
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Structured Inverse-Free Natural Gradient:
Memory-Efficient & Numerically-Stable KFAC for Large Neural Nets

Wu Lin∗ YORKER.LIN@GMAIL.COM

Felix Dangel∗ FELIX.DANGEL@VECTORINSTITUTE.AI

Runa Eschenhagen RE393@CAM.AC.UK

Kirill Neklyudov KIRILL@VECTORINSTITUTE.AI

Agustinus Kristiadi AGUSTINUS.KRISTIADI@VECTORINSTITUTE.AI

Richard E. Turner RET26@CAM.AC.UK

Alireza Makhzani MAKHZANI@VECTORINSTITUTE.AI

Abstract
Second-order methods for deep learning—such as KFAC—can be useful for neural network training.
However, they are often memory-inefficient and numerically unstable for low-precision training since
their preconditioning Kronecker factors are dense, and require high-precision matrix inversion or
decomposition. Consequently, such methods are not widely used for training large neural networks
such as transformer-based models. We address these two issues by (i) formulating an inverse-free
update of KFAC and (ii) imposing structures in each of the Kronecker factors, resulting in a method
we term structured inverse-free natural gradient descent (SINGD). On large modern neural networks,
we show that, in contrast to KFAC, SINGD is memory efficient and numerically robust, and often
outperforms AdamW even in half precision. Hence, our work closes a gap between first-order and
second-order methods in modern low precision training for large neural networks.

1. Introduction
The continuing success of deep learning (DL) is—to some extent—powered by scaling up computa-
tional power [30] to increase the number of neural network (NN) parameters that can be trained. To
compensate for increasingly higher computational demands of training more parameters, training
pipelines use lower precision data types [23] and memory-efficient first-order optimizers.

Second-order methods, like natural gradient descent [NGD, 1], leverage curvature information
which has many applications in DL: It is useful for improving training dynamics [22, 25], under-
standing the influence of training examples [2], and uncertainty estimation [3, 10, 34]. One obstacle
why those methods are rarely used in DL is their high memory consumption and iteration cost.

One common approach to scale second-order methods for DL is Kronecker-factored approximate
curvature [KFAC, 9, 22] uses Kronecker products to approximate a Fisher’s matrix. While the KFAC
optimizer, built on top of this curvature approximation, and its variants such as George et al. [4] show
promising results for medium-sized NNs [e.g. 25], their usefulness for large NNs is often limited by
(i) memory consumption, and (ii) the use of low-precision floating-point (FP) training that renders
matrix decompositions/inversions required for pre-conditioning numerically unstable.

Recently, Lin et al. [19] proposed an inverse-free Kronecker-factored natural gradient descent
(INGD) algorithm that replaces matrix inversion with subtraction in a matrix logarithm space. The
algorithm’s update is purely based on matrix multiplications and therefore numerically stable in
single-precision (FP-32); however, it is unclear whether this extends to half-precision (BFP-16).
Furthermore, INGD has not been derived from the popular natural gradient approaches for DL.
Hence, it is unclear if and how the method is connected to the predominant KFAC optimizer. Also,
INGD does not improve over KFAC’s memory complexity since its Kronecker factors are dense

© W. Lin∗, F. Dangel∗, R. Eschenhagen, K. Neklyudov, A. Kristiadi, R.E. Turner & A. Makhzani.



STRUCTURED INVERSE-FREE NATURAL GRADIENT

50 100

Epoch

25

50

75

T
es

t
er

r.
(%

)
float32

ADAMW

SINGD-Diag*

KFAC

INGD

IKFAC*

SGD

50 100

Epoch

25

50

75

T
es

t
er

r.
(%

)

bfloat16

Methods
2

3

4

5

6

P
ea

k
m

em
(G

B
)

32

16

32

16

32

16

32

16

Costs

Figure 1: CIFAR-100 experiments on VGG net. Left/Center: Our methods (IKFAC and SINGD)
outperform AdamW and perform stably in FP-32 and BFP-16—unlike KFAC—since they do not
require matrix inversions/decompositions. IKFAC effectively performs KFAC updates and achieves
similar performance in FP-32. For this task, replacing the dense Kronecker factors (INGD = SINGD-
Dense) with diagonal ones (SINGD-Diag) does not harm performance while reducing computations.
Right: Memory consumption of all methods. Removing Riemannian momentum (IKFAC) or using
structured Kronecker factors (SINGD-Diag) reduces INGD’s memory consumption both in FP-32
and BFP-16. In BFP-16, SINGD-Diag achieves AdamW’s memory consumption (dashed line).

matrices of the same size. And lastly, INGD has only been tested on convolution-based models and
it is unclear whether it is useful for training modern transformer-based architectures [32].

Here, we extend INGD to lower its computational cost and theoretically resolve its connection to
other approximate NGD methods for DL (see Figure 4 for an overview): First, we show that a special
case of INGD recovers the KFAC method. This allows us to effectively perform KFAC updates in an
inverse-free fashion. We call this modification of INGD inverse-free KFAC (IKFAC). Second, we
exploit an algebraic structure in the matrix logarithm space and propose structure-preserving updates
to maintain sparse structures on Kronecker factors. This significantly reduces the memory cost and
leads to a novel, scalable second-order optimization algorithm we call structured inverse-free natural
gradient descent (SINGD) which contains INGD and IKFAC as special cases. We evaluate SINGD
on convolution- and transformer-based models and show that it can (i) outperform SGD and AdamW
while using as little memory as the latter thanks to structured Kronecker factors (see Table 2) and (ii)
yield better performance than KFAC while being stable in half-precision. In summary:
(a) We bridge the gap between INGD [19] and the original KFAC [22], which requires matrix

inversions that become unstable in low precision. Thereby, we effectively make KFAC inverse-
free and amenable to low-precision training (Figure 1, left/center).

(b) We impose structures in the Kronecker factors of the INGD update, allowing them to be sparse to
lower the memory consumption (Figure 1, right). We analyze the impact of a range of structures
on downstream performance and find that sparse structures (see Appx. A) that considerably
lower the memory consumption (even lower than AdamW) can lead to competitive performance.

(c) Unlike other second-order methods, we show that SINGD can stably train on a range of modern
architectures (transformers, CNNs, GNNs) in BFloat16. Unlike first-order methods which are
often useful in narrower scopes (SGD is best for CNNs, AdamW is best for transformers),
SINGD works well and outperforms SGD and AdamW in many cases (see Appx. C).

2. Preliminaries
We start by describing Newton’s method as KFAC and INGD are Newton-like methods using NGD.

2



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Newton’s method is a classical second-order method to solve unconstrained optimization prob-
lems. NN training often corresponds to an unconstrained minimization problem. E.g., consider
training a NN for image classification. Given a set of N examples {yi,xi}Ni=1 with labels yi and
images xi, the optimization problem is

minµ ℓ(µ;y,X) := minµ
∑N

i=1 c(yi, f(µ;xi)), (1)

where y := (y1, . . . , yN ) and X := (x1, . . . ,xN ), ŷi := f(µ;xi) is a NN that outputs a predicted
label ŷi for an image xi. Parameters µ denote learnable weights of the NN, and c(yi, ŷi) is a
differentiable loss function to measure the difference between a true label yi and a predicted label ŷi.
Newton’s method uses the Hessian S := ∇2

µℓ(µ;y,x) to tackle Equation (1) via the update

µ← µ− S−1 (∇µℓ(µ;y,X)) , (2)

2.1. KFAC: Approximate NGD for Maximum Likelihood Estimation
A Fisher information matrix (FIM) can be used to approximate the Hessian by reformulating problem
(1) as maximum likelihood estimation (MLE) of a likelihood function p(y|µ,X) =

∏
i p(yi|µ,xi),

where p(yi|µ,xi) := exp(−c(yi, f(µ,xi))). Thus, problem (1) is equivalent to the MLE problem:

maxµ p(y|µ,X) ⇐⇒ minµ− log p(y|µ,X) ≡ minµ ℓ(µ;y,X). (3)

The MLE problem formulation allows us to exploit additional statistical structures such as the
FIM. The FIM for the MLE problem is defined as shown below [16], where we assume a label y is
sampled from the distribution p(y|µ,xi) given an image xi:

F (µ) :=
∑N

i=1 Ey∼p

[
∇µ log p(y|µ,xi)∇⊤

µ log p(y|µ,xi)
]
=
∑N

i=1 Ey∼p

[
−∇2

µ log p(y|µ,xi)
]
. (4)

The Hessian can be approximated by the so-called empirical Fisher F̂ (µ), which replaces the
samples y from the predictive distribution in Eq. (4) with the empirical labels yi from the data:

F̂ (µ) :=
∑N

i=1∇µ log p(yi|µ,xi)∇⊤
µ log p(yi|µ,xi) ≈ −

∑N
i=1∇2

µ log p(yi|µ,xi) = S.

This approximation simplifies the implementation and reduces the cost, and has been shown to
work well in practice [5, 24]. It is also known as Fisher’s scoring with observed FIM for nonlinear
models [26, 28, 29]. With this, we can formulate an NGD update [1] with the empirical FIM F̂ (µ)
to approximate Newton’s method as shown below. We refer to this update as NGD for MLE.

µ← µ− β
(
F̂ (µ)

)−1
∇µℓ(µ;y,X) ≈ µ− βS−1∇µℓ(µ;y,X).

The KFAC [9, 22] algorithm (see Fig. 5) is based on a Kronecker-factored approximation of the
Fisher. We refer to the algorithm as KFAC or KFAC method and to the approximation as Kronecker
approximation. We consider the Kronecker approximation of the empirical Fisher in this work.

While the Kronecker approximation allows for much more efficient preconditioning of the
gradient, the dense Kronecker factors SK and SC still have to be stored and inverted at every
preconditioning iteration when using the KFAC method. The preconditioning step can lead to (i)
numerical instability, especially in low-precision settings, and (ii) memory issues for large models.
2.2. INGD: Approximate NGD for Bayesian Parameter Estimation
The INGD method [19] directly approximates the inverse of the Hessian. We first introduce the
Bayesian learning rule [BLR, 12–14, 17, 18, 24, 34] as the INGD method builds on these works.

By the BLR, Newton’s method to solve the MLE problem in (3) can be interpreted as another
natural-gradient update to solve a variational inference problem (5) with a delta approximation
[13]. This interpretation allows us to view a precision matrix in the variational problem as Hessian
estimation in the MLE problem. Thus, Lin et al. [18] suggest reparameterizing the Hessian as the

3



STRUCTURED INVERSE-FREE NATURAL GRADIENT

precision of the Gaussian posterior in a matrix logarithm space and exploiting the parameterization
invariance of the natural-gradient update to obtain an inverse-free update scheme.

We consider a Bayesian problem formulation, where neural network weights are considered
random variables w. We use a variational Gaussian distribution to approximate the posterior
distribution of the random variables. Later on, we will show that the natural-gradient update of the
Gaussian distribution recovers Newton’s method for the learnable parameters. The mean and the
precision matrix of the Gaussian will be treated as the learnable weights µ and the Hessian estimation
S in Newton’s step (see (2)), respectively. The variational inference problem is defined as

minτ −L(τ ) := Ew∼q(w;τ) [− log p(w)− log p(y|w,X)]−Hq(τ ) (5)
where L(τ ) is known as the evidence lower bound (ELBO), τ = {µ,S} are the learnable parameters
of the variational distribution q(w|τ ) = N (w|µ,S) which is a Gaussian distribution with mean µ
and precision S. The likelihood p(y|w,X) = exp(−ℓ(w;y,X)) takes the same form considered
in the MLE setting while the prior p(w) ∝ exp(−R(w)) is defined by a regularizer R(w) ≥ 0. To
recover the MLE problem, we consider an uninformative prior p(w) (i.e., R(w) = 0). Finally, the
function Hq(τ ) := Ew∼q [− log q] is the entropy of distribution q(w; τ ).

The Bayesian formulation also allows us to exploit additional statistical structures such as another
FIM. The FIM used in the BLR is defined as F (τ ) := Ew∼q(w|τ)

[
∇τ log q(w|τ )∇⊤

τ log q(w|τ )
]
,

which has a closed-form expression and should not be confused with the FIM used for MLE (4).
Under the BLR, we perform NGD updates not only on µ but also on S. A NGD step [13] with

the exact FIM F (τ ) and stepsize β > 0 to update τ = {µ,S} can be simplified as

S← (1− β)S+ βEw∼q(w;µ,S)

[
∇2

wℓ(w;y,X)
]
, µ← µ− βS−1Ew∼q(w;µ,S) [∇wℓ(w;y,X)].

This is the NGD update for BLR, vis-à-vis for MLE. Then, to recover Newton’s method in (2), we
approximate the update rule above with

S← (1− β)S+ β∇2
µℓ(µ;y,X), µ← µ− βS−1∇µℓ(µ;y,X),

by (i) a delta approximation at mean µ to approximate expectations in red and (ii) setting β to 1.
Lin et al. [18] suggest reparameterizing the precision matrix S in a matrix logarithm space

and performing natural-gradient updates in this space. By performing NGD in this space, we can
transform matrix inversion into matrix subtraction. We then go back directly to the space of the
matrix inverse without explicitly inverting any matrix by using a truncated matrix exponential. Thus,
the method is inverse-free and Newton-like since the NGD update is parameterization invariant and
recovers Newton’s step by rephrasing the update in terms of S. Concretely, the authors re-express
the precision matrix S using a non-singular square matrix A as S = A−TA−1 and perform a NGD
step using the exact FIM in a tangent/logarithm space (denoted by M) of At at iteration t.

M←M0 − βN, µ← µ− βAt+1A
⊤
t+1∇µℓ(µ;y,X),

where M0 = 0, N := A⊤
t ∇2

µℓ(µ;y,X)At − I, and At+1 := ϕ(At,M) = AtExpm (1/2M).
The update is a Newton-like update since we can reexpress the update of A in terms of S:

St+1 = A−T
t+1A

−1
t+1 = A−T

t Expm (βN)A−1
t = (1− β)St + β∇2

µℓ(µ;y,X) +O(β2),

using the properties of the matrix exponential function.
Our work is built on the INGD method (summarized in Fig. 6) where A = K⊗C is factorized

by two Kronecker factors. Lin et al. [19] suggest performing NGD on tangent spaces of the
factors instead. Riemannian momentum is further introduced in the update of K and C. The
authors suggest using the Kronecker approximation discussed in Section 2.1 to approximate the
Hessian∇2

µℓ(µ;y,X) and truncating the matrix exponential to obtain a purely matrix-multiplication

4



STRUCTURED INVERSE-FREE NATURAL GRADIENT

based update scheme. However, it is unclear how the proposed update is related to the KFAC
update (summarized in Fig. 5) where another Kronecker factorization such as S = SK ⊗ SC is
used. Moreover, INGD remains memory inefficient for large neural networks due to the use of
dense Kronecker factors. Last but not least, the authors only consider and evaluate the update on
convolution-based models using single precision. It remains unclear whether the proposed update
can be applicable in modern settings such as training transformer-based models in half-precision.

3. Our Contribution: Structured Inverse-free NGD
Inspired by the INGD method, we propose an inverse-free KFAC update scheme as a specific setting
of the INGD method to address the numerical instability of the KFAC method for low-precision
training. We show that this scheme effectively recovers the KFAC method. We then address the
memory inefficiency of the KFAC and the INGD method for training large NNs such as transformer-
based models by extending the INGD method. Figures 4, 5 and 6 summarize these methods.

3.1. Inverse-free KFAC Updates for Improving Numerical Stability
We replace matrix inversion with matrix subtraction in a logarithm space and use a truncated matrix
exponential map to go back to the space of the inverse matrix without explicitly inverting any matrix.
The IKFAC update is related to the KFAC update as we will use KK⊤ and CC⊤ to approximate the
inverse Kronecker factors

(
SK + λI

)−1 and
(
SC + λI

)−1 in the KFAC update, respectively. We
propose the following update with step-size β1 for K and C using a truncated matrix exponential.

Knew ← K
(
I− β1

2 mK

)
, Cnew ← C

(
I− β1

2 mC

)
, (6)

where HK := K⊤UK, HC := C⊤GC, mK := HK + λK⊤K− I, mC := HC + λC⊤C− I.
Observe that the IKFAC update in (6) is inverse-free and matrix-decomposition-free. As shown

in Appendix E, mK indeed stays in a matrix logarithm space since we use the truncated matrix
exponential Expm(−β1

2 mK) ≈ (I − β1/2mK) in the update (see Eq. (6)). The logarithm space
allows us to impose structural constraints on K as we will discuss them in the next section.

The following theorem—proof in Appendix F—formally shows that KK⊤ used in the IKFAC
update is an approximation of (SK + λI)−1 in the KFAC update at every step even when the truncated
matrix exponential is employed. Similarly, we can show CC⊤ is an approximation of (SC + λI)−1.
Thus, IKFAC effectively recovers KFAC update of K and C up to a first-order accuracy.
Theorem 1 If the update of K is updated according to the IKFAC update scheme (see Fig. 5) with
the truncation of the matrix exponential and these two updates use the same initialization and the
same sequence of curvature matrices U, then the product KK⊤ has a first-order accuracy of the
KFAC update of

(
SK + λI

)−1 at each iteration , i.e., KK⊤ =
(
SK + λI

)−1
+O(β2

1).

Now, we show that the IKFAC scheme is a specific setting of the INGD method. As shown in
Fig. 6, the INGD update of K without Riemannian momentum (i.e., α1 = 0) is shown below. Notice
that Tr(Ido) = do, HC ∈ Rdo×do , C ∈ Rdo×do , and K ∈ Rd1×d1 . Thus, we can obtain IKFAC
from the INGD (shown in Fig. 5) by simply replacing Tr(HC) and Tr(C⊤C) with Tr(Ido):
K

INGD← K
[
Idi −

β1

2do

(
Tr(HC)HK + λTr(C⊤C)K⊤K− doIdi

)]
, K

IKFAC← K
[
Idi −

β1

2do

(
Tr(Ido)HK + λTr(Ido)K

⊤K− doIdi
)]

.

Note that our approach sheds light on the difference between INGD and KFAC. In IKFAC (see
Appendix E for the details), HK and λK⊤K are used for incorporating curvature U and damping λI
in the KFAC update, respectively. In contrast, the curvature and damping is adaptively incorporated
in INGD using (Tr(HC)/do)HK and (λTr(C⊤C)/do)K

⊤K. Moreover, the updates of K and C
are correlated in INGD due to the trace terms. In contrast, K and C are updated independently in
IKFAC – just like SK and SC are updated independently in KFAC. These trace terms together with
Riemannian momentum (i.e., α1 > 0) are missing in KFAC and IKFAC. Our experiments (Appx. C)
show that these terms could contribute to the stable performance of INGD over KFAC and IKFAC.

5



STRUCTURED INVERSE-FREE NATURAL GRADIENT

3.2. Sparse Kronecker Factors for Reducing Memory
We propose using sparse Kronecker factors K and C. In contrast, existing structured methods
[6, 35] consider (block-)diagonal structures of factors SK and SC . These structures may compromise
downstream performance. Unfortunately, explicitly imposing more flexible structures on factors SK

and SC can be either computationally challenging, memory inefficient, or numerically unstable.
Sparse factors K and C can be useful as they enable us to use more flexible structures (illustrated

in Fig. 2) and achieve better downstream performance than (block-)diagonal structures. For example,
a sparse factor K (see the leftmost plot of Fig. 3) can enforce a diagonal-plus-rank-one (dense)
structure [18] in SK as we use KK⊤ in the inverse-free KFAC update to approximate

(
SK + λI

)−1

in the KFAC update in Sec. 3.1. Similarly, another sparse factor K (see the rightmost plot of Fig. 3)
can introduce a diagonal-plus-rank-one (dense) structure in the inverse of SK . In contrast, explicitly
imposing such a structure on SK or its inverse could be memory inefficient.

As a general design principle, we consider special structures preserved under (1) elementwise
matrix operations (e.g., matrix subtraction and scalar multiplication) and (2) matrix multiplication.
These operations are needed for our updates. We exploit Lie-algebraic properties in the matrix
logarithm space to construct sparse structures of Kronecker factors K and C. We construct a structure
by using a subspace of the logarithm space. Concretely, we construct a new local reparameterization
map for K at iteration t such as K := ψ(Kt,mK) := KtExpm(1/(2

√
di) Π̂K(mK)), where map

Π̂K(mK) projects dense input mK onto a subspace. We specify a subspace so that its sparse pattern
is preserved under matrix multiplication and the elementwise matrix operations.

It can be non-trivial to design such a sparse factor while maintaining downstream performance.
For example, many well-known sparse factors such as a tri-diagonal matrix do not satisfy our
requirements as they are not closed under matrix multiplication. Moreover, it can be difficult to
construct the projection map so that the orthonormalization condition [19] of the FIM is satisfied. We
have to compute the inverse of the FIM matrix if the orthonormalization condition is not satisfied.

One particular subspace structure satisfying these requirements is the class of upper/lower
triangular matrices. In this case, the subspace projection Π̂K is a weighted extraction map since
projecting the logarithm space onto a subspace is like projecting a dense square matrix onto a
triangular matrix space. The logarithm space arising from the dense case is an ordinary (Euclidean)
matrix space because the FIM with respect to K at mK = 0 is orthonormalized. The subspace
projection is a weighted map since it has to satisfy the orthonormalization condition in the subspace
(see Appx. A for the details). We consider several sparse structures and block extensions of the
triangular matrix class as illustrated in Fig. 2. For example, the subspace projection map for a
diagonal structure simply extracts diagonal entries of its input. As a non-trivial example, the
subspace projection map for a lower-triangular structure extracts lower-triangular entries of its input
and multiples the entries below the main diagonal by 2. Table 3 summarizes structures and their
projection maps considered in this work. For an efficient implementation, we only compute and store
non-zero entries of Π̂K(mK) and K without explicitly forming dense matrices mK and K.

By using such a subspace and its projection map, we obtain a structured INGD update scheme
(see Fig. 6). We can also obtain a structured version of IKFAC. Our approach allows us to use more
expressive structures than the block-diagonal structure as illustrated in Fig. 2 and 3. These structures
lower not only memory consumption (shown in Table 2) but also the iteration cost (shown in Table 1).

Our experiments (in Appx. C) show that our method supports low-precision training and out-
performs AdamW on many NN models. Our work expands the scope of second-order methods to
training modern large NNs in low precision and making them more widely applicable than before.

6



STRUCTURED INVERSE-FREE NATURAL GRADIENT

References

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

[2] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence
functions are the answer, then what is the question? In NeurIPS, 2022.

[3] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux—effortless Bayesian deep learning. In NeurIPS, 2021.

[4] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. In NeurIPS, 2018.

[5] Alex Graves. Practical variational inference for neural networks. In NeurIPS, 2011.

[6] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model
generalization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

[7] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey
Shi. Escaping the big data paradigm with compact transformers. arXiv preprint
arXiv:2104.05704, 2021.

[8] Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Global context
vision transformers. In International Conference on Machine Learning, pages 12633–12646.
PMLR, 2023.

[9] Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computa-
tion, 12(4), 2000.

[10] Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Khan Mohammad
Emtiyaz. Scalable marginal likelihood estimation for model selection in deep learning. In
ICML, 2021.

[11] Mohammad Rasool Izadi, Yihao Fang, Robert Stevenson, and Lizhen Lin. Optimization of
graph neural networks with natural gradient descent. In 2020 IEEE international conference on
big data (big data), pages 171–179. IEEE, 2020.

[12] Mohammad Khan and Wu Lin. Conjugate-computation variational inference: Converting
variational inference in non-conjugate models to inferences in conjugate models. In Artificial
Intelligence and Statistics, pages 878–887, 2017.

[13] Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule. arXiv preprint
arXiv:2107.04562, 2021.

[14] Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. Fast and scalable Bayesian deep learning by weight-perturbation in Adam. In ICML,
2018.

7



STRUCTURED INVERSE-FREE NATURAL GRADIENT

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[16] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher
approximation for natural gradient descent. In NeurIPS, 2019.

[17] Wu Lin, Mark Schmidt, and Mohammad Emtiyaz Khan. Handling the positive-definite con-
straint in the bayesian learning rule. In ICML, 2020.

[18] Wu Lin, Frank Nielsen, Khan Mohammad Emtiyaz, and Mark Schmidt. Tractable structured
natural-gradient descent using local parameterizations. In ICML, 2021.

[19] Wu Lin, Valentin Duruisseaux, Melvin Leok, Frank Nielsen, Mohammad Emtiyaz Khan, and
Mark Schmidt. Simplifying momentum-based positive-definite submanifold optimization with
applications to deep learning. 2023.

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[21] Zhiying Lu, Hongtao Xie, Chuanbin Liu, and Yongdong Zhang. Bridging the gap between
vision transformers and convolutional neural networks on small datasets. Advances in Neural
Information Processing Systems, 35:14663–14677, 2022.

[22] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In ICML, 2015.

[23] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.
Mixed precision training. In International Conference on Learning Representations (ICLR),
2018.

[24] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain, Runa Eschen-
hagen, Richard E Turner, and Rio Yokota. Practical deep learning with Bayesian principles. In
NeurIPS, 2019.

[25] Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient training of large language
models using pipelining and Fisher information matrices. In MLSys, 2023.

[26] Michael R Osborne. Fisher’s method of scoring. International Statistical Review/Revue
Internationale de Statistique, pages 99–117, 1992.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[28] Gordon K Smyth. Partitioned algorithms for maximum likelihood and other non-linear estima-
tion. Statistics and Computing, 6:201–216, 1996.

[29] Gordon K Smyth. Optimization and nonlinear equations. Statistics reference online, 1:1–9,
2015.

8



STRUCTURED INVERSE-FREE NATURAL GRADIENT

[30] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. The computational
limits of deep learning. 2020.

[31] Asher Trockman and J Zico Kolter. Patches are all you need? Transactions on Machine
Learning Research, 2023.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[33] Ao Wang, Hui Chen, Zijia Lin, Hengjun Pu, and Guiguang Ding. Repvit: Revisiting mobile
cnn from vit perspective. arXiv preprint arXiv:2307.09283, 2023.

[34] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient
as variational inference. In ICML, 2018.

[35] Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger B. Grosse. Which algorithmic choices matter at which batch
sizes? Insights from a noisy quadratic model. In NeurIPS, 2019.

9



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Dense Diagonal Block-diag. Tril-Toepl. Triu-Toepl. Hierarchical

K

KK⊤

(
KK⊤)−1

Figure 2: Illustration of structured matrices (Kronecker factors) supported by SINGD, their self-outer
product (approximate inverse Hessian factor), and its inverse (approximate Hessian factor).

Sparse Triu. Sparse Tril. Sparse Triu. Sparse Tril.

K

KK⊤ IKFAC
≈

(
SK + λI

)−1

(
KK⊤)−1 IKFAC

≈ SK + λI

Figure 3: Our approach can impose a low-rank (dense) structure on KK⊤ or its inverse using rank-
one triangular matrices. It can be difficult to directly impose a low-rank structure on (SK + λI)−1.

Appendix A. Summary of Sparse Structures

Fig. 2 and 3 demonstrate several sparse patterns in K and how they can be used for approximating
the dense Kronecker factor SK . Table 3 gives the mathematical description of these sparse structures
and their subspace projection maps.

Appendix B. Space and Time Complexity

Method △µ (descent direction) Update SK or K Update SC or C ∇µℓ (BackProp)

Iteration Cost
KFAC O(d2i do + d2odi) O( 1

T (md2i + d3i )) O( 1
T (md2o + d3o)) O(mdido)

SINGD (Dense) O(d2i do + d2odi) O( 1
T (md2i + d3i )) O( 1

T (md2o + d3o)) O(mdido)
SINGD (Block-Diag. with block size k) O(kdido) O( 1

T (kmdi)) O( 1
T (kmdo)) O(mdido)

SINGD (Toeplitz) O(dido log(dodi)) O( 1
T (mdi log di)) O( 1

T (mdo log do)) O(mdido)
SINGD (Rank-1 Triangular) O(dido) O( 1

T (mdi)) O( 1
T (mdo)) O(mdido)

SINGD (Hierarchical with parameter k) O(kdido) O( 1
T (kmdi)) O( 1

T (kmdo)) O(mdido)
AdamW O(dido) NA NA O(mdido)

Table 1: Iteration cost for a non-weight-sharing layer, where m is the size of a mini-batch.

10



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Method ∇ℓl ⊙∇ℓl SK or K SC or C

Memory Usage
KFAC NA O(d2i ) O(d2o)

SINGD (Dense) NA O(d2i ) O(d2o)
SINGD (Block-Diag. with block size k) NA O(kdi) O(kdo)

SINGD (Toeplitz) NA O(di) O(do)
SINGD (Rank-1 Triangular) NA O(di) O(do)

SINGD (Hierarchical with parameter k) NA O(kdi) O(kdo)
AdamW O(dido) NA NA

Table 2: Additional Storage

Subspace of the logarithm space (Lie algebra) Lie (sub-group) structure in K Subspace projection map Π̂(m)
a1,1 0 . . . 0
a2,1 a2,2 0

...
...

. . .
...

adi,1 adi,2 . . . adi,di

 Lower-triangular (Tril.)


m1,1 0 . . . 0
2m2,1 m2,2 0

...
...

. . .
...

2mdi,1 2mdi,2 . . . mdi,di



A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Aqq

 (Block) Diagonal (k is the block size)


M11 0 · · · 0
0 M22 · · · 0
...

...
. . .

...
0 0 · · · Mqq


A11 A12 A13

0 A22 0
0 A32 A33

, A22 is diag., A11 ∈ Rd2×d2 , A33 ∈ Rd3×d3 Hierarchical (k := d2 + d3)

M11 2M12 2M13

0 Diag(M22) 0
0 2M32 M33


[
A11 A12

0 D22

]
, D22 is diag., A11 ∈ Rk×k Rank-k lower-triangular

[
M11 2M12

0 Diag(M22)

]


a0 a1 a2 · · · a(di−1)

0 a0 a1
. . .

...

0 0
. . . . . . a2

...
. . . . . . . . . a1

0 · · · . . . 0 a0


Upper-triangular Toeplitz (Triu-Toepl.)



b0 2b1 2b2 · · · 2b(di−1)

0 b0 2b1
. . .

...

0 0
. . . . . . 2b2

...
. . . . . . . . . 2b1

0 · · · · · · 0 b0


bj :=

1
di−j

∑di−j
k=1 mk,k+j

Table 3: Subspaces of the logarithm space and their projection maps Π̂(m), where m is a symmetry
matrix. k is a parameter to determine the sparsity of a given structure. The hierarchical structure
is constructed by replacing the diagonal matrix D22 in the rank-k lower-triangular structure with
another rank-k triangular matrix

[
A22 0
A23 A33

]
for a better approximation.

KFAC
(Martens &
Grosse, 2015)

Inverse-free Natural Gra-
dient Descent (INGD,
Lin et al., 2023)

Inverse-free KFAC
(IKFAC, ours)

Structured Inverse-
free KFAC
(SIKFAC, ours)

Structured Inverse-free
Natural Gradient De-
scent (SINGD, ours)

(·)−1 → Expm(·) Structured Kron. factors

Riem. momentum &
adaptive damping

Structured Kron. factors

Figure 4: Overview of existing methods and their relation to our proposed methods. IKFAC behaves
like KFAC (Theorem 1), but is numerically stable in lower precision. In contrast to IKFAC, INGD has
Riemannian momenta, and adaptive damping and curvature which could lead to better performance in
practice (Appendix C). INGD is equivalent to SINGD with unstructured Kronecker factors (SINGD-
Dense). Structured Kronecker factors reduce memory consumption and computational cost.

11



STRUCTURED INVERSE-FREE NATURAL GRADIENT

KFAC (Martens and Grosse, 2015)
1: Each T iters, update SK , SC

Obtain U⊗G to approximate∇2
µℓ(µ)

SK ← (1− β1)SK + β1U

SC ← (1− β1)SC + β1G

S−1
K ← (SK + λIdi)

−1

S−1
C ← (SC + λIdo)

−1

2: mµ ← α2mµ + S−1
C vec−1(g)S−1

K + γvec−1(µ)

3: µ← µ− β2vec(mµ)

IKFAC (ours)
1: Each T iters, update mK , mC , K, C

Obtain U⊗G to approximate∇2
µℓ(µ)

mK ← 0mK + 1
2do

(doHK + λdoK
⊤K− doIdi)

mC ← 0mC + 1
2di

(diHC + λdiC
⊤C− diIdo)

K← K(Idi − β1mK)

C← C(Ido − β1mC)

2: mµ ← α2mµ +CCT vec−1(g)KKT + γvec−1(µ)

3: µ← µ− β2vec(mµ)

Figure 5: Comparison between KFAC and IKFAC update for one weight matrix vec−1(µ) ∈ Rdo×di .
The flattened gradient is g := ∇µℓ(µ) ∈ Rdodi and vec−1(g) ∈ Rdo×di is its matrix reshape. IKFAC
uses HK := K⊤UK and HC := C⊤GC to incorporate the Kronecker curvature U and G. Both
methods use momentum buffers mµ for the weight-decayed update direction with momentum α2

and weight decay γ, and a step-size β2 for the parameter update. (Left) KFAC uses an exponentially
moving average with decay 1− β1 to accumulate the Kronecker factors and applies a damping term
λI before inversion to handle potential singularities in SK , SC . (Right) In contrast to KFAC, IKFAC
directly approximates (SK + λI)−1 and (SC + λI)−1 by KK⊤ and CC⊤. The pre-conditioner
update is a modification of INGD [19] and the changes—zero Riemannian momentum, and non-
adaptive damping and curvature—are highlighted in red.

INGD (Lin et al., 2023)
1: Each T iterations, update mK , mC , K, C

Obtain U⊗G to approximate∇2
µℓ(µ)

mK ← α1mK + 1
2do

(Tr(HC)HK + c2K⊤K− doIdi)

mC ← α1mC + 1
2di

(Tr(HK)HC + κ2C⊤C− diIdo)

K← K(Idi − β1mK)

C← C(Ido − β1mC)

2: mµ ← α2mµ +CCT vec−1(g)KKT + γvec−1(µ)

3: µ← µ− β2vec(mµ)

SINGD (ours)
1: Each T iterations, update L̂mK , L̂mC , L̂K, L̂C

Obtain U⊗G to approximate∇2
µℓ(µ)

L̂mK ← α1L̂mK + 1
2do

Π̂K(Tr(HL̂C
)HL̂K

+ c2(L̂K)⊤L̂K − doIdi)

L̂mC ← α1L̂mC + 1
2di

Π̂C(Tr(HL̂K
)HL̂C

+ κ2(L̂C)⊤L̂C − diIdo)

L̂K ← L̂K(Idi − β1L̂mK )

L̂C ← L̂C(Ido − β1L̂mC )

2: mµ ← α2mµ + L̂C(L̂C)T vec−1(g)L̂K(L̂K)T + γvec−1(µ)

3: µ← µ− β2vec(mµ)

Figure 6: Comparison of a single weight matrix’s update between INGD and our extension—
SINGD—via structured Kronecker factors. (Left) INGD features Riemannian momentum (α1),
adaptive curvature (Tr(HC), Tr(HK)), adaptive damping (c2 := λTr(C⊤C), κ2 := λTr(K⊤K) ), and
correlated updates of K and C. The pre-conditioner matrices are updated with a step-size β1, and
the optimizer keeps a momentum buffer on the weight-decayed update with momentum α2 and
weight decay γ. The step-size to update the parameters is β2. (Right) SINGD’s update is similar but
each Kronecker factor and its momentum (•) is replaced by its structured version (L̂•, e.g. (block-
)diagonal); likewise in the computation of c2, κ2, HK , and HC . When updating the momenta, their
structure is preserved through a projection map Π̂•( · ) that restores L̂•’s structure from a dense
symmetric matrix · (e.g. taking the (block) diagonal). Importantly, we can efficiently compute the
extraction map without expanding its argument in dense form, which reduces memory and run time.
The extension of IKFAC to SIKFAC is analogous.

12



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Appendix C. Experiments

100 200 300

Epoch

10

15

20

25

30

35

T
es

t
er

r.
(%

)

HDVT-CIFAR100

AdamW

INGD

SINGD-Hier*

IKFAC*

100 200 300

Epoch

CompactViT-CIFAR100

100 200 300

Epoch

SwinViT-ImageWoof10

100 200 300

Epoch

GCViT-ImageWoof10

Figure 7: Test error curves for mixed-precision training in the transformer-based models with
BFloat16 on datasets “CIFAR-100” and “ImageWoof-10”. Note that “Compact-ViT" and “HDVT"
are data-efficient transformers. Our method (SINGD) performs as well as INGD while being memory
efficient. SINGD including IKFAC and INGD as special cases, outperforms AdamW in most of the
cases. We do not show KFAC in the plots since it performs unstably in BFloat16. We also do not
show SGD since it often does not work well for training transformer-based models.

0 100 200 300

Epoch

10

20

30

40

T
es

t
er

r.
(%

)

RepViT-ImageWoof10 (BFP16)

AdamW

IKFAC*

INGD

SINGD-Hier*

50 100

Epoch

VGG-CIFAR100 (BFP16)

AdamW

IKFAC*

INGD

SINGD-Hier*

SGD

50 100

Epoch

ConvMixer-CIFAR100 (BFP16)

AdamW

IKFAC*

INGD

SINGD-Hier*

SGD

200 400

Epoch

GNN-Cora (FP32)

AdamW

IKFAC*

KFAC

INGD

SINGD-Hier*

Figure 8: Test error curves for mixed-precision training in CNN and GNN models on datasets
“ImageWoof-10”, “CIFAR-100” and “Cora”. Note that “Rep-ViT" is a CNN model inspired by
transformers. Our method (SINGD) performs as well as INGD while being memory efficient.
SINGD including IKFAC and INGD as special cases, outperforms AdamW in all the models.

To demonstrate the robustness and memory efficiency of our method, we consider image classification
tasks with transformer-based models such as “Compact-ViT" [7], “Swin-ViT" [20], “GC-ViT" [8],
and “HDVT” [21]. We also consider convolution-based models such as “VGG” [27], “ConvMixer”
[31], and “Rep-ViT" [33]. We train these models on datasets “CIFAR-100" and “ImageWoof-10".
Note that “Rep-ViT" is a CNN model inspired by transformers while “Compact-ViT" is a data-
efficient transformer using convolutional tokenization. We also consider a graph convolution model
[15] denoted by “GNN” on dataset “Cora".

To be memory efficient, we consider SINGD with a sparse structure denoted by “hierarchical".
We also consider IKFAC, INGD, and AdamW as our baselines. Recall that our method becomes
INGD if we use a dense structure. We use a random search to find the best hyper-parameters of each

13



STRUCTURED INVERSE-FREE NATURAL GRADIENT

of the methods. We use mixed-precision training with BFloat16 and cosine step-size schedules for
our experiments. All methods except KFAC directly support training with BFloat16. For KFAC,
we have to first transform a matrix into Float32 and then transform the inverse of the matrix into
BFloat16 when using matrix inversion. For “VGG” and “ConvMixer”, we also consider SGD as a
strong baseline. We fix the momentum weight to be 0.9 and tune other hyper-parameters of each
optimizer using random search. For “VGG” and “ConvMixer”, we decrease learning rate β2 at every
40 epochs. For “GNN”, we use a constant learning rate. For the rest of the models including all the
transformer-based models, we use a cosine learning rate schedule. We consider KFAC as a strong
baseline for the GNN model as suggested by Izadi et al. [11]. We train the GNN model with FP32 so
that KFAC performs stably in this case.

The list of hyper-parameters used in the random search can be found in Table 4 in Appendix D.
We use the test error to measure the performance of each method.

From Fig. 7 and 8, we can observe that SINGD including IKFAC and INGD as special cases,
outperforms AdamW in many cases. SINGD works well for mixed-precision training while KFAC
performs unstably due to numerical issues. We also observe that the hierarchical structure performs
as well as the dense structure (INGD). Thus, we can reduce the memory consumption of INGD and
make SINGD as competitive as AdamW for training large NNs.

Appendix D. Details of the Experiments

Hyperparameter Meaning KFAC/IKFAC/SINGD AdamW in Fig. 6

β2 (AdamW: γ) Standard stepsize Tuned Tuned

α2 (AdamW: β1) Standard momentum weight 0.9 0.9

γ (AdamW: λ) (L2) weight decay Tuned Tuned

λ (AdmaW: ϵ) Damping Tuned Tuned

β1 (AdamW: 1− β2) Stepsize for preconditioner Tuned Tuned

α1 Riemannian Momentum (SINGD only) Tuned NA

Table 4: Hyperparameters of all methods used for the random search

Appendix E. Connection between IKFAC and KFAC

To relate to the KFAC method, we now show that Knew(Knew)⊤ is an approximation of
(
Snew
K +λI

)−1

at a new step of our scheme. For simplicity, we first assume KK⊤ exactly equals to (Scur
K + λI)−1

at the current step. Later, we will relax this assumption and prove that KK⊤ is an approximation of
(SK + λI)−1 at every step as stated in Theorem 1. For notation simplicity, we denote S̄K := SK+λI.
The update of SK with damping λI can be reexpressed as an update of S̄K :

(Snew
K + λI) = S̄

new
K ← (1− β1)S̄

cur
K + β1 (U+ λI) .

Since Ŝ
cur
K = K−TK−1 by our assumption, we can express update of SK in terms of K as follows.

S̄
new
K ← (1− β1)S̄

cur
K + β1 (U+ λI) = K−T

(
I+ β1

(
K⊤UK+ λK⊤K− I

))
K−1 = K−T (I+ β1mK)K−1

14



STRUCTURED INVERSE-FREE NATURAL GRADIENT

S̄
new
K in the KFAC update can be approximated as below, where we consider I+ β1mK as an

approximate of the matrix exponential Expm(β1mK) ≈ I+β1mK and notice that mK is symmetric.

S̄
new
K = K−T (I+ β1mK)K−1 ≈ K−TExpm (β1mK)K−1 = K−TExpm

(β1
2
mK

)⊤
Expm

(β1
2
mK

)
K−1.

Informally, we can see that Knew(Knew)⊤ approximates
(
S̄

new
K

)−1 by using the matrix exponen-
tial. We can see that mK stays in a matrix logarithm space.(

S̄
new
K

)−1 ≈ KExpm
(
−β1

2
mK

)
Expm

(
−β1

2
mK

)⊤
K⊤ ≈ K

(
I− β1

2
mK

)(
I− β1

2
mK

)T
K⊤ = Knew(Knew)⊤

Theorem 1 formally shows that KK⊤ used in our update is an approximation of
(
SK + λI

)−1

in the KFAC update for every step even when the truncation of the matrix exponential is employed.

Appendix F. Proof of Theorem 1

We first consider the following lemmas in order to prove Theorem 1.
Recall that we denote S̄K := SK + λI. For notation simplicity, we will drop the subscript K in

this section and use S̄t to denote S̄K at iteration t. Notice that S̄t is non-singular at each iteration t
so that we can inverse it in the original KFAC update (see Fig. 5).

Lemma 1 Consider the following update in the original KFAC update at iteration t.

S̄t := (1− β1)S̄t−1 + β1
(
Ût−1 + λI

)
where St is the factor SK used in the original KFAC update, β1 is known as the weight of the moving
average, and Ût−1 is a curvature matrix.

The initial factor S̄0 can be decomposed as S̄0 = K̂
−T
0 K̂

−1
0 since S̄0 as a preconditioning factor

is symmetric positive definite.
Define N̂i := K̂

T
0 ÛiK̂0 + λK̂

T
0 K̂0 − I.

The Kronecker factor can be reexpressed as

S̄t = K̂
−T
0

(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1
0 +O(β2

1)

Lemma 2 Consider the following update in our inverse-free KFAC at iteration t.

Kt := Kt−1

(
I− β1

2

(
K⊤

t−1Ut−1Kt−1 + λK⊤
t−1Kt−1 − I

))
where K⊤

t−1Ut−1Kt−1 is used in our update and Ut−1 is a curvature matrix.
Define Ni := K⊤

i UiKi + λK⊤
i Ki − I.

Our update of K can be reexpressed as

Kt = K0

(
I− β1

2

t−1∑
i=0

Ni

)
+O(β2

1)

Moreover, the product KK⊤ can be reexpressed as

KtK
⊤
t = K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1)

15



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Lemma 3 is useful to establish a relationship between the KFAC update and our inverse-free
update.

Lemma 3 If we use the same sequence of curvature matrices in both the original KFAC update and
our update such as Ûi = Ui for each iteration i and K̂0 = K0 are used on the initialization, we
have the following expression.

Ni = N̂i +O(β1)

Similarly, we have the following result for C.

Theorem 2 The product CC⊤ has a first-order accuracy of the KFAC update of
(
SC + λI

)−1 at
each iteration if the update of C is updated according to Figure 5 with the truncation of the matrix
exponential and these two updates use the same initialization and the same sequence of curvature
matrices G.

CC⊤ =
(
SC + λI

)−1
+O(β2

1)

F.1. Proof of Lemma 1

We prove the lemma by induction We first show the base case when t = 1. By definition, we have

S̄1 = (1− β1)S̄0 + β1
(
Û0 + λI

)
(7)

= (1− β1)K̂
−T
0 K̂

−1
0 + β1

(
Û0 + λI

)
(8)

= K̂
−T
0

[
I+ β1

(
K̂

T
0 Û0K̂0 + λK̂

T
0 K̂0 − I

)
︸ ︷︷ ︸

=
ˆN0

]
K̂

−1
0 (9)

= K̂
−T
0

[
I+ β1N̂0

]
K̂

−1
0 (10)

Thus, the claim holds when t = 1.
Suppose, the claim holds when t = n. By the claim, we have

S̄n = K̂
−T
0

(
I+ β1

n−1∑
i=0

N̂i

)
K̂

−1
0 +O(β2

1) (11)

Now, we consider the case when t = n+ 1. Notice that

(1− β1)S̄n = K̂
−T
0

(
I+ β1

n−1∑
i=0

N̂i − β1I+O(β2
1)

)
K̂

−1
0 +O(β2

1)

= K̂
−T
0

(
I+ β1

n−1∑
i=0

N̂i − β1I

)
K̂

−1
0 +O(β2

1)

16



STRUCTURED INVERSE-FREE NATURAL GRADIENT

By the definition of Ŝn+1, we have

S̄n+1 = (1− β1)S̄n + β1
(
Ûn + λI

)
(12)

= K̂
−T
0

I+ β1

n−1∑
i=0

N̂i−β1I+ β1K̂
T
0 ÛnK̂0 + β1λK̂

T
0 K̂0︸ ︷︷ ︸

=β1
ˆNn

 K̂
−1
0 +O(β2

1) (13)

= K̂
−T
0

(
I+ β1

n∑
i=0

N̂i

)
K̂

−1
0 +O(β2

1) (14)

which is exactly the claim when t = n+ 1.
Thus, by induction, the claim holds.

F.2. Proof of Lemma 2

We prove the lemma by induction We first show the base case when t = 1. By definition, we have

K1 = K0

(
I− β1

2

(
K⊤

0 U0K0 + λK⊤
0 K0 − I

)
︸ ︷︷ ︸

=N0

)
(15)

Thus, the claim holds when t = 1.
Suppose, the claim holds when t = n. By the claim, we have

Kn = K0

(
I− β1

2

n−1∑
i=0

Ni

)
+O(β2

1) (16)

Now, we consider the case when t = n+ 1. Notice that

Kn+1 = Kn

(
I− β1

2

(
K⊤

nUnKn + λK⊤
nKn − I

)
︸ ︷︷ ︸

=Nn

)
(17)

= K0

(
I− β1

2

n−1∑
i=0

Ni

)
︸ ︷︷ ︸

=Kn−O(β2
1)

(
I− β1

2
Nn

)
+O(β2

1) (18)

= K0

(
I− β1

2

n−1∑
i=0

Ni −
β1
2
Nn +O(β2

1)

)
+O(β2

1) (19)

= K0

(
I− β1

2

n∑
i=0

Ni

)
+O(β2

1) (20)

which is exactly the claim when t = n+ 1.
Thus, by induction, the claim holds.

17



STRUCTURED INVERSE-FREE NATURAL GRADIENT

Notice that Ni by definition is symmetric. It is easy to see that

KtK
⊤
t = K0

(
I− β1

2

t−1∑
i=0

Ni

)(
I− β1

2

t−1∑
i=0

Ni

)⊤

K⊤
0 +O(β2

1) (21)

= K0

(
I− β1

2

t−1∑
i=0

Ni

)(
I− β1

2

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1) (22)

= K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 +O(β2
1) (23)

Thus, the claim also holds.

F.3. Proof of Lemma 3

We first show the base case when t = 1. By the assumption, we have K0 = K̂0. Similarly, we have
U0 = Û0 by the assumption.

By definition, we have

N0 = K⊤
0 U0K0 + λK⊤

0 K0 − I (24)

= K̂
⊤
0 Û0K̂0 + λK̂

⊤
0 K̂0 − I (25)

= N̂0 (26)

Thus, the claim holds when t = 0.
When t > 0, we can use Lemma 2 to obtain the claim. Notice that

Nn+1 = K⊤
n+1Un+1Kn+1 + λK⊤

n+1Kn+1 − I (27)

=

(
I− β1

2

n∑
i=0

Ni

)⊤

K⊤
0

(
Un+1 + λI

)
K0

(
I− β1

2

n∑
i=0

Ni

)
− I+O(β2

1) ( Lemma 2)

(28)

= K⊤
0

(
Un+1 + λI)K0 +O(β1) +O(β2

1) (29)

= K̂
⊤
0

(
Ûn+1 + λI

)
K̂0 +O(β1) (30)

= N̂n +O(β1) (31)

F.4. Proof of Theorem 1

It is sufficient to show that the following claim holds at iteration t since S̄t is non-singular.

KtK
⊤
t S̄t = I+O(β2

1)

where we use S̄t to denote S̄K at iteration t.

18



STRUCTURED INVERSE-FREE NATURAL GRADIENT

By assumptions, we know that Lemmas 1, 2, 3 hold. Moreover, we have K0 = K̂0. Thus, we
have

KtK
⊤
t S̄t = K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 S̄t +O(β2
1) (by Lemma 2) (32)

= K0

(
I− β1

t−1∑
i=0

Ni

)
K⊤

0 K̂
−T
0

(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1
0 +O(β2

1) (by Lemma 1)

(33)

= K̂0

(
I− β1

t−1∑
i=0

N̂i +O(β2
1)

)(
I+ β1

t−1∑
i=0

N̂i

)
K̂

−1
0 +O(β2

1) (by Lemma 3)

(34)

= K̂0IK̂
−1
0 +O(β2

1) (35)

= I+O(β2
1) (36)

19


	Introduction
	Preliminaries
	KFAC: Approximate NGD for Maximum Likelihood Estimation
	INGD: Approximate NGD for Bayesian Parameter Estimation

	Our Contribution: Structured Inverse-free NGD
	Inverse-free KFAC Updates for Improving Numerical Stability
	Sparse Kronecker Factors for Reducing Memory

	Summary of Sparse Structures
	 Space and Time Complexity 
	Experiments
	Details of the Experiments
	 Connection between IKFAC and KFAC 
	Proof of Theorem 1 
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1


