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ABSTRACT

Mixup, which creates synthetic training instances by linearly interpolating ran-
dom sample pairs, is a simple and yet effective regularization technique to boost
the performance of deep models trained with SGD. In this work, we report a
previously unobserved phenomenon in Mixup training: on a number of standard
datasets, the performance of Mixup-trained models starts to decay after training
for a large number of epochs, giving rise to a U-shaped generalization curve. This
behavior is further aggravated when the size of original dataset is reduced. To help
understand such a behavior of Mixup, we show theoretically that Mixup training
may introduce undesired data-dependent label noises to the synthesized data. Via
analyzing a least-square regression problem with a random feature model, we ex-
plain why noisy labels may cause the U-shaped curve to occur: Mixup improves
generalization through fitting the clean patterns at the early training stage, but as
training progresses, Mixup becomes over-fitting to the noise in the synthetic data.
Extensive experiments are performed on a variety of benchmark datasets, validat-
ing this explanation.

1 INTRODUCTION

Mixup has empirically shown its effectiveness in improving the generalization and robust-
ness of deep classification models (Zhang et al., 2018; Guo et al., 2019a;b; Thulasidasan
et al., 2019; Zhang et al., 2022b). Unlike the vanilla empirical risk minimization (ERM),
in which networks are trained using the original training set, Mixup trains the networks
with synthetic examples. These examples are created by linearly interpolating both the in-
put features and the labels of instance pairs randomly sampled from the original training set.
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Figure 1: Over-training ResNet18 on CIFAR10.

Owning to Mixup’s sim-
plicity and its effective-
ness in boosting the accu-
racy and calibration of deep
classification models, there
has been a recent surge
of interest attempting to
better understand Mixup’s
working mechanism, train-
ing characteristics, regular-
ization potential, and pos-
sible limitations (see, e.g.,
Thulasidasan et al. (2019), Guo et al. (2019a), Zhang et al. (2021), Zhang et al. (2022b)). In this
work, we further investigate the generalization properties of Mixup training.

We first report a previously unobserved phenomenon in Mixup training. Through extensive experi-
ments on various benchmarks, we observe that over-training the networks with Mixup may result in
significant degradation of the networks’ generalization performance. As a result, along the training
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epochs, the generalization performance of the network measured by its testing error may exhibit a
U-shaped curve. Figure 1 shows such a curve obtained from over-training ResNet18 with Mixup
on CIFAR10. As can be seen from Figure 1, after training with Mixup for a long time (200 epochs),
both ERM and Mixup keep decreasing their training loss, but the testing error of the Mixup-trained
ResNet18 gradually increases, while that of the ERM-trained ResNet18 continues to decrease.

Motivated by this observation, we conduct a theoretical analysis, aiming to better understand the
aforementioned behavior of Mixup training. We show theoretically that Mixup training may intro-
duce undesired data-dependent label noises to the synthesized data. Then by analyzing the gradient-
descent dynamics of training a random feature model for a least-square regression problem, we
explain why noisy labels may cause the U-shaped curve to occur: under label noise, the early phase
of training is primarily driven by the clean data pattern, which moves the model parameter closer to
the correct solution. But as training progresses, the effect of label noise accumulates through itera-
tions and gradually over-weighs that of the clean pattern and dominates the late training process. In
this phase, the model parameter gradually moves away from the correct solution until it is sufficient
apart and approaches a location depending on the noise realization.

2 RELATED WORK

Mixup Improves Generalization After the initial work of Zhang et al. (2018), a series of the
Mixup’s variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Kim
et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022). For example, AdaMixup
(Guo et al., 2019a) trains an extra network to dynamically determine the interpolation coefficient
parameter α. Manifold Mixup (Verma et al., 2019) performs linear mixing on the hidden states
of the neural networks. Aside from its use in various applications, Mixup’s working mechanism
and it possible limitations are also being explored constantly. For example, Zhang et al. (2021)
demonstrate that Mixup yields a generalization upper bound in terms of the Rademacher complexity
of the function class that the network fits. Thulasidasan et al. (2019) show that Mixup helps to
improve the calibration of the trained networks. Zhang et al. (2022b) theoretically justify that the
calibration effect of Mixup is correlated with the capacity of the network. Additionally, Guo et al.
(2019a) point out a “manifold intrusion” phenomenon in Mixup training where the synthetic data
“intrudes” the data manifolds of the real data.

Training on Random Labels, Epoch-Wise Double Descent and Robust Overfitting The
thought-provoking work of Zhang et al. (2017) highlights that neural networks are able to fit data
with random labels. After that, the generalization behavior on corrupted label dataset has been
widely investigated (Arpit et al., 2017; Liu et al., 2020; Feng & Tu, 2021; Wang & Mao, 2022; Liu
et al., 2022). Specifically, Arpit et al. (2017) observe that neural networks will learn the clean pattern
first before fitting to data with random labels. This is further explained by Arora et al. (2019a) where
they demonstrate that in the overparameterization regime, the convergence of loss depends on the
projections of labels on the eigenvectors of some Gram matrix, where true labels and random labels
have different projections. In a parallel line of research, an epoch-wise double descent behavior of
testing loss of deep neural networks is observed in Nakkiran et al. (2020), shortly after the obser-
vation of the model-wise double descent (Belkin et al., 2019; Hastie et al., 2022; Mei & Montanari,
2022; Ba et al., 2020). Theoretical works studying the epoch-wise double descent are rather limited
to date (Heckel & Yilmaz, 2021; Stephenson & Lee, 2021; Pezeshki et al., 2022), among which
Advani et al. (2020) inspires the theoretical analysis of the U-sharped curve of Mixup in this paper.
Moreover, robust overfitting (Rice et al., 2020) is also another yet related research line, In particular,
robust overfitting is referred to a phenomenon in adversarial training that robust accuracy will first
increase then decrease after a long training time. Dong et al. (2022) show that robust overfitting is
deemed to the early part of epoch-wise double descent due to the implicit label noise induced by
adversarial training. Since Mixup training has been connected to adversarial training or adversarial
robustness in the previous works (Archambault et al., 2019; Zhang et al., 2021), the work of Dong
et al. (2022) indeed motivates us to study the label noise induced by Mixup training.
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3 PRELIMINARIES

Consider a C-class classification setting with input space X = Rd0 and label space Y :=
{1, 2, . . . , C}. Let S = {(xi, yi)}ni=1 be a training set, where each yi ∈ Y may also be treated
as a one-hot vector in P(Y), the space of distributions over Y . Let Θ denote the model parameter
space, and for each θ ∈ Θ, let fθ : X → [0, 1]C denote the predictive function associated with θ,
which maps an input feature to a distribution in P(Y). For any pair (x, y) ∈ X ×P(Y), let ℓ(θ, x, y)
denote the loss of the prediction fθ(x) with respect to y. The empirical risk of θ on S is then

R̂S(θ) :=
1

n

n∑
i=1

ℓ(θ, xi, yi).

When training with Empirical Risk Minimization (ERM), one sets out to find a θ∗ to minimize
this risk. It is evident that if ℓ(·) is taken as the cross-entropy loss, the empirical risk R̂S(θ) is
non-negative, where R̂S(θ) = 0 precisely when fθ(xi) = yi for every i = 1, 2, . . . , n.

In Mixup, instead of using the original training set S, the training is performed on a synthetic dataset
S̃ obtained by interpolating training examples in S. For a given interpolating parameter λ ∈ [0, 1],
let synthetic training set S̃λ be defined as

S̃λ := {(λx + (1− λ)x′, λy + (1− λ)y′) : (x, y) ∈ S, (x′, y′) ∈ S} (1)

The optimization objective, or the “Mixup loss”, is then

EλR̂S̃λ
(θ) := Eλ

1

|S̃λ|

∑
(x̃,ỹ)∈S̃λ

ℓ(θ, x̃, ỹ)

where the interpolating parameter λ is drawn from a symmetric Beta distribution, Beta(α, α). The
default option is to take α = 1. In this case, the following can be proved.

Lemma 3.1. Let ℓ(·) be the cross-entropy loss, and λ is drawn from Beta(1, 1) (or the uniform
distribution on [0, 1]). Then for all θ ∈ Θ and for any given training set S that is balanced,

EλR̂S̃λ
(θ) ≥ C − 1

2C
,

where the equality holds if and only if fθ(x̃) = ỹ for each synthetic example (x̃, ỹ) ∈ S̃λ.

For 10-class classification tasks, the bound has value 0.45. Then only when the Mixup loss ap-
proaches this value, the found solution is near a true optimum (for models with adequate capacity).

4 EMPIRICAL OBSERVATIONS

We conduct experiments using CIFAR10, CIFAR100 and SVHN using ERM and Mixup respec-
tively. For each of the datasets, we have adopted both the original dataset and some balanced subsets
obtained by downsampling the original data for certain proportions. SGD with weight decay is used.
At each epoch, we record the minimum training loss up to that epoch, as well as the testing accuracy
at the epoch achieving the minimum training loss. Results are obtained both for training with data
augmentation and for training without. More experimental details are given in Appendix A.

4.1 RESULTS ON OVER-TRAINING WITHOUT DATA AUGMENTATION

For CIFAR10 and SVHN, ResNet18 is used, and both the original training sets and subsets with
30% of the original data are adopted. Training is performed for up to 1600 epochs for CIFAR10,
and the results are shown in Figure 2. For both the 30% dataset and the full dataset, we see clearly
that after some number of epochs (e.g, epoch 200 for the full dataset), the testing accuracy of the
Mixup-trained network starts decreasing and this trend continues. This confirms that over-training
with Mixup hurts the network’s generalization. One would observe a U-shaped curve, as shown in
Figure 1 (right), if we were to plot testing error and include results from earlier epochs. Notably, this
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Figure 2: Training ResNet18 on CIFAR10 training set (100% data and 30% data) without data
augmentation. Top row: training loss and testing accuracy for ERM and Mixup. Bottom row: loss
landscape of the Mixup-trained ResNet18 (where “loss” refers to the empirical risk on the real data)
at various training epochs; left 3 figures are for the 30% CIFAR10 dataset, and the right 3 are for the
full CIFAR10 dataset; visualization follows Li et al. (2018)

phenomenon is not observed in ERM. We also found that over-training with Mixup tends to force the
network to learn a solution located at the sharper local minima on the loss landscape, a phenomenon
correlated with degraded generalization performance (Hochreiter & Schmidhuber, 1997; Keskar
et al., 2016). The results of training ResNet18 on SVHN is presented in Appendix B.1.

ResNet34 is used for the more challenging task CIFAR100. This choice allows Mixup to drive its
loss to lower values, closer to the lower bound given in Lemma 3.1. In this case, we only use the
original training set, since downsampling CIFAR100 appears to result high variances in the testing
performance. Training is performed for up to 1600 epochs. The results are plotted in Figure 3. The
results again confirm that over-training with Mixup hurts the generalization capability of the learned
model. A U-shaped testing loss curve (obtained from a single trial) is also observed in Figure 3c.
Additional results of training ResNet34 on CIFAR10 and SVHN are provided in Appendix B.1.
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Figure 3: Training loss, testing accuracy and a U-shaped testing loss curve (subfigure (c), yellow) of
training ResNet34 on CIFAR100 (100% training data) without data augmentation.

4.2 RESULTS ON OVER-TRAINING WITH DATA AUGMENTATION

The data augmentation methods include “random crop” and “horizontal flip” are applied to training
on CIFAR10 and CIFAR100. We train ResNet18 on 10% of the CIFAR10 training set for up to
7000 epochs. The results are given in Figures 4a and 4b. In this case, the Mixup-trained model also
produces a U-shaped generalization curve. However, while the dataset is downsampled to a lower
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proportion, the turning point of the U-shaped curve nevertheless comes much later compared to the
previous experiments where data augmentation is not applied on CIFAR10.
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Figure 4: (a),(b): Training losses and testing errors of over-training ResNet18 on 10% of the CI-
FAR10 training set with data augmentation. (c),(d): Training losses and testing errors of over-
training ResNet34 on 10% of the CIFAR100 training set with data augmentation.

The results of over-training ResNet34 on 10% of the CIFAR100 training set for up to 7000 epochs
are given in Figures 4c and 4d, where similar phenomenons are observed.

5 THEORETICAL EXPLANATION

5.1 MIXUP INDUCES LABEL NOISE

We will use the capital letters X and Y to denote the random variables representing the input feature
and output label, while reserving the notations x and y to denote their respective realizations. In
particular, we consider each true label y is as a token, in Y , not a one-hot vector in P(Y). Let
P (Y |X) be the ground-truth conditional distribution of the label Y given input feature X . For
simplicity, we also express P (Y |X) as a vector-valued function f : X → RC , where fj(x) ≜
P (Y = j|X = x) for each dimension j ∈ Y .

For simplicity, we consider Mixup with a fixed λ ∈ [0, 1]; extension to random λ is straight-forward.
Let X̃ and Ỹ be the random variables corresponding to the synthetic feature and synthetic label
respectively. Then X̃ ≜ λX + (1 − λ)X ′. Let P (Ỹ |X̃) be the conditional distribution of the
synthetic label conditioned on the synthetic feature, induced by Mixup, namely, P (Ỹ = j|X̃) =

λfj(X)+(1−λ)fj(X
′) for each j. Then for a synthetic feature X̃ , there are two ways to assign to it

a hard label. The first is based on the ground truth, assigning Ỹ ∗
h ≜ argmaxj∈Y fj(X̃). The second

is based on the Mixup-induced conditional P (Ỹ |X̃), assigning Ỹh ≜ argmaxj∈Y P (Ỹ = j|X̃).
When the two assignments disagree, or Ỹh ̸= Ỹ ∗

h , we say that the Mixup-assigned label Ỹh is noisy.

Theorem 5.1. For any fixed X , X ′ and X̃ related by X̃ = λX + (1− λ)X ′ for a fixed λ ∈ [0, 1],
the probability of assigning a noisy label is lower bounded by

P (Ỹh ̸= Ỹ ∗
h |X̃) ≥ TV(P (Ỹ |X̃), P (Y |X)) ≥ 1

2
sup
j∈Y

∣∣∣fj(X̃)− [(1− λ)fj(X) + λfj(X
′)]
∣∣∣ ,

where TV(·, ·) is the total variation (see Appendix D).
Remark 5.1. This lower bound hints that the label noise induced by Mixup training depends on
the distribution of original data PX , the convexity of f(X) and the value of λ. Clearly, Mixup will
create noisy labels with non-zero probability (at least for some λ) unless fj is linear for each j.
Remark 5.2. We often consider that the real data are labelled with certainty, i.e., maxj∈Y fj(X) =

1 and
∑C

j=1 fj(X) = 1. Then the probability of assigning noisy label to a given synthetic data can

be discussed in three situations: i) if Ỹ ∗
h /∈ {Y, Y ′}, where Y could be the same with Y ′, then Ỹ

is a noisy label with probability one; ii) if Ỹ ∗
h ∈ {Y, Y ′} where Y ̸= Y ′, then the probability of

assigning a noisy label is non-zero and depends on λ; iii) if Ỹ ∗
h = Y = Y ′, then Ỹ ∗

h = Ỹ .

As shown in (Arpit et al., 2017; Arora et al., 2019a), when neural networks are trained with a fraction
of random labels, they will first learn the clean pattern and then overfit to noisy labels. In Mixup
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training, we in fact create much more data, possibly with noisy labels, than traditional ERM training
(n2 for a fixed λ). Thus, one may expect an improved performance (relative to ERM) in the early
training phase, due to the clean pattern in the enlarged training set, but a performance impairment
in the later phase due to noisy labels. Specifically if Ỹ ∗

h /∈ {Y, Y ′} happens with a high chance, a
phenomenon known as “manifold intrusion” (Guo et al., 2019a), then the synthetic dataset contains
too many noisy labels, causing Mixup to perform inferior to ERM.

Theorem 5.1 has implied that, in classification problems, Mixup training induces label noise. Next,
we will provide a theoretical analysis using a regression setup to explain that such label noise may
result in the U-shape learning curve. The choice of a regression setup in this analysis is due to
the difficulty in directly analyzing classification problems (under the cross-entropy loss). Such a
regression setting may not perfectly explain the U-shaped curve in classification tasks, we however
believe that they give adequate insight illuminating such scenarios as well. Such an approach has
been taken in most analytic works that study the behaviour of deep learning. For example, Arora
et al. (2019b) uses a regression setup to analyze the optimization and generalization property of
overparameterized neural networks. Yang et al. (2020) theoretically analyze the bias-variance trade-
off in deep network generalization using a regression problem.

5.2 REGRESSION SETTING WITH RANDOM FEATURE MODELS

Consider a simple least squares regression problem. Let Y = R and let f : X → Y be the ground-
truth labelling function. Let (X̃, Ỹ ) be a synthetic pair obtained by mixing (X,Y ) and (X ′, Y ′).
Let Ỹ ∗ = f(X̃) and Z ≜ Ỹ − Ỹ ∗. Then Z can be regarded as noise introduced by Mixup, which
may be data-dependent. For example, if f is strongly convex with some parameter ρ > 0, then
Z ≥ ρ

2λ(1 − λ)||X − X ′||22. Given a synthesized training dataset S̃ = {(X̃i, Ỹi)}mi=1, consider a
random feature model, θTϕ(X), where ϕ : X → Rd and θ ∈ Rd. We will consider ϕ fixed and only
learn the model parameter θ using gradient descent on the MSE loss

R̂S̃(θ) ≜
1

2m

∣∣∣∣∣∣θT Φ̃− ỸT
∣∣∣∣∣∣2
2
,

where Φ̃ = [ϕ(X̃1), ϕ(X̃2), . . . , ϕ(X̃m)] ∈ Rd×m and Ỹ = [Ỹ1, Ỹ2, . . . , Ỹm] ∈ Rm.

For a fixed λ, Mixup can create m = n2 synthesized examples. Thus it is reasonable to assume
m > d (e.g., under-parameterized regime) in Mixup training. For example, ResNet-50 has less than
30 million parameters while the square of CIFAR10 training dataset size is larger than 200 million
without using other data augmentation techniques. Then the gradient flow, as shown in Liao &
Couillet (2018), is

θ̇ = −η∇R̂S̃(θ) =
η

m
Φ̃Φ̃T

(
Φ̃†Ỹ − θ

)
, (2)

where η is learning rate and Φ̃† = (Φ̃Φ̃T )−1Φ̃ is the Moore–Penrose inverse of Φ̃T (only possible
when m > d). Thus, we have the following important lemma.

Lemma 5.1. Let θ∗ = Φ̃†Ỹ∗ and θnoise = Φ̃†Z wherein Z = [Z1, Z2, . . . , Zm] ∈ Rm, the ODE in
Eq. (2) has the following closed form solution

θt − θ∗ = (θ0 − θ∗)e−
η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)θnoise. (3)

Remark 5.3. Notably, θ∗ = Φ̃†Ỹ∗ may be seen as the “clean pattern” of the training data. The
first term in Eq. (3) is decreasing (in norm) and vanishes at t → ∞. Thus its role is moving θt
towards the clean pattern θ∗, allowing the model to generalize to unseen data. But it only dominates
the dynamics of θt in the early training phase. The second term, initially 0, increases with t and
converges to θnoise as t → ∞. Thus its role is moving θt towards the “noisy pattern" θ∗ + θnoise. It
dominates the later training phase and hence hurts generalization. It is noteworthy that θ∗ + θnoise

is also the closed-form solution for the regression problem (under Mixup labels). This suggests that
the optimization problem associated with the Mixup loss has a “wrong” solution, but it is possible
to benefit from only solving this problem partially, using gradient descent without over-training.
Noting that the population risk at time step t is

Rt ≜ Eθt,X,Y

∣∣∣∣θTt ϕ(X)− Y
∣∣∣∣2
2
,
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and the true optimal risk is
R∗ = EX,Y

∣∣∣∣Y − θ∗Tϕ(X)
∣∣∣∣2
2
,

we have the following result.

Theorem 5.2 (Dynamics of Population Risk). Given a synthesized dataset S̃, assume θ0 ∼
N (0, ξ2Id), ||ϕ(X)||2 ≤ C1/2 for some constant C1 > 0 and |Z| ≤

√
C2 for some constant

C2 > 0, then we have the following upper bound

Rt −R∗ ≤ C1

d∑
k=1

[ (
ξ2k + θ∗2k

)
e−2ηµkt +

C2

µk

(
1− e−ηµkt

)2 ]
+ 2
√
C1R∗ζ,

where ζ =
∑d

k=1 max{ξ2k + θ∗2k , C2

µk
} and µk is the kth eigenvalue of the matrix 1

m Φ̃Φ̃T .

Remark 5.4. The additive noise Z is usually assumed as a zero mean Gaussian in the literature
of generalization dynamics analysis (Advani et al., 2020; Pezeshki et al., 2022; Heckel & Yilmaz,
2021), but this would be hardly justifiable in this context. The boundness assumption of Z in the
theorem can however be easily satisfied as long as the output of f is bounded.

Remark 5.5. If we further let ξ = 0 (i.e. using zero initialization) and assume that the eigenvalues
of the matrix 1

m Φ̃Φ̃T are all equal to µ, then the summation part in the bound above can be re-
written as C1 ||θ∗||2 e−2ηµt + (C2/µ) (1− e−ηµt)

2, then it is clear that the magnitude of the curve
is controlled by the norm of θ∗, the norm of the representation, the noise level and µ.

Theorem 5.2 indicates that the population risk will first decrease due to the first term (i.e.(
ξ2k + θ∗2k

)
e−2ηµkt) then it will grow due to the existence of label noises (i.e. C2

µk
(1− e−ηµkt)

2) .
Overall, the population risk will be endowed with a U-shaped curve. Notice that the quantity ηµk

plays a key role in the upper bound, the larger id ηµk, the earlier comes the turning point of “U”.
This may have an interesting application, justifying a multi-stage training strategy where the learn-
ing rate is reduced at each new stage. Suppose that with the initial learning rate, at epoch T , the test
error has dropped to the bottom of the U-curve corresponding to this learning rate. If the learning
rate is decreased at this point, then the U-curve corresponding to the new learning rate may have a
lower minimum error and its bottom shifted to the right. In this case, the new learning rate allows
the testing error to move to the new U-curve and further decay.

6 EMPIRICAL VERIFICATION

6.1 A TEACHER-STUDENT TOY SETUP
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Figure 5: Dynamics of testing
loss in the toy example.

To empirically verify our theoretical results discussed in Sec-
tion 5.2, we construct a simple teacher-student regression set-
ting. The teacher network is a two-layer neural networks with
Tanh activation and random weights. It only serves to create
training data for the student network. Specifically, the training
data is created by drawing {Xi}ni=1 i.i.d. from a standard Gaus-
sian N (0, Id0) and passing them to teacher network to obtain
labels {Yi}ni=1.

The student network is also a two-layer neural network with
Tanh activation and hidden layer dimension d = 100. We fix
the parameters in the first layer and only train the second layer
using the generated training data. Full-batch gradient descent on the MSE loss is used. For the value
of λ, we consider two cases: a fixed value with λ = 0.5 and random values drawn from Beta(1, 1) at
each epoch. As a comparison, we also present the result of ERM training in an over-parameterized
regime (i.e., n < d).

The testing loss dynamics are presented in Figure 5. We first note that Mixup still outperforms ERM
in this regression problem, but clearly, only Mixup training has a U-shaped curve while the testing
loss of ERM training converges to a constant value. Furthermore, the testing loss of Mixup training
is endowed with a U-shaped behavior for both fixed λ = 0.5 and random λ drawn from Beta(1, 1).
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This suggests that our analysis of Mixup in Section 5.2 based on a fixed λ is also indicative for more
general settings of λ. Figure 5 also indicates that when λ is fixed to 0.5, the increasing stage of the
U-shaped curve comes earlier than that of λ with Beta(1, 1). This is consistent with our theoretical
results in Section 5.2. That is, owning to the fact that λ with the constant value 0.5 for λ represents
the largest noise level in Mixup, the noise-dominating effect in Mixup training comes earlier.

6.2 USING MIXUP ONLY IN THE EARLY STAGE OF TRAINING

In the previous section, we have argued that Mixup training learns “clean patterns” in the early stage
of the training process and then overfits the “noisy patterns” in the later stage. Such a conclusion
implies that turning of Mixup after a certain number of epochs and returning to standard ERM
training may prevent the training from overfitting the noises induced by Mixup. We now present
results obtained from such a training scheme on both CIFAR10 and SVHN in Figure 6.

0 50 100 150 200 250 300 350 400
epoch

74

75

76

77

78

79

80

Te
st

in
g 

Ac
c.

Mixup
Mixup-ERM(95)
Mixup-ERM(105)
Mixup-ERM(125)
Mixup-ERM(155)

(a) CIFAR10 (30%)

0 100 200 300 400 500 600
epoch

86

87

88

89

90

91

Te
st

in
g 

Ac
c.

Mixup
Mixup-ERM(95)
Mixup-ERM(105)
Mixup-ERM(115)
Mixup-ERM(125)
Mixup-ERM(155)

(b) CIFAR10 (100%)

0 50 100 150 200 250 300 350 400
epoch

90

91

92

93

94

95

Te
st

in
g 

Ac
c.

Mixup
Mixup-ERM(95)
Mixup-ERM(105)
Mixup-ERM(125)
Mixup-ERM(155)

(c) SVHN (30%)

0 50 100 150 200 250 300 350 400
epoch

94.0

94.5

95.0

95.5

96.0

96.5

Te
st

in
g 

Ac
c.

Mixup
Mixup-ERM(95)
Mixup-ERM(105)
Mixup-ERM(125)
Mixup-ERM(155)

(d) SVHN (100%)
Figure 6: Switching from Mixup training to ERM training. The number in the bracket is the epoch
number where we let α = 0 (i.e. Mixup training becomes ERM training).

Results in Figure 6 clearly indicate that switching from Mixup to ERM at an appropriate time will
successfully avoid the generalization degradation. Figure 6 also suggests that switching Mixup
to ERM too early may not boost the model performance. In addition, if the switch is too late,
memorization of noisy data may already taken effect, which impact generalization negatively. We
note that our results here can be regarded as a complement to (Golatkar et al., 2019), where the
authors show that regularization techniques only matter during the early phase of learning.

7 FURTHER INVESTIGATION

Impact of Data Size on U-shaped Curve In the over-training experiments without data augmenta-
tion, although the U-shaped behavior occurs on both 100% and 30% of the original training data for
both CIFAR10 and SVHN, we notice that smaller size datasets appear to enable the turning point of
the U-shaped curve to arrive earlier. We now corroborate this phenomenon with more experimental
results, as shown in Figure 7. In this context, an appropriate data augmentation can be seen as simply
expanding the training set with additional clean data. Then the impact of data augmentation on the
over-training dynamics of Mixup is arguably via increasing the size of the training set. This explains
our observations in Section 4.2 where the turning points in training with data augmentation arrive
much later compared to those without data augmentation. Those observations are also consistent
with the results in Figure 7.
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Figure 7: Over-training on different number of samples.

It may be tempting to consider
the application of the usual
analysis of generalization dy-
namics from the existing liter-
ature (Liao & Couillet, 2018;
Advani et al., 2020; Stephen-
son & Lee, 2021) to the train-
ing of Mixup. For example,
one can analyze the distribu-
tion of the eigenvalues in The-
orem 5.2. Specifically, if en-
tries in Φ are independent iden-

tically distributed with zero mean, then in the limit of d,m → ∞ with d/m = γ ∈ (0,+∞), the
eigenvalues {µk}dk=1 follow the Marchenko-Pasteur (MP) distribution (Marčenko & Pastur, 1967),
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which is defined as

PMP (µ|γ) = 1

2π

√
(γ+ − µ)(µ− γ−)

µγ
1µ∈[γ−,γ+],

where γ± = (1 ± γ)2. Note that the PMP are only non-zero when µ = 0 or µ ∈ [γ−, γ+]. When
γ is close to one, the probability of extremely small eigenvalues is immensely increased. From
Theorem 5.2, when µk is small, the second term, governed by the noisy pattern, will badly dominate
the behavior of population risk and converge to a larger value. Thus, letting d ≪ m will alleviate
the domination of the noise term in Theorem 5.2. However, it is important to note that such analysis
lacks rigor since the columns in Φ are not independent (two columns might result from linearly
combining the same pair of original instances). To apply a similar analysis here, one need to remove
or relax the independence conditions on the entries of Φ, for example, by invoking some techniques
similar to that developed in Bryson et al. (2021). This is beyond the scope of this paper, and we will
to leave it for future study.

Gradient Norm in Mixup Training Does Not Vanish Normally, ERM training obtains zero gra-
dient norm at the end of training, which indicates that SGD finds a local minimum. However, We
observe that the gradient norm of Mixup training does not converge to zero, as shown in Figure 8.
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Figure 8: Dynamics of gradient norm.

In fact, gradient norm in the
Mixup training even increases
until converging to a maxi-
mum value, as opposed to zero.
When models are trained with
ERM on random labels, this in-
creasing trend of gradient norm
is also observed in the previous
works (Feng & Tu, 2021; Wang
& Mao, 2022). Specifically, in
Wang & Mao (2022), such in-
creasing behavior is interpreted
as a sign that the training of SGD enters a “memorization regime”, and after the overparameterized
neural networks memorize all the noisy labels, the gradient norm (or gradient dispersion in Wang
& Mao (2022)) will decrease again until it converges to zero. In Mixup training, since the size of
synthetic dataset is usually larger than the number of parameters (i.e., m > d), neural networks may
not be able to memorize all the noisy labels in this case. Notice that m is much larger than n2 in
practice since λ is not fixed to a constant.

Notably, although ERM training is able to find a local minimum in the first 130 epochs on CIFAR10,
Figure 1 indicates that Mixup training outperforms ERM in the first 400 epochs. Similar observation
also holds for SVHN. This result in fact suggests that Mixup can generalize well without converg-
ing to any stationary points. Notice that there is a related observation in the recent work of Zhang
et al. (2022a), where they show that large-scale neural networks generalize well without having the
gradient norm vanish during training. Additionally, by switching Mixup training to ERM training,
as what we did in Figure 6, the gradient norm will instantly become zero (see Figure 14 in Ap-
pendix B.3). This further justifies that the “clean patterns” are already learned by Mixup trained
neural networks at the early stage of training, and the original data may no longer provide any useful
gradient signal.

8 CONCLUDING REMARKS

We discovered a novel phenomenon in Mixup: over-training with Mixup may give rise to a U-shaped
generalization curve. We theoretically show that this is due to the data-dependent label noises intro-
duced to the synthesized data, and suggest that Mixup improves generalization through fitting the
clean patterns at the early training stage, but over-fits the noise as training proceeds. The effective-
ness of Mixup and the fact it works by only partially optimizing its loss function without reaching
convergence, as are validated by our analysis and experiments, seem to suggest that the dynamics
of the iterative learning algorithm and an appropriate criteria for terminating the algorithm might be
more essential than the loss function or the solutions to the optimization problem. Exploration in the
space of iterative algorithms (rather than the space of loss functions) may lead to fruitful discoveries.
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Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International conference on machine learning, pp.
233–242. PMLR, 2017.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-
layer neural networks: An asymptotic viewpoint. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=H1gBsgBYwH.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Jennifer Bryson, Roman Vershynin, and Hongkai Zhao. Marchenko–pastur law with relaxed inde-
pendence conditions. Random Matrices: Theory and Applications, 10(04):2150040, 2021.

Chengyu Dong, Liyuan Liu, and Jingbo Shang. Label noise in adversarial training: A novel
perspective to study robust overfitting. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=9_O9mTLYJQp.

Yu Feng and Yuhai Tu. Phases of learning dynamics in artificial neural networks in the absence or
presence of mislabeled data. Machine Learning: Science and Technology, 2(4):043001, 2021.

Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing deep
networks: Weight decay and data augmentation affect early learning dynamics, matter little near
convergence. Advances in Neural Information Processing Systems, 32, 2019.

Kristjan Greenewald, Anming Gu, Mikhail Yurochkin, Justin Solomon, and Edward Chien. k-
mixup regularization for deep learning via optimal transport, 2021. URL https://arxiv.
org/abs/2106.02933.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold regulariza-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3714–3722,
2019a.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classifi-
cation: An empirical study. CoRR, abs/1905.08941, 2019b. URL http://arxiv.org/abs/
1905.08941.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. arXiv preprint arXiv:2202.07179, 2022.

10

https://openreview.net/forum?id=H1gBsgBYwH
https://openreview.net/forum?id=9_O9mTLYJQp
https://arxiv.org/abs/2106.02933
https://arxiv.org/abs/2106.02933
http://arxiv.org/abs/1905.08941
http://arxiv.org/abs/1905.08941


Published as a conference paper at ICLR 2023

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2):949–986, 2022.

Reinhard Heckel and Fatih Furkan Yilmaz. Early stopping in deep networks: Double descent and
how to eliminate it. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=tlV90jvZbw.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Conference on Machine Learning (ICML), 2020.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Zhenyu Liao and Romain Couillet. The dynamics of learning: A random matrix approach. In
International Conference on Machine Learning, pp. 3072–3081. PMLR, 2018.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
regularization prevents memorization of noisy labels. Advances in neural information processing
systems, 33:20331–20342, 2020.

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 14153–14172. PMLR,
17–23 Jul 2022.

Shangyun Lu, Bradley Nott, Aaron Olson, Alberto Todeschini, Hossein Vahabi, Yair Carmon, and
Ludwig Schmidt. Harder or different? a closer look at distribution shift in dataset reproduction.
In ICML Workshop on Uncertainty and Robustness in Deep Learning, 2020.
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A EXPERIMENTAL SETUPS OF OVER-TRAINING

For any experimental setting ( such as the training dataset and its size, whether ERM or Mixup is
used, whether other data augmentation is used, etc.), we define a training “trial” as a training process
starting from random initialization to a certain epoch t. In each trial, we record the minimum train-
ing loss obtained during the entire training process. The testing accuracy of the model’s intermediate
solution that gives rise to that minimum training loss is also recorded. For different trials we gradu-
ally increase t so as to gradually let the model be over-trained. For each t, we repeat the trial for 10
times with different random seeds and collect all the recorded results (minimum training losses and
the corresponding testing accuracies). We then compute their averages and standard deviations for
all t’s. These results are eventually used to plot the line graphs for presentation.

For example, Figure 2a illustrates the results of training ResNet18 on 30% CIFAR10 data without
data augmentation. The total number of training epochs t, as shown on the horizontal axis, is in-
creased from 100 to 1600. For each t, each point on its vertical axis represents the average of the
recorded training losses from the 10 repeats. The width of the shade beside each point reflects the
corresponding standard deviation.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL RESULTS OF OVER-TRAINING WITHOUT DATA AUGMENTATION

Besides CIFAR10, ResNet18 is also used for the SVHN dataset.

Training is performed for up to 1000 epochs for SVHN, since we notice that if we continue training
ResNet18 on SVHN after 1000 epochs, the variance of the testing accuracy severely increases. The
results are presented in Figure 9. Mixup exhibits a similar phenomenon as it does for CIFAR10.
What differs notably is that over-training with ERM on the original SVHN training set appears to
also lead to worse test accuracy. However, this does not occur on the 30% SVHN training set1.
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Figure 9: Results of training ResNet18 on SVHN training set (100% data and 30% data) without
data augmentation. Top raw: training loss and testing accuracy for ERM and Mixup. Bottom raw:
loss landscape of the Mixup-trained ResNet18 at various training epochs: the left 3 figures are for
the 30% SVHN dataset, and the right 3 are for the full SVHN dataset.

As for ResNet34, besides CIFAR100, it is also used for both the CIFAR10 and the SVHN datasets.

1This might be related to the epoch-wise double descent behavior of ERM training. That is, when over-
training ResNet18 on the whole training set with a total of 1000 epochs, the network is still in the first stage
of over-fitting the training data, while when over-training the network on 30% of the training set, the network
learns faster on the training data due to the smaller sample size, thus it passes the turning point of the double
descent curve earlier.
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Training is performed on both datasets for in total 200, 400 and 800 epochs respectively. The results
for CIFAR10 are shown in Figure 10. For both the 30% dataset and the original dataset, Mixup
exhibits a similar phenomenon as it does in training ResNet18 on CIFAR10. The difference is
that over-training ResNet34 with ERM let the testing accuracy gradually increase on both the 30%
dataset and the original dataset.
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Figure 10: Results of the recorded training losses and testing accuracies of training ResNet34 on
CIFAR10 training set (100% data and 30% data) without data augmentation.

The results for SVHN are shown in Figure 11. These results are also in accordance with those of
training ResNet18 on both 30% and 100% of the SVHN dataset.
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Figure 11: Results of the recorded training losses and testing accuracies of training ResNet34 on
SVHN training set (100% data and 30% data) without data augmentation.

In addition, we have trained VGG16 on the CIFAR10 training set (100% data and 30% data) for
up to in total 1600 epochs without data augmentation. The results are provided in Figure 12. In
both cases, over-training VGG16 with either ERM or Mixup can gradually reduce the best achieved
training loss. However, the testing accuracy of the Mixup-trained network also decreases, while that
of the ERM-trained network has no significant change.
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Figure 12: Results of the recorded training losses and testing accuracies of training VGG16 on
CIFAR10 training set (30% data and 100% data) without data augmentation.

B.2 RESULTS OF MEAN SQUARE ERROR LOSS WITHOUT DATA AUGMENTATION

We also perform Mixup training experiments using the mean square error (MSE) loss function on
both CIFAR10 and SVHN datasets. Figure 13 illustrates that the U-shaped behavior observed in
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previous experiments is also present when using the MSE loss function. To ensure optimal training,
the learning rate is decreased by a factor of 10 at epoch 100 and 150.
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Figure 13: Dynamics of MSE during Mixup training.

B.3 GRADIENT NORM VANISHES WHEN CHANGING MIXUP TO ERM

In Figure 8, we can observe that the gradient norm of Mixup training does not diminish at the end of
training and can even explode to a very high value. In contrast, ERM results in a gradient norm of
zero at the end of training. Figure 14 illustrates that when switching from Mixup training to ERM
training after a certain period, the gradient norm will rapidly become zero. This phenomenon occurs
because Mixup-trained neural networks have already learned the “clean patterns” and the original
data does not provide any useful gradient signal. Therefore, this further supports the idea that the
latter stage of Mixup training is primarily focused on memorizing noisy data.
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Figure 14: Dynamics of gradient norm when changing Mixup training to ERM training.

B.4 VALIDATION RESULTS ON COVARIANCE-SHIFT DATASETS

Recall Figures 2 and 9, we have seen that as we increase the training epochs (200 → 400 → 800),
the local minima on the loss landscape (measure by the real training data) of the Mixup-trained
model gradually becomes sharper. To validate the regular pattern of the relationship between the
minima flatness and the generalization behavior on the covariate-shift datasets, we have ran some of
the Mixup-trained ResNet18 networks and tested their accuracies on CIFAR10.1 (Recht et al., 2018),
CIFAR10.2 (Lu et al., 2020) and CIFAR10-C (Hendrycks & Dietterich, 2019) using Gaussian noise
with severity 1 and 5 (denoted by CIFAR10-C-1 and CIFAR10-C-5). The results of the models pre-
trained on 100% CIFAR10 are given in Figure 15, and the results of the models pre-trained on 30%
CIFAR10 are given in Figure 16.

From the results, it is seen that with training epochs increase, the testing performance on the models
on CIFAR10.1 and CIFAR10.2 decreases, taking a similar trend as our results in standard testing sets
(i.e., the original CIFAR10 testing sets without covariate shift.) But on CIFAR10-C, this behaviour
is not observed. In particular, the performance on CIFAR10-C-5 continues to improve over the
training iterations. This seems to suggest that the flatness of empirical-risk loss landscape may
impact generalization to covariate-shift datasets in more complex ways, possibly depending on the
nature and structure of the covariate shift.
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Figure 15: Models Pre-Trained on 100% CIFAR10 (without data augmentation)
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Figure 16: Models Pre-Trained on 30% CIFAR10 (without data augmentation)

B.5 INVESTIGATION OF THE IMPACT OF REGMIXUP IN OVER-TRAINING

RegMixup is a variant algorithm of Mixup proposed by (Pinto et al., 2022). For each synthetic
example (x̃, ỹ) formulated by (x, y) and (x′, y′), RegMixup minimizes the following loss

ℓCE(θ, x, y) + ηℓCE(θ, x̃, ỹ)

where ℓCE(·) denotes the cross-entropy loss, and η is non-negative. The authors show that RegMixup
can improve generalization on both in-distribution and covariate-shift datasets, and that it can also
improve the out-of-distribution robustness. To validate the performance of RegMixup in the over-
training scenario, we have trained ResNet18 using RegMixup with a few different settings of η.
The network is trained on CIFAR10 without data augmentation for up to in total 1200 epochs. The
results are given in Figure 17.
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Figure 17: Results of Over-Training ResNet18 on CIFAR10 (without data augmentation) with Reg-
Mixup. Green: η = 0.1; Purple: η = 2; Red: ERM; Blue: standard Mixup.
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The results show that when η = 2, RegMixup performs nearly identically as standard Mixup in the
over-training scenario. When η = 0.1, RegMixup postpones the presenting of the turning point, and
in the large epochs it outperforms standard Mixup. However, the phenomenon that the generalization
performance of the trained model degrades with over-training still exists.

C EXPERIMENT SETTINGS FOR THE TEACHER-STUDENT TOY EXAMPLE

We set the dimension of the input feature as d0 = 10. The teacher network consists of two layers
with the activation function Tanh, and the hidden layer has a width of 5. Similarly, the student
network is a two-layer neural network with Tanh, where we train only the second layer and keep
the parameters in the first layer fixed. The hidden layer has a dimension of 100 (i.e. d = 100).

To determine the value of λ, we either draw from a Beta(1,1) distribution in each epoch or fix it to
0.5 in each epoch. We choose n = 20, which puts us in the overparameterized regime where n < d,
and the underparameterized regime where m ≥ n2 > d. The learning rate is set to 0.1, and we use
full-batch gradient descent to train the student network with MSE. Here, the term "full-batch" means
that the batch size is equal to n, enabling us to compare the fixed λ and random λ methods fairly.

For additional information, please refer to our code.

C.1 ABLATION STUDY: EFFECT OF FIXED MIXING COEFFICIENT
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Figure 18: Results of the ablation study on λ.

In the teacher-student setting, we experiment with different fixed values of λ, and the results are
presented in Figure 18. Of particular interest is the observation that as the noise level increases and
λ approaches 0.5, the turning point of testing error occurs earlier. This finding is consistent with our
theoretical results.

D OMITTED DEFINITIONS AND PROOFS

Definition D.1 (Total Variation). The total variation between two probability measures P and Q is
TV(P,Q) ≜ supE |P (E)−Q(E)|, where the supremum is over all measurable set E.

Lemma D.1 ((Levin & Peres, 2017, Proposition 4.2)). Let P and Q be two probability distributions
on X . If X is countable, then

TV(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)| .
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Lemma D.2 (Coupling Inequality (Levin & Peres, 2017, Proposition 4.7)). Given two random vari-
ables X and Y with probability distributions P and Q, any coupling P̂ of P , Q satisfies

TV(P,Q) ≤ P̂ (X ̸= Y ).

D.1 PROOF OF LEMMA 3.1

Proof. We first prove the closed-form of the cross-entropy loss’s lower bound. For any two discrete
distributions P and Q defined on the same probability space Y , the KL divergence of P from Q is
defined as follows:

DKL(P∥Q) :=
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
. (4)

It is non-negative and it equals 0 if and only if P = Q.

Let’s denote the ith element in fθ(x) by fθ(x)i. By adapting the definition of the cross-entropy loss,
we have:

ℓ(θ, (x, y)) = −yT log
(
fθ(x)

)
= −

K∑
i=1

yi log
(
fθ(x)i

)
= −

K∑
i=1

yi log

(
fθ(x)i
yi

yi

)

= −
K∑
i=1

yi log
fθ(x)i
yi

−
C∑
i=1

yi log yi

= DKL
(
y∥fθ(x)

)
+H(y)

≥ H(y),

(5)

where the equality holds if and only if fθ(x) = y. Here H(y) :=
∑C

i=1 yi log yi is the entropy of
the discrete distribution y. Particularly in ERM training, since y is one-hot, by definition its entropy
is simply 0. Therefore the lower bound of the empirical risk is given as follows.

R̂S(θ) =
1

n

n∑
i=1

ℓ(θ, (x, y)) ≥ 0 (6)

The equality holds if fθ(xi) = yi is true for each i ∈ {1, 2, · · · , n}.

We then prove the lower bound of the expectation of empirical Mixup loss. From Eq. (5), the lower
bound of the general Mixup loss for a given λ is also given by:

ℓ(θ, (x̃, ỹ)) ≥ H(ỹ)

= −
C∑
i=1

yi log yi

= −
(
λ log λ+ (1− λ) log(1− λ)

)
.

(7)

if (x̃, ỹ) is formulated via cross-class mixing. Recall the definition of the Mixup loss,

R̂S̃(θ, α) = E
λ∼Beta(α,α)

1

n2

n∑
i=1

n∑
j=1

ℓ(θ, (x̃, ỹ)), (8)

we can exchange the computation of the expectation and the empirical average:

R̂S̃(θ, α) =
1

n2

n∑
i=1

n∑
j=1

E
λ∼Beta(α,α)

ℓ(θ, (x̃, ỹ)) (9)
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Note that when α = 1, Beta(α, α) is simply the uniform distribution in the interval [0, 1]: U(0, 1).
Using the fact that the probability density of U(0, 1) is constantly 1 in the interval [0, 1], the lower
bound of E

λ∼Beta(1,1)
ℓ(θ, (x̃, ỹ)) where y ̸= y′ is given by:

E
λ∼Beta(1,1)

ℓ(θ, (x̃, ỹ)) ≥ − E
λ∼U(0,1)

(
λ log λ+ (1− λ) log(1− λ)

)
= −

∫ 1

0

λ log λ+ (1− λ) log(1− λ) dλ

= −2

∫ 1

0

λ log λ dλ

= −2

(
log λ

∫ 1

0

λ dλ−
∫ 1

0

1

λ

(∫ 1

0

λ dλ

)
dλ

)

= −2

(
λ2 log λ

2
− λ2

4

)∣∣∣∣1
0

= 0.5

(10)

Note that if the synthetic example is formulated via in-class mixing, the synthetic label is still one-
hot, thus the lower bound of its general loss is 0. In a balanced C-class training set, with probability
1
C the in-class mixing occurs. Therefore, the lower bound of the overall Mixup loss is given as
follows,

R̂S̃(θ, α = 1) ≥ C − 1

2C
(11)

The equality holds if fθ(x̃) = ỹ is true for each synthetic example (x̃, ỹ) ∈ S̃. This completes the
proof.

D.2 PROOF OF THEOREM 5.1

Proof. By the coupling inequality i.e. Lemma D.2, we have

TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)) ≤ P (Ỹh ̸= Ỹ ∗

h |X̃),

Since TV(P (Ỹh|X̃), P (Y |X)) = TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)), then the first inequality is straightfor-

ward.

For the second inequality, by Lemma D.1, we have

TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)) =

1

2

C∑
j=1

∣∣∣P (Ỹ ∗ = j|X̃)− P (Ỹ = j|X̃)
∣∣∣

=
1

2

C∑
j=1

∣∣∣fj(X̃)− ((1− λ)fj(X) + λfj(X
′))
∣∣∣

≥ sup
j

1

2

∣∣∣fj(X̃)− ((1− λ)fj(X) + λfj(X
′))
∣∣∣ .

This completes the proof.

D.3 PROOF OF LEMMA 5.1

Proof. The ordinary differential equation of Eq. (2) (Newton’s law of cooling) has the closed form
solution

θt = Φ̃†Ỹ + (θ0 − Φ̃†Ỹ)e−
η
m Φ̃Φ̃T t. (12)
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Recall that Ỹ = Ỹ∗ + Z,

θt =Φ̃†
(
Ỹ∗ + Z

)
+ (θ0 − Φ̃†

(
Ỹ∗ + Z

)
)e−

η
m Φ̃Φ̃T t

=Φ̃†Ỹ∗ + Φ̃†Z+
(
θ0 − Φ̃†Ỹ∗

)
e−

η
m Φ̃Φ̃T t − Φ̃†Ze−

η
m Φ̃Φ̃T t

=θ∗ + (θ0 − θ∗)e−
η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)θnoise,

which concludes the proof.

D.4 PROOF OF THEOREM 5.2

Proof. We first notice that

Rt =Eθt,X,Y

∣∣∣∣θTt ϕ(X)− Y
∣∣∣∣2
2

=Eθt,X,Y

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X) + θ∗Tϕ(X)− Y
∣∣∣∣2
2

=Eθt,X

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X)
∣∣∣∣2
2
+ EX,Y

∣∣∣∣θ∗Tϕ(X)− Y
∣∣∣∣2
2
+ 2Eθt,X,Y ⟨θTt ϕ(X)− θ∗Tϕ(X), θ∗Tϕ(X)− Y ⟩

≤EX ||ϕ(X)||22 Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
Eθt,X

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X)
∣∣∣∣2
2
EX,Y ||θ∗Tϕ(X)− Y ||22

≤C1

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
C1R∗

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
, (13)

where the first inequality is by the Cauchy–Schwarz inequality and the second inequality is by the
assumption.

Recall Eq. (3),
θt − θ∗ = (θ0 − θ∗)e−

η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)Φ̃†Z.

By eigen-decomposition we have

1

m
Φ̃Φ̃T = V ΛV T =

d∑
k=1

µkvkv
T
k ,

where {vk}dk=1 are orthonormal eigenvectors and {µk}dk=1 are corresponding eigenvectors.

Then, for each dimension k,

(θt,k − θ∗k)
2 ≤ 2(θ0,k − θ∗k)

2e−2ηµkt + 2(1− e−ηµkt)2
mC2

mµk
,

Taking expectation over θ0 for both side, we have

Eθ0 (θt,k − θ∗k)
2 ≤ 2(ξ2k + θ∗2k )e−2ηµkt + 2(1− e−ηµkt)2

C2

µk
. (14)

Notich that the RHS in Eq. 14 first monotonically decreases and then monotonically increases, so
the maximum value of RHS is achieved either at t = 0 or t → ∞. That is,

Eθ0

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
≤

d∑
k=1

2max{ξ2k + θ∗2k ,
C2

µk
}. (15)

Plugging Eq. 14 and Eq. 15 into Eq. 13, we have

Rt ≤
C1

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
C1R∗

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2

≤R∗ + C1

d∑
k=1

(ξ2k + θ∗2k )e−2ηµkt + (1− e−ηµkt)2
C2

µk
+ 2
√

C1R∗ζ,

where ζ =
∑d

k=1 max{ξ2k + θ∗2k , C2

µk
}. This concludes the proof.
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