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Abstract001

Rapid advancements in Large Language Mod-002
els (LLMs) have significantly enhanced multi-003
modal AI, emphasizing the importance of ef-004
fectively processing image-based text through005
Optical Character Recognition (OCR). How-006
ever, the extensive computational resources re-007
quired by high-performing LLMs limit their008
commercial applicability, making smaller OCR009
models prevalent despite their susceptibility to010
recognition errors, particularly with low-quality011
images. Addressing OCR errors through post-012
correction is essential but constrained by the013
scarcity of high-quality training datasets. Ex-014
isting synthetic methods are either resource-015
intensive or insufficiently realistic. To over-016
come these limitations, we propose POCO017
(Post-OCR Correction with Output distribu-018
tions), a novel low-cost framework leverag-019
ing character-level probabilistic simulations020
to synthetically generate realistic OCR error021
datasets. Our framework employs a lightweight022
vision model (ResNet34) to predict character023
probabilities and inject OCR-like errors into024
text corpora, effectively creating extensive and025
high-quality training datasets. Experimental026
results demonstrate significant improvements027
in OCR post-correction, validating our frame-028
work’s practicality and effectiveness.029

1 Introduction030

Recent advances in Large Language Models031

(LLMs) have accelerated multimodal AI develop-032

ment, highlighting the growing importance of pro-033

cessing image-based text. The increasing preva-034

lence of scanned or photographed text documents,035

such as reports, papers, signs, and menus, has made036

Optical Character Recognition (OCR) essential.037

OCR is widely used on camera-equipped mo-038

bile devices. While powerful LLMs like Chat-039

GPT(OpenAI, 2024) show strong OCR perfor-040

mance, their high computational demands limit041

widespread commercial use. Consequently, smaller042
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Figure 1: OCR post-correction datasets generation

OCR models dominate commercial applications 043

but frequently struggle with errors, especially in 044

low-quality images(Kiss et al., 2019; Kashid and 045

Bhattacharyya, 2024; Vitman et al., 2022). 046

OCR errors negatively impact downstream AI 047

applications and commercial systems, making er- 048

ror correction crucial. However, the availability 049

of high-quality training datasets for OCR post- 050

correction is limited. Existing dataset construction, 051

such as generating images from ground-truth texts 052

or experimentally extracting error distributions, of- 053

ten yield inconsistent quality and require significant 054

effort (Guan and Greene, 2024; Ignat et al., 2022). 055

To address these challenges, we propose POCO 056

(Post-OCR Correction with Output distributions), 057

an efficient OCR post-correction dataset genera- 058

tion framework using character-level probabilistic 059

simulations. Our method, illustrated in Figure 1, 060

employs a vision model trained on synthetic char- 061

acter recognition data, termed an OCR Error Sim- 062

ulator, to inject realistic OCR-like errors into text 063

corpora. Experimental results confirm that datasets 064

produced by our approach significantly improve 065

OCR post-correction performance. 066

The main contributions of this paper are: 067

• We propose POCO, a simple and cost- 068
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Figure 2: POCO framework pipeline for OCR post-correction dataset geneartion

effective framework for simulating OCR er-069

rors at the character level.070

• POCO improves OCR post-correction, espe-071

cially with pretrained models like mT5.072

• We validate its effectiveness in handling com-073

mon OCR errors such as character confusion074

and spacing.075

2 Related Work076

Several approaches have been proposed for gener-077

ating datasets for OCR post-correction:078

Random error injection method (D’hondt et al.,079

2017) inserts, deletes, or substitutes characters ran-080

domly into clean text corpora. It is simple, easy to081

implement, and resource-efficient but often fails to082

accurately mimic the actual error distribution of083

OCR systems, limiting its generalization in real-084

world scenarios.085

Image-generation-based method (Boros et al.,086

2022) renders texts as images, introduces visual087

noise, and processes them through actual OCR sys-088

tems to produce realistic error patterns. While this089

method generates realistic data suitable for image-090

based training, the type and amount of errors are091

limited by the OCR system used, and substantial092

computational resources are required for image093

generation and processing.094

Real error distribution-based insertion method095

(Grundkiewicz et al., 2019) aligns OCR-096

processed texts with their original versions to de-097

rive probabilities of insertion, deletion, and substi-098

tution errors. Errors are then introduced into clean099

corpora based on these distributions. This method100

realistically reflects actual OCR errors, but it is101

resource-intensive due to the additional alignment102

algorithms and text corpora required, making it103

challenging to apply to low-resource languages.104

Glyph similarity-based insertion method (Guan105

and Greene, 2024) quantitatively assesses visual106

similarity between character pairs to simulate sub-107

stitution errors effectively. It leverages various com- 108

puter vision techniques, employing Jaccard similar- 109

ity and average distances to calculate glyph similar- 110

ity. While effective without additional corpora, it 111

faces computational complexity challenges O(n2) 112

in languages with large character sets. 113

3 POCO Framework 114

As illustrated in Figure 2, we developed a vocabu- 115

lary specific to each language to create character- 116

level image-text label datasets for training an char- 117

acter recognizer. Subsequently, we used the trained 118

recognizer to inject realistic OCR errors into a 119

text corpus, thus generating datasets for OCR post- 120

correction tasks. 121

3.1 Vision Model-Based Character 122

Recognizer 123

We employed a lightweight vision model (non- 124

pretrained ResNet34 (He et al., 2016)) as our char- 125

acter recognizer. The recognizer was trained to pre- 126

dict characters from images, each containing ran- 127

domly selected sequences of 1 to 8 characters gen- 128

erated via the PIL library. We developed a unified 129

recognizer capable of handling both Chinese and 130

Korean texts by randomly utilizing seven publicly 131

available fonts compatible with both languages. 132

The training data included 32,546 characters, 133

comprising numerals, common special characters 134

(50), English alphabets (52), Korean characters 135

(11,266), Japanese Hiragana and Katakana (189), 136

and CJK Unified Ideographs (20,989). 137

3.2 OCR Error Simulator 138

After training, logits were computed for each char- 139

acter in the vocabulary. For each character, the top 140

five most probable confusion characters (exclud- 141

ing itself) were selected as potential errors, limited 142

within each language or among special characters. 143

We selected the Chinese-Korean subset from 144

the AIHub multilingual humanities translation cor- 145

pus (Agency, 2023) to create OCR error-injected 146
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KoreanChinese

이부족연맹체국가는청나라옹정제까지이어가다 1732년에소멸되었다.柏林墙各处的检查站大门同时敞开。Label

이부족연맹체쿡가늗청나라옹정제까지이어가다 1?32년에소멸되었ㅁ.柏林衛各处的尬查站大门同时儆开。POCO

이부족연망체국가는청나라용정제까지이어가다 1732년에소별되없다.柏林墙各处的检查站大门同时敞开。EasyOCR

이부족연맹체국가는청나라옹정제까지이어가다 1732년에소멸되었다_柏林墙各处的检查站大门同时_开。PaddleOCR

Figure 3: Simulated OCR error data and actual OCR output data (‘_’ indicates a missing character)
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Figure 4: Character recognizer probability sample, Gray
cells indicate exclusion due to identity with themselves

datasets. Errors were injected with a 10% proba-147

bility per character, maintaining approximately a148

10% Character Error Rate (CER). The confusion149

characters were selected based on their logits prob-150

abilities, weighted as 40%, 30%, 15%, 10%, and151

5%, respectively, to reduce bias from extreme logit152

differences. Additionally, spacing was randomly153

inserted (1% probability) or deleted (10% probabil-154

ity) in Korean texts.155

Figure 3 compares our synthetically generated156

errors with results from actual OCR systems (Easy-157

OCR1 and PaddleOCR (Du et al., 2020)), confirm-158

ing the simulator’s effectiveness in reproducing159

realistic OCR error patterns, including spacing vari-160

ations.161

Figure 4 shows sample data based on the char-162

acter recognizer’s probability distribution. Top-k163

candidates often same the ground truth (GT), with164

the highest-probability candidate frequently being165

the GT itself. To focus on meaningful variations,166

identical matches to the GT are excluded, and the167

top 5 remaining candidates are selected.168

4 Experiments169

We conducted experiments to evaluate the effective-170

ness of our proposed OCR post-correction dataset171

generation framework. Specifically, we aimed to:172

1) Train OCR correction models (XLM-RoBERTa173

(Conneau et al., 2020) and T5 (Raffel et al., 2020))174

on the generated datasets and assess their effective-175

ness by measuring improvements in CER on real176

OCR outputs; and 2) analyze the types of errors177

1https://github.com/JaidedAI/EasyOCR.git

Korean Chinese
Train 231,069 57,217
Val 30,652 13,674
Test 10,000 10,000

Table 1: Dataset split statistics

produced by actual OCR models compared to those 178

corrected by our framework. 179

4.1 Experimental Setup 180

Datasets The experiments utilized Chinese and 181

Korean corpora as detailed in Table 1. As the pro- 182

vided corpus contained only training and validation 183

splits, we randomly sampled 10,000 examples from 184

the training set for testing purposes. We injected er- 185

rors into the train and validation datasets using the 186

OCR Error Simulator, achieving approximately a 187

10% CER. The test datasets incorporated real OCR 188

errors obtained using PaddleOCR and EasyOCR. 189

OCR Error Simulator We utilized non- 190

pretrained model ResNet34 as backbones. The 191

model predicted sequences of 1 to 8 characters, 192

padded appropriately. For dataset generation, only 193

ResNet34 was used. Models were trained for 500 194

epochs with a batch size of 256 and a learning rate 195

of 5e−4. 196

OCR Post-Correction Models We trained both 197

non-pretrained and pretrained OCR correction mod- 198

els using publicly available models from Hug- 199

gingFace: FacebookAI/xlm-roberta-base (Conneau 200

et al., 2020) and google/mt5-base (Xue et al., 2021). 201

The batch size was set to 128, employing gradient 202

accumulation if memory constraints arose. Models 203

were trained with a learning rate of 5e−5 and early 204

stopping based on validation CER with a patience 205

of 10 epochs. 206

4.2 Experimental Results 207

4.2.1 Effectiveness of OCR Post-Correction 208

Framework 209

As shown in Table 2, the pretrained mT5 mod- 210

els consistently outperformed others in correct- 211
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XLM-RoBERTa mT5Language OCR Model
Non-Pretrained Pretrained Non-Pretrained Pretrained

GTP-4o

Korean 0.074 0.122 0.111 0.077 0.063(+15%) 0.223
Chinese EasyOCR

0.062 0.092 0.059(+5%) 0.095 0.057(+8%) 0.139
Korean 0.040 0.043 0.031(+23%) 0.021(+48%) 0.023(+43%) 0.220
Chinese PaddleOCR

0.012 0.034 0.013 0.025 0.012(-%) 0.134

Table 2: CER Performance of OCR Post-Correction
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Figure 5: Length distribution of EasyOCR Chinese re-
sults based on the presence of whitespace

ing OCR errors from EasyOCR and PaddleOCR212

outputs. The XLM-RoBERTa model also showed213

improvements in several cases. The Chinese Pad-214

dleOCR model had minimal errors, resulting in215

limited correction potential.216

When GPT-4o (ChatGPT) was utilized for cor-217

rection, the CER increased, likely due to its218

decoder-based generation approach, which pre-219

serves semantic meaning but changes sentence220

structure, thus raising the error rate. Effective OCR221

correction requires precise character restoration,222

highlighting the need for detailed prompting and223

additional tuning when employing LLMs (Figures224

7 and 8).225

These results validate the efficacy of our frame-226

work, confirming the suitability of encoder-decoder227

architectures for OCR correction tasks. Encoder-228

only models demonstrated limited correction ca-229

pabilities, and decoder-only models often failed230

to train adequately. Pretrained models consistently231

showed superior performance.232

4.2.2 Error Analysis of OCR and233

Post-Correction Models234

We analyzed the lengths of original and OCR sen-235

tences to categorize errors. Positive differences in-236

dicated character omissions by models, whereas237

negative differences suggested unnecessary inser-238

tions. Equal lengths indicated balanced insertion-239

omission errors or misrecognized characters.240
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Figure 6: Length distribution of mT5 Chinese post-
correction results based on the presence of whitespace

Figure 5 illustrates that Chinese EasyOCR re- 241

sults contained significant space insertion errors, 242

as evidenced by length discrepancies that were 243

substantially reduced upon removing spaces. Con- 244

versely, the mT5 correction results (Figure 6) 245

demonstrated significantly improved consistency, 246

indicating effective correction of spacing errors by 247

our framework. 248

5 Conclusion 249

In this paper, we introduced POCO, a cost-efficient 250

OCR post-correction dataset construction frame- 251

work utilizing character-level probabilistic simula- 252

tion. Unlike existing methods, our approach effec- 253

tively generates realistic OCR errors without requir- 254

ing intensive computational resources or extensive 255

manual intervention. Through comprehensive ex- 256

periments, we demonstrated the efficacy of datasets 257

generated by POCO, significantly improving OCR 258

post-correction performance, particularly with pre- 259

trained encoder-decoder architectures such as mT5. 260

Our analyses confirmed that POCO effectively ad- 261

dresses typical OCR issues, including erroneous 262

space insertions and character misrecognitions, en- 263

hancing overall OCR reliability. Future research di- 264

rections include further refining the error-injection 265

model for increased adaptability across various lan- 266

guages and OCR systems, ultimately contributing 267

towards robust multimodal text processing in prac- 268

tical applications. 269
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Limitations270

Although the proposed POCO framework demon-271

strates effectiveness in generating realistic OCR er-272

ror datasets efficiently, several limitations remain:273

Character-Level Error Injection Simplification274

POCO’s simulation of OCR errors relies solely275

on character-level probabilistic modeling, poten-276

tially overlooking more complex, contextual OCR277

errors that frequently occur in real-world OCR pro-278

cesses. Future studies should explore integrating279

word-level or sentence-level contextual error mod-280

eling.281

Fixed Error Rate for Dataset Generation The282

current study primarily uses a fixed error injection283

rate (10%) across experiments. Real OCR systems284

often exhibit varying error rates depending on text285

quality, fonts, and noise conditions. Evaluating dif-286

ferent error injection rates would strengthen the287

generalizability and robustness of the proposed ap-288

proach.289

Limited Evaluation Metrics The evaluation pre-290

sented in the paper exclusively focuses on Charac-291

ter Error Rate (CER). However, OCR errors signif-292

icantly impact downstream NLP tasks such as Ma-293

chine Translation (MT), Named Entity Recognition294

(NER), and Information Extraction (IE). Additional295

evaluations using task-specific metrics would pro-296

vide a clearer picture of POCO’s practical impact.297

Dataset and Language Generalization Al-298

though the framework theoretically supports mul-299

tilingual capabilities, experiments and evaluations300

are primarily conducted on Korean and Chinese301

datasets. While promising for these languages, fur-302

ther validation is required to confirm the frame-303

work’s effectiveness and generalizability to other304

languages and scripts, particularly low-resource305

and morphologically rich languages.306

Insufficient Model Variability Analysis The307

character recognition model utilized (ResNet34)308

is chosen primarily for its computational efficiency,309

but deeper insights into how different model ar-310

chitectures or training regimens might influence311

error realism or dataset quality are not explored.312

Future work should investigate a broader range of313

models, potentially including vision transformers314

or deeper CNN variants, to comprehensively assess315

performance trade-offs.316
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A Prompts397

Figures 7 and 8 illustrate system and user prompts398

for OCR Post-Correction. We used ChatGPT for399

experiments inference and translation.400

System Prompt 

role: system,
content: 
You are an expert in correcting grammar errors in texts
extracted via Optical Charecter Recognition(OCR).

Your job is to correct each sentence into fluent and natural
Chinese without changing the original meaning.

Return only the corrected texts in the same order.
Do not explain anything

Figure 7: System prompt for OCR Post-Correction.

User Prompt 

role: user,
content: 
{Sentence 1} 
{Sentence 2}
…
—
Return a list of the same length with each sentence cleaned. 

Figure 8: User prompt for OCR Post-Correction

B Additional Experimental Results 401

Figures 9 and 10 visualize the distribution of sen- 402

tence lengths before and after processing with Easy- 403

OCR and PaddleOCR, comparing them to the origi- 404

nal sentences. To examine the impact of whitespace, 405

we present two versions: one including spaces and 406

one without. 407

Figures 11 and 12 visualize the distribution of 408

sentence lengths before and after processing with 409

XLM Roberta, comparing them to the original sen- 410

tences. To examine the impact of whitespace, we 411

present two versions: one including spaces and one 412

without. 413

Figures 13 and 14 visualize the distribution of 414

sentence lengths before and after processing with 415

mT5, comparing them to the original sentences. To 416

examine the impact of whitespace, we present two 417

versions: one including spaces and one without. 418
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Figure 9: Length distribution of OCR results
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Figure 10: Length distribution of OCR results without whitespace
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Figure 11: Length distribution of XLM Roberta model results
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Figure 12: Length distribution of XLM Roberta model results without whitespace
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Figure 13: Length distribution of mT5 model results
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Figure 14: Length distribution of mT5 model results without whitespace
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