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Abstract

Text-driven 3D indoor scene generation is useful for
gaming, film industry, and AR/VR applications. However,
existing methods cannot faithfully capture the scene layout
based on text descriptions, nor do they allow flexible editing
of individual objects in the room. To address these prob-
lems, we present Ctrl-Room, which can generate convinc-
ing 3D rooms with designer-style layouts and high-fidelity
textures from just a text prompt. Our key insight is to sepa-
rate the modeling of layouts and appearance. Our proposed
method consists of two stages: a Layout Generation Stage
and an Appearance Generation Stage. The Layout Genera-
tion Stage trains a text-conditional diffusion model to learn
the layout distribution with our holistic scene code parame-
terization. Next, the Appearance Generation Stage employs
a fine-tuned ControlNet to produce a vivid panoramic im-
age of the room guided by the 3D scene layout, then further
upgrades to a panoramic NeRF model. Benefiting from the
scene code parameterization, we can easily edit the gener-
ated room model through our mask-guided editing module,
without expensive edit-specific training. Extensive exper-
iments on the Structured3D dataset demonstrate that our
method outperforms existing methods in producing more
reasonable, view-consistent, and editable 3D rooms from
text prompts.

1. Introduction

High-quality 3D indoor scenes play a crucial role across a
wide array of applications, ranging from interior design and
video games to simulators for embodied AI. Traditionally,
indoor scenes are crafted manually by professional artists,
which is both time-consuming and costly. Recent advance-
ments in generative models [5, 18, 21, 27] have attempted
to simplify the creation of 3D models from textual descrip-
tions, However, extending this capability to text-driven 3D
indoor scene generation presents unique challenges as they
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Figure 1. We present Ctrl-Room to achieve fine-grained textured
3D indoor room generation and editing. (a) compared with the
Text2Room [12] and MVDiffusion[33], Ctrl-Room can generate
rooms with more plausible 3D structures. (b) Ctrl-Room supports
flexible editing. Users can replace furniture items or change their
positions easily.
exhibit strong semantic layout constraints, such as neigh-
boring walls are perpendicular and the TV set often faces a
sofa, that are more complicated than objects.
Existing text-driven 3D indoor scene generation ap-
proaches, such as Text2-Room [12] and Text2NeRF [42],
are designed with an incremental framework. They cre-
ate 3D indoor scenes by incrementally generating different



viewpoints frame-by-frame and reconstructing the 3D mesh
of the room from these sub-view images. However, these
approaches often fail to model the global layout of the room,
resulting in unconvincing results. As shown in the first row
of Fig. 1 (a), the result of Tex2Room exhibits repetitive ob-
jects, e.g. several cabinets in a living room, and does not fol-
low the furniture layout patterns. We refer to this problem
as the ‘Penrose Triangle problem’, where a generated scene
has plausible 3D structures everywhere locally but lacks
global consistency. Furthermore, prior approaches do not
offer user-friendly interaction, as the resulting 3D geometry
and textures are not editable. Other method [16, 17, 28, 33]
represent the scene as a panorama image and generate it
from a text prompt. However, these works cannot guarantee
reasonable scene layouts. As shown on the middle row of
Fig. 1 (a), a bedroom generated by MVDiffusion [33] con-
tains multiple beds, which violates room layout priors.
To address these shortcomings, we propose a novel two-
stage method to generate a high-fidelity and editable 3D
room. The key insight is to separate the generation of 3D
geometric layouts from that of visual appearance, which al-
lows us to better capture the room layout and achieve vivid
textures at the same time. In the first stage, from text in-
put, our method creates plausible scene layouts with var-
ious furniture types and positions. Unlike previous scene
synthesis methods [20, 31] that only focus on the furni-
ture arrangement, our approach further considers walls with
doors and windows, which play an essential role in the lay-
out. To achieve this goal, we parameterize the room by a
holistic scene code, which represents a room as a set of ob-
jects. Each object is represented by a vector capturing its
position, size, semantic class, and orientation. Based on
our compact parameterization, we design a diffusion model
to learn the 3D room layout distribution from the Struc-
tured3D dataset [44].
Our method then generates the room appearance with the
guidance of the 3D room layout. We first generate a
panorama using a text-to-image latent diffusion model, then
iteratively upgrade the generated images to a NeRF model
and generate additional novelty view panorama images.
During the panorama generation, unlike previous text-to-
panorama works [6, 33], our method explicitly enforces
scene layout constraints and guarantees plausible 3D room
structures and furniture arrangement. To achieve this goal,
we convert the 3D layout synthesized in the first stage into a
semantic segmentation map and feed it to a fine-tuned Con-
trolNet [43] model to create the panorama image. We also
use this layout information to estimate scene depth and in-
paint missing regions at novel viewpoints.
Benefiting from the separation of layout and appearance,
our method enables flexible editing on the generated 3D
room. The user can replace or modify the size and posi-
tion of furniture items, e.g. replacing the TV and TV stand

as in Fig. 1 (b). Our method can update the room according
to the edited room layout through our mask-guided editing
module without expensive edit-specific training. The up-
dated room appearance maintains consistency with the orig-
inal version while satisfying the user’s edits.
The main contributions of this paper are summarized as:
• To address the Penrose Triangle Problem, we design a

two-stage method for 3D room generation from pure text
input, which separates the geometric layout generation
and appearance generation. In this way, our method can
better capture the scene layout constraints in real-world
data and produce a vivid appearance simultaneously.

• Within the separated layout and appearance generation,
we introduce novel techniques, including holistic scene
code parametrization, layout-guided panorama genera-
tion, layout-guided panoramic NeRF, and a mask-guided
editing module to achieve high-quality and flexible 3D
room generation.

• Qualitative and quantitative experiments confirm that our
method excels in producing more realistic and editable
3D rooms compared to existing approaches.

2. Related Work
2.1. Text-based 3D Object Generation

Early methods employ 3D datasets to train generative mod-
els. Text2Shape [4] learns a feature representation from
paired text and 3D data and uses GAN to generate 3D
shapes from the text. Point-E [19] and Shap-E [13] en-
large the scope of the training dataset and employ a latent
diffusion model [23] for object generation. However, 3D
datasets are scarce, which makes these methods difficult to
scale. More recent methods [5, 18, 19, 21, 36, 38] exploit
the powerful 2D text-to-image diffusion models [23, 24] for
3D model generation. Typically, these methods generate
one or multiple 2D images in an incremental fashion and
optimize the 3D model accordingly. DreamFusion [21] in-
troduces a loss based on probability density distillation and
optimizes a randomly initialized 3D model through gradient
descent. Magic3D [18] uses a coarse model to represent 3D
content and accelerates it using a sparse 3D hash grid struc-
ture. To alleviate over-saturation and low-diversity prob-
lems, ProlificDreamer [38] models and optimizes the 3D
parameters through variational score distillation. However,
these methods are limited to 3D object generation and can-
not be directly extended to 3D scene generation which has
additional layout constraints.

2.2. Text-based 3D Room Generation

Room Layout Synthesis Layout generation has been
greatly boosted by transformer-based methods. Layout-
Transformer [10] employs self-attention to capture relation-
ships between elements to accomplish layout completion.
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Figure 2. Framework overview. In Layout Generation Stage, we synthesize a scene code from the text input and convert it to a 3D bounding
box representation to facilitate editing. In Appearance Generation Stage, we project the bounding boxes into a semantic segmentation map
to guide the panorama synthesis. The panorama is then reconstructed into a panoramic NeRF (PeRF)[35]model with layout guidance.

ATISS [20] proposes an autoregressive transformer to gen-
erate proper indoor scenes with only the room type and floor
plan as the input. DiffuScene [31] and InstructScene [15]
model a union of furniture as a fully connected scene graph
and propose a diffusion model to sample physically plausi-
ble scenes. While these methods generate reasonable furni-
ture layouts, they do not consider the walls, doors, and win-
dows which are crucial in the furniture arrangement. Thus
they do not always generate realistic indoor environments.

Panoramic Image Generation Another line of work [16,
17, 28] represent an indoor scene by a panorama image
without modeling 3D shapes. These methods enjoy the ben-
efits of abundant training data and produce vivid results.
COCO-GAN [16] produces a set of patches and assemble
them into a panoramic image. InfinityGAN [17] uses the
information of two patches to generate the parts between
them, to finally obtain a panoramic image. [28] proposes
a 360-aware layout generator to produce furniture arrange-
ments and uses this layout to synthesize a panoramic image
based on the input scene background. MVDiffusion [33] si-
multaneously generates multi-view perspective images and
proposes a correspondence-aware attention block to main-
tain multi-view consistency, and then transfers these images
to a panorama. These methods might suffer from incorrect
room layout since they do not enforce layout constraints.
Furthermore, the results of these methods cannot be easily
edited, e.g. resizing or moving furniture around, because
they do not maintain an object-level representation.

3D Room Generation GAUDI [2] generates immersive
3D indoor scenes rendered from a moving camera. It dis-
entangles the 3D representation and camera poses to en-
sure the consistency of the scene during camera move-
ment. CC3D [1] proposes a 3D-aware GAN for multi-

object scenes conditioned on a single semantic layout im-
age and is trained using posed multi-view RGB images.
Another related line of work [26, 29, 40] deals with re-
texturizing a given 3D scene. They employ 2D diffusion
models to stylize and further improve the given geometry.
Text2Room [12] incrementally synthesizes nearby images
with a 2D diffusion model and recovers its depth maps to
assemble into a 3D room mesh. Unfortunately, it cannot
handle the geometric and textural consistency among the
images, resulting in the ‘Penrose Triangle problem’. In our
method, we take both geometry and appearance into consid-
eration and create a more geometrically plausible 3D room.
A concurrent work [26] also guides the 3D room mesh gen-
eration by leveraging the user-input scene layouts. In con-
trast, our method is capable of synthesizing professional
designer-style layouts solely from text prompts.

3. Method
In order to achieve text-based 3D indoor scene generation,
we propose Ctrl-Room. We first generate the room layout
from an input text and then generate the room appearance
represented by panoramic images according to the layout,
followed by layout-guided panoramic NeRF [35] to gen-
erate the final 3D room. This mechanism solves the Pen-
rose Triangle Problem to generate physically plausible 3D
rooms, while also enabling users to edit the scene layout
interactively. The overall framework of our method is de-
picted in Fig. 2, which consists of two stages: the Lay-
out Generation Stage and the Appearance Generation Stage.
In the Layout Generation Stage, we parameterize the in-
door scene with a holistic scene code and design a diffusion
model to learn its distribution. Once the holistic scene code
is generated from text, we recover the room as a set of orien-
tated bounding boxes of walls and objects. Note that users
can edit these bounding boxes by adjusting their semantic



Figure 3. (a) A 3D scene S is represented by its scene code x0 = {oi}Ni=1, where each wall or furniture item oi is a row vector storing
attributes like class label ci, location li, size si, orientation ri. (b) During the denoising process, we rotate both the input semantic layout
panorama and the denoised image for γ degree at each step. Here we take γ = 90◦ for example.

types, positions, or scales, enabling the customization of 3D
room generations. In the Appearance Generation Stage, we
obtain an RGB panorama through a conditioned image dif-
fusion model to represent the room texture. Specifically, we
project the generated layout bounding boxes into a semantic
segmentation layout. We then fine-tune a pre-trained Con-
trolNet [43] model to generate an RGB panorama from the
input semantic layout. To ensure loop consistency, we pro-
pose a loop-consistent sampling during the inference pro-
cess. Finally, we integrate the layout and the panorama,
then generate a full 3D room through the layout-guided
panoramic NeRF module [35]. This module progressively
inpaints panoramas at new viewpoints using the fine-tuned
ControlNet. To extract meshes from reconstructed NeRF,
we render depth maps of the new views and utilize truncated
signed distance fusion (TSDF) to obtain the final mesh.

3.1. Layout Generation Stage

Scene Code Definition. Different from previous methods
[20, 31], we consider not only furniture but also walls,
doors, and windows to define the room layout. We employ
a unified encoding of various objects. Specifically, given a
3D scene S with m walls and n furniture items, we repre-
sent the scene layout as a holistic scene code x0 = {oi}Ni=1,
where N = m + n. We encode each object oj as a
node with attributes including center location li ∈ R3, size
si ∈ R3, orientation ri ∈ R, class label ci ∈ RC . The
concatenation of these attributes characterizes each node as
oi = [ci, li, si, ri]. As can be seen in Fig. 3 (a), we repre-
sent a scene layout as a tensor x0 ∈ RN×D, where D is the
attribute dimension of a node. In all the data, we choose the
normal direction of the largest wall as the ‘main direction’.
For other objects, we take the angles between their front di-
rections and the main direction as their rotations. We use
the one-hot encoding to represent their semantic types.
Scene Code Diffusion. With the scene code definition, we
build a diffusion model to learn its distribution. A scene
layout is a point in RN×D. The forward diffusion process
is a discrete-time Markov chain in RN×D. Given a clean
scene code x0, the diffusion process gradually adds Gaus-
sian noise to x0, until the resulting distribution is Gaussian,

according to a pre-defined, linearly increased noise sched-
ule β1, ..., βT :

q(xt|x0) := N (xt;
√
ᾱtx0, (1−

√
ᾱt)I) (1)

where αt := 1 − βt and ᾱt :=
∏t

r=1 αr define the noise
level and decrease over the timestep t.
The denoising network is trained to reverse the above pro-
cess by minimizing the training objectives which includes
the denoising objective Ldenoise and a regularization term
Lphysical to penalize the penetration among objects and
walls as follows,

L = Ldenoise + Lphysical, (2)

Ldenoise = Ex0,t,y,ϵ∥ϵ− ϵθ(xt, t, y)∥2, (3)

Lphysical =

T∑
t=1

wt ∗ (Lw−o + Lo−o). (4)

where ϵθ is the noise estimator which aims to find the noise
ϵ added into the input x0. Here, y is the text embedding
of the input text prompts. The hyperparamter wt is set to
ᾱt ∗ 0.1. Lw−o is the physical violation loss between walls
and objects. We adopt the 3D IoU loss Lo−o in DiffuScene
to avoid intersection between furniture.
The denoising network ϵθ takes the scene code xt, text
prompt y, and timestep t as input, and denoises them itera-
tively to get a clean scene code x̂0. Please refer to appendix
Sec.1 for the details of our Lw−o and denoising network.

3.2. Appearance Generation Stage

Given an indoor scene layout, we seek to generate the
3D textured room model. We achieve this goal by gen-
erating panoramic images and reconstructing a panoramic
NeRF (PeRF) model from these panoramas. During the
panorama generation, instead of incrementally generat-
ing multi-view images like [12], we generate the entire
panorama at once. We utilize ControlNet [43] to generate a
high-fidelity panorama conditioned by the 3D scene layout.

3.2.1 Layout-guided Panorama Generation

Fine-tuning ControlNet. ControlNet controls the im-
age generation of Stable Diffusion [23] model by an ex-
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tra 2D input. To condition ControlNet on the scene lay-
out, we convert the bounding box representation into a 2D
semantic layout panorama through equirectangular projec-
tion. In this way, we get a pair of RGB and semantic lay-
out panoramic images for each scene. However, the pre-
trained ControlNet-Segmentation [9] is designed for per-
spective images, and cannot be directly applied to panora-
mas. Thus, we fine-tune it with our pairwise RGB-Semantic
layout panoramas on the Structured3D [44]. As the vol-
ume of Structured3D is limited, we apply several augmenta-
tion techniques for the training data, including standard left-
right flipping, horizontal rotation, and Pano-Stretch [30].
Loop-consistent Sampling. A panorama should be loop-
consistent. In other words, its left and right should be
seamlessly connected. Although the horizontal rotation in
data augmentation may improve the model’s implicit un-
derstanding of the expected loop consistency, it lacks ex-
plicit constraints and might still produce inconsistent re-
sults. Therefore, we propose an explicit loop-consistent
sampling mechanism in the denoising process of the latent
diffusion model. As shown in Fig. 3 (b), we rotate both the
input layout panorama and the denoised image by γ degree
in the sampling process, which applies explicit constraints
for the loop consistency during denoising. A concurrent
work [39] also uses a similar method for panoramic out-
painting. More qualitative results in supplementary Fig.8
and Fig.9 verify that our simple loop-consistent sampling
method achieves good results without introducing addi-
tional learnable parameters.

3.2.2 Layout-guided PeRF Generation

Since a single panorama is only a partial observation of a
scene up to occlusions, lifting a single view into a 3D room
becomes complex. Fortunately, our generated layout pro-
vides valuable geometric and semantic information to lift

the 2D panorama into a 3D model. We propose the layout-
guided PeRF, which upgrades the generated panorama
aforementioned to a 3D panoramic NeRF [35], enabling
multi-view consistent panorama generations guided by the
scene layout. Specifically, we start with the layout-guided
depth estimation, which recovers the depth map using
method [41] and then aligns it to the 3D scene layout lever-
aging its geometric information. This step corrects the
biased depth prediction in the background (wall, ceiling,
floor) and preserves objects’ shape in the foreground.
Then, we fit our layout-guided PeRF as illustrated in
Fig. 4. Specifically, we initialize the scene NeRF with the
panorama I0, the aligned depth map D∗, and the normal
map N∗. We sample new viewpoints in the occupancy grid
that do not conflict with the initial furniture arrangement.
At the i-th novel view, we render semantic map Si

l , depth
map Di

l , and instance map M i
l from the scene layout, these

are then combined with the panoramic rendering Iir and in-
painting mask minpaint obtained from the NeRF and fed to
the layout-guided panorama inpainting module to generate
the novel view panorama. Using our fine-tuned Control-
Net, it achieves training-free panoramic inpainting, which
replaces pixels outside the inpainting mask minpaint with
Iir and fill minpaint based on the semantic map Si

l . Sub-
sequently, after generating the novel view image, we apply
the layout-guided depth estimation and include it as train-
ing views for PeRF following their framework [35]. More
details and results can be found in the appendix Sec.2.

3.3. Mask-guided Editing

A user can modify the generated 3D room by changing the
position, semantic class, and size of object bounding boxes.
The editing should achieve two goals, i.e. altering the con-
tent according to the user’s input, and maintaining appear-
ance consistency of the scene objects. We propose a mask-
guided image editing, including inpainting step and opti-
mization step as illustrated Fig.6 in supplementary file. The
inpainting step fills in the modified area while preserving
the rest of the panoramic image. The optimization step fo-
cuses on keeping the furniture’s appearance unchanged be-
fore and after movement and scaling operations.
We explain our method by taking the example in Fig.6 in
supplementary file, where a chair’s position is moved. We
denote the semantic panorama from the edited scene as
Sedited, then we derive the guidance masks based on its dif-
ference from the original one Sori. The source mask msrc

shows the position of the original chair, and the target mask
mtar indicates the location of the moved chair, and the in-
painting mask minpaint = {m|m ∈ msrc and m /∈ mtar}
is the unoccluded region. We use xori

0 to denote the orig-
inal image. During the inpainting step, we replace pixels
outside the inpainting mask minpaint with xori

t and store
minpaint based on the edited semantic panorama Sedited.



Figure 5. Qualitative comparison with previous works. For each method, we show a textured 3D mesh in the first row and two rendered
images in the second row.

This straightforward approach ensures that the region out-
side the mask remains unchanged and the area inside the
mask is accurately inpainted. In the optimization step,
drawing inspiration from DIFT [32], which has shown that
learned features from the diffusion network enable strong
semantic correspondence, we ensure consistency between
the original and moved furniture by requiring their latent
features to be consistent. For more details of the Inpainting
and Optimization Step, please refer to our supplementary
file Sec.3.

4. Experiments
We evaluate Ctrl-Room on three tasks: layout generation,
panorama generation, and 3D Room generation. For those
panorama generation methods [6, 33], we recover its depth
map using method [41] to reconstruct a textured mesh
through Possion reconstruction [14] and MVS-texture [34].
We first describe the experimental settings and then vali-
date our method by comparing it with previous methods
quantitatively and qualitatively. We further show various
scene editing results to demonstrate the flexible control of
our method.

4.1. Experiment Setup

Dataset: We train and evaluate our method on the 3D in-
door scene dataset Structured3D [44], which consists of
3,500 houses with 21,773 rooms designed by professional
artists. A single panoramic image and 3D scene layout are
provided in each room. We parse the scene layout using ori-
ented bounding boxes for common indoor room types like
the bedroom, kitchen, living room, study, and bathroom.
Then, we follow [37] to generate text prompts describing
the scene layout. The filtered dataset for training and eval-
uation consists of 4,961 bedrooms, 1,848 kitchens, 3,039
living rooms, 698 studies, and 1500 bathrooms. For each
room type, we use 80% of rooms for training and the re-
maining for testing. Following DiffuScene [31], we further
qualitatively evaluate our layout generation on 3D-FRONT
dataset [7].
Metrics: Follow previous work [20, 31], Frechet Inception

Distance (FID) [11] and Kernel inception distance (KID) [3]
are used to measure the plausibility and diversity of 1,000
synthesized scene layouts. We choose FID, CLIP Score
(CS) [22], and Inception Score (IS) [25] to measure the im-
age quality of generated panoramas. To compare the quality
of 3D room models, we follow Text2Room [12] to render
images of the 3D room model and measure the CLIP Score
(CS) and Inception Score (IS). We also conduct a user study
and ask 61 users to score Perceptual Quality (PQ) and 3D
Structure Completeness (3DS) of the final room mesh on
scores ranging from 1 to 5.
More details about data preprocessing, experimental set-
tings, and baseline implementations can be found in sup-
plementary file Sec.4 and Sec.5.

4.2. Comparison with Previous Methods

4.2.1 Qualitative Comparison

Fig. 5 shows some results generated by different methods.
The first row shows a textured 3D room model, and the sec-
ond row shows some perspective renderings from the room
model. As we can see, Text2Light [6] fails to ensure the
loop consistency of the generated panorama, which leads
to distorted geometry and unreasonable room model. Both
MVDiffusion [33] and Text2Room [12] can generate vivid
local images as demonstrated by the perspective renderings
in the second row. But they fail to capture the global room
layout. These two methods often repeat a dominating ob-
ject, e.g. the cabinet in the bedroom appears multiple times
at different places and violate the room layout constraint.
In comparison, our method does not suffer from these prob-
lems and generates high-quality results. More examples are
provided in the Fig.12 in supplementary file.

4.2.2 Layout Generation

Fig. 6 verifies that our layout generation results are plausi-
ble and can offer reliable 3D scene layout constraints for the
following appearance generation stage. As shown in Fig. 6,
our text-conditioned layout generation module can synthe-
size natural and diverse typical indoor scenes. The size and
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Figure 6. Text-conditioned layout generation on Structured3D. Given the text prompt, our method synthesizes a plausible scene layout that
matches the description. The generated layout is represented using different colors to indicate various object categories, such as blue for
the sofa and brown for the chair. More results and semantic labels are provided in Fig.10 in supplementary file.

Table 1. Quantitative Comparison of layout generation on 3D-FRONT. Note that DiffuScene-w-SC uses an additional network to learn a
Shape Code for each furniture, facilitating the evaluation process to retrieve a more accurate CAD model for each furniture. Nevertheless,
our method outperforms others in the common settings, where only the generated semantic class and size are used for retrieval.

Method Retrieval from Livingroom Diningroom

FID ↓ KID ↓ SCA FID ↓ KID ↓ SCA

DiffuScene-w-SC [31] Shape Code 35.27 0.64 54.69 32.87 0.57 51.67

ATISS [20] Semantic Bounding Box 40.45 4.57 63.48 36.61 1.90 55.44
DiffuScene-wo-SC [31] Semantic Bounding Box 38.55 1.33 63.54 36.47 1.8 57.04

Ours Semantic Bounding Box 36.0 1.4 56.42 34.78 1.3 54.37

spatial location of the furniture are reasonable, and the rel-
ative positions between the furniture pieces are accurately
recovered. Additional objects not described in the text are
automatically generated according to the scene prior.
Table 1 provides a quantitative evaluation against state-of-
the-art scene synthesis methods including ATISS [20] and
DiffuScene [31] on the 3D-FRONT. Following these meth-
ods, we rendered the generated scenes into 256 × 256 top-
down orthographic images to compute the FID, KID, and
Scene Classification Accuracy (SCA) scores. To facilitate
this computation, ATISS, DiffuScene-wo-SC(without shape
code), and our method retrieve the most similar CAD model
in the 3D-FUTURE [8] for each object based on generated
semantic class and sizes. DiffuScene-w-SC uses an addi-
tional network to learn a shape code for each furniture to
choose a better 3D mesh model. Note that the SCA score is
better when it is closer to 50%. We have excluded walls,
doors, and windows from our scene code representation
to ensure a fair comparison. Table 1 shows our method
achieves results superior to that of ATISS and DiffuScene-
wo-SC, indicating that our approach is capable of producing
more realistic and natural layouts of indoor scenes.

4.2.3 Panorama Generation

Fig. 7 qualitatively evaluates our generated panoramic im-
ages, the image is visualized in a panoramic image viewer
to facilitate the user to check the global content. The left
side of each column is two zoom-in views, and the right
side is the fisheye view. Text2Light [6] suffers from serious
inconsistency on the borders of the generated panorama. It
also shows a lot of unexpected objects in the image. MVD-
iffusion [33] suffers from repetitive furniture and fails to
synthesize reasonable content for the target room type. In
contrast, our method obtains a plausible layout and vivid

panorama from the given text prompt.
Table 2 provides quantitative evaluations. We follow MVD-
iffusion [33] to crop perspective images from the generated
panoramas on the test split and evaluate the FID, CS, and IS
scores on the cropped multi-view images. In the left part of
Table 2, our method achieves the best score in FID, which
indicates that our method can better capture the room ap-
pearance because of its faithful recovery of the room layout.
However, our score on CS is slightly lower than MVDiffu-
sion, which seems insensitive to the number of objects and
cannot reflect the room layout quality. The IS score depends
on the semantic diversity of the cropped images as captured
by an image classifier. Text2Light has the best IS score,
since the generations contain unexpected objects.
In Fig.8 of the supplementary file, we also study the perfor-
mance of our panorama generation module with and with-
out loop-consistent sampling mechanism, the ablation in-
dicates the loop-consistent sampling helps the generated
panorama obtain better texture consistency.

4.2.4 3D Room Generation

We then compare the 3D room models in terms of their
rendered images. Because of the expensive running time
of Text2Room [12], we only test on 12 examples for this
comparison. In this comparison, we further skip Text2light
and MVDiffusion since we have compared them on panora-
mas. As the room layout is better captured with a large
FOV, we render 60 perspective images of each scene with a
140◦ FOV and evaluate their CS and IS scores respectively.
The results of this comparison are shown in the middle of
Table 2. Our method obtains better scores on both metrics
than Text2Room.
We further evaluate the quality of the textured 3D mesh
model by user studies. The results of the user study are



Figure 7. Qualitative comparison for panorama generation. More results are available in the Appendix.

Table 2. Quantitative Comparison of panorama and mesh generation.

Method Panorama Metrics 2D Rendering Metrics 3D Mesh User Study

FID ↓ CS ↑ IS ↑ CS ↑ IS ↑ PQ↑ 3DS ↑
Text2Light [6] 56.22 21.45 4.198 - - 2.732 2.747

MVDiffusion [33] 34.76 23.93 3.21 - - 3.27 3.437
Text2Room [12] - - - 25.90 2.90 2.487 2.588

Ours 21.02 22.19 3.56 25.97 3.14 3.89 3.746

Figure 8. Editing examples. (a) resize the TV, (b) replace the chair
with a new one.

shown on the right of Table 2. Users prefer our method
over others, for its clear room layout structure and furniture
arrangement.

4.3. Interactive Scene Editing

We demonstrate the scene editing capability of our method
in Fig. 8. In this case, we resize the TV and replace the
chair in the generated results. Fig. 1 (b) shows examples of
replacing the TV and TV stand. Our method can keep the
visual appearance of the moved/resized objects unchanged

after editing. More examples can be found in the appendix.

5. Conclusion
We present Ctrl-Room, a flexible method to achieve struc-
turally plausible and editable 3D indoor scene generation.
It consists of two stages, the layout generation stage and the
appearance generation stage. In the layout generation stage,
we design a scene code to parameterize the scene layout
and learn a text-conditioned diffusion model for text-driven
layout generation. In the appearance generation stage, we
fine-tune a ControlNet model to generate a vivid panorama
image of the room with the guidance of the layout. Finally,
a high-quality 3D room with a structurally plausible lay-
out and realistic textures can be generated via the layout-
guided panoramic NeRF. We conduct extensive experiments
to demonstrate that Ctrl-Room outperforms existing meth-
ods for 3D indoor scene generation both qualitatively and
quantitatively, and supports interactive 3D scene editing.

6. Limitation
There are still some limitations of Ctrl-Room. Firstly, we
only support single-room generation, thus we cannot pro-
duce large-scale indoor scenes with multiple rooms. A
promising direction is to learn a text-driven diffusion model
to produce more consistent RGB-D panorama images cross
multiple rooms under the scene layout constraints. Sec-
ondly, as we explore injecting 3D scene information into
pretrained 2D models, thus we rely on 3D labeled scene
dataset to drive the learning and fine-tuning process. Lever-
aging scene datasets with only 2D labels to learn 3D pri-
ors is also a promising direction. Thirdly, the generated
3D model still contains artifacts and incomplete structures
in invisible areas because of the occlusion and poor per-
formance of the panoramic depth estimator. We leave the
aforementioned limitations for our future efforts.
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