position bias and don’t let response length influence your evaluation. After
your analysis, output valid JSON with exactly 4 keys:
- “reasoning”: your explanation of the comparison along each dimension
- “content”: your rating for content dimension. a string value ’1’ if the first audio
is better, ’2’ if the second audio is better, ’both_bad’ if they are equally bad, or
’both_good’ if they are equally good
- “voice_quality”: your rating for voice quality dimension. a string value ’1’ if
the first audio is better, ’2’ if the second audio is better, ’both_bad’ if they are
equally bad, or ’both_good’ if they are equally good
- “instruction_following_audio”: your rating for instruction following audio
dimension. a string value ’1’ if the first audio is better, ’2’ if the second audio
is better, ’both_bad’ if they are equally bad, or ’both_good’ if they are equally
good
You should only pick a winner along each dimension if there is a clear and
obvious difference between the quality of the two responses. If it comes down to
minor details, then you should opt for using ’both_bad’ or ’both_good’ instead.

Table 7: Shared System Prompt Across All Judges Used for Judge Comparison on HCoT Labels (Tab. 3) and
Backbone Ablation (Tab. 5)



Prompt Type Prompt

User Prompt - Audio Judge Here is the instruction for this test:
{instruction.wav}
Here is the first audio clip:
{audio_a.wav}
Here is the second audio clip:
{audio_b.wav}
Respond ONLY in text and output valid JSON with keys “reasoning”, “content”,
“voice_quality”, and “instruction_following_audio”:

User Prompt - LLM Judge The responses audios (Audio 1 and Audio 2) will be given to you as text tran-
scripts of the response. Since you are only given the transcripts, it is okay to
make your best guess at rating along each dimension since all of the information
needed may not be available.
Here is the user’s input prompt:
{user_prompt}
Here is Audio 1 text transcript:
{model_a_transcript}
Here is Audio 2 text transcript:
{model_b_transcript}
Respond ONLY in text and output valid JSON with keys “reasoning”, “content”,
“voice_quality”, and “instruction_following_audio”:

User Prompt - TRACE The responses audios (Audio 1 and Audio 2) will be given to you as JSON
objects with the following information:
{
“agent_response”: a transcription of the response,
“agent_emotion”: a vector of emotion scores for the agent’s response from the
emotion2vec model,
“agent_accent”: a vector of cosine similarity scores for the agent’s accent,
“agent_audio_quality”: {
“DNSMOS_Personalized_Signal_Quality”: signal quality score from DNSMOS
model (1-5, higher is better),
“DNSMOS_Personalized_Background_Quality”: background noise quality score
from DNSMOS model (1-5, higher is better),
“DNSMOS_Personalized_Overall_Quality”: overall naturalness and audio qual-
ity score from DNSMOS model (1-5, higher is better),
“P808_Overall_Quality”: overall naturalness and audio quality score from P.808
recommendation standard (1-5, higher is better) },
“agent_audio_properties”: {
“Mean_Pitch_Hz”: mean pitch (fundamental frequency) of agent response,
“Std_Dev_Pitch_Hz”: standard deviation in pitch,
“Full_Pitch_Contour_Hz”: full pitch contour,
“Integrated_Loudness_LUFS”: average loudness of the agent response measured
in LUFS, “Std_Dev_Loudness_LUFS”: standard deviation in loudness,
“Full_Loudness_Contour_LUFS”: full loudness contour,
“Speech_Rate_WPM”: speech rate in words per minute,
“Articulation_Rate_WPM”: speech rate in words per minute excluding pauses
and gaps in speech }
}
Here is the user’s input prompt:
{user_prompt}
Here is Audio 1 response JSON:
{audio_a.json}
Here is Audio 2 response JSON:
{audio_b.json}
Respond ONLY in text and output valid JSON with keys “reasoning”, “content”,
“voice_quality”, and “instruction_following_audio”:

Table 8: User Prompts for Judge Comparison on HCoT Labels (Tab. 3) and Backbone Ablation (Tab. 5)



Prompt Type Prompt

System Prompt - Audio Judge You are an evaluator of audio outputs produced by different audio-capable large
language models. Your task is to compare two audio responses (Audio 1 and
Audio 2) generated according to a user’s instruction. Evaluate based on these
criteria: 1. Semantics: Does the content fulfill the user’s request accurately? 2.
Paralinguistics: How well does the speech match requested tone, emotion, style,
pacing, and expressiveness?
Important: Do not favor verbalized descriptions of tone over actual tonal expres-
sion. A response that says "I am speaking excitedly" but sounds flat should rank
lower than one that genuinely sounds excited.
Follow this process: 1. Analyze the key characteristics requested in the user’s
instruction 2. Evaluate how well Audio 1 performs on these characteristics 3.
Evaluate how well Audio 2 performs on these characteristics 4. Compare their
strengths and weaknesses 5. Decide which is better overall
Avoid position bias and don’t let response length influence your evaluation.
After your analysis, output valid JSON with exactly two keys: ’reasoning’ (your
explanation of the comparison) and ’label’ (a string value: ’1’ if the first audio
is better, ’2’ if the second audio is better, or ’tie’ if they are equally good/bad.
Please use "tie" sparingly, and only when you absolutely cannot choose the
winner.)

User Prompt - Audio Judge Here is the instruction for this test:
{instruction.wav}
Here is the first audio clip:
{audio_a.wav}
Here is the second audio clip:
{audio_b.wav}
Please analyze which of the two recordings follows the instruction better, or tie.
Respond ONLY in text and output valid JSON with keys ’reasoning’ and ’label’
(string, ’1’, ’2’ or ’tie’).

User Prompt - LLM Judge You are an evaluator of audio outputs produced by different audio-capable large
language models. Your task is to compare two audio responses (Audio 1 and
Audio 2) generated according to a user’s instruction. Evaluate based on these
criteria: 1. Semantics: Does the content fulfill the user’s request accurately?
Did the content of the response appropriately address the user’s instruction? 2.
Holistic: How good is the audio response on a holistic user experience level?
Avoid position bias and don’t let response length influence your evaluation.
After your analysis, output valid JSON with exactly two keys: ’reasoning’ (your
explanation of the comparison) and ’label’ (a string value: ’1’ if the first audio is
better, ’2’ if the second audio is better, or ’tie’ if they are equally good/bad.)
The responses audios (Audio 1 and Audio 2) will be given to you as text tran-
scripts of the response.
Here is the user’s input prompt:
{user_prompt}
Here is Audio 1 text transcript:
{model_a_transcript}
Here is Audio 2 text transcript:
{model_b_transcript}
Respond ONLY in text and output valid JSON with keys ’reasoning’ and ’label’
(string, ’1’, ’2’ or ’tie’).

Table 9: Prompts used for Audio Judge and LLM Judge on original SPEAKBENCH and S2S-ARENA labels (Tab. 1).



E Deterministic Fusion

E.1 Fusion for SPEAKBENCH (content-first,
typed ties)

We use the decision tree shown in Alg. 1 to fuse
the dimension-wise predictions from each judge
model to an overall prediction on SpeakBench. The
motivation for the decision tree logic (summarized
in Tab. 10) is to reflect the original intent of the
SpeakBench dataset annotations.

E.2 Fusion for S2S-ARENA (acceptability cap,
typed ties)

Motivation for the acceptability cap. In our
S2S-ARENA slice, Paralinguistics is labeled both-
bad in 55% of pairs (on N=314), so forced-winner
protocols would fabricate superiority; capping over-
all by C/P acceptability prevents this artifact. The
fusion algorithm is provided in Alg. 2.

E.3 Comparison to Majority Voting Fusion

Previous work similar to ours (Manakul et al.,
2025) introduces a multi-aspect Audio LLM Judge
which fuses dimension-wise predictions through
a majority vote. We compare this method to our
tree-based fusion approach in Tab. 11 and confirm
that our tree-based fusion approach unanimously
improves overall label accuracy by incorporating
dataset intent and policy-aware decision logic.

F Sensitivity analysis details

Procedures. We implement three diagnos-
tics to characterize evaluation sensitivity: (1)
Content-controlled counterfactual: force
Content=both_good and record whether P or VQ
determines the overall label. (2) One-at-a-time
ablations: replace each dimension by both_good
and measure the fraction of rows where the fused
overall changes. (3) Correctness-aware and
policy metrics: compute winner-slice accuracy,
winner-on-bad rate, and P/VQ decision accuracies
under these perturbations. All experiments reuse
the same fusion functions as the main evaluation:
SPEAKBENCH uses the Content→P→VQ tree;
S2S-ARENA applies a strict acceptability cap
overall ⪯ min(Content,P) and, for diagnostic
purposes, a lenient “acceptable” cap that permits
winners whenever both cues are not both_bad.

Implementation. For each judge we compute the
base fused overall label and the counterfactuals de-
fined above. P/VQ decision accuracy is measured

Algorithm 1 SpeakBench Fusion

Require: ∆C ,∆V Q,∆P ∈
{1, 2, both-good, both-bad}

1: if ∆C ∈ {1, 2} then
2: return Ŷ ← ∆C

3: end if
4: if ∆C = both-good then
5: if ∆P ∈ {1, 2} then
6: return Ŷ ← ∆P

7: end if
8: if ∆V Q ∈ {1, 2} then
9: return Ŷ ← ∆V Q

10: end if
11: return Ŷ ← both-good
12: end if
13: if ∆C = both-bad then
14: if ∆P ∈ {1, 2} then
15: return Ŷ ← ∆P

16: end if
17: if ∆V Q ∈ {1, 2} then
18: return Ŷ ← ∆V Q

19: end if
20: return Ŷ ← both-bad
21: end if

against the ground truth HCoT label whenever a
dimension produces a winner in the forced-content
counterfactual. Flip rates report the percentage of
examples whose overall label changes after abla-
tion. The same procedure is applied across both
datasets.



Dataset Intent/Priority One-line Fusion Rule

SPEAKBENCH Delivery → Content Content decides; P/VQ break ties
S2S-ARENA Instruction-following → P Cap: if C or P is both-bad ⇒ overall both-bad

Table 10: Policy-prior summary. Deterministic, monotone fusion with dataset-specific prior.

Algorithm 2 S2S-Arena Fusion
Require: ∆C ,∆V Q,∆P ∈
{1, 2, both-good, both-bad}

1: ∆cap ← RatingMin(∆C ,∆P )
2: if ∆C ∈ {1, 2} then
3: return Ŷ ← RatingMin(∆C ,∆cap)
4: end if
5: if ∆P ∈ {1, 2} then
6: return Ŷ ← RatingMin(∆P ,∆cap)
7: end if
8: if ∆V Q ∈ {1, 2} then
9: return Ŷ ← RatingMin(∆V Q,∆cap)

10: end if
11: return Ŷ ← RatingMin(∆C ,∆cap)

Dataset Judge Overall

SPEAKBENCH

Audio Judge (voting) 58.0 (53.4–62.3)
Audio Judge (tree) 61.1 (56.7–65.4)
LLM Judge (voting) 61.2 (56.5–65.5)
LLM Judge (tree) 62.7 (58.2–67.0)
TRACE (voting) 66.5 (62.1–70.6)
TRACE (tree) 68.6 (64.3–72.7)

S2S-ARENA

Audio Judge (voting) 37.1 (32.3–41.9)
Audio Judge (tree) 47.5 (42.4–52.7)
LLM Judge (voting) 34.4 (29.3–39.8)
LLM Judge (tree) 45.9 (40.4–51.3)
TRACE (voting) 40.4 (35.0–45.9)
TRACE (tree) 57.0 (51.6–62.4)

Table 11: Majority Vote Fusion vs. Tree-Based Fu-
sion. Tree-based fusion consistently improves overall
accuracy across judges and datasets by incorporating
policy-aware decision logic.

G Cost Analysis

We report the total cost of TRACE using GPT-4o
on SPEAKBENCH in Tab. 4 of the main text. We
provide the full cost breakdown here in Tab. 13. We
note that the main cost of Audio Judge is induced
by the raw audio input tokens, whereas our method
avoids this cost while still capturing speech cues
by using textual blueprints of audio signals. Gener-
ating these textual blueprints can be done with in-
expensive off-the-shelf classifiers and only occurs
a small additional GPU cost. Notably, TRACE is
∼3× cheaper than Audio Judge while achieving
better performance.

Algorithm 3 RatingMin operator

Require: ∆A,∆B ∈ {1, 2, both-good, both-bad}

1: πA ←


(1, 0) if ∆A=1

(0, 1) if ∆A=2

(1, 1) if ∆A=both-good
(0, 0) if ∆A=both-bad

2: πB ←


(1, 0) if ∆B=1

(0, 1) if ∆B=2

(1, 1) if ∆B=both-good
(0, 0) if ∆B=both-bad

3: πC ← min(πA, πB) ▷ elementwise min

4: return ∆C ←


1 if πC=(1, 0)

2 if πC=(0, 1)

both-good if πC=(1, 1)

both-bad if πC=(0, 0)

H Feature Ablation

We ablate each of the audio feature groups in
TRACE (Tab. 12) to assess their impact. We find
that removing any of the audio features generally
degrades performance on Voice Quality or Paralin-
guistics for at least one of the two benchmarks, mo-
tivating their inclusion in the framework. We also
note that some variation in performance (±3%) is
likely due to the stochastic output of Gemini 2.5
Flash and should not be over-interpreted.

I Visual Judge Comparison

We include a visual (confusion matrix) compar-
ing judge performance against our HCoT overall
labels in Fig. 9. TRACE achieves the highest re-
call on both datasets and the highest precision on
SPEAKBENCH, indicating stronger alignment with
the HCoT annotations.



Dataset Judge Content Voice Quality Paralinguistics Overall

SPEAKBENCH

Random Guess 25.0 25.0 25.0 25.0
TRACE 63.2 50.4 39.6 68.6 (64.3–72.7)

w/o emotion classifier 65.6 50.5 46.2 70.0 (65.8–74.1)
w/o accent classifier 66.3 51.9 38.9 69.2 (65.0–73.3)
w/o audio quality 64.0 40.2 42.4 67.5 (63.4–71.6)
w/o audio properties 64.2 48.9 38.9 67.1 (62.9–71.2)

S2S-ARENA

Random Guess 25.0 25.0 25.0 25.0
TRACE 58.0 51.6 48.1 57.0 (51.6–62.4)

w/o emotion classifier 56.4 49.4 32.8 42.4 (36.9–48.1)
w/o accent classifier 57.6 50.6 46.5 58.6 (53.2–64.0)
w/o audio quality 58.3 47.5 50.6 60.2 (54.8–65.6)
w/o audio properties 55.4 52.5 49.7 59.9 (54.5–65.3)

Table 12: TRACE Feature Ablation. Removing individual audio feature groups generally degrades performance
on either Voice Quality or Paralinguistics, although some variation in performance (±3%) is likely due to the
stochastic output of Gemini 2.5 Flash.

Cost Category Audio Judge LLM Judge TRACE

Local GPU
Inference time (hrs) 0.000 0.634 1.050
Rate ($/hr) 0.404 0.404 0.404
Cost ($) 0.000 0.256 0.424

API
Text Input ($) 0.613 1.281 2.833
Audio Input ($) 10.952 0.000 0.000
Text Output ($) 0.967 1.226 0.901
Cost ($) 12.532 2.507 3.734

Total Cost ($) 12.532 2.763 4.158

Table 13: Detailed Cost analysis on SPEAKBENCH. Total cost of running the evaluation using GPT-4o as the
judge backbone. Local GPU inference was performed on a single RTX A6000 (48GB), with rental rates estimated
from Vast.ai. TRACE is ∼3× cheaper than Audio Judge while achieving better performance.

Figure 9: Confusion Matrix Comparison. Fused overall labels predicted by the Audio Judge, LLM Judge, and
TRACE against our HCoT overall labels. The underlying model is Gemini 2.5 Flash. “P” and “R” in the plot titles
denote precision and recall weighted by class frequency. TRACE achieves the highest recall on both datasets and
the highest precision on SPEAKBENCH, indicating stronger alignment with human HCoT annotations.
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