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ABSTRACT

Multimodal large language models (MLLMs) rely on dense visual tokens, but
their indiscriminate propagation causes severe inference overhead. Existing prun-
ing strategies largely treat token importance as a static property (e.g., attention
strength), overlooking the dynamic nature of evidence flow. In this work, we re-
cast pruning as an information maximization problem under budget constraints:
under limited computation, which tokens provide genuine marginal information,
and when has their contribution been fully injected into the language stream?
Guided by this formulation, Guided by this formulation, we propose InfoPrune,
a training-free two-stage framework. Stage 1 refines visual token selection by
combining attention priors with information increment, while Stage 2 detects mid-
layer semantic convergence and performs one-shot pruning within the LLM. This
design directly targets “who to keep” and “when to stop,” reducing redundancy
while preserving essential semantics. Experiments on LLaVA-1.5, LLaVA-Next,
and Qwen-VL-2.5 show that InfoPrune achieves over 96% performance retention
with only 11.1% tokens, outperforming prior methods in generality, stability, and
efficiency. Our work provides both a principled perspective on multimodal evi-
dence budgeting and a practical solution for efficient inference.
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Figure 1: The performance of InfoPrune. The x-axis denotes the proportion of visual tokens
retained. InfoPrune achieves substantial performance preservation across multiple models compared
to several baselines.

1 INTRODUCTION

Multimodal large language models (MLLMs) have achieved remarkable progress in tasks such as
visual question answering, image-text reasoning, and caption generation. By encoding images as se-
quences of visual tokens and integrating them with language tokens, MLLMs substantially improve
multimodal understanding. However, their impressive capabilities come at a high computational
cost. Visual tokens are typically propagated through all layers without selection, and their volume
and depth of interaction result in significantly increased inference latency, memory consumption,
and FLOPs—posing a major challenge for real-world deployment.
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To alleviate this computational bottleneck, researchers have proposed visual token pruning strate-
gies that aim to reduce overhead by discarding redundant visual tokens during inference. Existing
methods can be broadly categorized into two groups: the first performs importance-based selection
in the visual encoder using attention or saliency scores (Yang et al., 2024) (Vasu et al., 2025), while
the second prunes tokens (Chen et al., 2024) (Yin et al., 2025) (Xing et al., 2025) inside the LLMs
to prevent deep-layer propagation. However, these methods often rely on a simplified assumption:
that token importance can be directly inferred from local features or static scores (e.g., attention
weights).

While such heuristics have shown empirical success, their core premise—that important tokens are
easily identifiable via static features—fails to capture the true dynamics of token-level information
flow within the model. Even in models with strong overall performance, we observe that tokens
selected by attention-based pruning may still provide insufficient evidence, ultimately leading to
reasoning failures. This highlights a more fundamental oversight: the model does not necessarily
need tokens that merely appear important, but rather those that actively contribute to the semantic
transmission process.

In this work, we propose a new perspective: visual tokens are not static inputs to be processed, but
dynamic evidence carriers injected into the language model across layers. Based on this standpoint,
we frame visual token pruning as an information maximization problem under budget constraints:

Problem

Under constrained computation, how can we optimally preserve tokens that bring high
marginal information increments, and terminate their involvement once their information has
been fully injected?

This core problem can be decomposed into two subproblems that reflect two distinct but comple-
mentary pruning perspectives:

Subproblem I

Visual-centric pruning: Which visual to-
kens contribute truly new information?

Subproblem II

Text-centric pruning: When should visual
token injection be halted to avoid compu-
tation that is costly yet semantically re-
dundant?

To systematically address these subproblems, we adopt an information-theoretic lens and conduct
in-depth empirical and theoretical analyses across mainstream MLLMs. From these analyses, we
derive two key insights: (1)While attention scores offer a useful prior for token relevance, they
mainly capture local saliency and do not reflect whether a token contributes new information. This
suggests that marginal information gain should be explicitly measured, so that token selection favors
truly informative and non-redundant inputs. (2) By the middle layers, visual information has been
sufficiently injected, and the language semantics have stabilized. Further retaining all visual tokens
beyond this point yields diminishing returns and introduces redundant computation.

Grounded in these insights, we propose InfoPrune, a two-stage information-theoretic pruning
framework that leverages attention priors and information increment to guide token selection, and
dynamically halts visual token propagation once their contribution saturates. This design reduces
redundancy while preserving critical visual semantics.

Extensive experiments on LLaVA-1.5, LLaVA-Next, and Qwen-VL-2.5 demonstrate that InfoPrune
achieves strong performance retention under aggressive token reduction. As shown in Fig 1,
LLaVA-1.5 retains 98.8% and 97.0% average performance when preserving only 22.2% and
11.1% visual tokens, respectively. LLaVA-Next achieves 97.1% and 96.8% under the same prun-
ing ratios, while Qwen-VL-2.5 maintains 96.4% and 93.5%. These results highlight InfoPrune’s
superior generalizability, stability, and information efficiency over existing approaches.

Our main contributions are as follows:

• We recast visual token pruning in MLLMs as an information maximization problem under
budget constraints, grounded in the flow of evidential signals. This formulation naturally

2
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decomposes into two subproblems: identifying tokens with high marginal information gain,
and determining when visual evidence injection is complete.

• We propose InfoPrune, a training-free two-stage pruning framework. The first stage com-
bines attention priors with information increment to prune tokens. The second stage detects
semantic stabilization in the language model and performs one-shot mid-layer pruning, sig-
nificantly improving inference efficiency.

• We conduct comprehensive experiments on three mainstream MLLMs: LLaVA-1.5,
LLaVA-Next, and Qwen-VL-2.5. Results show that InfoPrune consistently outperforms
prior state-of-the-art methods, achieving over 96.8% performance retention under extreme
compression (e.g., retaining only 11.1% of visual tokens), while exhibiting strong gener-
alization and robustness.

2 MOTIVATION

To operationalize our formulation of visual token pruning as an information planning problem, we
now turn to empirical and theoretical analyses of the two subproblems introduced in Section 1.
Specifically, we ask: (1) how effective are current token selection strategies at identifying marginally
informative tokens, and (2) at what point in the model has visual information been sufficiently
absorbed to warrant pruning? These analyses guide the design of our proposed method.

2.1 VISION-CENTRIC PRUNING: AN INFORMATION-INCREMENTAL PERSPECTIVE

As the core of visual-centric pruning, Subproblem I asks: Given partial evidence already retained,
how can we identify visual tokens that still contribute meaningful new information? Intuitively, such
tokens should carry semantic signals that cannot be linearly expressed by the current token subset,
thereby serving as marginally informative additions to the visual context. From an information-
theoretic perspective, the selection process should exhibit marginal optimality—each retained token
should significantly expand the representational subspace. While this goal is inherently structural,
most existing approaches approximate token importance via attention scores assigned by the [CLS]
token, under the assumption that higher attention implies higher utility. Despite their empirical
success and interpretability, we find this assumption often fails in practice. The tokens selected by
top attention scores may collectively fail to support accurate reasoning, suggesting that attention
strength alone is an unreliable proxy for informational value.

To more faithfully capture token utility, we propose to model the selection process as a subspace ex-
pansion problem, where each candidate token is evaluated by its ability to introduce a new direction
orthogonal to the span of previously selected tokens. This residual signal—defined as the orthogo-
nal component of a token with respect to the current subspace—serves as a measure of its marginal
information increment. In the setting of token-budget constrained pruning, we thus formulate token
selection as a subset optimization problem: given a budget T , select a subset S ⊆ {1, . . . , N} such
that the selected tokens preserve as much global semantic information as possible. To support this
formulation with tractable and theoretically grounded objectives, we introduce two complementary
first-order indicators that capture each token’s local novelty and global structural contribution, which
we elaborate in the next section.

First, if information sufficiency is understood as covering the principal directions of the full set,
the natural objective is to maximize the geometric volume of the selected vectors, i.e., the Gram
determinant log detGS . In incremental selection, the marginal gain of adding a candidate xi can be
expressed by the Schur complement as

log detGS∪{i} − log detGS = log
(
1 + ∥ri∥22

)
, (1)

where ri = xi −UU⊤xi is the orthogonal residual of xi with respect to the subspace spanned by
XS , and U is its orthonormal basis. Thus, the marginal volume growth is monotonically aligned
with the residual norm, which motivates our first indicator - Marginal Feature Increment (MFI):

MFI(xi | S) = ∥xi −UU⊤xi∥2, (2)
measuring the non-reconstructability or new directionality of a candidate relative to the current
subspace. Since log detGS is submodular, this residual-based greedy selection enjoys natural ap-
proximation guarantees.

3
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Figure 2: Visualization of Marginal Feature Increment (MFI) & Marginal Gain of Information
(MGI) under the attention-based token selection strategy on the MME dataset with LLaVA-
1.5-7B, LLaVA-Next and Qwen-VL-2.5. All curves are computed over multiple samples, with
shaded areas indicating standard deviations.

Second, if information sufficiency is viewed in terms of maximizing parameter identifiability under
a linear–Gaussian proxy (i.e., Fisher information or Gaussian entropy), the objective becomes the
D-optimal design max|S|=T log det(CS + εI), where CS = 1

|S|
∑

j∈S xjx
⊤
j . In the incremental

view, the marginal statistical gain of adding xi is Marginal Gain of Information (MGI):

MGI(xi | S) = log det(CS∪{i} + εI)− log det(CS + εI), (3)

which quantifies the improvement in covariance volume (statistical diversity) brought by the candi-
date, i.e., its global structural contribution. Owing to the submodularity of log det, this criterion
naturally favors complementary directions while penalizing redundancy.

Under an information-optimal selection order, MFI should decay rapidly toward zero as steps pro-
ceed, while the marginal gain of MGI should gradually diminish toward zero. Significant oscillations
or non-convergent patterns, in contrast, typically signal redundancy or failure to introduce effective
new directions. Further analysis of these two metrics can be found in C.2.2.

After constructing the MFI and MGI metrics, we evaluated the performance of several mainstream
models under the standard attention-based Top-k token selection strategy. Each token selection step
is treated as a time index t, and we plot the corresponding MFI and MGI distributions across tokens.

Fig 2 shows that the selected tokens under this strategy exhibit considerable variance across samples
in both metrics, indicating a lack of consistency. More notably, the MFI curves reveal a clear “late-
stage advantage”: tokens ranked lower in attention often yield higher marginal information gains
than earlier ones. This suggests a fundamental mismatch—high attention scores do not necessarily
imply high information contribution.

Based on the above analysis, we arrive at the core insight I for Subproblem I:

Core Insight I

(1)While attention scores offer a useful prior for token relevance, they mainly capture local
saliency and do not reflect whether a token contributes new information. This suggests that
marginal information gain should be explicitly measured, so that token selection favors truly
informative and non-redundant inputs.
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2.2 TEXT-CENTRIC PRUNING: PERSPECTIVE OF INFORMATION INJECTION

Text-centric pruning addresses the second core question in our evidence budgeting framework:

Which visual tokens have already fulfilled their role in information transmission and can thus
be safely removed?

To analyze this, we adopt two complementary perspectives:

• Visual-to-textual information flow. We track how much visual evidence is injected into
the text stream across layers, identifying when further token retention yields diminishing
returns.

• Stability of semantic predictions. We monitor the convergence of next-token predictions
to detect when the language model has fully internalized visual information.

To characterize how visual tokens propagate and inject information into the language model, we
design two layer-wise indicators: (1) the visual-to-textual flow Svt(ℓ), measuring the information
injected from visual tokens to text tokens at each layer ℓ; and (2) the intra-visual flow Svv(ℓ),
quantifying the interaction strength among visual tokens themselves.

Instead of relying on raw attention weights, we adopt a saliency-based measure that captures token-
to-token information flow. Specifically, the flow from token j to token i at layer ℓ is defined as:

Iℓ(i, j) =

∥∥∥∥ ∂L
∂hL

i

·WV
ℓ ·Aℓ(i, j)

∥∥∥∥
2

(4)

where L is the model’s loss function, hL
i denotes the final-layer representation of token i, WV

ℓ is
the value projection matrix, and Aℓ(i, j) is the attention from token i to token j. The saliency score
Iℓ(i, j) reflects the contribution of token j to the loss-relevant representation of token i. Based on
this formulation, we define the two indicators as:

Svt(ℓ) =
1

|V |

∑
j∈I

∑
i∈V

Iℓ(i, j), Svv(ℓ) = 1
|V |

∑
j∈V

∑
i∈V

Iℓ(i, j) (5)

where V and I denote the sets of visual and text tokens, respectively. These two indicators quantify
the injectivity and redundancy of visual tokens at each layer, offering structural guidance for deciding
when to stop propagating them.

0 5 10 15 20 25 30
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0
Intra-Visual Flow
Visual-Textual Flow

Figure 3: Layer-wise evolution of Svt and Svv

for LLaVA-1.5 on POPE. Visual information is
massively injected from shallow to mid layers,
after which its intensity steadily decays.

As shown in Fig 3, model exhibit a consistent
trend: the strength of visual-to-text injection be-
gins to decline noticeably from the middle layers,
and the overall degree of cross-modal interaction
diminishes as depth increases. This suggests that
the language model has already absorbed suffi-
cient visual information by the mid-stage, provid-
ing empirical support for pruning at a saturation
point. See C.1 for more results.

Beyond quantifying visual injection, we assess
whether the language model has reached a state
of semantic maturity—i.e., whether the internal
representation has stabilized sufficiently to sup-
port next-token prediction. Instead of comparing
embeddings across layers, we adopt a behavioral
view by tracking the model’s predictive dynam-
ics. At each transformer layer, we extract the
next-token distribution and monitor two signals: (1) changes in the top-1 predicted token, and (2)
the stability of its predicted probability.

As shown in Fig 15, early layers exhibit frequent shifts in both the predicted token and its confidence,
indicating semantic volatility. In contrast, middle layers mark a convergence point: the top-1 token
stabilizes, and its probability becomes increasingly consistent. This behavioral plateau persists in
deeper layers, suggesting that the model has effectively consolidated the input semantics.
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Figure 4: Overview of the InfoPrune framework. Stage 1 performs vision-side pruning: starting
from N visual tokens, we first build a candidate pool C with attention priors, then apply a De-
terminantal Point Process (DPP) selection focusing on marginal information gain. After obtaining
the retained tokens, a token merge step absorbs the information from discarded tokens, resulting in
T1 = R1 ·N informative tokens. Stage 2 performs LLM-side pruning: once semantic convergence
is detected at a mid-layer K, a further ratio R2 is applied to prune the T1 tokens in one shot, leaving
T2 = R2 · T1 tokens. In the DPP process, we first select the token with the largest residual (yellow)
from the unselected candidates (green) and then add it to the selected set S (blue); the orthogonal
basis U of S is subsequently updated to reflect the token addition.

Interestingly, this trend aligns with the saturation point of visual-to-textual injection, reinforcing our
hypothesis that visual information has been fully consumed by the language model by mid-depth.

Based on the above analysis, we arrive at the core insight II for Subproblem II:

Core Insight II

By the middle layers, visual information has been sufficiently injected, and the language se-
mantics have stabilized. Further retaining all visual tokens beyond this point yields diminishing
returns and introduces redundant computation.

3 METHOD

Building on the two key insights, we introduce InfoPrune, an information-driven, two-stage pruning
framework, as shown in Fig 4.

In the first stage, InfoPrune prunes on the vision encoder side by constructing an attention-guided
candidate pool and selecting a diverse subset based on marginal information gain. In the second
stage, it prunes inside the LLM backbone by detecting semantic saturation at an intermediate layer
and performing text token removal, substantially reducing downstream computation with minimal
loss of information. We now elaborate on the design and implementation of each stage.

3.1 STAGE 1: VISUAL ENCODER PRUNING AND MERGE

The first stage of InfoPrune performs token pruning within the visual encoder. The objective is to
compress the original set of N visual tokens down to T1 ≪ N tokens, while preserving sufficient
semantic content for downstream reasoning. We define the visual-side pruning ratio as R1 = T1/N .
This stage comprises three steps: attention-based candidate pool C, Determinantal Point Process
(DPP) algorithm based on marginal information gain, and token merge. The full procedure is shown
in Algo 1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We begin by extracting deep attention scores ai from [CLS] token within the vision encoder. These
scores reflect the global saliency of each visual token. We apply a softmax normalization with
temperature τattn, followed by a sharpening exponent γq , to obtain the attention prior:

qi =

(
softmax

(
a

τattn

)
i

)γq

, i = 1, . . . , N (6)

Attention-based candidate pool C: We then select the top-αT tokens with highest qi values to
form a candidate pool C, where α > 1 is an over-provisioning factor.

DPP-algorithm: For each candidate, we construct a DPP-style feature:

Zi =
√
qi · xi, i ∈ C (7)

From this pool, we perform greedy selection using a residual-based marginal information gain strat-
egy (Kulesza & Taskar, 2012). Let U ∈ Rd×|S| denote the current orthonormal basis of the subspace
spanned by the selected tokens S. For each candidate Zi, we compute its squared residual:

ri = ∥Zi∥22 − ∥U⊤Zi∥22 = ∥(I − PU )Zi∥22 (8)

The token with the largest ri is added to S, and U is updated accordingly (See Alg 1 for details). The
process stops early if the maximum residual falls below a threshold ε, indicating novelty saturation.
If |S| < T1, we fill the remaining slots using the top-qi tokens from the leftover candidates; if
|S| > T1, we truncate S using qi scores to satisfy the budget |S| = T1.

Token Merge: To preserve tensor shape while retaining semantic cues from discarded tokens, we
perform prototype-based feature consolidation. Each dropped token is softly merged into its most
similar retained token using cosine similarity and inertia-weighted accumulation. The fused features
are written back only at the selected positions, resulting in an output tensor X̃ ∈ RN×d compatible
with downstream processing. See Alg 1 for details.

3.2 STAGE 2: MID-LAYER ONE-SHOT PRUNING IN THE LLM

The second stage of InfoPrune performs a one-shot pruning at a predefined intermediate layer K
in the LLM to remove redundant visual tokens after their semantic information has been largely
absorbed.

Given T1 tokens from Stage 1 and a target pruning ratio R2 ∈ (0, 1], we retain T2 = R2 · T1 tokens
by ranking their importance based on attention from the final text token at layer K. Specifically, we
compute:

si =
1

H

H∑
h=1

α
(K,h)
i , i = 1, . . . , T1 (9)

The top-T2 tokens by score are preserved, while others are removed. Both hidden states and attention
masks are updated, and only the selected tokens are propagated beyond layer K.

4 RESULTS

We deploy our proposed method on a range of widely used multimodal models and conduct system-
atic comparisons against several representative baselines across multiple popular benchmarks.

4.1 SETTINGS

4.1.1 MODELS & BASELINE & BENCHMARK

Models: We evaluate our method on three representative and widely adopted open-source vision-
language models: LLaVA-1.5, LLaVA-NeXT, and Qwen-VL-2.5. These models have become stan-
dard backbones in the community and serve as the foundation for many subsequent MLLM devel-
opments.

Baselines: We compare against a set of strong and community-recognized baselines, including
FASTV (Chen et al., 2024), PYRAMIDDROP (Xing et al., 2025), VISIONZIP (Yang et al., 2024), and

7
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Table 1: Performance comparisons on LLaVA-1.5-7B across 9 benchmarks. The best results in
each setting are bolded.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VizWiz VQAText VQAv2 Average
Upper Bound, 576 Tokens (100%)

LLaVA-1.5-7B (Liu et al., 2023a) NeurIPS’23 61.9 64.7 58.1 1862 85.9 69.5 50.0 58.2 78.5 100.0%

Retain 192 Tokens in Average (↓66.7%)
FastV (Chen et al., 2024) ECCV’24 53.4 60.9 56.1 1658 65.1 67.3 50.3 54.7 67.1 91.0%
PyramidDrop (Xing et al., 2025) CVPR’25 57.1 63.3 56.0 1791 83.1 68.9 51.0 56.8 75.4 97.1%
VisionZip (Yang et al., 2024) CVPR’25 59.3 63.0 57.1 1783 85.3 68.0 50.3 57.3 74.7 96.7%
SparseVLM (Zhang et al., 2025) ICML’25 57.6 62.5 53.7 1721 83.6 69.1 50.5 56.1 75.6 96.1%
Ours - 60.5 64.0 57.5 1817 86.2 68.6 50.8 58.1 77.7 99.2%

Retain 128 Tokens in Average (↓77.8%)
FastV (Chen et al., 2024) ECCV’24 51.5 56.1 55.9 1534 59.9 62.1 51.3 52.6 64.3 86.9%
PyramidDrop (Xing et al., 2025) CVPR’25 57.7 61.0 56.6 1765 82.3 69.0 50.8 56.7 75.6 96.7%
VisionZip (Yang et al., 2024) CVPR’25 56.8 62.0 56.6 1763 83.2 68.9 51.3 56.8 75.6 96.9%
SparseVLM (Zhang et al., 2025) ICML’25 56.0 60.0 51.1 1696 80.5 67.1 51.4 54.9 73.8 93.7%
Ours - 59.7 63.2 57.8 1780 86.1 69.6 51.6 57.0 77.0 98.8%

Retain 64 Tokens in Average (↓88.9%)
FastV (Chen et al., 2024) ECCV’24 50.1 54.7 53.0 1329 48.6 55.1 50.9 49.1 61.6 81.0%
PyramidDrop (Xing et al., 2025) CVPR’25 52.5 58.0 50.5 1569 55.9 69.2 50.7 50.5 70.3 87.6%
VisionZip (Yang et al., 2024) CVPR’25 55.1 61.0 54.9 1690 77.0 63.0 52.1 55.5 72.4 93.4%
SparseVLM (Zhang et al., 2025) ICML’25 55.2 56.0 50.4 1532 75.1 62.1 49.2 51.0 71.8 88.8%
Ours - 57.3 61.8 56.0 1715 85.0 69.8 52.6 55.9 75.0 97.0%

Table 2: Performance comparisons on LLaVA-NEXT-7B across 9 image understanding bench-
marks. The best results in each setting are bolded.

Method Venue GQA MMB MMBCN MME POPE SQAIMG VizWiz VQAText VQAv2 Average
Upper Bound, 2880 Tokens (100%), 3.817 TFLOPs

LLaVA-NEXT-7B (Li et al., 2024) arXiv’24 64.2 67.4 60.6 1851 86.5 70.1 57.6 61.3 81.8 100.0%

Retain 22.2% Tokens in Average (↓77.8%)
FastV (Chen et al., 2024) ECCV’24 55.9 61.6 51.9 1661 71.7 62.8 53.1 55.7 72.9 88.7%
PyramidDrop (Xing et al., 2025) CVPR’25 56.4 63.4 56.2 1663 77.6 67.5 54.1 54.4 73.5 91.4%
VisionZip (Yang et al., 2024) CVPR’25 59.3 63.1 58.7 1702 82.1 67.3 53.3 58.9 76.2 94.2%
SparseVLM (Zhang et al., 2025) ICML’25 57.7 64.3 57.3 1694 81.7 67.3 52.5 55.9 73.4 92.7%
Ours - 62.4 68.0 60.5 1797 84.5 68.9 53.1 57.2 79.4 97.1%

Retain 11.1% Tokens in Average (↓88.9%)
FastV (Chen et al., 2024) ECCV’24 52.7 59.8 51.1 1577 69.1 68.4 51.3 53.3 71.1 86.7%
PyramidDrop (Xing et al., 2025) CVPR’25 54.8 61.9 54.7 1619 75.9 68.0 53.8 54.1 72.9 90.1%
VisionZip (Yang et al., 2024) CVPR’25 55.5 60.1 56.1 1630 74.8 68.3 54.0 56.2 71.4 90.3%
SparseVLM (Zhang et al., 2025) ICML’25 51.2 63.1 55.1 1542 76.3 67.5 53.8 46.4 66.3 86.9%
Ours - 61.5 67.7 60.0 1797 85.0 68.7 53.7 57.1 78.4 96.8%

SPARSEVLM (Zhang et al., 2025). These methods cover a diverse range of pruning strategies,, such
as attention pruning, token dropping, and multi-scale evidence selection.

Benchmark: We evaluate our method on 9 benchmarks, including GQA (Hudson & Manning,
2018), MMB (Liu et al., 2023b), MMBCN (Li et al., 2022), MME (Fu et al., 2023), POPE (Li et al.,
2023), SQAIMG (Huang et al., 2023), VizWiz (Gurari et al., 2018), VQAText (Singh et al., 2019),
and VQAv2 (Goyal et al., 2016).

4.1.2 DETAILS

Please see Appendix B for implementation details.

4.2 MAIN RESULTS

Results in LLaVA-1.5-7B: As shown in Tab 1, InfoPrune achieves the best performance across all
compression rates, retaining 99.2%, 98.8%, and 97.0% accuracy under 192, 128, and 64 tokens,
respectively. This consistently surpasses strong baselines such as VisionZip (96.7%), PyramidDrop
(96.7%), and SparseVLM (96.1%), confirming its robustness and generalization under tight budgets.
Notably, InfoPrune maintains top scores on critical reasoning benchmarks (e.g., GQA, POPE, and
VQAv2), while preserving competitive accuracy even on challenging datasets, demonstrating its
effectiveness in retaining essential visual evidence for multi-modal reasoning.

Results in LLaVA-NEXT-7B: As shown in Tab 2, InfoPrune achieves state-of-the-art performance
under both moderate and aggressive pruning, retaining 97.1% accuracy with 320 tokens (77.8%
reduction) and 96.8% with only 160 tokens (88.9% reduction). These results substantially sur-
pass prior methods such as VisionZip (94.2%) and PyramidDrop (91.4%), while competing base-
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Table 3: Performance comparisons on Qwen-VL-2.5-7B across 6 benchmarks. The best results
in each setting are bolded.

Method Venue MMB MMBCN MME POPE GQA VQAv2 Average
Upper Bound, 100%

Qwen-VL-2.5-7B (Bai et al., 2025) arXiv’25 83.2 82.8 2347 86.7 61.6 83.9 100.0%

Retain 22.2% Tokens on Average (↓77.8%)
PyramidDrop (Xing et al., 2025) CVPR’25 59.6 68.6 2076 74.6 51.1 68.7 82.3%
VisionZip (Yang et al., 2024) CVPR’25 77.8 75.2 2151 84.7 56.7 76.9 92.9%
SparseVLM (Zhang et al., 2025) ICML’25 64.3 57.3 1694 81.7 57.8 78.2 83.3%
Ours - 78.6 76.9 2131 87.5 62.3 82.5 96.4%

Retain 11.1% Tokens on Average (↓88.9%)
PyramidDrop (Xing et al., 2025) CVPR’25 56.1 65.7 1914 71.2 45.6 65.2 77.0%
VisionZip (Yang et al., 2024) CVPR’25 74.5 73.1 1991 82.8 55.3 70.4 88.6%
SparseVLM (Zhang et al., 2025) ICML’25 63.1 55.1 1951 76.3 57.4 75.3 82.7%
Ours - 76.2 74.4 2004 85.0 62.1 79.9 93.5%
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Figure 5: Effectiveness of InfoPrune on LLaVA-1.5 across three benchmarks.

lines drop below 87%. Despite minor fluctuations on VizWiz and VQAText, InfoPrune consistently
ranks top across benchmarks, demonstrating strong robustness and efficiency trade-offs in large-
scale models.

Results in Qwen-VL-2.5: InfoPrune shows clear advantages under both moderate and aggressive
pruning, retaining 96.4% performance with 22.2% tokens and 93.5% with only 11.1% tokens, while
baselines drop below 89%. This demonstrates its superior accuracy–efficiency trade-off and robust-
ness under extreme compression.

4.3 EFFICIENCY STUDY

Efficiency Study: As shown in Fig 5, reducing the number of retained tokens on LLaVA-1.5-
7B consistently decreases inference cost. FLOPs shrink to about 23% under aggressive pruning,
yielding up to 1.5× speedup across MME, POPE, and VQAText, while maintaining strong accuracy.
These results confirm that InfoPrune offers substantial efficiency gains with minimal performance
loss.

5 CONCLUSION

We revisit visual token pruning in MLLMs from an information-theoretic perspective, formulating
two key subproblems: which tokens provide high marginal information, and when visual injection
should stop. We propose InfoPrune, a two-stage framework that combines attention priors with in-
formation increment for token selection, and detects semantic saturation to enable one-shot pruning
in the LLM. Experiments on LLaVA-1.5, LLaVA-Next, and Qwen-VL-2.5 show that InfoPrune sub-
stantially reduces computation while preserving accuracy, consistently outperforming prior methods
and establishing a principled paradigm for efficient multimodal reasoning.
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ETHICS STATEMENT

This work focuses on methodological contributions for improving the efficiency of MLLMs through
information-theoretic token pruning. Our study does not involve human subjects, personal data, or
sensitive demographic attributes. All experiments are conducted on widely used, publicly avail-
able benchmark datasets (e.g., GQA, VQAv2, MMBench), which are released under academic or
research-friendly licenses.

By substantially reducing inference cost without sacrificing accuracy, our method has the potential
to lower the environmental and financial footprint of large-scale multimodal model deployment,
thereby contributing positively to the accessibility and sustainability of AI research. Nevertheless, as
with any efficiency-oriented technique, there remains the possibility that accelerated inference could
facilitate misuse (e.g., in generating harmful or biased content more efficiently). We emphasize that
such risks stem from downstream usage rather than from our pruning framework itself, and we
encourage responsible application aligned with the ICLR Code of Ethics.

We affirm that this work complies with ethical standards, respects dataset usage guidelines, and
raises no conflicts of interest or legal concerns.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Detailed descrip-
tions of our algorithm, experimental settings, and evaluation benchmarks are provided in the
main paper and appendix. To further facilitate replication, we release a subset of runnable code
and scripts through an anonymous link: https://anonymous.4open.science/status/
InfoPrune . Upon acceptance, we commit to open-sourcing the full implementation. All datasets
used in our experiments are publicly available, and we carefully document processing steps to ensure
transparency.
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A RELATED WORK

MLLMs MLLMs have witnessed rapid progress in recent years, evolving from early vision-
language pretraining models such as CLIP (Radford et al., 2021) to representative systems including
LLaVA (Liu et al., 2023a) (Liu et al., 2024), MiniGPT-4 (Zhu et al., 2023), and Qwen-VL (Bai et al.,
2023) (Wang et al., 2024) (Bai et al., 2025). These models typically encode images into visual tokens
and integrate them with textual tokens, thereby enabling strong performance on cross-modal tasks
such as question answering, reasoning, and generation. Instruction tuning and large-scale multi-task
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training have further advanced their capabilities, achieving breakthroughs on benchmarks such as
GQA (Hudson & Manning, 2018), MMBench (Liu et al., 2023b), and VQAv2 (Goyal et al., 2016).
More recent works, such as LLaVA-NeXT (Li et al., 2024) and Qwen-VL-2.5 (Bai et al., 2025),
extend the frontier to long-form multimodal inputs, multi-image reasoning, and even video under-
standing, demonstrating stronger alignment and reasoning abilities. However, this progress comes
with a substantial bottleneck: the large number of visual tokens must be propagated through all lay-
ers, which significantly increases computational overhead and inference latency. This challenge di-
rectly motivates research on visual token pruning—how to manage visual evidence efficiently while
maintaining semantic completeness, thus improving the scalability and deployability of MLLMs.

Visual Token Pruning Existing approaches to visual token pruning can be broadly categorized
into two directions: vision-centric pruning and text-centric pruning. Vision-centric methods focus
on compressing or filtering visual tokens at the vision encoder or before they are fed into the LLM,
aiming to remove redundancy early and reduce downstream cost. Representative examples include
FasterVLM (Vasu et al., 2025), which reorders image tokens based on the attention between the
[CLS] token and image tokens, discarding unimportant ones before entering the LLM, thereby accel-
erating inference; and VisionZip (Yang et al., 2024), which identifies dominant tokens on the vision
side and aggregates redundant tokens into them. These approaches provide substantial efficiency
gains but largely rely on the static assumption that “attention equals importance,” which often fails
to capture the true marginal contribution of tokens in semantic transmission. In contrast, text-centric
pruning emphasizes cross-modal interactions inside the LLM, reducing redundant propagation of
visual tokens once their contribution to textual semantics diminishes. For instance, FastV (Chen
et al., 2024) leverages cross-attention signals to identify visual tokens that have limited influence on
LLM, pruning them in deeper layers (Yin et al., 2025); PyramidDrop (Xing et al., 2025) adopts
a layer-wise decreasing strategy, retaining more tokens at shallow layers while gradually dropping
them in deeper ones, consistent with the observation that visual information is largely injected by
the middle layers. While both categories alleviate computational redundancy, they generally rely on
static heuristics and fail to capture the dynamic flow of information across layers. Consequently, they
struggle to answer two fundamental questions: which visual tokens truly provide new information,
and when can we determine that visual information has been sufficiently absorbed by the language
semantics? Our work addresses this gap by recasting pruning as an nformation maximization prob-
lem under budget constraints, and proposes a two-stage framework based on marginal information
increment and semantic stability detection, enabling efficient inference while preserving semantic
completeness.

B IMPLEMENTATION DETAILS

For LLaVA series models, we set the α to 2, perform token pruning at the 16th layer (K = 15) of
the model, and use a pruning ratio R2 of 0.33. For Qwen-VL-2.5, α is increased to 3, and pruning
is applied at the 14th layer (K = 13) with the same pruning ratio R2 of 0.33. All experiments are
conducted on a single NVIDIA A100 GPU with 80GB memory.

For the vision-side attention prior, we adopt the −2 layer as the reference for attention extraction.
The attention scores are normalized with a temperature τ = 0.7 and sharpened with exponent γq =
0.5. The candidate pool α is set differently across backbones: for the LLaVA series, α = 2, while
for Qwen-VL-2.5, α = 3.

C MOTIVATION ANALYSIS

To further address the two subproblems, we present additional analyses here. Specifically, we elab-
orate on the design of the MFI and MGI indicators, provide extended experimental results for both,
and include more results on Svt & Svv .

C.1 MFI & MGI ANALYSIS

We detail the mathematical motivations behind our MFI and MGI—from geometric and statistical
perspectives. Both serve as first-order surrogates for submodular objectives that govern semantic
expressiveness and statistical identifiability under token budget constraints.
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C.1.1 GEOMETRIC VIEW: MFI AS ORTHOGONAL RESIDUAL ENERGY

We first interpret information as the ability of selected tokens to span novel semantic directions.
Given visual embeddings X = [x1, . . . , xN ]⊤ ∈ RN×d, let S ⊂ {1, . . . , N} be a selected subset of
size t. The natural global goal is to maximize the volume of the subspace spanned by S:

max
|S|=T

Φvol(S) := log det(GS + εI), GS = XSX
⊤
S .

This corresponds to maximizing the squared volume of the parallelotope spanned by {xj}j∈S . The
log-determinant promotes diversity and additivity, making marginal analysis tractable.

Adding a candidate xi yields a marginal gain governed by Schur complement:

Φvol(S ∪ {i})− Φvol(S) = log
(
1 + ∥ri∥22

)
,

where ri = (I−UU⊤)xi is the orthogonal residual of xi onto span(XS) with U being an orthonor-
mal basis of XS . We thus define the metric:

MFI(xi | S) := ∥xi − UU⊤xi∥22.

Geometric Interpretation. MFI measures how far xi lies from the current span—i.e., its con-
tribution to subspace expansion. When normalized, this reduces to ∥xi∥2 sin2 θ, where θ is the
principal angle to the current subspace. A token fully orthogonal to XS offers maximal increment;
one aligned with existing directions offers none.

Desirable Properties.

• Rotation-invariant: Invariant under orthogonal transformations.
• Monotonicity: The residual energy decreases as S grows—consistent with diminishing

returns.
• Submodular alignment: Closely approximates the greedy selection rule for maximizing
log det(GS + εI), a near-submodular objective with approximation guarantees.

C.1.2 STATISTICAL VIEW: MGI AS FISHER INFORMATION GAIN

We now consider statistical identifiability. Suppose xj are drawn from an unknown distribution
parameterized by latent variables, and the goal is to select tokens that best preserve global represen-
tational coverage.

Let CS := 1
|S|

∑
j∈S xjx

⊤
j be the empirical covariance matrix of selected tokens. The D-optimal

design criterion aims to maximize the Fisher information, leading to:

max
|S|=T

ΦD(S) := log det(CS + eI).

This objective aligns with minimizing posterior variance or maximizing mutual information under
Gaussian assumptions.

When adding token xi to S of size t, we define:

CS∪{i} =
t

t+ 1
CS +

1

t+ 1
xix

⊤
i .

Using matrix determinant lemma:

ΦD(S ∪ {i})− ΦD(S) = log
(
1 + 1

t+1x
⊤
i (CS + eI)−1xi

)
.

We define the metric:

MGI(xi | S) := log
(
1 + 1

t+1x
⊤
i (CS + eI)−1xi

)
.

Statistical Interpretation. MGI quantifies how much additional variance or mutual information
xi contributes, conditioned on S. It prefers directions underrepresented in CS , boosting the spec-
trum’s smallest eigenmodes—thus improving global identifiability.
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Desirable Properties.

• Spectral sensitivity: Higher gains for directions orthogonal to high-variance modes.
• Submodularity: D-optimal design is provably submodular, ensuring diminishing marginal

returns.
• Information-theoretic soundness: In the Gaussian setting, MGI directly reflects mutual

information increment between selected tokens and target labels.

C.1.3 COMPLEMENTARITY AND ALIGNMENT WITH BUDGET OBJECTIVES

MFI and MGI serve complementary roles:

• MFI emphasizes local geometric novelty, ensuring tokens expand the span of semantic
directions.

• MGI emphasizes global statistical contribution, preferring tokens that enrich underrepre-
sented structures.

Jointly, they reflect a principled criterion for visual token pruning under budget constraints: avoid
redundant directions and reinforce diverse, high-information signals. Their derivations connect to
core theories in linear algebra, experimental design, and information theory—providing a solid the-
oretical foundation for information-guided selection.

C.2 MORE MFI & MGI RESULTS

C.2.1 SETTINGS

In the measurement setup, for LLaVA we record statistics every 8 steps. For Qwen-VL-2.5, since the
number of visual tokens varies dynamically, we record every 1/72 of the sequence and normalize
the overall trajectory to 1.

C.2.2 MORE RESULTS

We conduct experiments on three models over SQA, MME, MMbench, and POPE. The results are
illustrated in Fig 6 - Fig 8. Consistent with the observations in Fig 2, all three models exhibit
substantial fluctuations in both indicators. This suggests that the attention-based selection strategy
is not information-optimal, as it fails to ensure stability or reliability from the perspective of marginal
information contribution.

C.2.3 MORE RESULTS FOR INFOPRUNE

We additionally report the MFI and MGI indicators under our proposed method, as shown in the
Fig 10 - Fig 12. It can be observed that both metrics are consistently improved across all three
model families.

C.3 MORE Svt & Svv RESULTS

We also present additional results of Svt & Svv for other models. As shown in the Fig 13 and 14,
similar to LLaVA-1.5 (Fig 3), both LLaVA-Next and Qwen-VL-2.5 exhibit a slowdown of visual
information injection in the middle layers, providing empirical support for mid-layer pruning in the
LLM backbone.

C.4 SEMANTIC MATURITY RESULTS

Due to space limitations, we present here the experimental results on semantic maturity, as shown
in the Fig 15.

D ALGORITHM

We present the first stage of our algorithm, whose complete procedure is detailed in Algo 1.
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Figure 6: Visualization of MFI & MGI under the attention-based token selection strategy in on
MMbench.
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Figure 7: Visualization of MFI & MGI under the attention-based token selection strategy in on
MMbench.
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Figure 8: Visualization of MFI & MGI under the attention-based token selection strategy on POPE.
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Figure 9: Visualization of MFI & MGI under the InfoPrune token selection strategy on SQA.
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Figure 10: Visualization of MFI & MGI under the InfoPrune token selection strategy on MME.
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Figure 11: Visualization of MFI & MGI under the InfoPrune token selection strategy on MMbench.
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Figure 12: Visualization of MFI & MGI under the InfoPrune token selection strategy on POPE.

0 5 10 15 20 25 30
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0
Intra-Visual Flow
Visual-Textual Flow

Figure 13: Layer-wise evolution of Svt and Svv for LLaVA-NEXT-7B on POPE. Visual informa-
tion is massively injected from shallow to mid layers, after which its intensity steadily decays.
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Figure 14: Layer-wise evolution of Svt and Svv for Qwen-VL-2.5-7B on POPE. Visual informa-
tion is massively injected from shallow to mid layers, after which its intensity steadily decays.
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Figure 15: Layer-wise visualization of semantic prediction dynamics on the POPE dataset us-
ing LLaVA-1.5-7B. Each row corresponds to a visual question instance, and each column denotes
a decoder layer from 0 to 31. At each layer, we extract the model’s top-1 predicted token, with
background color indicating its softmax probability.

D.1 ALGORITHMIC ANALYSIS OF STAGE I

In this subsection, we provide a theoretical justification for the design of our Stage I Algorithm 1,
which performs vision-side information-increment pruning and consolidation. The algorithm com-
bines three components—an attention-based prior, a DPP-style reweighting, and greedy residual
selection—that jointly approximate the objective of maximizing semantic coverage under a strict
pruning budget.

Connection to submodular maximization. The pruning objective can be naturally expressed
as selecting a subset S ⊆ {1, . . . , N} of size T that maximizes an information functional f(S),
such as the log-determinant of the Gram matrix or the Fisher information of selected embed-
dings (Dereziński et al., 2019). Both objectives are known to be submodular, i.e., they satisfy the
diminishing returns property:

f(S ∪ {i})− f(S) ≥ f(S′ ∪ {i})− f(S′), whenever S ⊆ S′.

For submodular maximization under a cardinality constraint, greedy selection provides a (1− 1/e)-
approximation guarantee. Our residual-based greedy criterion

ri = ∥Zi∥22 − ∥U⊤Zi∥22 = ∥(I − PU )Zi∥22,

is precisely the first-order marginal gain in log detGS , where GS is the Gram matrix of the current
selection. This establishes that each chosen token contributes a novel (Belhadji et al., 2020), non-
redundant direction to the representational subspace.

Role of DPP reweighting. Prior to greedy selection, we apply a determinantal point process
(DPP)-style scaling Zi =

√
qi xi, where qi encodes attention-based priors (Kulesza & Taskar, 2012).

This operation aligns the sampling distribution with the determinant objective: high-attention tokens
are given larger magnitudes, but redundancy among them is penalized due to the determinant’s di-
versity bias. In effect, this initialization balances local saliency (via qi) and global diversity (via
orthogonalization), serving as a tractable approximation to DPP subset sampling.

Greedy residual selection as Orthogonal Matching Pursuit. The iterative update with orthog-
onal projection is mathematically equivalent to Orthogonal Matching Pursuit (OMP) in sparse ap-
proximation (Han et al., 2017) (Gartrell et al., 2019). At each step, the residual norm ri measures the
energy of a token orthogonal to the current span. Adding the maximizer ensures monotone increase
in covered subspace volume. The stopping condition maxi ri ≤ ε corresponds to novelty saturation,
where additional tokens no longer provide meaningful incremental information.

Token Merge. After subset selection, our algorithm merges discarded tokens into their nearest
prototypes. This step does not affect the theoretical subset selection, but ensures that discarded fea-
tures are softly re-incorporated, stabilizing optimization without altering the (1−1/e) approximation
guarantee of the greedy stage.
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Algorithm 1 Vision-side Information-Increment Pruning and Consolidation (Attn→ DPP(Linear)
→ Greedy)

Require: Token embeddings X = [x1, . . . , xN ]⊤ ∈ RN×d (row-wise), deep attention scores a ∈
RN from visual encoder’s [CLS] token, pruning budget T ≪ N (with ratio R1 = T/N ),
over-provision factor α > 1, temperature τattn, exponent γq , saturation threshold ε > 0, inertia
β > 0.

Ensure: Selected index set S with |S| = T , consolidated features X̃ ∈ RN×d (same shape as X).
1: // Attention prior and candidate pool
2: qi ←

(
softmax(a/τattn)i

)γq for i = 1..N ▷ attention-based importance score
3: C ← TopKαT

(
{qi}Ni=1

)
▷ top-αT candidate pool

4: Zi ←
√
qi xi for i ∈ C ▷ DPP-style scaled features

5: // Greedy selection by residual information gain (OPP)
6: S ← ∅; U ← [ ] ▷ U ∈ Rd×|S|: orthonormal basis of span(ZS)
7: for t = 1 to T do
8: for all i ∈ C \ S: ri ← ∥Zi∥22 − ∥U⊤Zi∥22 ▷ marginal gain (residual energy)
9: if maxi∈C\S ri ≤ ε then

10: break ▷ stop if novelty gain saturates
11: end if
12: i⋆ ← argmaxi∈C\S ri
13: S ← S ∪ {i⋆}
14: v ← Zi⋆ − U (U⊤Zi⋆); u← v/∥v∥2
15: U ← [U | u] ▷ append orthogonal direction
16: end for

17: // Fill or truncate based on attention if needed
18: if |S| < T then
19: F ← TopKT−|S|

{
qi : i ∈ C \ S

}
; S ← S ∪ F

20: end if
21: if |S| > T then
22: S ← TopKT

{
qi : i ∈ S

}
▷ tie-breaking truncation

23: end if

24: // Token merge
25: X̃ ← X; R← {1, . . . , N} \ S
26: Initialize counts cj ← β and accumulators x̃j ← β xj for all j ∈ S
27: for each i ∈ R do
28: ĵ(i)← argmaxj∈S

⟨xi, xj⟩
∥xi∥2 ∥xj∥2

▷ assign to nearest prototype

29: cĵ(i) ← cĵ(i) + 1; x̃ĵ(i) ← x̃ĵ(i) + xi

30: end for
31: for each j ∈ S do
32: x̃j ← x̃j/cj ; X̃[j]← x̃j ▷ overwrite prototype embeddings
33: end for
34: return (S, X̃)

Summary. In total, Stage I can be viewed as an efficient surrogate for solving a submodular max-
imization problem: attention priors supply a computationally cheap relevance signal, DPP scaling
injects diversity, and greedy residual selection provides approximation-theoretic guarantees. This
layered design yields a principled balance between tractability, information coverage, and computa-
tional efficiency.
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Pool α 64 128 192

1.2 1691 1771 1797
1.5 1706 1775 1802
2 1715 1780 1817

2.2 1707 1763 1817
2.5 1716 1777 1817

Table 5: Ablation on candidate pool ratio α for
LLaVA-1.5 in MME.

Pool α 11.1 22.2

1.5 1891 2045
2 1904 2076

2.5 1915 2103
3 2004 2131

3.5 1975 2116

Table 6: Ablation on candidate pool ratio α for
Qwen-VL-2.5 in MME.

E ABLATION STUDY

Ratio R. We conduct an ablation study on the retention ratio settings for the two pruning stages
under a fixed overall budget R = 11.1%. As shown in Tab 4, we evaluate the performance of
LLaVA-1.5 on SQA and MME under various configurations of R1 and R2. The results demon-
strate that multiple configurations can effectively preserve model accuracy. For better trade-off and
stability, we set the second-stage pruning ratio to R2 = 33% in the main experiments.

Table 4: Ablation on retention
configurations R1&R2.

R1 R2 SQA MME

11.1% 100.0% 69.8 1691
13.3% 66.7% 67.1 1674
14.8% 50.0% 67.5 1700
16.7% 33.3% 69.8 1715
22.2% 0.0% 68.5 1765

Candidate Pool Ratio α. We first ablate the candidate pool
ratio α used in Stage 1. As shown in Tab 5 and Tab 6, we ex-
periment with three pruning configurations on LLaVA-1.5 and
evaluate their performance on MME. When α is small, the selec-
tion strategy closely resembles raw attention ranking, resulting
in suboptimal performance retention. As α increases, the model
benefits from broader candidate coverage and achieves higher
fidelity. However, overly large α dilutes the prior imposed by at-
tention, slightly reducing effectiveness. Based on overall trends,
we choose α=2 for LLaVA models and α=3 for Qwen-VL-2.5.

Pruning Depth K. We also conduct an ablation on the pruning
depth K, which determines the layer at which visual tokens are
removed. As shown in Tab 7, early pruning consistently leads to severe performance degradation. In
contrast, pruning at middle layers significantly mitigates the loss—aligning with our experimental
findings in the motivation section (Insight 2) on visual injection and semantic maturity. Given that
LLaVA models have 32 layers and Qwen-VL-2.5 has 28, we choose K=15 and K=13 respectively
to strike a balance between efficiency and performance.

Layer K LLaVA-1.5 LLaVA-NEXT Qwen-VL-2.5

7 1544 1762 1746
9 1653 1758 1747

11 1695 1796 1774
13 1701 1797 2004
15 1715 1797 2109
17 1701 1797 2127
19 1700 1798 2116

Table 7: Ablation on pruning layer K. Mid-layer pruning (e.g., K = 15) balances semantic maturity and
FLOPs reduction.

F QUALITATIVE ANALYSIS

Beyond quantitative evaluation, we also perform qualitative analysis on LLaVA-Bench Liu et al.
(2023a). As illustrated in Fig 16 and Fig 17, InfoPrune produces only a few hallucinations in model
outputs, which validates the effectiveness of our method.
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What might be the intended effect of this painting?

The intended effect of this painting is to 

create a humorous and whimsical scene by 

combining a dog with human-like features, 

such as a face and a neck, and placing it in 

a human-like setting. The dog is depicted 

sitting in a chair, wearing a necklace, and 

even has a human-like face with a nose and 

mouth. 

Retain 11.1%

The intended effect of this painting is to 

create a humorous and whimsical scene by 

combining a portrait of a dog with a 

human-like appearance, giving it the 

appearance of a person. The dog is painted 

with a human-like face, complete with a 

beard, and is positioned in a way that it 

seems to be looking at the viewer. This 

artistic choice is likely meant to evoke 

amusement and surprise, as it is not 

common to see a dog portrayed in such a 

manner. The painting may also serve as a 

conversation starter or a unique piece of art 

that showcases the artist's creativity and 

sense of humor.

Retain 22.2%

⚫ Red-highlighted text

Indicates incorrect answers.

Figure 16: The results of LLaVA-1.5-7B on LLaVA-bench. The method produces only a few
hallucinations, while at 22.2% retention, it yields hallucination-free outputs.

What might be the intended effect of this painting?

The meme is parodying the iconic movie 
scene from \"The Lion King\" where a 
young Simba is being held up by his 
father, Mufasa. In the meme, a man is 
holding a baby lion cub, which is a 
playful and humorous twist on the 
original scene. The man is also smiling, 
adding to the lighthearted nature of the 
parody.

Retain 11.1%

The meme is parodying the iconic movie 

scene from \"The Lion King\" where a 

young Simba is being held by his father, 

Mufasa. In the meme, a man is holding a 

stuffed animal, specifically a teddy bear, 

instead of a young lion cub. The man is 

also smiling, which adds a humorous twist 

to the scene. This parody creates a 

lighthearted and entertaining moment by 

replacing the serious and emotional context 

of the original scene with a playful and 

comical one.

Retain 22.2%

⚫ Red-highlighted text

Indicates incorrect answers.

Figure 17: The results of LLaVA-1.5-7B on LLaVA-bench. The method produces only a few
hallucinations when 22.2% retention.
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G BENCHMARK

We provide a detailed description of 9 benchmarks here.

GQA (Hudson & Manning, 2018): A benchmark with 22 million compositional visual questions
derived from scene graphs from Visual Genome. Questions cover attributes, relationships, and multi-
step inference. Answers are restricted to a fixed vocabulary to reduce open-ended noise. Enables
evaluation of reasoning and relational understanding.

MMBench (Liu et al., 2023b): A bilingual multiple-choice benchmark evaluating vision-language
models across many fine-grained abilities (OCR, counting, commonsense, etc.). Incorporates Cir-
cularEval and mechanisms to map open responses into fixed choices, reducing evaluation noise.
Includes versions in English and Chinese.

POPE (Li et al., 2023): Polling-based object probing evaluation for detecting object hallucination.
Models are asked binary presence/absence questions about objects with annotated bounding boxes,
to measure false positives when predicting non-existent objects.

MME (Fu et al., 2023): Vision-language evaluation dataset containing image-question pairs used
in the LMMs-Eval (LMMS-Eval) suite. Used to test fundamental understanding abilities. (Specific
task count and split details need internal confirmation.)

MMBCN (Li et al., 2022): A large Chinese multimodal benchmark with 120,000 image-text pairs
and 60,000 QA pairs. Includes domain-specific scenarios (street signage, classical text, dialects),
with 35% OCR content, crowd sourcing + expert validation. (Based on your internal description.)

SQAIMG (Huang et al., 2023): Contains 25,000 camera-shot images and GAN/ diffusion generated
counterparts, each annotated with multiple human judgments of image quality (realism, artifacts,
semantics, aesthetic). Also includes MOS scores and generation metadata. (Some details from
internal source.)

VizWiz (Gurari et al., 2018): Real-world images taken by visually impaired users ( 31,000), with
50,000 spoken questions. Images include realistic noise; questions are practical. Dataset includes
splits for train/val/test, crowd answers plus confidence annotations.

TextVQA (Singh et al., 2019): Benchmarks where correct answers require understanding text
present in images: signs, menus, documents etc. Open vocabulary OCR, and ground truth text-
visual alignment provided.

VQA-v2 (Goyal et al., 2016): Over one million QA pairs on 200,000 images. Paired images per
question to reduce answer bias. Multiple annotators per question; filter for consistency. Widely used
general VQA benchmark.

H LIMITATIONS AND DISCUSSION

While InfoPrune demonstrates strong performance retention and efficiency gains across multiple
backbones and benchmarks, several limitations remain. First, our pruning framework is designed to
be training-free and model-agnostic, but this comes at the cost of not exploiting task-specific signals.
In highly specialized domains (e.g., OCR-intensive tasks or fine-grained recognition), the generic
information metrics (MFI and MGI) may overlook subtle yet semantically critical tokens. Second,
Stage 2 relies on detecting semantic convergence at a predefined mid-layer K, which, although em-
pirically robust, may vary across architectures and tasks. An adaptive mechanism for automatically
locating the saturation point could further improve generality. Third, while our analysis focuses
on token-level information flow, other efficiency bottlenecks such as long-sequence text process-
ing or cross-modal memory usage are not directly addressed. Finally, InfoPrune operates purely at
inference time; integrating pruning signals into training might enable models to better internalize
information budgeting, potentially unlocking further efficiency–accuracy trade-offs.

Despite these limitations, we believe InfoPrune offers a principled starting point for rethinking visual
token management, and future work can extend our framework toward adaptive, task-aware, and
training-integrated pruning strategies.
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I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, large language models (LLMs) were used solely for minor grammar
refinement and language polishing. LLMs did not contribute to research ideation, experimental
design, data analysis, or result interpretation. The authors take full responsibility for the content of
this paper.
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