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Abstract
Observation in Earth Sciences encompasses not
only what can be visually perceived but also
what can be inferred through instrumental record-
ings. As such, seismic data, though not directly
visible, fall within the domain of Earth Obser-
vation (EO). Earthquakes are inherently sparse
events, and the limited availability of ground mo-
tion records and associated metadata poses sig-
nificant challenges for predicting and respond-
ing to earthquake-induced hazards. Although nu-
merous data augmentation techniques based on
deep learning have been proposed, their effec-
tiveness is often hindered by the scarcity of high-
quality training data. We introduce a scalable
framework for constructing training datasets from
limited seismic observations, aimed at improv-
ing the performance of generative models. By
training models on the paired dataset constructed
using our proposed methodology, we demonstrate
both quantitatively and qualitatively that the gen-
erated waveforms closely resemble real seismic
signals, thereby validating the effectiveness of our
approach.

1. Introduction
As a form of Earth Observation, seismic waveforms are not
visually observed but are instead recorded through ground
motions induced by seismic events. When an earthquake oc-
curs, seismic waves are recorded independently at multiple
observation stations, with each recording reflecting the local
geological and geographical characteristics of the station’s
location.

Consequently, seismic waveforms recorded from the same
earthquake event exhibit both unique local characteristics
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and shared underlying features, making them well-suited
for the construction of paired datasets. Motivated by the
dual nature of seismic waveforms, which exhibit both com-
monalities and unique characteristics, we introduce a novel
methodology for constructing datasets by pairing seismic
waveforms recorded from the same earthquake event. Such
datasets not only facilitate effective data augmentation by
introducing physically consistent variability, but also con-
tribute to improved generative model generalization ability
across diverse geographical and geological conditions.

We obtained two dataset groups, SCEDC(SCEDC, 2013)
and INSTANCE(Michelini et al., 2021), via the Seis-
Bench(Woollam et al., 2022) API to apply our dataset
processing methodology. We also included an additional
earthquake-related dataset to validate our approach. Accord-
ing to statistical analysis, although major earthquakes are
not frequent, small seismic events occur often. However, the
data required to cover the full range of events that require
human prediction and response is still lacking. This under-
scores the need for data augmentation methods that reflect
the distinct characteristics and distribution patterns of seis-
mic waveforms, and supports the application of generative
approaches that are well aligned with these data properties.

In this paper, we focus on two primary contributions:

Our Contribution

• We propose a method that utilizes only an essential set
of conditions such as earthquake origin time, epicenter
location, depth and magnitude to construct paired seis-
mic waveforms by grouping those that share the same
earthquake event. This approach leverages commonly
available metadata from public earthquake catalogs
ensuring both practicality and scalability.

• We demonstrate how generative modeling can serve as
an effective data augmentation strategy by synthesizing
realistic waveforms at new or underrepresented station
locations. Leveraging the pairable nature of seismic
data, our method enriches existing datasets without
requiring detailed source or site-specific information.

1



Enhancing Generative Seismic Modeling via Paired Dataset Construction Method

Table 1. Features of each Regional paired seismic dataset

dataset SCEDC KMA INSTANCE
Features Train Test Train Test Train Test

#observations 71,488 17,878 237,755 58,925 72,904 19,872
#source event 2,098 525 2,052 514 2,265 593

#station 149 149 134 134 578 534
average #station per events 34.07 34.05 115.87 114.64 24.43 25.29

average magnitude ML 2.45 2.45 1.45 1.45 3.36 3.36
average epicentral distance 125.25 126.71 235.48 234.22 57.82 57.79

average focus depth 8.51 8.65 11.52 11.73 12.47 11.97

2. Dataset Construction
Seismic datasets are well-structured and self-aligning. Each
waveform is time-referenced to the earthquake origin time
and accompanied by reliable metadata, such as earthquake
origin time, magnitude, and hypocenter coordinates, Station
coordinates and recorded waveform traces.

We curated a large-scale paired dataset from three continen-
tal regions : SCEDC (North America), KMA (East Asia),
and INSTANCE (Europe). For each event, we extract 60-
second waveforms aligned to origin time, apply a 1 ∼ 45Hz
bandpass filter, and associate each trace with essential meta-
data (coordinates, depth, magnitude). Paired samples are
formed by randomly selecting two stations per event. For
the EQTransformer(Mousavi et al., 2020) (EQT) evaluation
in Table 4, we excluded waveforms which include multiple
event signals, which are out of our scope.

In this section, we explain how each dataset was constructed.
All datasets are collected from corresponding APIs. Plus,
The Table 1 shows the details of datasets we used.

We split each dataset into training dataset and test dataset,
according to the earthquake event, to evaluate the fidelity
of generated waveform for the earthquake which is unseen
during the training.

2.1. SCEDC

We utilize earthquake catalog of SCEDC (SCEDC, 2013)
provided by SeisBench(Woollam et al., 2022). We selected
waveforms with a sampling rate of 100Hz. Unfortunately,
the Seisbench-provided dataset had fewer than 13 stations
per earthquake events on average, therefore we utilized
Obspy API(Beyreuther et al., 2010) to collect additional ob-
servations on more stations in the station list of (Uhrhammer
et al., 2011) for each earthquake. Using earthquakes from
the catalog during the years 2016 to 2019, we constructed a
new dataset with approximately 34 stations per source.

2.2. KMA

KMA data source consist of continuous waveform data
were employed, which are operated by KMA (Korea Me-
teorological Administration) and KIGAM (Korea Institute
of Geoscience and Mineral Resources). We exploit the
dataset appear in (Han et al., 2023) which is constructed
from earthquake catalog provided by KMA, spanning from
2016-2020, and used subset consisted of observations from
broadband sensors. Similarly to SCEDC, the waveforms
have a sampling rate of 100hz, a duration of 60 seconds,
and a frequency 1 ∼ 45Hz.

2.3. INSTANCE

We used the Seisbench-provided version INSTANCE dataset
and created a subset by selecting only the traces satisfying
which includes records for 60 seconds from the earthquake
occurrence time, local magnitude is larger than 3.0 and P-
arrival time is included in the metadata to ensure that the
earthquake signal is observed.

3. Method
3.1. Pair-Exploiting Diffusion Model

For each earthquake event, we sample a pair of waveforms
(W src,W tgt) from the dataset and convert them into spec-
trograms (Xsrc, Xtgt) and construct the conditional vector
for the target station c⃗tgt by preprocessing recipe in Ap-
pendix A.1.

Let q(x1:T ;X) be the forward process of the diffusion
model, and consider two trajectories q(xsrct |Xsrc) and
q(xtgtt |Xtgt). Recall that Xsrc and Xtgt shares the prop-
erty of earthquake, we may assume that from Xsrc and c⃗tgt
we can gather enough features of earthquake to generate
Xtgt. In this approach, we may consider the transform map
η(xsrct , c⃗tgt, t) for t > 0 which maps the latent of input
Xsrc to the latent of target Xtgt as a random variable, with
following assumption:

η(xsrct , c⃗tgt, t) ∼ q(xtgtt |Xtgt). (1)
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Table 2. Results of quantitative analysis. Models were evaluated with W src when it is trained with paired data, otherwise without W src.

Dataset Model Input Waveform Spectrogram

P MAE (s) S MAE (s) env.corr SNR PSNR MSE

SCEDC

SeismoGen
(Wang et al., 2021)

w/o W src 1.9558 3.6246 0.4895 -8.6166 23.5431 1.4124
w/ W src 1.8426 3.3325 0.5454 -8.6282 23.6354 0.8063

ConSeisGen
(Li et al., 2024)

w/o W src 3.9724 6.8992 0.3246 -8.6216 23.6416 0.7461
w/ W src 3.9102 6.8055 0.2980 -8.5341 23.5329 0.9356

LDM
(Rombach et al., 2022)

w/o W src 1.1142 1.7294 0.6932 -3.0202 24.7573 0.2838
w/ W src 0.5633 0.7808 0.7726 -3.0015 19.6269 0.2426

KMA LDM
(Rombach et al., 2022)

w/o W src 1.6233 2.1125 0.7703 -3.0006 25.3883 0.3521
w/ W src 1.3521 1.6845 0.8076 -2.9989 26.3658 0.3785

INSTANCE LDM
(Rombach et al., 2022)

w/o W src 0.8417 0.7847 0.7921 -3.0062 22.0767 0.2927
w/ W src 0.8187 0.7875 0.7898 -2.9904 22.0956 0.2841

We conducted train based on this assumption Equation (5)
using the following Algorithm 1. More detailed description
of the method is provided in the Appendix B.

Algorithm 1 Paired LDM training

Input: Seismic dataset D, diffusion steps T
repeat
(W src,W tgt, c⃗tgt) ∼ D
convert (W src,W tgt) to (Xsrc, Xtgt)
t ∼ Uniform(1, · · · , T )
ϵ ∼ N (0, 1)
Take gradient descent step on
∇∥Xtgt −mθ(x

src
t , c⃗tgt, t)∥2

where mθ(x
src
t , c⃗tgt, t) = xθ(η(x, c⃗, t), c⃗, t)

until converged

3.2. Condition

In many Earth Observation (EO) applications, acquiring de-
tailed contextual metadata such as local geology, instrument
calibration, or expert annotations is often difficult, expen-
sive, or infeasible, especially in under-observed regions. In
contrast, seismic data inherently provide abundant quanti-
tative metadata—such as event time, location, depth, and
magnitude—which offers significant advantages in dataset
construction compared to other Earth Observation (EO)
modalities. Our methodology utilizes only the basic set
of readily available metadata (Event: latitude, longitude,
depth, magnitude Station: latitude, longitude). More details
described in Appendix A

4. Empirical Verification
We evaluate the effectiveness of paired-data training for
generative models in two synthesis scenarios: (1) Generate

waveforms of known earthquakes at known stations using
an observed waveform W src, and (2) Generate waveforms
from fictitious metadata c⃗′′tgt without W src. These exper-
iments validate the fidelity, generalizability, and enhance-
ment potential of our approach, key challenges in EO data
generation.

4.1. Quantitative Evaluation

To assess model fidelity, we measure P-/S-phase arrival
times and similarity metrics including envelope correla-
tion, SNR, PSNR, and spectrogram MSE. We compare
against baseline models (Seismogen(Wang et al., 2021),
ConSeisgen(Li et al., 2024), and LDM(Rombach et al.,
2022)) trained on the SCEDC dataset. Additionally, we val-
idate generalization by training on KMA and INSTANCE
datasets.

4.1.1. PHASE ARRIVAL ACCURACY

Phase arrival times are fundamental seismic features used
in earthquake detection, localization, and early warning
systems. Thus, accurately reproducing P- and S-phase ar-
rivals is a strong indicator of how well a model captures the
essential characteristics of seismic events.

We use EQTransformer (EQT) (Mousavi et al., 2020), fine-
tuned per dataset via SeisBench (Woollam et al., 2022),
to extract P/S-wave labels from both real and generated
waveforms. Results in Table 4 show high accuracy of the
picker.

MAE scores in Table 2 show that our paired data LDM
achieves significantly improved arrival prediction compared
to baselines, highlighting its utility for seismic EO applica-
tions where accurate temporal alignment is essential.
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4.1.2. SIMILARITY METRICS

We further assess fidelity via envelope correlation, SNR,
PSNR, and spectrogram similarity. As shown in Table 2,
pairing improves the performance of LDM across all met-
rics.

This demonstrates that dataset structuring—specifically,
pairing observations with minimal metadata—enhances
waveform realism, and opens opportunities for spatio-
temporal EO dataset expansion via synthetic generation.
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Figure 1. Comparison of Real waveform, LDM and LDM with
paired data

4.2. Qualitative Evaluation

We qualitatively assess how well the paired-data trained
model captures key seismological patterns, with a focus
on fidelity, spatial consistency, and potential for dataset
expansion in Earth Observation contexts.

4.2.1. WAVEFORM AND SPECTROGRAM ANALYSIS

We qualitatively assess the fidelity of generated waveforms
by comparing them with real signals in both time and fre-
quency domains. As shown in Figure 1, synthetic wave-
forms closely match real ones across all three components
in terms of amplitude, duration, and phase arrival structure.
The spectrograms of the generated and observed waveforms
exhibit strong alignment, capturing key time-frequency char-
acteristics such as energy distribution and seismic phase
structure.

This alignment highlights the model’s ability to learn and
replicate event-specific morphology and spectral patterns
crucial for downstream Earth Observation tasks like earth-
quake detection and ground motion modeling. Furthermore,
spectrogram-level fidelity supports potential applications
in vision-based EO dataset curation and frequency-aware
augmentation strategies. More qualitative results as shown
in Appendix D

4.2.2. SYNTHETIC STATION ANALYSIS

To evaluate spatial generalization, we synthesize waveforms
at virtual (unseen) station locations. Figure 2 illustrates how
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Figure 2. Section plots comparing synthetic and real waveforms.

seismic energy propagates across these synthetic stations.
The realistic spatial and temporal variations confirm the
model’s ability to generate coherent seismic fields, enabling
synthetic data generation in under-monitored or uninstru-
mented regions a key step toward mitigating spatial bias in
EO datasets.

5. Discussion
We show that models trained on our proposed paired dataset
yield superior results both quantitatively and qualitatively.
These findings suggest that the paired-dataset approach can
play a critical role in constructing effective generative AI
models for seismic applications.

While some discrepancies from the original signals were
inevitable due to the exclusion of certain geophysical vari-
ables that were not available during the pairing process, the
models trained on the paired dataset, constructed using com-
monly available geographic metadata, still outperformed
those trained without pairing. These results indirectly con-
firm the effectiveness of the paired dataset, even in the
absence of detailed site-specific labeling.

6. Conclusion
We present a dataset pairing methodology that simultane-
ously increases data volume and enhances informational
richness for training generative models. This strategy lever-
ages the structural characteristics of seismic waveforms,
wherein recordings from a single seismic event share con-
sistent metadata—such as origin time, epicenter, depth, and
magnitude—while capturing station-specific geological fea-
tures. Empirical results demonstrate performance improve-
ments, suggesting the proposed approach as a viable frame-
work for extending generative modeling to other data-scarce
Earth Observation domains.
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A. Conditioning
The six variables mentioned above were available for all data samples; however, several additional variables were frequently
missing for certain seismic waveforms, resulting in their exclusion from the pairing process. Additionally, we derived and
incorporated explicit metadata calculated from the given six variables such as, epicentral distance and back-azimuth to
further enrich the dataset.

By demonstrating high-fidelity synthesis under available conditions, we show that realistic and spatially diverse EO data
generation is feasible even in settings where entire rich metadata is unavailable, thereby expanding the applicability of
generative EO methods to globally underrepresented regions.

A.1. Conditional Vector Pre-processing

We explain the process of c⃗tgt constuction. Recall the variables that we are used to synthesize waveform are:

1. slat, slon : latitude and longitude of the station to observe the waveform data.

2. elat, elon : latitude and longitude of epicenter.

3. edep : depth of the hypocenter, unit of kilometers.

4. ML : magnitude of the earthquake.

We preprocessed those variables to construct an 11-dimensional condition vector and later provide it to our condition encoder
module τθ.

First of all, we encode locational information slat, slon, elat and elon with the following process:

1. Normalize the values to get s′lat, s
′
lon, e

′
lat and e′lon with following:

s′lat =
slat − llat
ulat − llat

, e′lat =
elat − llat
ulat − llat

, s′lon =
slon − llon
ulon − llon

and e′lon =
elon − llon
ulon − llon

(2)

where (llat, ulat) and (llon, ulon) represent the lower and upper bounds of latitude and longitude, respectively, for the
region of interest.

In our datasets, we summarize those bounds in Table 3.

Table 3. upper and lower bounds of the region of interest

Dataset (region) llat ulat llon ulon

SCEDC (Southern California) 32.0 37.9 -121.0 -114.1
KR (South Korea) 33.12 38.60 124.64 131.87
INSTANCE (Italy) 35.00 48.03 5.32 20.01

2. Motivated from polar coordinate transformation(Mohinder S. Grewal, 2007), which is commonly used in GPS
field, we further encode normalized coordinate to following:

csta = (cos(s′lat)cos(s
′
lon), sin(s

′
lat)cos(s

′
lon), sin(s

′
lon))

cepi = (cos(e′lat)cos(e
′
lon), sin(e

′
lat)cos(e

′
lon), sin(e

′
lon))

(3)

Secondly, we compute the back azimuth angle Azi and encode by

cazi = (cos(Azi), sin(Azi)) (4)

Lastly, we compute and normalized epicentral distance Repi, focus depth ds and magnitude ML. Each are normalized by
following formula:

Concatenating the processed features csta, cepi, cazi, R′
epi, d

′
s and M ′

L, we get an 11-dimensional conditional vector c⃗tgt for
our problem, the synthesis of seismic ground motion.
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SCEDC KMA INSTANCE

R′
epi (Repi − 125.542401)/55.810322 (Repi − 219.91)/119.99 (Repi − 57.8158)/31.7465
d′s (ds − 8.564146)/4.658161 (ds − 11.59)/5.40 (ds − 12.3680)/13.2456
M ′
L (ML − 2.0)/6.4 (ML − 0.35)/5.24 (ML − 3.0)/6.5

A.2. spectrogram construction

The generation target of out model is spectrogram, which is in time-frequency domain. We report the process of spectrogram
construction as pre-processing. We employed the STFT (Short-Time Fourier Transform) with a hop length 16. Given that
the spectrogram’s scale is closely related to the earthquake’s amplitude, we used an nfft and window length of 128 and
applied a logarithmic scale transformation for better scale adjustment. Consequently, the original waveform data of size
3× 6000 was reshaped into 3× 64× 376.

B. Method
Inspired by a conditional music generation method (Ghosal et al., 2023), our method first creates spectrograms with a
diffusion model and then convert spectrograms into waveforms. Our generative model fully exploits the pair-ability of
seismic waveform datasets to train both the diffusion process for spectrogram generation and the high-fidelity decoder for
waveform generation.

B.1. Pair-Exploiting Diffusion Model

For each earthquake event, we sample a pair of waveforms (W src,W tgt) from dataset and convert it to spectrograms
(Xsrc, Xtgt) and construct conditional vector of target station c⃗tgt by preprocessing.

Let q(x1:T ;X) be the forward process of the diffusion model, and consider two trajectories q(xsrct |Xsrc) and q(xtgtt |Xtgt).
Recall that Xsrc and Xtgt shares the property of earthquake, we may assume that from Xsrc and c⃗tgt we can gather enough
features of earthquake to generate Xtgt. In this approach, we may consider the transform map η(xsrct , c⃗tgt, t) for t > 0
which maps the latent of input Xsrc to the latent of target Xtgt as a random variable, with following assumption:

η(xsrct , c⃗tgt, t) ∼ q(xtgtt |Xtgt). (5)

Referring (Salimans & Ho, 2022), the loss function LDM of diffusion model in x-space (sample space) is:

LDM = E(Xtgt ,⃗ctgt),ϵ,t∥X
tgt − xθ(x

tgt
t , c⃗tgt, t)∥2. (6)

while the SNR weight is simplified.

Considering the Equation (5), we rewrite the loss function as

L′
DM = E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X

tgt −mθ(x
src
t , c⃗tgt, t)∥2 (7)

where
mθ(x, c⃗, t) = xθ(η(x, c⃗, t), c⃗, t). (8)

Hence, we predict mθ by neural network, which is a composition of latent transform function and denoising model.

For the sampling of the reverse process, we exploit the same procedure of the denoising process of diffusion, as

xtgtt−1 = µ̃t(x
tgt
t ,mθ(x

tgt
t , c⃗tgt, t)) + σtz, z ∼ N(0, I) (9)

where µ̃t(xt, x0) is mean vector of q(xt−1|xt, x0), introduced in Eq. (7) of (Ho et al., 2020).

This is equivalent to conventional denoising process, as

η(xtgtt , c⃗tgt, t)
d
=xtgtt (10)
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by assumption and thus

mθ(x
tgt
t , c⃗tgt, t) = xθ(x

tgt
t , c⃗tgt, t). (11)

Therefore, pair-exploiting training process of HEGGS allows the diffusion model to generate Xtgt from the Gaussian noise
xtgtT ∼ N (0, I) following conventional reverse process with mθ.

B.2. End-to-end Model Training

From the idea of LDM (Rombach et al., 2022), we consider the autoencoder comprised of a downsampling module EAE and
an upsampling module DAE , and construct diffusion model on latent space with smaller dimension. If there were a suitable
pretrained autoencoder, the LDM loss would be

L′
LDM = E(Zsrc,Ztgt ,⃗ctgt),ϵ,t∥Z

tgt −mθ(z
src
t , c⃗tgt, t)∥2 (12)

where Z = EAE(X), zsrct is latent of diffusion process of Zsrc.

There is no suitable encoder-decoder model for seismic waveforms, so we modify Equation (12) into an end-to-end loss
function as shown below:

Lours
:= E(Xsrc,Xtgt ,⃗ctgt),ϵ,t∥X

tgt −DAE(mθ(z
src
t , c⃗tgt, t))∥2

(13)

where zsrct =
√
αtEAE(Xsrc) +

√
1− αtϵ .

Using Lours as the loss function, we train the waveform generation model end-to-end, covering the encoder, the diffusion
module, and the decoder. For the detailed implementation in the diffusion module, we used a U-Net backbone for mθ,
brought EAE and DAE .

C. EQT
We used EQTransformer (Mousavi et al., 2020) provided by SeisBench (Woollam et al., 2022). Starting from pre-trained
model provided by SeisBench, we finetune the model with our dataset, with the same training protocol. After standardizing
the waveforms, we trained the model using the Adam optimizer, with a batch size of 512 and a learning rate of 10−3, for
100 epochs. Other hyperparameters of the optimizer were set to default. For hyperparameter search, the learning rate ranged
from 10−2 to 10−5, and the performance was best when it was 10−3.

Table 4. Performance of EQT picker. F1: errors < 0.5s counted as positive.

Dataset P MAE(s) S MAE(s) P F1 S F1

SCEDC 0.1116 0.2189 0.9728 0.9384
KMA 0.0993 0.1362 0.9635 0.9624

INSTANCE 0.1738 0.3151 0.9797 0.9099

D. Additional Figures: Waveform and Spectrogram
This section presents the waveforms and spectrograms shown in Figure 1. The seismic data we used consist of 3-components,
ENZ. Each pair displays the same waveform and spectrogram, with the top representing the real observation and the bottom
representing the synthetic generated HEGGS. The red and blue lines on the waveforms indicate the P/S arrival times.
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D.1. SCEDC

(a) waveform

(b) spectrogram

Figure 3. Synthesis results of our model compared to the real observation.

D.2. KMA

(a) waveform

(b) spectrogram

Figure 4. Synthesis results of our model compared to the real observation.
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D.3. INSTANCE

(a) waveform

(b) spectrogram

Figure 5. Synthesis results of our model compared to the real observation.

E. Details on Benchmark Models
E.1. SeismoGen (Wang et al., 2021)

SeismoGen is a CGAN-based model that generates waveforms conditioned on the presence of seismic events (e.g., P or
S waves). The Discriminator takes both the waveform and the presence of seismic events as inputs. It then divides the
waveform into high and low frequency components, analyzing each to determine if waveform is real or synthetic. SeismoGen
used data from three stations in Oklahoma: V34A, V35A, and V36A, while we used data from 149 stations from SCEDC.
Our synthesis approach used station and earthquake information instead of presence of seismic events. SeismoGen generated
waveforms as 40 seconds at 40Hz, but we aimed for 60 seconds at 100Hz. We used an input noise length of 1500 and
added upsampling at the end of the first convolution layer. The basic training used noise as input, and for comparison with
HEGGS, we also trained using waveform. When using waveforms, we modified each pipeline to utilize one ENZ channel.
The hyper-parameters we used included the Generator learning rate and Discriminator learning rate are set to 10−4 and
10−6, using the RMSprop optimizer over 3000 epochs. The λ is set to 10 when using noise and 15 when using the input
waveform. We saved the best model based on envelope correlation. We experimented with learning rates ranging from
10−4 to 10−7, using both Adam and RMSprop optimizers. The value of λ was tested at 5, 10, and 15. The best-performing
combination of these parameters was selected for the final model. Additionally, the results reported in Table 2 reflect the
best performance achieved across 30 iterations. Addressing the instability of the original method, we added the L1 loss
Equation (14) from pix2pix(Isola et al., 2017) as an additional loss term to improve training stability.

E.2. ConSeisGen (Li et al., 2024)

ConSeisGen is an ACGAN-based model that generates waveforms conditioned on the epicentral distance. The Discriminator
consists of two components: DP , which learn determining whether the waveform is real or synthetic, and DQ, which learn
regression estimating the distance between the epicenter and the station. While ConSeisGen generated waveforms with 3
channels and a length of 4096, we aimed to generate waveforms with 3 channels and a length of 6000. We modified the first
linear layer and removed upsampling in the final layer. ConSeisGen used KiK-net data, which began recording shortly before
the arrival of the P-wave. However, the SCEDC data utilized in this model was recorded from the onset of the earthquake
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for a duration of 60 seconds. ConSeisGen generates waveforms based on the epicentral distance. However, waveforms can
vary even at the same distance due to factors like magnitude and geological conditions. To generate waveforms for specific
locations, we utilized minimal additional condition such as station data and source data along with the epicentral distance.
The hyper-parameters we used included the Generator learning rate and Discriminator learning rate are set to 2 × 10−4

and 10−5, using the Adam optimizer over 5000 epochs. Referring eq.4 of (Li et al., 2024), the loss function consists of
Adversarial Loss, Regression Loss(Lreg), and Diversity Improvement Loss(Ldi). The Lreg computes the l1 loss between
DQ’s output and the condition vector, with the λreg set to 1. The Ldi aims to prevent mode collapse by maximizing the
distance between feature maps, with λdi set to 10 when using noise and 5 when using waveforms. We experimented with
learning rates ranging from 10−4 to 10−6, using both Adam and RMSprop optimizers. The value of λdi was tested at 5, 10,
and 15, while λreg was fixed at 1. The best-performing combination of these parameters was selected for the final model.
Additionally, the results reported in Table 2 reflect the best performance achieved across 30 iterations. Addressing the
instability of the original method, we added the L1 loss Equation (14) from pix2pix(Isola et al., 2017) as an additional loss
term to improve training stability.

LL1(G) = Ex,y,z
[
∥xtgt −G(z, y)∥1

]
(14)

E.3. BBGAN (Florez et al., 2022)

BBGAN is a conditional generative model within the Wasserstein GAN framework. The original conditions of BBGAN are
VS30, earthquake magnitude, and epicentral distance. We modified conditional vector to ours, add conditional vector encoder
τθ to both generator and discriminator, modified the last upsample layer of generator to have scale factor 3 (original: 2), and
lastly increased the number of hidden features of last convolution block of discriminator, corresponding to our waveform
shape (3, 6000). Those changes allows the model to generate (3, 6000) shape waveform from the provided conditional
vector. To further improve the performance, we replaced all relu activations of generator and leaky relu activations of
discriminator to gelu activation. Additionally, while the original BBGAN paper utilized data from Japanese networks
K-NET and KiK-net with earthquake magnitudes larger than 4.5, our approach employed data from the SCEDC (SCEDC,
2013) with earthquake magnitude larger than 2.0 for training. In the training process, we set 500 training epoch and batch
size 32, and Adam optimizer with learning rate 5× 10−7 and β = (0.9, 0.999). Also the final loss function is composed
of adversarial loss, L1 reconstruction loss, and a KL divergence term. The L1 regularization term was set to 25, and the
KL regularization term was set to 0.01. For evaluation during the validation loop, envelope correlation was used as the
performance metric. During the training, the linear learning rate decay technique was applied.

E.4. LDM (Rombach et al., 2022)

E.4.1. VAE (ESSER ET AL., 2020) PRETRAINING

Due to lack of pretrained weights of VAE trained on seismic spectrogram, we first need to train VAE to encode Xtgt and
Xsrc to latent vector Ztgt and Zsrc.

Employing equation (25) of (Rombach et al., 2022), we set the loss function for VAE training is:

Ltotal = minEAE ,DAE
,maxψ[Lrec(x,DAE((x)))− Ladv(DAE(EAE(x))) + logDψ(x) + λklKL] (15)

where λkl is low weighted Kullback-Libler regularization term by factor 10−6.

Unfortunately, the VAE training on our spectrogram diverged, due to difficulty on magnitude processing. Therefore, we
apply standardization on spectrogram to relax the problem. And the latent space size is 64× 16× 94.

We report reconstruction performance of the Auto-encoder model using the proposed our metrics. The reconstruction
performance results as follow in Table 5.
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Table 5. Reconstruction result
waveform spectrogram

Model P MAE (s) S MAE (s) envelope corr SNR PSNR MSE

VAE 0.5155 0.7066 0.7567 -2.9984 25.1800 0.2459

E.4.2. LDM (ROMBACH ET AL., 2022)

We train LDM using the pretrained VAE Appendix E.4.1 and DDPM(Ho et al., 2020) scheduler. Additionally, the overall
model architecture is adapted and modified base on the TANGO (Ghosal et al., 2023) model and code. But, while TANGO
models incorporate text-encoded conditions through Large Language Model, the seismic data does not exist text conditions.
Therefore, we employ our preprocessed conditions and apply our conditional vector encoder τθ for training. During model
training, the learning target is set the samples from the DDPM scheduler. Training is conduct using two methods and training
losses.

• Equation (16): not utilizing the characteristic of paired data

• Equation (17): utilizing the characteristic of paired data

We set the hyperparameters for the AdamW optimizer as follows: an initial learning rate 10−5 and β = (0.9, 0.999), and a
weight decay of 10−2 and adam epsilon 10−8. Also, we apply the learning rate decaying technique with the linear scheduler.
The training batch size is set to 4 with an accumulation step of 4, resulting in a total effective batch size of 16. The model is
trained for 500 epochs. The results indicate that training with paired data outperforms training without paired data.

L′
LDM = E(Ztgt ,⃗ctgt),ϵ,t∥Z

tgt − xθ(z
tgt
t , c⃗tgt, t)∥2 (16)

L′
LDM = E(Zsrc,Ztgt ,⃗ctgt),ϵ,t∥Z

tgt −mθ(z
src
t , c⃗tgt, t)∥2 (17)
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