Balanced Watermark: A Simple High-Imperceptibility Watermark for
Large Language Models

Anonymous ACL submission

Abstract

In order to counteract the potential risks posed
by increasingly intelligent Large Language
Models (LLMs), several scholars attempt to
apply watermark to the detection of LLM-
generated text. Watermark researchers typi-
cally focus on detectability, robustness and in-
visible, but they tend to overlook the impercep-
tibility, which is crucial for preventing the wa-
termark from being cracked. Watermarks with
low imperceptibility are easily stolen and ana-
lyzed by malicious users, who can then forge
watermarked text. To fill this research gap, we
design Balanced Watermark (BW) by balanc-
ing the watermark strength across the vocabu-
lary, achieving a fit to a non-watermarked LLM
distribution to enhance imperceptibility. To
effectively evaluate the imperceptibility of wa-
termarks, we design a metric to evaluate for
the first time. Our experiments prove that BW
effectively improves imperceptibility and main-
tains high performance of the watermark in
other features. We release our code! to the
community for future research.

1 Introduction

With the rapid development of large language
models (LLMs) (OpenAl, 2023; Touvron et al.,
2023; Al@Meta, 2024), the text generated by
LLMs increasingly resembles human-generated
text and gradually fills every part of our lives,
which poses several potential threats, including
hallucinations (Alkaissi and McFarlane, 2023; Liu
et al., 2024a), misinformation generation (Liu et al.,
2024b; Zhang et al., 2024), and malicious use (Ope-
nAl, 2023; Editorials, 2023). Therefore, detecting
text generated by LLMs has become an emerging
and critical issue.

Digital watermark (Atallah et al., 2001; He et al.,
2022) is a promising method for detecting LL.M-
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Figure 1: An explanatory diagram for watermark imper-
ceptibility. Watermarked text with low imperceptibility
can be easily detected by attackers, who can then sum-
marize corresponding patterns and forge watermarked
text. Text with high concealment can prevent attackers
from forging watermarks, thereby preventing unautho-
rized users from mass-producing watermarked text.

generated text, which embeds watermark informa-
tion into the text during generation and determines
whether the text is generated by the LLM by de-
tecting the watermark information. A good wa-
termark should possess the following five charac-
teristics: (1) Detectability: The watermark adder
can accurately distinguish between watermarked
and non-watermarked text; (2) Invisibility: The
quality of the watermarked text should not signif-
icantly degrade. (3) Robustness: The watermark
should remain detectable when the watermarked
text is subjected to attacks. (4) Usability: The time
and resource consumption for adding and detecting
watermarks should be acceptable. (5) Impercepti-
bility: It should be difficult for anyone other than
the watermark adder to perceive the presence of the
watermark in the text.

At present, there are many digital watermark
frameworks for LLM-generated text (Abdelnabi


https://anonymous.4open.science/r/BalancedWatermark-6228
https://anonymous.4open.science/r/BalancedWatermark-6228

and Fritz, 2021; Yang et al., 2022; Yoo et al., 2023;
Zhao et al., 2023b). Kirchenbauer et al. (2023) pro-
pose a simple and effective watermark framework,
commonly referred to as KGW. KGW first gener-
ates a green list and a red list through the secret key
and pre-text information at each step of the LLM
generation process. Subsequently, KGW adds a
fixed bias to the green list tokens to increases the
probability of the LLM generating green list tokens.
During detection, KGW analyzes the number of
green tokens in the text to determine whether the
text has been watermarked.

Despite numerous attempts to refine the water-
marking approach based on KGW (Zhao et al.,
2023a; Fairoze et al., 2023; Hou et al., 2023; Fu
et al., 2024; Liu and Bu, 2024; Lu et al., 2024), we
find that they primarily focus on improving invis-
ibility and robustness, yet invariably overlook the
imperceptibility of the watermark. This makes the
watermarked text easily identifiable by malicious
attackers, leading to potential attacks. To this end,
we propose a novel watermark framework called
Balanced Watermark (BW), aimed at enhancing the
imperceptibility of watermarks while maintaining
their invisibility and robustness. BW first divides
the vocabulary into two lists based on the secret
key. Subsequently, during the actual generation
process, BW determines two signals with approx-
imately equal occurrence probabilities based on
word frequency and contextual information. The
signal determine which of the two lists will be
selected as the green list. BW ultimately adjusts
the original probability distribution of the LLM
according to the green list to embed watermark.
We carry out a theoretical analysis to prove the
better imperceptibility of BW. To empirically ac-
cess the imperceptibility of watermarks, we further
designe a rational metric to evaluate different water-
mark methods. Extensive experiments demonstrate
that BW excels in imperceptibility and achieves
competitive performance in other key aspects of
watermark.

Our main contributions are as follows:

* We take imperceptibility as the starting point
and propose Balanced watermark. BW bal-
ances multiple features of the watermark, pos-
sessing a certain level of competitiveness in
each feature.

* We theoretically analyze how Balanced Wa-
termark improves approximate probability un-
bias and imperceptibility of watermark.

* We empirically demonstrate the imperceptibil-
ity and effectiveness of BW across different
datasets and LLMs.

2 Related Work
2.1 LLM-Genrated Text Watermark

In order to distinguish between texts generated by
models and those composed in natural language,
some scholars try to find a more accurate detector
(Gehrmann et al., 2019; Guo et al., 2023; Mitchell
et al., 2023; Rodriguez et al., 2022), while others
decided to tackle the problem at the source, adding
watermarks to the LLM-generated text. In the do-
main of watermark for LLM-generated text, there
exist three predominant approaches: backdoor wa-
termarks that modeify parameters of LLM (Adi
et al., 2018; Peng et al., 2023); reweighting water-
marks that add bias in the output probabilities of
LLM (Kirchenbauer et al., 2023; Lu et al., 2024;
Fu et al., 2024; Zhao et al., 2023a; Hu et al., 2023);
text watermark, which is achieved through modifi-
cations made to the text itself (Yang et al., 2022; Li
et al., 2023).

Reweighting watermark emerges as a focal point
of current watermark research. Kirchenbauer et al.
(2023) propose KGW, add a fixed value on the log-
its of green token in the LLM vocabulary. The
definition of green token fully introduces random-
ness and the uniqueness of the secret key. This
makes the output of LLM biased, and detection
only needs to count the frequency of green token
occurrence. Zhao et al. (2023a) only apply the
uniqueness for the selection of green token, in-
creases its detectability and robustness. Fu et al.
(2024) explore the method for improving KGW in
conditional text generation tasks.

2.2 Imperceptibility in Watermark

About imperceptibility in watermark, its function
is to ensure that the watermark is imperceptible
to observation by non-watermarking means. UW,
starting from this perspective, proposed two novel
reweighting methods to modify the output prob-
abilities of LLMs, thereby realizing the embed-
ding of watermarks (Hu et al., 2023). Additionally,
UW introduce the concept of unbiased watermark,
demonstrating an optimization goal for the imper-
ceptibility. SIR has trained a logits bias generator
to implement the addition of watermarks (Liu et al.,
2023). The concept of unbiased watermark also
introduced to it when training generator.



3 Methodology

3.1 Watermark and Imperceptibility

A LLM forms a complete piece of text by gen-
erating each token in a loop. For any input text
X = {71, z2,...,7x}, LLM will generate a prob-
ability distribution py(¢;| X') over the vocabulary V,
0 represents the parameters of LLM and ¢; € V.
Subsequently, the LLM samples from py(¢;| X)) to
obtain newly generated token.

We regard the act of embedding a watermark
as a modification to py(t;| X ). Given a watermark
method w, the watermarking process can be viewed
as:

pg(ti| X) = po(ti| X) + pw(ti| X) (1

p4(ti|X) denotes the probability distribution post-
watermarking; p,, (t;| X) represents the probability
bias introduced by the watermark, and |p,, (¢;|X)|
is regarded as the watermark strength at this point.

The imperceptibility of watermark can be de-
scribed as the degree of change of probability dis-
tribution before and after watermarking. Thus, the
perfect imperceptibility requires p,, (¢;| X) = 0, but
this setting will prevent the embedding of a water-
mark. The discrete nature of the text allows us to
relax the imperceptibility condition. For a input
dataset D, the perfect imperceptibility over D is
regarded as:

py(ti| D) = py(ti| D) (2)

It requires py, (t;|D) = 0 at this time. We further
design the metric for measuring watermark imper-
ceptibility as follows:

htieV 3)

1
Ly = min{+—————
w = mint D))

A larger Z,, indicates better imperceptibility of the
watermark.

3.2 Balanced Watermark

BW achieves imperceptibility enhancement with
appropriate design while keeping the watermark
strength unchanged. BW consists of two steps:
Word Frequency Green list Selection (WFGS) and
Logits Bias (LB). WFGS determines how the wa-
termark information is transformed into textual in-
formation, while LB dictates how the watermark
information is embedded. The complete details for
BW are shown in Algorithm 1.

Algorithm 1 Balanced Watermark

Input: Input sequence X = {1,%2,..., Ty},
Large Language Model LLM, secret key K,
logits bias § > 0.

Output: Watermarked text

1: Count word frequencies from large amounts of
text generated by LLM;

2: Sort tokens on ) by word frequencies and con-
struct map function M;

3: Apply K as a random seed, randomly and uni-
formly partition the vocabulary V into lists A
and B.

4: fori < 1to..do

5: Based on the input sequence X and pre-
output y;, LLM get a logits distribution [ (@)
on the vocabulary V;

6: if M(yi_l) = 1 then

7. g = .A, R=B

8: else if M/ (y;—1) = 0 then

9: G=BR=A

10: end if

11: Add a fixed bias value J to all green to-

kens logits, then obtain a new probability dis-

tribution pg)
softmax; ‘

12: Sample the next token y; from pg).

13: end for

over the vocabulary V' through

Step 1: Word Frequency Green list Selection.
WEGS constructs a mapping function M to allocate
the selection of the green list reasonably.

To construct M, we first obtain a large set of
non-watermarked texts generated by the LLM. We
then statistically analyzed the frequency of each
token ¢ in )V across these texts. Based on the word
frequency, we form an ordered list {t1,t2, ..., ty| }.
According to this ordered list, we construct M as:

1, i%2=0
M(t)=1{" 4
(t:) {aim¢o @)

Prior to generation, we also need to prepare lists A
and B, which are obtained by randomly and evenly
partitioning V according to a secret key K.
The selection of the green list G when inputting
X is:
g:{A M (x)) = 1 )
B y M (w‘ X|) =0

We regard the other list that did not become G as
the red list R.



Step 2: Logits Bias. The purpose of LB is to en-
hance the probability of green list tokens appearing
by G. We implement this by adding a constant ¢
to the green token logits. The logits are the inter-
mediate distributions obtained by the LLM when
generating probability distributions, and the logits
after the softmax are py(t;|X).

For the logits I(Y) obtained at time i, the water-
mark probability distribution pg) can be defined by
the following formula:

e:pp(l,(:)+5)

: i , keg
0 — ) B o 055
) ot keR
j () . (@) )
ZJGR exp(lz )+Z]€g exp(l] +§)
(6)

Detection The detection of BW is straightfor-
ward. We simulate the process of WFGS to cal-
culate the number of green tokens in a sentence.
Then, we calculate z-statistic as the criterion for
determining the existence of a watermark.

4 Theoretical Analysis

In this section, we prove that under the same water-
mark strength, the imperceptibility of BW is higher
than UNIW.

To simplify formulations, we define U, as fol-
lows:

Uph =Y pult|X)=|D| pu(t|D) (1)
XeD

pw(t|X) is the probability of the watermarked
LLM generating ¢ upon input X, and D is the set
of some possible X.

According to equation 3, the imperceptibility
of a watermark only needs to pay attention to the
token with the max probability bias. Considering
solely this token t,,, the strength of a watermark is
defined as:

Sw = Z ‘pw(tm’XN (8)

XeD

Pw(tm|X) represents the probability bias for the
token t,,, when inputting X.

The imperceptibility of the watermark can be
defined as:

1 = D
pw(tm‘D) ’Ug"‘

Regardless of whether the watermark is UNIW
or BW, there are only two scenarios for input X:

Ty = )

assigning t,, to G or to R. We form a dataset
Dg consisting of all inputs X that assigning ¢,, to
G, and correspondingly, dataset Dr for R. The
relationship between D, Dg and Dx can be repre-
sented by the following formula:
Dg = D\ Dg (10)
Based on the principle to enhance the probability
of green list tokens appearing, for any X¢g € Dg,
Pw(tm|Xg) > 0. Similarly, py, (| Xr) < 0.
Therefore, we transform Equation 8 into:

St = |Upi| + U (11)
According to equation 10, we can deduce:
Upr = Up:, +Up: (12)

UNIW employs a fixed green list G, making
that t,, is consistently assigned to the same list.
Assuming t,, belongs to G in UNIW, we have a
equation:

Up =0 (13)

Therefore, Zyy nrw and Sy v rw have the follow-
ing relationship:
D |D|
Upel +1UB: | Sivnw

Iyniw = (14)

In BW, we make the probability of ¢,,, belonging
to either R or G about 1/2 by WFGS. It is evident
that we have a fundamental inference in BW:

Upel + U | > Up:, + Uil (15)

The relationship between the imperceptibility
and watermark strength of BW is:

D D
Up: +Upel ~ Sgiv

Ipw = (16)

Assuming that BW and UNIW have the same
watermark strength, that is, Sy i = Sy Un-
der this assumption, based on Equations 14 and 16,
we can deduce:

1Dl _ D]

= 17)
Stw  Stvw

=TuNniw

The equation 17 substantiates the conclusion we
initially proposed in this section: under the same
watermark strength, the imperceptibility of BW is
higher than UNIW.
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Figure 2: Comparisons of the words count produced in the corpus after adding different watermarks to OPT-2.7b
with several high-frequency words under C4 and LFQA. The blue bars with shadows represent the original word
frequencies that the watermark word frequencies need to fit.

5 Experiments

In this section, we conduct extensive experiments
and answer the following questions: 1) How does
BW perform in imperceptibility? We evaluate the
imperceptibility of BW on various datasets using
different models and compared it with other wa-
termarking methods. 2) How does BW perform in
terms of other features required for watermarking?
We conduct extensive experiments to demonstrate
that BW is equally excellent in other features re-
quired for watermarking. 3) What impact does
different green list ratios have on the imperceptibil-
ity of BW? We conduct experiments with different
green list ratios to analyze the changes in imper-
ceptibility.

5.1 Implementation Details

Datasets To evaluate the performance of BW, we
randomly select 500 texts from the news-like subset
of the C4 dataset (Raffel et al., 2020)> and LFQA
(Krishna et al., 2023)3. C4 is the dataset utilized in
the KGW (Kirchenbauer et al., 2023), representing
a general generation task. LFQA is the dataset
employed by UNIW (Zhao et al., 2023a), which is
a commonly used Question Answering (QA) task
dataset. We extract the first 30 tokens from each
text in C4 as the input. For LFQA, we extract the
question portion of each example as the input.

Models We employ OPT-2.7b (Zhang et al.,
2022) and Llama3-8b (Al@Meta, 2024) as the gen-

Zhttps://huggingface.co/datasets/allenai/c4
3https://drive.google.com/drive/folders/| mPROenBBOfzL
09AX4fe71k0UYvOxt3X1

erative models. OPT-2.7b is a commonly utilized
generative model adoped by KGW (Kirchenbauer
et al., 2023), whereas Llama3-8b is a recently re-
leased Large Language Model. During each gener-
ation, we employ sampling as the decoding strategy
and produce a maximum of 200 tokens. For BW,
we generate corresponding frequency files for both
models using the C4 dataset in the absence of wa-
termarking.

Baselines We compare two watermark methods
to test the performance of BW. UNIW (Zhao et al.,
2023a) utilizes fixed green list, achieving optimal
performance in multiple aspects, but greatly com-
promises imperceptibility. KGW (Kirchenbauer
et al., 2023) enhances a certain degree of imper-
ceptibility through a random green list, but it has
a certain degree of randomness, while also under-
mining the invisibility and robustness of UNIW.
In our conjecture, BW retains certain advantages
of UNIW, thereby exhibiting better than KGW in
these respects. We set the default parameters with
the green list ratio y set to 0.5 and the logits bias §
set to 2 for UNIW, KGW and BW.

5.2 Imperceptibility Comparison

A straightforward and feasible method to evaluate
imperceptibility is to analyze the changes in word
frequency, which we display in Figure 2. In Figure
2, we select high-frequency tokens from the OPT-
2.7b vocabulary for display.

In Subfigure 2a, we find that the word frequency
of BW often approaches the original word fre-
quency more closely than that of UNIW. Partic-
ularly, for the token the, UNIW is highly incon-
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Figure 3: Imperceptibility of different watermarks cor-
responding to various AUC scores. Llama3-8b is the
generative model and C4 is the dataset.

sistent with the original word frequency, making
its imperceptibility very low. For KGW, although
it is slightly closer to the original distribution on
multiple tokens compared to BW, for the token
C, the difference between KGW and the original
distribution is even higher than that of UNIW.

In Subfigure 2b, the word frequency of BW is
always closer to the original word frequency than
UNIW. We also find that on the LFQA dataset, all
watermarks cause severe differences in the word
frequency of Q and ?. At this time, BW consis-
tently approaches the original word frequency more
closely, demonstrating superior imperceptibility.

For a clearer analysis the imperceptibility of BW,
we examine the correlation trend between imper-
ceptibility and detectability. We utilize the formula
mentioned in Equation 3 as a clear numerical met-
ric of the watermark imperceptibility. Due to the
significant noise introduced by the low-frequency
words in the corpus, we only account for the fre-
quency changes of the top 20 most frequent words
in the vocabulary. For detectability, we use the
AUC Score for ROC curves, and we control it by
setting different logits bias . The result is shown
in Figure 3

We observe that under varying AUC scores, the
imperceptibility of BW is relatively stable, show-
ing no significant variation. At the same time, the
imperceptibility of both KGW and UNIW declines
as the AUC score increases.

At lower AUC scores, the imperceptibility of
KGW is significantly higher than that of UNIW and
BW. UNIW and BW both employ a fixed vocab-
ulary partitioning, which results in a considerable
degradation of imperceptibility once watermarking

is introduced.

At AUC scores above 0.97, we observe that the
imperceptibility of BW is consistently higher than
that of KGW. The cause of this phenomenon may
be: Although KGW employs a random setting to
theoretically equate the probabilities of each to-
ken being classified as G or R during generation,
it does not take into account the impact of word
frequency. Therefore, at high AUC Score, the wa-
termark information becomes more pronounced,
and the resulting low imperceptibility due to this
factor becomes increasingly evident.

We believe that high detectability is a necessary
condition for the application of watermarks. It
can be seen that BW is the only watermark that
can maintain high imperceptibility under high de-
tectability.

5.3 Watermark Features Comparison

In this section, we present the performance of BW
in other watermark features, including detectability,
invisibility, robustness, and usability. Ultimately,
we demonstrate the superior comprehensive perfor-
mance of BW.

Detectability and Invisibility The results with
detectability and invisibility are presented in Table
1. For the detectability, we calculate the True Posi-
tive Rate (TPR) at False Positive Rates of 1% and
10%. Concurrently, we compute the AUC score for
ROC curves for watermark detection. Following
the work of Kirchenbauer et al. (2023), we employ
perplexity (PPL) to assess invisibility, which means
the quality of the watermarked text.

As shown in Table 1, the best performance in de-
tectability metrics is either exhibited by UNIW or
BW. This substantiates that the setting of BW does
not significantly reduce the detectability of UNIW.
At the same time, he random green list of KGW
causes the watermark information to be added to
the text without stability, resulting in detection per-
formance slightly lower than that of UNIW and
BW.

In terms of invisibility, UNIW consistently ex-
hibits the best performance, whereas BW consis-
tently outperforms KGW. This proves that a more
stable green list will lead to better text quality.

It can be inferred that BW almost perfectly main-
tains the excellent detectability of a fixed green list,
while also preserving the certain excellent invisibil-

ity.



C4 LFQA

Model Method 0 EPRY  10%FPRT AUCT PPL| 1%FPR} 10%FPRI AUC PPL|
Original X X 4.321 X X X 7.280

UNIW 0.942 0984 0995 6.160 0.818 0960 0981 14.651

OPT-27b  KGW 0.894 0970 0988 7.047 0934 0986 0994 10.308
BW(Ours)  0.954 0982 0992 6610 0954 0990 0996  9.081

Original X F 3.293 X X X 3.186

UNIW 0.944 0970 0989 4.038  0.984 0996 0997  3.474
Llama3-8b KGW 0.808 0924 0965 5262  0.760 0960 0981  4.608
BW(Ours)  0.930 0974 0987 4470  0.940 0984 099  3.735

Table 1: The detectability and invisibility performance of various methods on different models for C4 and LFQA. 1
means higher metrics are better. | means lower metrics are better.

. Model
Metric  Method  )br 5 7 Llama3-8b
UNIW 77181 7758
V(it/s)  KGW 41.70 33.30
BW(Ours)  50.00 45.40
UNIW _ 877.60  8867.84
M(KiB)  KGW 877.60  8867.84
BW(Ours) 1553.93  9051.67

Table 2: Comparisons of the detect speed on OPT-2.7b
and Llama3-8b.V represents the detection speed, and M
represents the additional memory required for detection.
it/ s signifies the number of texts detected per second.

Usability We test the detection speed and mem-
ory consumption of two models under different
watermarks, with the results depicted in Table 2.
The detection speed of BW is somewhat reduced
compared to UNIW, yet it remains superior to that
of KGW. In terms of memory consumption, BW
occupies the most memory.

However, from a practical standpoint, both a
detection speed of over 30 times per second and
a memory consumption of less than 10 MB are
acceptable to users.

Robustness To evaluate the robustness of four
watermarks, we utilize DIPPER (Krishna et al.,
2023) to paraphrase the watermarked texts, testing
the extent of the decline in AUC scores. The result
of robustness is shown in Figure 4.

As shown in the figure 4, BW performs better
on the LFQA dataset, showing comparable robust-
ness to UNIW when using OPT-2.7b, and demon-
strating the best robustness when using Llama3-8b.
Another point worth noting is that under the same
dataset, BW exhibits better robustness when using
Llama3-8b. Although BW has the poorest robust-
ness under C4 and OPT-2.7b, it is more adaptable to
complex generation conditions and LLMs, which
makes it more competitive in practical applications.
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Figure 4: Results of paraphrasing various watermark
texts by DIPPER. OPT-2.7b and Llama3-8b are gener-
ative models, with C4 and LFQA as the datasets. The
transparent bars represent the AUC scores in the original
state without any attack. The solid bars represent AUC
scores after being subjected to a DIPPER attack.

Comprehensive Performance We comprehen-
sively evaluate the three watermarks based on their
five characteristics. The overall results are shown
in Figure 5.

The imperceptibility of BW is the best, in con-
trast, UNIW is the worst. From the perspective
of detection performance, the detectability of the
three methods is close, but the random green list
of KGW leads to instability, resulting in slightly
worse detection performance. Robustness and in-
visibility are advantages of a fixed green list, so
BW using the balanced green list is slightly worse
than UNIW. The usability of BW and KGW may
seem to be reduced significantly, but in reality, the
usability of all three watermarks is acceptable to
humans and practical.

5.4 Green List Ratio Analysis

In this experiment, we configure BW such that
the ratio of the A and B lists derived from the
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Figure 5: The comparative analysis of the comprehen-
sive performance of BW and other watermarking tech-
niques. The basis for the plotting is the results obtained
from various indicators in our experimental section.
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Figure 6: Comparison of imperceptibility and detectabil-
ity of BW under different v. OPT-2.7b is the generative
model, and LFQA is the dataset. y is a hyperparameter
introduced in the KGW (Kirchenbauer et al., 2023), de-
notes the green list ratio.

vocabulary partition is consistently aligned with ~.

As illustrated in Figure 6, the imperceptibility
of BW increases with the enhancement of . It is
noteworthy that AUC score decreases at the same
time.

At low ~, the use of a fixed logits bias leads to an
extremely high variation in the probability of a few
green list tokens, resulting in significant degrada-
tion of imperceptibility. The increase in -y results in
the even distribution of logits bias across a greater
number of tokens, thereby enhancing impercepti-
bility. From a certain perspective, an increase in -y
leads to a reduction in watermark strength, which
in turn results in a decrease in AUC scores.

Prompt Q: How many hours of sleep should we get?\nA: = z 'Z
Original Siven hours a night is the recommended maximum @ § g—'
or adults. Children need about nine or 10 hours. @ @
There is no set rule. | There is no set rule.
Too much sleep, too Too much sleep, too
little sleep, and an little sleep, and an
insufficient amount of |insufficient amount of
UNIW | sleep are all on the sleep are all on the 3 [3.16|7e-4
spectrum. spectrum.
Ideally, adults should |Ideally, adults should
get between 7 and 9 get between 7 and 9
hours of sleep a night.|hours of sleep a night.
To get the most To get the most
restful sleep, restful sleep,
try to get 7-9 try to get 7-9
BW hours of sleep. hours of sleep. 12033 |4ea
In general, In general,
adults should aim for | adults should aim for
at least 8-9 hours at least 8-9 hours
of sleep. of sleep.

Figure 7: An example output with Unigram watermark
(UNIW) (Zhao et al., 2023a) and our proposed Balanced
Watermark (BW) on a question in LFQA. UNIW divides
the vocabulary into List A and List B, and selects
List A asthe green list. UNIW increases the green
token probability and decreases the red token proba-
bility, thereby embedding the watermark. This results
in an overall word frequency anomaly, reducing imper-
ceptibility. BW ensures the preservation of detectability
while balancing Lists A and B, thereby enhancing
imperceptibility.

5.5 Case Study

As shown in Figure 7, when UNIW and BW use
the identical A list and B list, the proportion of the
A list to the B list in BW is noticeably more bal-
anced. z-score and p-value are statistical measures
obtained from the green list tokens. Analyzing
these two statistical measures, UNIW and BW ex-
hibit similar detectability.

6 Conclusion

In this paper, we propose a new watermark Bal-
anced Watermark (BW) for LLM-generated text.
BW substantially improves imperceptibility based
on its original watermark while retaining certain
performance attributes of the original, earning high
marks in overall performance evaluation. To ef-
fectively evaluate imperceptibility, a metric for the
assessment of imperceptibility is introduced for the
first time. We corroborate the enhancement of BW
in imperceptibility by comparing theoretical analy-
sis, actual word frequency changes, and scores of
imperceptibility metric. At the same time, for other
watermarking feature, we demonstrate the superi-
ority of BW through extensive experimentation.



7 Limitations

One limitation in our study is that we only use the
most advanced watermarking attack method cur-
rently available to analyze the robustness of BW.
We can try some other watermarking attack meth-
ods to analyze the robustness of BW in the future.
Another limitation is that we do not test BW with
models larger than 10B, only analyze OPT-2.7b and
Llama3-8b due to computational power limitations.
In the future, it would be possible to apply BW to
models of different sizes to more effectively ana-
lyze the impact of model size on the watermarking
effect. We suppose that watermark design is a game
of trade-offs, where enhancing the performance
of a single watermark feature inevitably leads to
a decline in other watermark features. We hope
that future watermark research can more compre-
hensively consider various performance aspects,
leading to the design of watermarks with superior
performance.
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A Robustness

We present the specific numerical details in Fig-
ure 4 using Table 4. Same as Figure 4, there is a
noticeable decrease in the robustness of UW. The
robustness of BW and KGW both keep the AUC
score above 0.75. UNIW always has the best ro-
bustness.


https://doi.org/10.48550/ARXIV.2311.09668
https://doi.org/10.48550/ARXIV.2311.09668
https://doi.org/10.48550/ARXIV.2311.09668
https://doi.org/10.48550/ARXIV.2311.09668
https://doi.org/10.48550/ARXIV.2311.09668
https://doi.org/10.48550/ARXIV.2310.06356
https://doi.org/10.48550/ARXIV.2310.06356
https://doi.org/10.48550/ARXIV.2310.06356
https://doi.org/10.48550/ARXIV.2404.00971
https://doi.org/10.48550/ARXIV.2404.00971
https://doi.org/10.48550/ARXIV.2404.00971
https://doi.org/10.48550/ARXIV.2404.00971
https://doi.org/10.48550/ARXIV.2404.00971
https://doi.org/10.48550/ARXIV.2403.01988
https://doi.org/10.48550/ARXIV.2403.01988
https://doi.org/10.48550/ARXIV.2403.01988
https://doi.org/10.48550/ARXIV.2403.01988
https://doi.org/10.48550/ARXIV.2403.01988
https://doi.org/10.48550/ARXIV.2401.13927
https://doi.org/10.48550/ARXIV.2401.13927
https://doi.org/10.48550/ARXIV.2401.13927
https://doi.org/10.48550/ARXIV.2403.13485
https://doi.org/10.48550/ARXIV.2403.13485
https://doi.org/10.48550/ARXIV.2403.13485
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2023.ACL-LONG.423
https://doi.org/10.18653/V1/2023.ACL-LONG.423
https://doi.org/10.18653/V1/2023.ACL-LONG.423
https://doi.org/10.18653/V1/2023.ACL-LONG.423
https://doi.org/10.18653/V1/2023.ACL-LONG.423
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.1609/AAAI.V36I10.21415
https://doi.org/10.1609/AAAI.V36I10.21415
https://doi.org/10.1609/AAAI.V36I10.21415
https://doi.org/10.1609/AAAI.V36I10.21415
https://doi.org/10.1609/AAAI.V36I10.21415
https://doi.org/10.18653/V1/2023.ACL-LONG.117
https://doi.org/10.18653/V1/2023.ACL-LONG.117
https://doi.org/10.18653/V1/2023.ACL-LONG.117
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3589335.3641256
https://doi.org/10.1145/3589335.3641256
https://doi.org/10.1145/3589335.3641256
https://doi.org/10.48550/ARXIV.2306.17439
https://doi.org/10.48550/ARXIV.2306.17439
https://doi.org/10.48550/ARXIV.2306.17439
https://proceedings.mlr.press/v202/zhao23i.html
https://proceedings.mlr.press/v202/zhao23i.html
https://proceedings.mlr.press/v202/zhao23i.html

5 AUC Score T
KGW UNIW BW(Ours) | KGW UNIW BW(Ours)
0.2 | 0.661 0.663 0.681 220.60 176.83 167.56
04| 0.772 0.770 0.817 266.03 180.60 168.31
0.6 | 0.853 0.853 0.885 198.96 138.38 192.47
0.8 | 0.895 0.904 0.929 195.18 108.07 185.13
1.0 | 0.925 0.943 0.956 162.42  91.06 146.94
1.2 0946 0973 0.976 203.84  76.61 160.05
1.4 | 0959 0.979 0.977 180.07  64.60 142.53
1.6 | 0.967 0.986 0.984 126.22  58.33 153.62
1.8 | 0.970 0.989 0.984 156.21 52.84 141.83
2.0 | 0.973  0.990 0.986 119.33  49.14 147.16
3.0 | 0986 0.997 0.992 134.08  37.98 142.60
5.0 | 0.990 1.000 0.995 114.55  28.31 118.81

Table 3: In the C4 dataset,
at different 4.

Dataset Method Normal Attack
UNIW 0.989 0.879
c4 KGW 0.965 0.838
Uw 0.974  0.587
BW(Ours) 00987 0.847
UNIW 0.997 0.853
KGW 0.981 0.788
LFQA Uw 0956 0.592
BW(Ours) 0.996 0.903

Table 4: The robustness details of two datasets on the
Llama3-8b. Normal represents the AUC score in the
absence of attacks. Attack indicates the AUC score after
being subjected to a DIPPER attack.

For further analysis, we also conduct experi-
ments on the OPT-2.7b. The result is shown in
Table 5.

We find that under the same dataset, the robust-
ness of BW is very stable. Another noteworthy
point is that KGW exhibits the greatest fluctuation
in robustness, similar to its performance in other
watermarking characteristics.

B Hyper-Parameters

B.1 § Analysis

We demonstrate in Figure 3 the impact of different
¢ on the imperceptibility of three watermarks. The
numerical details are shown in Table 3.

We find that the AUC scores of BW perform
better than KGW and UNIW at low ¢ values. This
is an unintended good effect, we speculate that
the reason for this phenomenon lies in the fact
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using the Llama3-8b model, the AUC scores and imperceptibility of different watermarks

Dataset Method Normal Attack

UNIW 0.995 0.940
c4 KGW 0.988 0.866
Uw 0991 0.619
BW(Ours) 0.992 0.835
UNIW 0981 0.896
KGW 0.994 0.877
LFQA Uw 0.986 0.546
BW(Ours) 0.996 0.895

Table 5: The robustness details of two datasets on the
OPT-2.7b. Normal represents the AUC score in the
absence of attacks. Attack indicates the AUC score after
being subjected to a DIPPER attack.

that the green list selected by BW consists of two
completely opposing lists. We consider the magni-
tude of watermark imperceptibility as the disrup-
tion of the watermark to the overall LLM distri-
bution. While ensuring the same level of imper-
ceptibility, KGW performs well at low watermark
strengths, whereas BW performs better as the wa-
termark strength increases. It can be observed that
the imperceptibility of BW is more stable. This
makes the design of BW more practically signifi-
cant.

C ~ Analysis

We demonstrate the impact of the green list ratio ~y
on the detectability and imperceptibility of BW in
Figure 6. The numerical details are shown in Table
6.

When ~ is low, BW exhibits a high level of de-



v AUC Score z
0.2 0.999 8.504
0.3 0.997 26.568
0.35 0.998 30.272
0.4 0.997 32.599
0.45 0.996 28.782
0.5 0.998 44.060
0.55 0.995 42.465
0.6 0.996 41.360
0.65 0.992 43.343
0.7 0.981 47.787
0.8 0.977 47.422

Table 6: The detail of imperceptibility and detectability
of BW under different y. OPT-2.7b is the generative
model, and LFQA is the dataset.

tectability and a lower level of imperceptibility.
Low + confines the fixed watermark strength to a
few tokens, severely undermining imperceptibil-
ity. When +y is higher, the detectability of BW
is somewhat reduced, while imperceptibility in-
creases. The increase in 7y does not change the wa-
termark strength, but the amplification of the green
list makes the detection difference between water-
marked text and non-watermarked text smaller.
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