
Reverse-Engineering Memory in DreamerV3: From
Sparse Representations to Functional Circuits

Jan Sobotka∗ Auke Ijspeert Guillaume Bellegarda
EPFL, Switzerland

Abstract

Understanding how reinforcement learning (RL) agents with recurrent neural
network architectures encode and use memory remains an open question in the field
of interpretability. In this work, we investigate these internal memory dynamics of
DreamerV3, a state-of-the-art model-based deep RL agent. Our analysis reveals
that DreamerV3 relies on sparse memory representations and on small internal
subnetworks (circuits) to store and act on memory, with only a small subset of
the original model parameters sufficient to control goal-directed behavior. We
show that using a differentiable circuit extraction method, we can identify these
subnetworks that retain full task performance with as little as 0.16% of the original
parameters. Furthermore, we demonstrate that these sparse circuits emerge early in
training and can retroactively improve undertrained models when applied as binary
masks. Finally, we develop a gradient-based model editing approach that leverages
these circuits for a reliable post hoc modification of the agent’s behavior, achieving
an average edit success rate of 90%. Our work demonstrates how sparse memory
circuits provide a powerful lever for understanding and editing deep RL systems.

1 Introduction

Reinforcement learning agents make decisions over time by interacting with their environments,
often in complex, dynamic settings. Understanding how these agents work internally is crucial for
ensuring they are safe and efficient, especially in real-world applications such as autonomous driving
or healthcare. Unlike most of machine learning (ML), where models map fixed inputs to outputs,
RL involves sequences of actions where the data depends on the policy itself. This complexity
is compounded when RL agents must remember past information to handle partial observability.
While interpretability in (self-)supervised learning has advanced, interpretability in RL, especially for
recurrent neural network (RNN) architectures, is still developing, a gap this study aims to address.

Specifically, we reverse-engineer how memory is encoded and used within the recurrent hidden state
of the state-of-the-art agent, DreamerV3 [9]. Using interventions and circuit discovery techniques,
we identify the specific mechanisms that guide its behavior. Our main contributions are as follows:

1. We introduce a new RL environment called MiniGrid-Switching-Memory, inspired by
studies in neuroscience [17, 23], to study rule-based decision-making and memory.

2. By analyzing hidden states of recurrent RL agents, we find extremely sparse memory
representations that reach optimal coding of past environment interactions.

3. We show that the recurrent RL agent, DreamerV3, encodes memory using small neural
(sub)networks, which we call circuits [20], and which we can easily uncover.

∗Correspondence to: jan.sobotka@epfl.ch

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

4. We propose a data-efficient gradient-based model editing technique that achieves a 90%
average success rate in overwriting the goals of the trained RL agent.

2 Related work

Interpretability in RL. A key challenge in RL is solving partially observable tasks, which re-
quires maintaining a memory of past events, often using recurrent neural networks (RNNs) [6, 11].
Techniques such as policy visualization [26], reward decomposition [12], probing [1, 14, 25], steer-
ing [14, 18], and quantitative measures [24] have been proposed to interpret RL agents. However,
understanding the internal representations of recurrent RL agents remains an underexplored area.

Model editing. Model editing aims to modify a trained model without costly retraining, and has been
primarily explored in natural language processing to update factual knowledge in transformers [15, 19].
In RL, such techniques could adapt agents to new reward specifications or correct undesirable
behaviors, such as goal misgeneralization, where an agent optimizes for a proxy goal that fails to
align with the designer’s intent in new situations [13]. With this motivation in mind, we extend the
“locate-and-edit” model-editing paradigm [7, 8, 15, 16] to the distinct challenges of RL agents with
recurrent memory and sequential behavior. Our work is one of the first to demonstrate successful
model editing in RL, and one of the first to show post hoc modifications of recurrent architectures.

3 Experiments

3.1 Environments

Figure 1: MiniGrid-Switching-Memory: A floor tile
cue determines whether the agent should match the
initial object’s shape or color.

We use two partially observable MiniGrid [5]
environments to test memory. Observations
are egocentric 3 × 3 RGB images, and the
agent receives a sparse reward upon task com-
pletion (subsection A.3).

MiniGrid-Memory. This environment tests
working memory. The agent starts by observ-
ing a green cue object (a key or a circle). It
must then navigate a corridor to a T-junction
and choose the path leading to the object that
matches the initial cue. The cue’s shape and
location are randomized each episode to en-
sure reliance on memory.

MiniGrid-Switching-Memory. This environ-
ment extends MiniGrid-Memory with a task-
switching component (Figure 1). The agent sees an object with a specific shape and color. Later, it
encounters a colored floor tile that acts as a rule cue: a purple tile means “match by shape”, while
a blue tile means “match by color”. This requires the agent to store a multi-featured memory and
dynamically select one of its attributes based on new environment observations.

3.2 Reinforcement learning agent

DreamerV3. Our primary subject is DreamerV3 [9], a state-of-the-art model-based RL agent. It
learns a world model with a GRU-based recurrent backbone [6] to predict future outcomes in a
compact latent space. An actor-critic algorithm then learns a policy by training on trajectories
“imagined” within this world model. A key feature is an autoencoding objective that forces the world
model’s hidden state to retain information needed to reconstruct observations. Our analysis focuses
on the hidden states of this recurrent world model. For our study, we train the agent until it achieves a
> 95% success rate on the task. For further details, please see subsection A.1.

We analyze DreamerV3’s memory in three stages. First, we analyze its hidden states to understand
memory representations. Second, we use circuit discovery to understand the internal mechanisms
that produce these representations. Finally, we introduce a model-editing method to validate our
understanding. Each provides a complementary perspective on the agent’s memory functionality.

2

Agent

Target episode

Observation

Source episode

Memory
circuit

Switched
goal

Figure 2: A successful memory intervention in MiniGrid-Memory, showing the internal memory
circuit (red) and the hidden states before (ht) and after (ĥt) applying the intervention patch vtop-1.

3.3 Memory intervention

We first locate the memory encoding within the agent’s recurrent hidden state using activation
patching [10], a causal intervention technique. Specifically, we run two episodes with contrastive
goals (e.g., go to a circle vs. a key) and identify the minimal set of hidden state coordinates that,
when patched from one (source) episode to the other (target) episode at a critical timestep, cause the
agent to switch its goal. A full description of the procedure is in subsection A.4.

Interestingly, in MiniGrid-Memory, we find that modifying just a single coordinate (k = 1) is
sufficient to reliably redirect the agent’s behavior (Figure 2), indicating a highly sparse memory
encoding.2 In fact, this reaches the optimal single-bit encoding needed to distinguish between the
two goal states. This contrasts with a baseline recurrent model-free proximal policy optimization
agent [22] trained solely for policy and value prediction, which required patching 10% of its 256-
dimensional hidden state3. We hypothesize that this sparsity difference stems from DreamerV3’s
auxiliary autoencoding objective, which forces the network to compress memory into a smaller
subspace while dedicating most of the hidden state to encoding current visual observations.

3.4 Circuit discovery
Table 1: Circuit discovery results. The success
rate is an average of 100 evaluation episodes.

Agent
MEMORY SWITCHING-MEMORY

Success rate Sparsity Success rate Sparsity

Original 96.9% < 0.001% 98.3% < 0.001%

Masked 96.9% 99.82% 98.3% 99.84%

0 200000 400000 600000

Number of parameter updates

0.0

0.5

1.0

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn

Hidden state size
16
32
64
256

Figure 3: Smaller models require longer training.
Evaluation return averaged from 10 episodes.

Hidden-state interventions reveal where memory
is encoded, but not the mechanism that writes and
maintains it. To uncover this mechanism, we iden-
tify the minimal subnetwork, or circuit, responsi-
ble for memory-based behavior. We adapt a differ-
entiable binary weight masking technique similar
to that used by [2, 4] to find a sparse mask over
the agent’s parameters. We optimize this mask via
behavior cloning on a dataset of pre-collected tra-
jectories of the original (unmasked) agent, using
a straight-through estimator and strong L1 regu-
larization to encourage sparsity (details in subsec-
tion A.5).

Using this procedure on the DreamerV3 agent
trained in the MiniGrid-Memory environment, we
find that the agent can retain its original perfor-
mance using only 0.16% of its parameters (Table
1, MEMORY). This reduces the number of ac-
tive parameters from ±5M to around 8K. While
one might argue that the original model was over-
parameterized, training a smaller model from
scratch either fails or requires significantly longer training (Figure 3), demonstrating the efficiency of
discovering sparse circuits within larger models using the differentiable weight masking.

2This is consistent across 50 episodes where intervening on the same coordinate reliably redirects the agent.
3Details on this agent’s architecture are provided in subsection A.2.

3

0 200000 400000 600000

Number of parameter updates

0.0

0.5

1.0

A
ve

ra
ge

 e
pi

so
de

 r
et

ur
n

Random

Base model

Masked model

Figure 4: Circuit development in MiniGrid-
Memory. Masking early checkpoints with the
final circuit mask dramatically improves perfor-
mance. Averages over 50 episodes.

0 80000 160000

Number of parameter updates

0.0

0.5

1.0

A
ve

ra
ge

 e
pi

so
de

 r
et

ur
n

Random

Base model

Masked model

Figure 5: Circuit development in MiniGrid-
Switching-Memory, showing similar perfor-
mance gains on early checkpoints after masking.
Averages over 50 episodes.

3.5 Circuit development

Studying the memory circuit’s development reveals an interesting phenomenon. If we apply the
binary weight mask (subsection 3.4) from a fully trained agent to its earlier, poorly performing agent
checkpoints, their task performance jumps from near random to almost 100% success (Figures 4 and
5). This suggests that a functional, low-dimensional memory circuit emerges early in training, and
much of the subsequent training is dedicated to “cleaning up” parameters outside this core circuit.

3.6 Model editing

Table 2: Success rate of reaching the opposite goal
after we apply the model editing to the original and
masked agents. Evaluation on 100 testing episodes.

Model editing target MEMORY SWITCHING-MEMORY

Original agent 33.1% 86.8%
Masked agent 87.4% 92.1%

Our findings suggest that behavior is governed
by a small, identifiable circuit. This raises
the possibility of targeted model editing to
alter behavior, for example, to correct goal
misgeneralization [13]. We develop a gradient-
based method to do so. The core idea is to
retrain only the discovered circuit parameters
to encode the memory of an observed goal as
if it had seen the opposite goal. We use a small, contrastive dataset (1–3 episode pairs) to create target
hidden states where the key memory-encoding coordinates are patched as done in subsection 3.3. We
then fine-tune the circuit’s parameters with L2 loss to produce these patched representations. This
one-time optimization of only a few parameters permanently alters the agent’s goal-directed policy.
The complete procedure is detailed in subsection A.6.

As shown in Table 2, this method is highly effective, achieving an 87.4% and 92.1% edit success rate
on our two tasks. Crucially, attempting to edit the full model without first identifying the circuit is far
less effective (e.g., 33.1% vs 87.4% on MiniGrid-Memory), demonstrating the importance of first
locating the low-dimensional and causally robust target subnetwork for model editing.

4 Conclusion

In this work, we reverse-engineered the memory mechanisms of a state-of-the-art recurrent RL
agent. Our findings provide both a processing and a developmental account of its behavior. We
found that memory is not distributed but highly localized, implemented by sparse neural circuits that
comprise just 0.16% of the model parameters. These functional circuits emerge remarkably early in
training, well before the overall performance on the task stabilizes. This mechanistic insight is not just
descriptive; it enables a practical application. By targeting the identified memory circuit, we developed
a data-efficient model editing technique to reliably overwrite the agent’s learned goals. Our results
demonstrate that even complex deep RL agents can develop modular and interpretable cognitive
strategies, opening a promising path for reverse-engineering and aligning intelligent systems.

4

Acknowledgments

Jan Sobotka was supported by the Bakala Foundation during his studies at EPFL.

References
[1] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier probes, 2017.

URL https://openreview.net/forum?id=ryF7rTqgl.

[2] D. Bayazit, N. Foroutan, Z. Chen, G. Weiss, and A. Bosselut. Discovering knowledge-critical
subnetworks in pretrained language models. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen,
editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pages 6549–6583, Miami, Florida, USA, Nov. 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.376. URL https://aclanthology.org/
2024.emnlp-main.376/.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation, 2013. URL https://arxiv.org/abs/1308.3432.

[4] S. Cao, V. Sanh, and A. Rush. Low-complexity probing via finding subnetworks. In
K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cot-
terell, T. Chakraborty, and Y. Zhou, editors, Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 960–966, Online, June 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.naacl-main.74. URL https://aclanthology.org/2021.naacl-main.
74/.

[5] M. Chevalier-Boisvert, B. Dai, M. Towers, R. Perez-Vicente, L. Willems, S. Lahlou, S. Pal, P. S.
Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks. In Advances in Neural Information Processing Systems
36, New Orleans, LA, USA, December 2023.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[7] Z. Dong, X. Shen, and R. Xia. Memit-merge: Addressing memit’s key-value conflicts in
same-subject batch editing for llms, 2025. URL https://arxiv.org/abs/2502.07322.

[8] A. Gupta, D. Sajnani, and G. Anumanchipalli. A unified framework for model editing. In Y. Al-
Onaizan, M. Bansal, and Y.-N. Chen, editors, Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 15403–15418, Miami, Florida, USA, Nov. 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.903. URL https:
//aclanthology.org/2024.findings-emnlp.903/.

[9] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[10] S. Heimersheim and N. Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.
1162/neco.1997.9.8.1735.

[12] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez. Explainable reinforcement
learning via reward decomposition. in proceedings at the International Joint Conference on
Artificial Intelligence. A Workshop on Explainable Artificial Intelligence., 2019.

[13] L. L. D. Langosco, J. Koch, L. D. Sharkey, J. Pfau, and D. Krueger. Goal misgeneralization
in deep reinforcement learning. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu,
and S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 12004–12019. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/langosco22a.html.

[14] K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and M. Wattenberg. Emergent world
representations: Exploring a sequence model trained on a synthetic task. In The Eleventh

5

https://openreview.net/forum?id=ryF7rTqgl
https://aclanthology.org/2024.emnlp-main.376/
https://aclanthology.org/2024.emnlp-main.376/
https://arxiv.org/abs/1308.3432
https://aclanthology.org/2021.naacl-main.74/
https://aclanthology.org/2021.naacl-main.74/
https://arxiv.org/abs/2502.07322
https://aclanthology.org/2024.findings-emnlp.903/
https://aclanthology.org/2024.findings-emnlp.903/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.mlr.press/v162/langosco22a.html

International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=DeG07_TcZvT.

[15] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in
gpt. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 17359–17372. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

[16] K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov, and D. Bau. Mass-editing memory in
a transformer. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=MkbcAHIYgyS.

[17] E. K. Miller and J. D. Cohen. An integrative theory of prefrontal cortex function. Annu Rev
Neurosci, 24:167–202, 2001.

[18] U. Mini, P. Grietzer, M. Sharma, A. Meek, M. MacDiarmid, and A. M. Turner. Understanding
and controlling a maze-solving policy network. arXiv preprint arXiv:2310.08043, 2023.

[19] E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning. Memory-based model editing at
scale. In Advances in Neural Information Processing Systems, 2022.

[20] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduction
to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. https://distill.pub/2020/circuits/zoom-
in.

[21] M. Pleines, M. Pallasch, F. Zimmer, and M. Preuss. Memory gym: Partially observable
challenges to memory-based agents. In International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=jHc8dCx6DDr.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[23] J. D. Wallis, K. C. Anderson, and E. K. Miller. Single neurons in prefrontal cortex encode
abstract rules. Nature, 411(6840):953–956, Jun 2001. ISSN 1476-4687. doi: 10.1038/35082081.
URL https://doi.org/10.1038/35082081.

[24] H. Wang, E. Miahi, M. White, M. C. Machado, Z. Abbas, R. Kumaraswamy, V. Liu, and
A. White. Investigating the properties of neural network representations in reinforcement
learning. Artificial Intelligence, 330:104100, 2024. ISSN 0004-3702. doi: https://doi.org/10.
1016/j.artint.2024.104100. URL https://www.sciencedirect.com/science/article/
pii/S0004370224000365.

[25] E. Wijmans, M. Savva, I. Essa, S. Lee, A. S. Morcos, and D. Batra. Emergence of maps in the
memories of blind navigation agents. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=lTt4KjHSsyl.

[26] T. Zahavy, N. B. Zrihem, and S. Mannor. Graying the black box: understanding dqns. In
Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 1899–1908. JMLR.org, 2016.

6

https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=jHc8dCx6DDr
https://doi.org/10.1038/35082081
https://www.sciencedirect.com/science/article/pii/S0004370224000365
https://www.sciencedirect.com/science/article/pii/S0004370224000365
https://openreview.net/forum?id=lTt4KjHSsyl

A Technical Appendices and Supplementary Material

A.1 DreamerV3 agent

DreamerV3 [9] is a model-based RL approach that employs an RNN as a backbone of its internal
world model. In this architecture, environment observations are encoded into latent states using
an autoencoder, which is trained via an observation reconstruction (autoencoding) loss. This loss
ensures that all observation information passes through the hidden states of the world model. The
world model itself is trained to predict rewards, episode continuation signals, and subsequent latent
states based on previous actions. Our analysis of DreamerV3 in section 3 focuses on the hidden states
of the RNN backbone (GRU) [6] of this world model.

Policy optimization (actor-critic) is carried out in simulated trajectories, which are generated using
replayed latent states and sampled actor actions. The critic network estimates the sum of expected
future rewards, while the actor optimizes behavior by maximizing these predicted returns. Since
learning occurs in abstract latent sequences, the method is highly generalizable to both low- and
high-dimensional observations under full or partial observability. For additional algorithmic details
and preprocessing, please refer to the original work [9].

For all our experiments except those reported in Figures 3 and 4, we used a hidden state size of 256.
For Figure 3, we varied the size of the hidden state to investigate the relationship between model
parameter count and required training steps. Note that while the hidden state size is not the only
determinant of the number of model parameters, it is one of the main control knobs. This is because
many other components that read or write to the hidden state, such as the encoder or the actor and
value networks, adjust the sizes of their weight matrices accordingly.

The source code for all experiments, including the hyperparameters of the environments and the
agents, is available at https://github.com/Johnny1188/rl-memory.git.

A.2 Baseline recurrent model-free agent

The baseline RL agent used for the comparison in subsection 3.3 is based on the proximal policy
optimization (PPO) algorithm [22] with an LSTM backbone [11] that is trained using the truncated
backpropagation through time. At each timestep, the current observation is first encoded by three
convolutional layers, then passed through the LSTM, one fully connected layer, and finally split
into two streams. One stream computes the value function, and the other computes the policy. Both
streams consist of a single fully connected layer. In subsection 3.3, we analyze the hidden states of
the LSTM backbone that are updated at each timestep.

We use the implementation and hyperparameters from [21], where the authors used this agent for
evaluating memory-based architectures on RL tasks.

A.3 Environment details

MiniGrid-Memory. MiniGrid-Memory is a partially observable 9 × 9 grid-world environment
designed to test an agent’s ability to utilize memory. The task requires the agent to recall information
seen in earlier parts of an episode, which makes it suitable for evaluating recurrent and memory-based
agents. It was initially introduced by the Farama Foundation4, but we use the modified version by
[21].

In this environment, the agent begins close to a room where it observes a green object, a cue (a key
or a circle), and must navigate through a narrow hallway leading to a split. At each end of the split,
there is an object, one of which matches the object seen at the start. The agent’s task is to recall the
initial object and navigate to the matching object. The action space includes discrete actions to move
forward and turn left and right. Observations are RGB images of a local 3× 3 grid neighborhood
of the agent. At the end of each episode, the agent receives a reward of 1 − 0.9 · (timestep

max timesteps) for
correctly identifying the matching object, and no reward for failure (i.e., the agent reaches the wrong
nonmatching object). Episodes end upon success (i.e., nonzero reward), failure, or timeout of 150
timesteps.

4https://minigrid.farama.org/environments/minigrid/MemoryEnv/

7

https://github.com/Johnny1188/rl-memory.git
https://minigrid.farama.org/environments/minigrid/MemoryEnv/

MiniGrid-Switching-Memory. MiniGrid-Switching-Memory is a more challenging version of
MiniGrid-Memory, but with the same 9× 9 grid-world structure. In this environment, the agent needs
to remember the shape of the object (circle or key), as well as its color (green or yellow), and then has
to recognize whether it should go to an object with a matching shape or to an object with a matching
color based on another cue in the environment. This cue of the goal type has the form of a floor tile
in the middle of the narrow corridor between the starting room and the final split (junction). If this
tile is purple, the agent should go to the object of the same shape, but if the tile is blue, it should go to
the object of the same color.

All object colors and shapes, as well as the goal types, are completely randomized between different
episodes so as to leave minimal spurious correlation that the agent could learn. This also holds for
MiniGrid-Memory, where the goal shapes are selected randomly in each episode.

A.4 Memory intervention procedure

To locate memory in the hidden state, we use the following procedure:

1. We collect hidden states from two episodes with two different (contrastive) goals. In the
MiniGrid-Memory environment, this is an episode where the agent is cued with a circle and
another where it is cued with a key.

2. We extract the hidden state at an important (critical) timestep, such as when the agent is in
the narrow corridor before the decision split.

3. We identify the memorized cue in the hidden state by locating the top-k coordinates (indices)
with the highest absolute difference between the two hidden states.

4. We patch the values at these top-k coordinates from the hidden state of the source episode
into the hidden state of the target episode.

5. We find the minimal k for a successful intervention, where patching the top-k coordinates
redirects the agent in the target episode to the opposite goal, but patching the top-(k − 1)
does not.

A.5 Circuit discovery procedure

We approach circuit discovery using differentiable binary weight masking with the following steps:

1. Using the pre-trained agent, we collect an offline dataset of 50,000 environment steps.
2. For each parameter θi ∈ R of the trained agent, we initialize a new mask parameter mi ∈ R.
3. We freeze the base parameters θi and optimize the masks mi using a behavior cloning on

the pre-collected dataset, along with a strong L1 regularization. We use the straight-through
gradient estimator [3], where we binarize the mask in a way that preserves differentiability
and run all forward passes of the agent with the (sparse) masked parameters θ̂i:

θ̂i = θi ⊙
(
sg(m̃i − σ(mi)) + σ(mi)

)
. (1)

In Equation 1, σ is the sigmoid function, sg(·) is the stop-gradient operator, and m̃i =
1[σ(mi) > 0.5] is the binary mask.

4. After mask optimization is complete, we use only the masked agent’s parameters θ̂i =
θi ⊙ m̃i, effectively sparsifying all the weight matrices of the agent.

A.6 Model editing procedure

Our gradient-based model editing method consists of these steps:

1. First, we apply the circuit discovery procedure (subsection A.5) to obtain the binary weight
mask and the masked agent’s parameters θ̂ ∈ Rd, where d ∈ N is the number of model’s
parameters.

2. We then apply the intervention procedure from Section 3.3 on this masked agent to locate
the hidden-state coordinates Ih =

{
ik ∈ N

}K

k=1
where memory is stored by the memory

8

circuit. In our experiments, we use K = 1 (MiniGrid-Memory) and K = 5 (MiniGrid-
Switching-Memory).

3. We collect M pairs of contrastive episodes as data for optimization. In MiniGrid-Memory,
these are pairs of episodes in which one episode has a circle as the goal, and another
episode has a key as the goal. In MiniGrid-Switching-Memory, the contrast between the
two episodes is in terms of the goal type, i.e., whether the agent should go to an object
with a matching shape or a matching color. We use M = 1 and M = 3 pairs of episodes
for MiniGrid-Memory and MiniGrid-Switching-Memory, respectively. This balances data
efficiency and the ability of the method to change the agent’s behavior.

4. Finally, we perform the model editing optimization procedure. Intuitively, we want the
model to encode the memory of an observed goal as it would if it had seen the opposite
goal. For example, in the MiniGrid-Memory environment, we want the agent to encode
the memory of a circle when it sees a key as the cue object, because if it did, the actor
network of the agent that is reading the memory from the hidden state would steer the
agent to a circle. We can express this intuition and objective more formally as follows. Let
o
(m,l)
t be the image observation at timestep t of l-th episode in the m-th contrastive episode

pair, h(m,l)
t−1 be the hidden state from the same episode but from the previous timestep,

and let h̄(m,l)
t ∈ Rdh be the target hidden state (target memory encoding) of dimension

dh ∈ N, where we flip the memory coordinates between the two contrastive episodes as
h̄
(m,l)
t,i := h

(m, (l mod 2)+1)
t,i if i ∈ Ih else h

(m,l)
t,i . Using this setup, we minimize the following

loss function by performing a gradient descent5 on the masked agent’s parameters θ̂:

L(θ̂) := 1

M

M∑
m=1

2∑
l=1

||f(o(m,l)
t , h

(m,l)
t−1 , θ̂)− h̄

(m,l)
t ||22. (2)

In equation 2 above, f represents the agent’s neural network performing the hidden state
update, and t is chosen to be the timestep where the goal object (MiniGrid-Memory) or the
goal type (MiniGrid-Switching-Memory) is observed by the agent.

Notice that as long as we can obtain a contrastive pair of episodes between which we want to flip
the agent’s behavior, this model editing method is applicable to any task where a certain memory
is encoded at a single timestep, but could naturally be extended to multi-timestep encoding. Also
note that the optimization is a one-time procedure, i.e., it does not need to be performed for each new
episode as the memory intervention from Section 3.3 does. Furthermore, we can measure the edit
success rate of the model editing by the average success rate of the agent in reaching the opposite
(modified) goal than for which it was originally trained.

51,000 steps for MiniGrid-Memory and 10,000 steps for MiniGrid-Switching-Memory.

9

	Introduction
	Related work
	Experiments
	Environments
	Reinforcement learning agent
	Memory intervention
	Circuit discovery
	Circuit development
	Model editing

	Conclusion
	Technical Appendices and Supplementary Material
	DreamerV3 agent
	Baseline recurrent model-free agent
	Environment details
	Memory intervention procedure
	Circuit discovery procedure
	Model editing procedure

