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ABSTRACT

Variational inference with full-covariance Gaussian approximations is an impor-
tant line of research, as such Gaussian variational approximations (GVAs) allow
for tractable approximate inference while yielding superior approximations com-
pared to mean-field methods. Moreover, it was recently shown, that the problem
of variational inference with Gaussian mixture models can be reduced to Gaus-
sian variational inference using VIPS, which is a procedure similar to expecta-
tion maximization. Effective approaches for Gaussian variational inference are
MORE, VOGN, and VON, which are zero-order, first-order, and second-order, re-
spectively. We focus on the first-order setting, which is arguably the most relevant
for variational inference, and show that the biases added by the generalized Gauß-
Newton approximation, which is applied by VOGN, can seriously affect the qual-
ity of the learned approximation. Hence, we propose gradientMORE, a method
that is similar to MORE but differs by incorporating gradient information. Gradi-
entMORE achieves unbiased high-quality approximations of the Hessian that are
similar to VON which has direct access to the Hessian. Our algorithm converges
even in settings where VOGN does not converge. Compared to MORE, the ad-
ditional information improves sample efficiency by about an order of magnitude.
Furthermore, we evaluate the different approaches in the GMM setting by modi-
fying VIPS, which has previously only been tested in combination with MORE,
and show that the results from the GVA setting are transferable to GMMs, setting
a new standard for GMM-based variational inference.

1 INTRODUCTION

A reoccurring challenge in machine learning relates to inference from intractable distributions. For
example, in Bayesian inference, the intractable distribution corresponds to the posterior

p(x|D) = p(x)p(D|x)
p(D)

.

Typically, the prior p(x) and the likelihood p(D|x) can be evaluated and differentiated, but the
evidence p(D), which normalizes the posterior, can not. Variational inference (VI) replaces the
posterior with a tractable model q(x) that minimizes the Kullback-Leibler divergence (KL),

DKL(q(x)||p(x|D)) =
∫
x

q(x) log
q(x)

p(x|D)
dx.

This minimization can be performed despite the intractability of p(x|D) because the normalizer
p(D) enters the objective as a constant offset that can be ignored.

Traditionally, the model family of the variational distribution q(x) was chosen specific to the tar-
get distribution p(x|D), such that the KL could be minimized in closed form (Saul et al., 1996).
However, finding appropriate model families is cumbersome and the approximations are often crude
by relying on the mean-field assumption. Hence, more expressive models that can not be found
in closed form, but that are independent of the target distribution, and allow for more accurate
approximations have become popular (Arridge et al., 2018; Ranganath et al., 2014). Gaussian vari-
ational approximations (GVAs) with full covariance matrix are particular interesting because they
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Figure 1: MORE approximates a function (middle) with a quadratic model locally to a given Gaus-
sian search distribution (in this case isotropic, indicated by a black circle), using regression based on
samples from this distribution (red markers). The left plot shows an approximation that not consider
the gradients at the sample locations. Our method learns an approximation (right) that also respects
the gradients at these locations. Trust-region updates of the search distribution, based on the respec-
tive surrogates, are visualized as red and green ellipses. Here, the green update, resulting from our
surrogate, moves towards the optimum and better adapts the covariance towards the local curvature.

are highly tractable, for example regarding sampling, density and entropy evaluation, and marginal-
ization. Furthermore, Arenz et al. (2020) showed, that variational inference with Gaussian mixture
models (GMMs) can be reduced to the problem of learning GVAs, and, hence, optimizing GVAs
can be an important building block for learning highly accurate variational approximations.

Arenz et al. (2020) adapted the stochastic search method MORE (Abdolmaleki et al., 2015) to per-
form this component-wise optimization. However, MORE (Abdolmaleki et al., 2015) was proposed
for policy search (Deisenroth et al., 2013), where gradients of the return are typically not avail-
able, and, thus, does not exploit gradient information, which would be available in many variational
inference settings. MORE fits a quadratic surrogate of the return function, which can be derived
from a compatible function approximation perspective and shown to yield unbiased natural gradi-
ent updates (Pajarinen et al., 2019). Another option is to use the Variational Online Gauss Newton
(VOGN) method (Khan & Nielsen, 2018) for optimizing the components. Although VOGN makes
use of first-order information, it is mainly popular for mean-field approximations, where it can scale
to high-dimensional problems. For lower-dimensional problems (e.g. 100 dimensions), the approxi-
mation of the Hessian that VOGN applies can impair the quality of the approximation, in particular,
if the target distribution does not decompose into independent likelihoods for different data points.

Instead, we propose a modification of MORE that makes use of the gradient of the log target distribu-
tion in order to improve sample efficiency. MORE optimizes a Gaussian distribution by iteratively
learning a local quadratic surrogate and updating the Gaussian with respect to this surrogate; our
modification of MORE exploits gradient information while fitting the surrogate by penalizing the
squared errors between the gradients of the surrogate and the gradients of the log target distribu-
tion. Figure 1 illustrates how matching the gradients can lead to better surrogates and, thus, better
updates of the variational distribution. In difference to VOGN, the resulting surrogate yields an
unbiased approximation of the expected Hessian, resulting in GVAs of higher quality.

Our main contributions are

• presenting a novel method for learning GVAs, gMORE, that incorporates first-order infor-
mation in MORE,

• reimplementing and adapting VIPS to use different methods for the component optimiza-
tion, namely VOGN, VON, and GM (Khan & Nielsen, 2018), MORE and gMORE,

• evaluating the different methods for learning GVAs and Gaussian mixture models with
respect to sample efficiency and accuracy.

Our modification to MORE is simple, sound and highly effective as we demonstrate in our experi-
ments. Namely, our proposed methods, gMORE and gVIPS, reliably achieve an improved computa-
tional efficiency by around one order of magnitude, while retaining the accuracy of their zero-order
counterparts, which are state-of-art in the considered problem domain. An open-source implemen-
tation for reproducing our experiments is available at [link will be added here].
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2 PRELIMINARIES

We will now discuss two methods that are essential to this work: MORE (Abdolmaleki et al., 2015)
is a stochastic search method that optimizes a Gaussian search distribution, and VIPS (Arenz et al.,
2018) is a method for variational inference with GMMs that uses MORE for the component updates.

2.1 BLACK BOX VARIATIONAL INFERENCE

Black-box variational inference refers to a specific method (Ranganath et al., 2014) but is here used
as an umbrella term for variational inference methods that do not make specific assumptions on the
target distribution. These methods aim to minimize the KLDKL(q(x)||p(x)) between a model q(x)
and a target distribution p(x) by learning based on samples from the approximation q(x) that are
evaluated on the target distribution. The optimization problem is typically formulated as follows:

argmin
q(x)

DKL(q(x)||p(x)) = argmin
q(x)

∫
x

q(x) log
q(x)

p(x)
dx

= argmin
q(x)

∫
x

q(x) log
q(x)

p̃(x)
dx+ const = argmax

q(x)

∫
x

q(x) log p̃(x)dx+H(q(x))︸ ︷︷ ︸
L(q(x))

. (1)

The resulting objective L(q(x)) is known as the evidence lower bound (ELBO) because it bounds
the log normalizer of the unnormalized target distribution p̃(x) (which in Bayesian inference corre-
sponds to the log evidence log p(D)). The ELBO can be optimized using gradient descent, where the
gradient with respect to the parameters of q(x) can be estimated using the log-derivative trick (Ran-
ganath et al., 2014; Williams, 1992) or the reparameterization trick (Rezende et al., 2014; Kingma &
Welling, 2014; Titsias & Lázaro-Gredilla, 2014). However, gradient-based optimization can suffer
from high variance and poor local optima, in particular for expressive models (Arenz et al., 2020).

2.1.1 MODEL-BASED RELATIVE ENTROPY STOCHASTIC SEARCH

MORE (Abdolmaleki et al., 2015) is a stochastic search method, similar to CEM (Botev et al.,
2013), CMA-ES (Shirakawa et al., 2015), or NES (Wierstra et al., 2014), that maximizes a black
box function f(x), x ∈ RN , by updating a Gaussian search distribution. At every iteration i, MORE
learns a quadratic surrogate

R(i)(x) =
1

2
x>R(i)x+ x>r(i) + r(i), (2)

where the symmetric matrixR(i) ∈ RN×N , the vector r(i) ∈ RN and the scalar r(i) ∈ R are learned
using ordinary least squares based on samples X (i) ∼ q(i)(x) drawn from the current search distri-
bution q(i)(x). Fitting such a surrogate can be derived from a compatible function approximation
perspective (Pajarinen et al., 2019; Sutton et al., 2000), showing that MORE yields an unbiased
natural gradient update. Intuitively, the surrogate fits the expected Hessian and gradient of the opti-
mization objective. MORE uses this surrogate to update the search distribution subject to constraints
on its entropy H(q(x)) and its KL divergence to the last search distribution, DKL(q(x)||q(i)(x)),

q(i+1)(x) = argmax
q(x)

∫
x

q(x)R(i)(x)dx, st. H(q(x)) ≥ β, DKL(q(x)||q(i)(x)) ≤ ε, (3)

where ε is a hyperparameter relating to a step size and β is typically decreased at every iteration for
annealing. The purpose of the entropy constraint is to maintain exploration during optimization, and
the KL constraint should force the updated search distribution to stay in the validity of the quadratic
surrogate R(i). Thanks to the quadratic structure of the surrogate R(i) the solution of optimization
problem 3 is Gaussian, with mean µ(i+1) and covariance Σ(i+1) given by

Σ(i+1) =

(
η

η + ω
Σ(i)−1 − 1

η + ω
R(i)

)−1
,µ(i+1) = Σ(i+1)

(
η

η + ω
Σ(i)−1µ(i) +

1

η + ω
r(i)
)
,

(4)
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where η ∈ R+ and β ∈ R+ are the Lagrangian multipliers corresponding to the entropy and KL
constraint, that can be efficiently found by minimizing the convex Lagrangian dual function.

Although MORE treats q(x) merely as a search distribution that converges to a singular distribution
during optimization in order to find optimal parameters x, Arenz et al. (2018) showed that MORE
can also be used for learning Gaussian approximations for variational inference (where we have
direct interest in q(x)), by dropping the entropy constraint in favor of an entropy bonus in the
objective function with fixed weight of 1. This minor modification of MORE substitutes ω = 1
when updating mean µ(i+1) and covariance Σ(i+1) and only optimizes the stepsize parameter η.

2.2 VARIATIONAL INFERENCE BY POLICY SEARCH

VIPS (Arenz et al., 2018; 2020) optimizes a Gaussian mixture model

q(x) =
∑
o

q(o)q(x|o)

for variational inference, where q(o) is a categorical distribution that assigns weight to each Gaussian
component q(x|o). Arenz et al. (2018) introduced an auxiliary distribution q̃(o|x) to derive a lower
bound L(q(x), q̃(o|x)) on the ELBO objective,

L(q(x), q̃(o|x)) =
∑
o

q(o)
[ Jo(q(x|o))︷ ︸︸ ︷∫
x

q(x|o) (log p̃(x) + log q̃(o|x)) dx+H(q(x|o)
]
+H(q(o)) (5)

=

∫
x

q(x) log p̃(x)dx+H(q(x))−
∑
x

q(x)DKL(q(o|x)||q̃(o|x))dx

≤
∫
x

q(x) log p̃(x)dx+H(q(x)).

For a given auxiliary distribution q̃(x) maximizing the lower bound L(q(x), q̃(o|x)) is significantly
easier than maximizing the ELBO, because every component can be optimized independently by
maximizing Jo(q(x|o)). To ensure improvement on the ELBO, VIPS employs a similar procedure as
expectation maximization (Bishop, 2006)—which minimizes the forward KL DKL(p(x)||q(x))—,
by exploiting that the bound is tight when the auxiliary distribution q̃(o|x) is set to the true respon-
sibilities q(o|x). Namely, at every iteration i, the responsibilities are computed based on the current
approximation q(i)(x) and then held constant for optimizing the lower bound for each component
and for the distribution of the weights independently. Hence, after every iteration an improvement
on the lower bound L(q(x), q̃(o|x)) also ensures an improvement on the original objective.

For updating the individual Gaussian component by increasing Jo(q(x|o)) (see Eq. 5), VIPS uses
a slight variation of MORE with fixed entropy bonus, as discussed in Section 2.1.1, where the
quadratic surrogate approximates the component-specific objective function fo(x) = log p̃(x) +
log q̃(o|x). In this work, we will also investigate other methods for optimizing the component,
namely VON (Khan & Nielsen, 2018) or VOGN (Khan & Nielsen, 2018), GM (Khan & Nielsen,
2018) and our new method gMORE. We will evaluate the different options in Section 5.

For updating the weights q(o), VIPS use Monte-Carlo estimates J̃o(q(x|o)) of Jo(q(x|o)) to com-
pute the optimal update in closed form, namely q(i+1)(o) ∝ exp(J̃o(q(x|o))).
Arenz et al. (2020) also discuss several details such as an adaptation scheme that dynamically adds
and deletes components, and importance weighting to reuse previous function evaluations. While
we also apply these techniques, they are orthogonal to our contribution, which modifies MORE to
use gradients, and, hence, we kindly refer to the original article (Arenz et al., 2020).

3 UNBIASED FIRST-ORDER NATURAL GRADIENT UPDATES

We will now discuss the main technical contribution of our work, gMORE, a modification of MORE
that can make use of gradient information to increase sample efficiency. gMORE can be used as
drop-in replacement in VIPS, to obtain gVIPS, a state of the art method for learning GMMs for VI.
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3.1 INTERLUDE: FITTING THE SURROGATE WITHOUT GRADIENTS

At every iteration, MORE (Abdolmaleki et al., 2015) learns a compatible quadratic surrogate
R(i)(x) (Eq. 2), to fit the objective function f(x) at locations xs ∼ q(x) sampled from the cur-
rent search distribution. The surrogate is linear in its parameters, that is, it can be written as

Rθ(x) = φ(x)
>θ,

with parameters θ and corresponding features φ(x)

θ = [R1,1, R1,2, . . . , R1,N , R2,2, R2,3, . . . R2,N , . . . , RN,N , r1, . . . , rN , r]
> (6)

φ(x) =
[
0.5x21, x1x2, . . . , x1xN , 0.5x

2
2, x2x3, . . . x2xN , . . . , 0.5x

2
N , x1, . . . , xN , 1

]>
.

Hence, the parameters θ? of the surrogate can be learned in closed form using ordinary least-squares,

θ? = (Φ>Φ)−1Φ>y, (7)

where each row of Φ contains the features of the respective sample and each row of y contains the
corresponding function evaluation. This procedure, which is used by MORE (Abdolmaleki et al.,
2015; Arenz et al., 2018), minimizes the loss function

LOLS(θ) =

Ns∑
s=1

(Rθ(xs)− f(xs))2 ,

where Ns is the number of samples. In practice, we use ridge regression for regularization.

3.2 FITTING THE SURROGATE WITH GRADIENTS

In order to make use of gradient information for fitting the surrogate Rθ(x), we minimize the loss

LgOLS(θ) =

Ns∑
s=1

[
(Rθ(xs)− f(xs))2 +

N∑
i=1

(
∂Rθ
∂xi

(xs)−
∂f

∂xi
(xs)

)2
]
,

that is, we also want to match the partial derivatives ∂f
∂xi

of the objective function f(x).

The gradient ∇xR(x) = Rx + r of the quadratic surrogate is also linear in the parameters θ, and
hence, we can write the loss as

LgOLS(θ) =

Ns∑
s=1

[(
φ(xs)

>θ − f(xs)
)2

+
(
Φg(xs)θ −∇xf(xs)

)>(
Φg(xs)θ −∇xf(xs)

)]
,

where the gradient-feature matrix Φg(x) is a sparse matrix that is constructed such that its ma-
trix product with the parameter vector corresponds to the gradient of R(x), that is, Φg(xs)θ =
∇xR(x)|x=xs

. The gradient-feature matrix Φg has a recursive structure, which is illustrated for
four dimensions in Figure 2. As the only non-zero elements are either an element of x or 1, we can
compute the matrix efficiently by precomputing the indices for each of these elements.

Constructing the design matrix Φ by stacking zero-order features φ(xs)> and first-order features
Φg(xs) for each sample xs, and constructing the targets y by stacking the respective function
evaluations f(xs) and gradients∇f(x)|x=xs

, that is,

Φ =



φ(x1)
>

Φg(x1)
φ(x2)

>

Φg(x2)
...

φ(xNs
)>

Φg(xNs
)


y =



f(x1)
∇f(x)|x=x1

f(x2)
∇f(x)|x=x2

...
f(xNs

)
∇f(x)|x=xNs


,
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Figure 2: The top row (shaded in blue) shows the parameter vector θ> of the quadratic surrogate
for N = 4. The lower matrix (shaded in red) shows the non-zero elements of the gradient-feature
matrix Φg(x), such that the matrix product Φg(x)θ corresponds to the gradient of R(x) (Eq. 2).
The V-shapes highlight the recursive structure of Φg(x).

we can express our loss in matrix notation as a standard least squares problem,

LgOLS(θ) =
(
Φθ − y

)>(
Φθ − y

)
,

with a closed-form solution given by Eq. 7. However, in our experiments we use weighted ridge
regression, in order to reuse samples from previous iterations as discussed by Arenz et al. (2020),
and hence the optimal parameters for the surrogate are

θ? = (Φ>WΦ + δIn)
−1Φ>Wy,

with a diagonal weighting matrix W assigning different weights to different samples, and ridge
coefficient δ penalizing the `2-norm of the parameters.

4 RELATED WORK

Early uses of the Gaussian variational approximation (GVA) (Opper & Archambeau, 2009) date
back to the last century. For example, Barber & Bishop (1998) learned a GVA for small Bayesian
neural networks and Seeger (2000) learned a GVA for approximating the posterior of the hyperpa-
rameters of a support vector machine. Slightly more recently, Graves (2011) related the ELBO to
the minimum description length and optimized a mean-field GVA. Challis & Barber (2013) derived
conditions on the likelihood terms for which the ELBO objective for GVAs is smooth and concave.

4.1 OPTIMIZING GVAS

A rather simple way to optimize GVAs is to use gradient descent, however, estimating the gradi-
ent of the ELBO is not straightforward. Ranganath et al. (2014) proposed a black-box optimizer
that only needs access to the target function. They apply the log-derivative (or REINFORCE-)
trick (Williams, 1992) to obtain unbiased estimates which, however, suffer from high variance. Sev-
eral researchers (Rezende et al., 2014; Kingma & Welling, 2014; Titsias & Lázaro-Gredilla, 2014)
proposed a reparameterization for obtaining lower-variance estimates of the gradient, which requires
the gradients of the target function. Sakaya et al. (2017) show how importance sampling can be used
to estimate the reparameterization gradients for GVAs from previous samples.

Second-order methods have been investigated by Fan et al. (2015) and Regier et al. (2017). Fan
et al. (2015) propose a second-order method that uses reparameterization of the Gaussian to obtain
unbiased estimates of the second-order derivative of the ELBO based on second-order derivatives
of the log target distribution. The Hessian can then be used to compute an update using Newton’s
method. Regier et al. (2017) extend their idea by introducing a Euclidean trust region.
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Currently, the probably most efficient approaches are based on natural gradient descent (Amari,
1998). Khan et al. (2015) proposed a KL-proximal method for VI and showed that their update is
equivalent to natural gradients. Using a linearization of the ELBO their method was applied for
learning GVAs for non-conjugate models. Khan et al. (2016) extended this idea to other divergences
and stochastic gradients. Khan & Nielsen (2018) proposed a more direct estimation of the natural
gradient, VON, that uses samples of the Hessian of the target distribution to obtain unbiased esti-
mates of the natural gradient. They also proposed a first-order method, VOGN, that estimates the
Hessian using the generalized Gauß-Newton approximation, which, however, results in biased es-
timates. VOGN is highly related to the scope of this article, as it mainly differs from gMORE in
the way the expected Hessian and the expected gradient are estimated. We provide a more detailed
description of VON and VOGN in Appendix A.5, where we also show the close relation between
VON, VOGN and (g)MORE. Salimbeni et al. (2018) compute the natural gradient based on the
Jacobian of the parameters of the Gaussian and its expectation parameters. The Jacobian can be
computed using forward-mode differentiation, or by using reverse-mode differentiation twice.

5 EXPERIMENTS

We will now evaluate how the incorporation of gradient information affects the quality and sample
efficiency of MORE for learning GVAs. We will also compare our method with VOGN, and VON,
which assumes access to the Hessian of the target distribution and acts as our baseline. However,
VOGN is not always applicable as it assumes a typical posterior structure (see Equation 11 in Ap-
pendix A.5). One may argue that any target distribution p̃(x) is a special case of that structure, using
a single (virtual) data point for the target likelihood and a uniform prior. We will also evaluate this
variant, which is related to the gradient magnitude (GM) method (Khan & Nielsen, 2018).

As our primary focus is on learning highly accurate multi-modal distribution, we perform most
experiments in the GMM setting, where we evaluate how the different options for optimizing GVAs
affect the performance of VIPS. We reimplemented VIPS, which was only available in C++, in
Tensorflow (Abadi et al., 2015) and investigated the following variants: VIPS (which uses MORE),
gVIPS, vonVIPS, vognVIPS and gmVIPS. To allow for a fair comparison with the original VIPS,
we acquired the data from Arenz et al. (2020) and evaluate our methods on the same experiments.
Hence, we can also relate our results to the original implementation of VIPS (which we call VIPS++)
as well as many MCMC and VI methods that have been tested by Arenz et al. (2020).

• In German credit and breast cancer we want to approximate the posterior for Bayesian
logistic regression based on the respective data sets (Lichman, 2013). German credit has
25 parameters and 1000 data points; breast cancer uses 31 parameters and 561 data points.

• Planar robot considers the problem of sampling joint configurations of planar robot with
10 links, that aims to reach a given goal position with a smooth configuration. We test both
variants that were used by Arenz et al. (2020), one with a single goal position and one,
where the robot can choose among four different goal positions. Visualizations of the robot
and the learned solution can be found in Appendix A.7.

• In the Target GMM experiment, we use the log-density function of a GMM with ten com-
ponents as target distribution, but do not provide the parameters to the algorithm. Approx-
imating the GMM is a hard exploration problem, as the different components have little
overlap with each other. In contrast to Arenz et al. (2020) we do not only investigate 20-,
40- and 60-dimensional GMMs, but also 80 and 100 dimensions as we noticed that our
methods can also tackle these higher-dimensional problems.

For the exact specification of the target distributions, we kindly refer to the original article (Arenz
et al., 2020). Implementation details, as well as hyperparameters, can be found in Appendix A.6.
In the following plots, we show the negated ELBO on log-log plots over function evaluations. We
subtract a constant offset to ensure positive values. The offsets can be found in Appendix A.6.4.

5.1 LEARNING A GAUSSIAN VARIATIONAL APPROXIMATION

In the first experiment, we optimize a single Gaussian approximation on the breast cancer and Ger-
man credit test problem. We evaluate MORE, gMORE, VOGN, VON, GM, and—as an ablation—a
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Figure 3: In our GVA experiments, using the vanilla gradient, computed with the log-derivative
or reparameterization trick, can learn good approximations but is very sample inefficient. MORE,
gMORE and VON achieve similar approximation quality, but high-order methods are more sample
efficient. VOGN is fast, but its approximation quality suffers from the bias of the Gauß-Newton
approximation, which is amplified when applying it to the target log density directy (GM).
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Figure 4: The result when learning GMMs are similar to the GVA experiment. However, the bias of
VOGN has a stronger effect, and gMORE is able to catch up with VON during the optimization.

variant of gMORE that does not make use of zero order information. As shown in Figure 3, MORE,
gMORE and VON learn similarly well approximations, which was expected, as all these methods
use unbiased estimates of the natural gradient. However, as the methods exploit different amounts of
information, they differ in terms of sample efficiency: The second-order method VON is around one
order of magnitude more efficient than the first-order method gMORE, which in term is one order
of magnitude more efficient than the zero-order method MORE. VOGN also achieved high sample
efficiency, similar to VON, however at the cost of converging to worse approximations, which we
explain by the bias introduced by the generalized Gauß-Newton approximation. The limitations of
this approximation are particularly apparent when considering the performance of GM, which ap-
plies it in black-box fashion to the likelihood of the complete training data. Our ablation without
zero order information performs indistinguishable from gMORE, highlighting the value of the addi-
tional first-order information that is exploited by gMORE. We also evaluated the different methods
with respect to wallclock time and found that MORE, gMORE and VON perform very similar. We
show the learning curves in Appendix A.4, were we also justify our focus on sample efficiency, and
the first-order setting in particular.

5.2 OPTIMIZING A GMM

In the second experiment we evaluate the performance of the different methods, when they are used
within the inner optimization of VIPS. We perform five experiments namely breast cancer, German
credit, GMM, planar robot (with one goal and with four goals). Here, we only show the evaluations
with respect to the ELBO. Evaluations with respect to the maximum mean discrepancy (Gretton
et al., 2012) can be found in Appendix A.3, where we also show the performance of many MCMC
methods that were tested by Arenz et al. (2020). The results are shown in Figure 4. On the Target
GMM experiment, we only tested VIPS, gVIPS and vonVIPS, as gmVIPS was not able to solve the
task. All of the tested methods learned indisguishable good approximations with estimated KLs be-
low 1e−7. The required samples for reaching this threshold are shown in Table 1. Overall, the VIPS
results are in line with the results for single GVAs. Namely, MORE, gMORE and VON achieve sim-
ilarly good approximations, where higher-order methods achieve better sample efficiency. However,
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Table 1: Average samples required to solve the GMM experiments

Method 20 D 40 D 60 D 80 D 100 D
VIPS 1.19e5± 6e4 2.29e5± 1e4 6.48e5± 9e4 N/A N/A
gVIPS 15541± 2098 28796± 4610 48072± 5670 87037± 8383 310923± 90784
vonVIPS 19243± 4129 18403± 1452 23996± 1743 38068± 7786 39894± 13800

VOGN is not able to exploit the increased expressiveness of the variational approximation, likely due
to the bias resulting from the generalized Gauß-Newton method. It is also interesting to note, that
while VON still enjoys one order of magnitude better sample efficiency in the beginning, gMORE
is able to catch up during optimization. We believe that for the highly multi-modal planar robot
experiments, exploration is a bottleneck, where the improved sample efficiency from second-order
information is not helpful. For the approximately unimodal breast cancer and German credit exper-
iments, all components of the GMM are highly overlapping, and hence, can make use of each others
samples; the better sample efficiency for optimizing a single component, might therefore diminish.

6 CONCLUSION

Although MORE was developed as a stochastic search method, it was recently shown to be effective
also for learning GVAs for variational inference—in particular when it is used as subroutine for
optimizing GMMs. However, as a black-box optimizer, MORE does not make use of gradient
information which is wasteful in variational inference. We presented a simple technique to address
this limitation using a modification to least-squares that also matches the target gradient when fitting
the quadratic surrogate. The resulting method, gMORE, is highly effective. Compared to MORE it
is about one order magnitude more efficient. Unlike VOGN, it does not suffer from biases caused
by the generalized Gauß-Newton approximation, and unlike VON it does not assume access to the
Hessian. We also proposed to use different component optimizers in the inner optimization of VIPS.
We tested VON, VOGN, GM and gMORE against the previously proposed MORE. We found that
VON is slightly preferable compared to gMORE when the Hessian matrix is available, although its
increased sample efficiency typically diminishes during optimization. If the Hessian is not available,
gMORE is preferable to VOGN as it does not suffer from biases that impair the quality of the learned
approximation. gMORE is also around one order of magnitude more efficient than MORE, and
hence MORE should only be used when the target distribution is not differentiable.

6.1 LIMITATIONS AND FUTURE WORK

While GVAs with full covariance can yield significantly better approximations than mean-field ap-
proximations they do not scale to very high dimensions, as the matrix inversion becomes too costly
and the memory footprint too large. In this work, we do not consider very high-dimensional prob-
lems, but instead focus on learning highly accurate approximations for medium-scaled problems (be-
low 100 dimensions). Possible applications are for example Bayesian inference with medium-sized
models (Thijssen & Wessels, 2020), and robotics applications, such as inverse kinematics (Pignat
et al., 2020) or path planning (Ewerton et al., 2020) problems. However, we acknowledge that there
is a high demand for variational inference for high-dimensional problems, e.g. Bayesian inference
for deep networks. Several methods (Barber & Bishop, 1998; Seeger, 2000; Maddox et al., 2019;
Tomczak et al., 2020; Mishkin et al., 2018) reduced the trainable parameters of GVAs by using factor
analyzed covariance, that is, covariance of the form Σ = A>A + Id, where A ∈ RL×N contains
L < N factors and d are diagonal offsets to ensure that Σ has full rank. We believe that such
structure could also be used by gMORE. However, as a low rank surrogate would not be linear in
the parameters, we will need to use gradient descent instead of ordinary least squares for optimizing
our surrogate objective. Furthermore, the natural gradient update can double the amount of factors,
which we could counter using a projection based on the largest eigenvalues, as proposed by Mishkin
et al. (2018) for SLANG, which is based on VOGN.

9



Under review as a conference paper at ICLR 2022

REFERENCES

M. Abadi, M. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefow-
icz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
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A APPENDIX

A.1 ETHICS STATEMENT

We believe wholeheartedly that researchers must take responsibility for their research and that we
cannot rely on others to use our results only for the benefit of society or on governments to force
them to do so. We must constantly question how our results are actually being used. We also cannot
hide behind the fact that the actual impact of our research is likely to be small, because progress is
usually made in many small steps, and if we did not believe in our own footprints, it would be hard
to justify our research at all. Machine learning methods are extremely disruptive and have strong
implications for our daily lives. They have the potential to relieve our burden and improve our
quality of life, help us address challenges such as the climate crisis, or lead to important advances
in various fields, such as medicine. However, machine learning methods also carry many risks that
are already emerging: they can reinforce prejudices, discriminate against people, invade our privacy,
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Figure 5: From left to right: BreastCancer, GermanCredit, GMM(20D), Planar Robot (1 goal),
Planar Robot (4 goals)

waste huge amounts of energy, or increase inbalances in power and wealth. They can cause serious
harm—even fatal accidents—if we overestimate their capabilities, and they can be used maliciously,
for example, to forge data or carry out cyberattacks.

How should this work be framed in terms of all these positive and negative impacts? We believe
that wasting energy is a relatively small risk, because in contrast to most deep learning method, we
focus on structured representations with few parameters that can be efficiently learned. Similarly,
we are less vulnerable to the risk of privacy invasion or discrimination compared to many computer
vision and NLP methods. Regarding the other opportunities and risks, we can not assess in which
directions our small steps leads most, but we are positive that we can use our insights to assist
humans in their daily life.

A.2 REPRODUCIBILITY STATEMENT

We also believe wholeheartedly that reproducibility, transparency, and openness are essential in re-
search and that we could make much faster progress if data and code were shared more consequently
and limitations and negative results were better communicated. For this reason, we provide a detailed
description of our implementation in Appendix A.6, where we also provide the hyperparameters for
all of our experiments and the procedure we used to select them. Of course, we will open source
the implementation we used for our experiments, and of course we will make the anonymized code
available to reviewers. Our code is prepared in such a way that any combination of test problem
and method we have implemented can be easily executed from the command line, presetting the
hyperparameters we used for our evaluations.

A.3 MMD EVALUATIONS

We also compared our VIPS variants to the MCMC and VI methods that were tested by Arenz
et al. (2020). This evaluation is based on the maximum mean discrepancy (MMD) (Gretton et al.,
2012), approximate samples and groundtruth samples, since evaluating the ELBO is not possible for
MCMC methods. We computed the MMD in the same way as described by Arenz et al. (2020) and
also use the same groundtruth samples, which were created by very long MCMC runs. Please refer
to the original work for details (Arenz et al., 2020). Figure 5 shows evaluations for the following
additional methods:

• BBVI (log-derivative trick) with 1 component and 3 components (bbvi1 and bbvi3, Ran-
ganath et al. 2014)

• Elliptical Slice Sampling (ess, Murray et al. 2010),
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Figure 6: The different approaches to estimate the natural gradient perform remarkably similar when
evaluated with respect to wallclock time. However, we argue that this does not justify the conclusion
that it does not matter whether zero-order, first-order or second-order methods are applied, since
we only investigated problems where the target distribution (and its gradient and Hessian) can be
evaluated efficiently, which is in general not the case.

• Hybrid (or Hamiltonian) Monte Carlo (hmc, Duane et al. 1987),
• Inverse Autoregressive Flows (iaf, Kingma et al. 2016),
• Non-Parametric Variational Inference (npvi, Gershman et al. 2012),
• Slice Sampling (slice, Neal 2003),
• Stein-Variational Gradient Descent (svgd, Liu & Wang 2016).

For the VIPS variants tested by us, the approximation quality with respect to the MMD is very
similar to the evaluation of the ELBO. The comparison to MCMC and other VI methods, highlights
the usefulness of GMM variational approximations.

A.4 EVALUATION WITH RESPECT TO WALLCLOCK TIME

We also evaluated our GVA experiments with respect to wallclock time and present the results in
Figure 6. Here, VON, VOGN, MORE and gMORE1 perform remarkably similar. However, our
experiments did not consider target distributions that are costly to evaluate, for example when the
random variable x correspond to a hyperparameter of a neural network that needs to be trained in
order to evaluate its quality, or if it relates to a trajectory-parameterization of a robot, which needs
to be simulated. In such settings, the improved sample efficiency of higher-order methods will
certainly also be reflected in the wallclock time. Indeed, we argue that the first-order setting, which
we focused on in this work, is the most important setting for variational inference, as gradients of
the target distributions are typically available and are usually much more efficient than zero-order
methods. Furthermore, second-order methods scale poorly to high dimensions, as the evaluation of
the Hessian becomes too costly. While we do not consider very high dimensional problems in this
work due to the intractability of full covariance Gaussians, we plan to use factory analyzers to tackle
this problem setting, as discussed in Section 6.1. We believe that our first-order method for obtaining
unbiased estimates of the natural gradient, is well-suited for this problem class of problems.

A.5 RELATION BETWEEN VOGN, VON AND (G-)MORE

VON (Khan & Nielsen, 2018) optimizes the Gaussian variational approximation using natural gra-
dient descent. Intuitively, the natural gradient ∇̃ points in the direction of steepest ascend when
making small changes to the distribution (rather than to its parameters which leads to the vanilla
gradient ∇) and hence typically leads to much more efficient updates (Amari, 1998). The natural
gradient can be computed by prescaling the vanilla gradient with the inverse of the Fisher informa-
tion matrix. However, Khan & Nielsen (2018) presented a simpler method for estimating the natural
gradient for learning GVAs, which exploits that for exponential-family distributions, the natural gra-
dient of natural parameters coincides with the vanilla gradient of the expectation parameters. By

1We not show the plots for the reparameterization and log-derivative trick, because we used a different com-
puter for running these experiments, and the resulting plots would therefore not be meaningful. The computer
was faster but both methods took significantly more time to converge compared to the natural gradient methods.
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further expressing the gradient of the expectation parameters in terms of the gradient of the mean,
∇µ, and covariance,∇Σ, they derived the following update:(

Σ(i+1)
)−1

=
(
Σ(i)

)−1
− 2βi∇ΣL(q(x)), µ(i+1) = µ(i) + βiΣ

(i+1)∇µL(q(x)), (8)

where βi is the stepsize. Please refer to the original work for the derivation (Khan & Nielsen,
2018, Appendix C). As shown by Opper & Archambeau (2009), the gradient of an expected value
Eq
[
f(x)

]
with respect to mean and covariance can be expressed in terms of the gradient ∇xf(x)

and Hessian ∇xxf(x),

∇µEq
[
f(x)

]
= Eq

[
∇xf(x)

]
, ∇ΣEq

[
f(x)

]
=

1

2
Eq
[
∇xxf(x)

]
. (9)

We can directly use Equation 9 to estimate the natural gradient update (Eq. 8) of the ELBO objective
(Eq. 1) based on a Monte-Carlo estimate of the expected gradient and Hessian of f(x) = log p̃(x)−
log q(x). However, as the gradient and Hessian of the Gaussian log density function are given by
∇x log q(x) = Σ−1(µ− x) and∇xx log q(x) = −Σ−1, the natural gradient update for the ELBO
simplifies to(
Σ(i+1)

)−1
=(1− βi)

(
Σ(i)

)−1
− βiEq

[
∇xx log p̃(x)

]
µ(i+1) =Σ(i+1)

(
Σ(i+1)

)−1 (
µ(i) + βiΣ

(i+1)∇
µL(q(x))

)
,

=Σ(i+1)

((
(1− βi)

(
Σ(i)

)−1
− βiEq

[
∇xx log p̃(x)

])
µ(i) + βi∇µL(q(x))

)
,

=Σ(i+1)

(
(1− βi)

(
Σ(i)

)−1
µ(i) − βiEq

[
∇xx log p̃(x)

]
µ(i) + βiEq

[
∇x log p̃(x)

])
,

(10)
that is, only the gradient and Hessian of the log target density need to be approximated with Monte-
Carlo.

A.5.1 VON

VON (Khan & Nielsen, 2018) further assumes that the target distribution has the typical form of a
posterior distribution with a Gaussian prior p0(x) = N (0,Σp), that is,

log p̃(x) =
∑
d∈D

log p(d|x) + log p0(x), (11)

where log p(d|x) is the likelihood of a single training data point d. The Hessian of the log-density-
function of the Gaussian prior distribution is constant and given by its negated inverse covariance
matrix, and, thus, only the expected Hessian of the likelihood term needs to be estimated. An
unbiased estimate of it can be obtained based on a minibatch of training data. VON uses a single
sample for estimating the expected gradient and Hessian using Equation 9.

A.5.2 VOGN

Computing the Hessian of the likelihood is often expensive, and might not even be possible.
Hence, Khan & Nielsen (2018) proposed to apply the approximation used by the generalized Gauß-
Newton method, which approximates the Hessian for each individual data point, by the outer product
of the gradient. The resulting method, VOGN, hence estimates the Hessian of the ELBO as

Eq
[
∇xxf(x)

]
= Eq

[
∇xx

[
log p̃(x)− log q(x)

]]
≈ |D|
|B|

∑
d∈B

[
gdg
>
d

]
−Σp + Σ(i), (12)

where gd = ∇x log(d|x) is the gradient of the likelihood of data point d, and B ⊂ D is a minibatch.

A.5.3 MORE

Comparing the update of MORE with ω = 1 (Eq. 4) and the update given by Equation 10, we can
observe that they share the same form and can be transformed to each other by substituting
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• βi with 1
η+1 ,

• R(i) with Eq
[
∇xx log p̃(x)

]
,

• r(i) with Eq
[
∇xx log p̃(x)

]
µ(i) − Eq

[
∇x log p̃(x)

]
.

As alsoR(i) = Eq
[
∇xxR(i)(x)

]
and r(i) = Eq

[
∇xxR(i)(x)

]
µ(i)−Eq

[
∇xR(i)(x)

]
holds, we can

see that MORE approximates the natural gradient with the exact natural gradient for a local Gaussian
approximation of the target distribution, that is proportional to exp

(
R(i)(x)

)
. Indeed, the quadratic

surrogate is compatible with the Gaussian variational approximation in the sense stated by (Sutton
et al., 2000), that is, the features of the surrogate, φ(x), correspond to the derivative of the log
density function of the Gaussian (when using natural parameterization), and hence, its parameters
correspond to an unbiased estimate of the natural gradient (Peters & Schaal, 2008; Pajarinen et al.,
2019). The main difference between MORE, gMORE, VOGN, VON and GM is, thus, that they
apply different methods to estimate the expected Hessian and gradient, which is crucial for the
natural gradient update.

Apart from that, the methods only differ in the way they adapt the stepsize: VOGN, VON and GM
apply a fixed schedule, whereas MORE and gMORE choose the stepsize such that the KL constraint
DKL(q

(i+1)(x)||q(i)(x)) ≤ ε is satisfied.

A.6 DETAILS ON THE IMPLEMENTATION

Here we provide some details on our implementation of VIPS, MORE, VON, VOGN and GM. Our
GVA optimizations were performed based on our VIPS implementation by setting the initial and
maximum number of components to one (which leads to the GVA setting as the log-responsibilites
become 0). We performed the evaluations of the reparameterization trick and the log-derivative trick
based on the code published by Arenz et al. (2020).

A.6.1 VIPS

Our implementation of VIPS and MORE closely follows the C++ implementation published
by Arenz et al. (2020). However, for some parts, we opted for a simpler implementation:

• Instead of performing a linesearch for initializing the covariance matrix of a newly added
component, we always initialize them isotropic, which works similarly well, as already
shown by Arenz et al. (2020).

• For reusing samples, we always reuse the Nreuse newest samples; Arenz et al. (2020) use a
heuristic to identify the most relevant among all previous samples.

• For optimizing the Lagrangian multiplier η, which relates to the stepsize during the compo-
nent update, we use a line-search to identify the smallest value that satisfies the KL-bound,
instead of optimizing the Lagrangian dual as proposed by Arenz et al. (2020). Our ap-
proach is sound due to the convexity of the dual function and was numerically more stable
in our experiments.

Furthermore, instead of using the lower bound given by Equation 5, we use an equivalent for-
mulation that was introduced by Becker et al. (2019). Namely, the lower bound can be re-
formulated to use a component specific reward ro,Becker(x) = log p̃(x) − log q̃(x) instead of
ro(x) = log p̃(x) + log q̃(o|x) by replacing the entropy bonus of the component optimization by a
KL-penalty:

L(q(x), q̃(x)) =
∑
o

q(o)
[ Jo(q(x|o))︷ ︸︸ ︷∫
x

q(x|o) (log p̃(x) + log q̃(o|x)) dx+H(q(x|o)
]
+H(q(o))

=
∑
o

q(o)
[ ∫
x

q(x|o) (log p̃(x)− log q̃(x)) dx−DKL(q(x|o)||q̃(x|o)︸ ︷︷ ︸
Jo,Becker(q(x|o))

]

−DKL(q(o)||q̃(o)),
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Table 2: Tested Hyperparameters per Experiment

Method (Ndesired, Nreused)
gMORE {(50, 20), (100, 50), (200, 100), (300, 150), (400, 200), (500, 250)}
VON, VOGN, GM {(0, 1), (5, 3), (20, 10), (50, 20), (100, 50), (200, 100)}

where q̃(x) and q̃(x|o) are the auxiliary distributions that are set according to the approximation
at the last iteration. The Becker-bound Jo,Becker(q(x|o)) is more convenient to implement, and the
additional term inside the KL, log q̃(x|o) can be easily integrated into the natural gradient updates
of MORE, VOGN, VON and GM, since it relates to an additional Gaussian prior for which the
expected Hessian and gradient can be computed in closed form. Indeed, the only affect on our
MORE implementation is that the Lagrangian multiplier η is lower-bounded by 1 rather than 0, and
that we use ω = 0 instead of ω = 1. Please note, that both formulations yield the same natural
gradient update, except for negligible numerical errors.

A.6.2 VON, VOGN AND GM

In our experiments, we use the same trust region updates that we use for MORE also when using
VON, VOGN or GM, because we found the trust-region more robust in the GMM setting than the
stepsize schedule used by Khan & Nielsen (2018). Please note that both approaches to adapt the
stepsize are sound for all of the considered approaches and since their is a one-one-to mapping
between η and any β < 1 they are expected to perform similar for well-tuned hyperparameters.
To compute the update, we set R(i) = Eq

[
∇xx log p̃(x)

]
and r(i) = Eq

[
∇xx log p̃(x)

]
µ(i) −

Eq
[
∇x log p̃(x)

]
and proceed as if the surrogate was learned by MORE, by optimizing η to satisfy

a given KL-bound. Our implementation hence only differs in the way the expected Hessian and
gradient for the natural gradient are computed.

• For VON, we have direct access to the the Hessian ∇xxro,[Becker and the gradient
∇xro,Becker and can, thus, use Monte-Carlo estimates to approximate the expectation under
the current component,

• For VOGN, we estimate the Hessian for every individual training data point according
to Equation 11, which is only possible for the logistic regression experiments. For the
second part of our objective function ro,[Becker = log p̃(x) − log q̃(x), we use Monte-
Carlo estimates based on the analytical Hessian,

• For GM, we also make use of the analytical Hessian of log q̃(x), but do not assume the
posterior structure (Eq. 11) and, hence, need to approximate the Hessian as∇xx log p̃(x) ≈[
∇x log p̃

][
∇x log p̃

]>
. Also for GM, we make use of the analytic form of the Hessian of

the log-density of the GMM.

A.6.3 HYPERPARAMETERS

We automatically adapt the KL bound based on the scheme proposed by Arenz et al. (2020), that
is, we increase the trust region for a given component if its estimated performance on its objective
Jo(q(x|o)) improved, and decrease it otherwise. Hence, the only parameters that we need to tune
relate to the samples. We follow the scheme proposed by Arenz et al. (2020) for drawing new
samples. Namely, we specify the number of reused samples Nreused and the number of desired
samples Ndesired. At every iteration we select the Ncomponents×Nreuse newest samples for importance
sampling. We then compute for every component the number of effective samples neff(o) based on
the importance weights, and draw nnew = ndesired − bneff(o)c new samples.

We conducted a preliminary evaluation with a single seed for each algorithm (except for MORE,
where we used the parameters from Arenz et al. (2020)) and test problem to select the Ndesired and
Nreused. The candidates are given as tuples (Ndesired, Nreused) in Table 2. We selected the hyperpa-
rameter for the GMM setting and used the same parameters for the respective GVA experiments.

The chosen hyperparameters per experiment are given in Table 3.
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Table 3: Selected Hyperparameters per Experiment

Method Breast Cancer German Credit Planar 1 Planar 4 GMM [20-100]
gMORE (200, 100) (100, 50) (100, 50) (100, 50) (5N, 2.5N)
VON (20, 10) (5, 3) (5, 3) (5, 3) (100, 50)
VOGN (5, 3) (5, 3) N/A N/A N/A
GM (100, 50) (100, 50) (100, 50) (100, 50) N/A

A.6.4 OFFSETS FOR ELBO PLOTS

To ensure positive values for our log-log plots of the ELBO (Fig 3 and Fig 1) to increase the res-
olution close to the optimal values, we subtracted constant offsets from the ELBOs, which were
estimated based on two thousand samples. The offsets are given in Table 4.

Table 4: Offsets subracted from the estimated ELBOs

Breast Cancer (BC) German Credit (GC) Planar 1 Planar 4 BC (GVA) GC (GVA)
78.142 585.096 11.549 12.435 78.135 585.095

A.7 PLANAR ROBOT EXPERIMENT

Here we visualize the weights and means learned in the planar robot experiments. Figure 7 shows
plots of the ground-truth samples and of the components learned by Arenz et al. (2020).

Figure 8 shows the weights and means learned by different methods. As we can see from the
plots, GM only find few modes, which indicates that many other components converged to bad
configurations and where, thus, deleted. Interestingly, vonVIPS was unable to find all the modes.
This is probably caused due to too little exploration by using fewer samples in each iteration. We
did not detect this problem during our hyperparameter selection as the missing mode does not seem
to affect the performance in terms of the ELBO. We believe, that vonVIPS should be able to find all
modes, when using less aggressive hyperparameters (e.g., drawing more samples per iteration).
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Figure 7: The left two plots show 200 ground-truth samples for both planar robot experiments.
The right two plots visualize the weights and means of the mixture models learned by VIPS for
each of the planar robot experiments. The ground-truth samples are generated using generalized
elliptical slice sampling. The gray box indicates the base of the robot, the red crosses indicate the
goal positions. Each line represents a component, components with larger weight are drawn darker.
The planar robot 1 goal plot shows 333 components learned by VIPS and the planar robot 4 goals
plot shows 360 components learned by VIPS. Pictures are taken from Arenz et al. (2020).
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(f) vonVIPS 1370 components

Figure 8: Visualization of learned means and weights in the planar robot one goal and four goals
experiments. From left to right the plots are arranged as GM (left), gMORE (middle) and vonVIPS
(right). The number of components differs from each other due to explore ability. Grey box indi-
cates the robot base and red circle indicates the position of the end-effector. Each line represents a
component, components with larger weight are drawn darker.
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