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ABSTRACT

Diffusion priors have been used for blind face restoration (BFR) by fine-tuning
diffusion models (DMs) on restoration datasets to recover low-quality images.
However, the naive application of DMs presents several key limitations. (i) The
diffusion prior has inferior semantic consistency (e.g., ID, structure and color.),
increasing the difficulty of optimizing the BFR model; (ii) reliance on hundreds of
denoising iterations, preventing the effective cooperation with perceptual losses,
which is crucial for faithful restoration. Observing that the latent consistency
model (LCM) learns consistency noise-to-data mappings on the ODE-trajectory
and therefore shows more semantic consistency in the subject identity, structural
information and color preservation, we propose InterLCM to leverage the LCM
for its superior semantic consistency and efficiency to counter the above issues.
Treating low-quality images as the intermediate state of LCM, InterLCM achieves
a balance between fidelity and quality by starting from earlier LCM steps. LCM
also allows the integration of perceptual loss during training, leading to improved
restoration quality, particularly in real-world scenarios. To mitigate structural and
semantic uncertainties, InterLCM incorporates a Visual Module to extract visual
features and a Spatial Encoder to capture spatial details, enhancing the fidelity of
restored images. Extensive experiments demonstrate that InterLCM outperforms
existing approaches in both synthetic and real-world datasets while also achieving
faster inference speed. Code and models will be publicly available.

1 INTRODUCTION

Blind face restoration (BFR) aims to restore high-quality (HQ) images from low-quality (LQ) input
that exhibit complex and unknown degradation, such as down-sampling (Chen et al., 2018; Bulat
et al., 2018), blurriness (Zhang et al., 2017; 2020; Shen et al., 2018), noise (Dogan et al., 2019),
compression (Dong et al., 2015), etc. BFR has undergone significant advances in recent years. Ex-
isting methods primarily focus on learning a direct mapping between LQ and HQ images, often
incorporating various priors to enhance restoration performance. Early works mainly explore geo-
metric priors, such as facial landmarks (Chen et al., 2018), parsing maps (Chen et al., 2021; Shen
et al., 2018), and heat maps (Yu et al., 2018), to offer explicit information about face restorations.
Reference prior (Gu et al., 2022; Zhou et al., 2022) methods are taking additional high-quality im-
ages to enhance the restoration of LQ images. More recently, generative priors (Wang et al., 2021a;
Yang et al., 2021) have been widely used in blind face restoration to obtain realistic textures.

With the superior generative capabilities of recent successful diffusion models (Ramesh et al., 2022),
which are trained on billions of data (Schuhmann et al., 2022), the diffusion-prior methods (Wang
et al., 2023; Miao et al., 2024; Lu et al., 2024) have been explored to solve the BFR problem. Al-
though reasonable restoration results are achieved, existing diffusion-based methods (Wang et al.,
2021a; Yue & Loy, 2024) generally suffer from several major limitations. (i) The diffusion prior has
inferior semantic consistency, namely identity consistency, structural stability, color preservation,
etc. which increases the difficulty of optimizing the BFR model(Zhou et al., 2022). As an example,
we evaluate the semantic consistency between the estimated real image in each step for a conven-
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Figure 1: (Left) The intermediate states in 4-step LCM and SD Turbo models. The network used in
LCM maps to the real image space, while SD Turbo progressively denoises the noisy image. (Right)
Given the prompt “A headshot of a man with hat and glasses”, we generate 1000 images with both
LCM and SD Turbo models. Then we use DreamSim, SSIM, and color histogram distance (HDist)
to measure the semantic consistency in the subject identity, spatial structure and color preservation.

tional diffusion model SD Turbo (Sauer et al., 2023)1 and the latent consistency model (LCM) (Luo
et al., 2023a), as shown in Fig. 1. It is evident that the conventional diffusion models exhibit weaker
semantic consistency prior information compared with the consistency models. (ii) Diffusion-based
methods that rely on standard diffusion models face challenges in sampling, as they require many
iterations to produce the real image outputs. They cannot easily incorporate with a perceptual loss
applied to the final image outputs. Despite existing methods (Chung et al., 2023; Laroche et al.,
2024) compute the perceptual loss with real images obtained from the intermediate step, these real
images show a appearance gap compared to the final image output (see Appendix E.6 for details).

To address these problems, we introduce the latent consistency model (LCM) into blind face restora-
tion tasks, which has not been explored before. More specifically, the LCM model learns to map any
point on the ODE (Song et al., 2023) trajectory to its origin for generative modeling. That property
differs significantly from the conventional diffusion models, where the iterative sampling process
progressively removes noise from the random initial vectors. Based on the LCM property, we pro-
pose our method InterLCM, which regards the LQ image as the input in an intermediate step of LCM
models and obtains the high-quality image by performing the remaining few denoising steps (i.e.,
3 steps) in 4-step LCM. By this means, InterLCM maintains better semantic consistency originated
from the LCM. Meanwhile, benefitting from this property, we can integrate with both perceptual
loss (Johnson et al., 2016) and adversarial loss (Goodfellow et al., 2014), which are commonly used
in restoration model training, leading to a high-quality and high-fidelity face restoration output.

However, directly applying the LCM to blind face restoration brings randomness to the generated
structures and semantics, which originate from the random sampling paths (see Sec. 3.2 and Fig. 5).
We therefore propose to apply two extra components to InterLCM. First, a CLIP image encoder
and Visual Encoder as Visual Module that helps to extract semantic information from faces, pro-
viding the LCM with face-specific priors. Second, to prevent changes in content (e.g., structure),
we include a Spatial Encoder to leverage the strong semantic consistency of the LCM model. More
specifically, we follow the ControlNet architecture design to copy the UNet encoder part as the
Spatial Encoder. Note that the Spatial Encoder differs from the ControlNet by the training schemes,
where it is commonly trained with the diffusion loss while our Spatial Encoder backpropagates from
the real image (through the denoising steps) to the initial low-quality image. During this process,
the Visual Encoder and Spatial Encoder are updated with gradients.

In the experiments, we performed extensive experiments to compare InterLCM with existing ap-
proaches, on synthetic and real-world datasets including CelebA, LFW, WebPhoto, etc. Our method
achieves better qualitative and quantitative performance while also achieving faster inference times.
In summary, our work makes the following contributions:

1We regard SD Turbo as a typical representative of the diffusion models, since it inherits the characteristics
of the diffusion model well. While LCM is distilled with the consistency regularization.
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• We introduce InterLCM, a simple but effective BFR framework leveraging the latent consistency
model (LCM) priors. By considering the low-quality image as the intermediate state of LCM
models, we can effectively maintain better semantic consistency in face restorations.

• Using LCM mapping each state to the original image level point, our method InterLCM has addi-
tional advantages: few-step sampling with much faster speed and integrating our framework with
commonly used perceptual loss and adversarial loss in face restoration.

• Through extensive experiments over synthetic and real image datasets, we demonstrate the ef-
fectiveness and authenticity of our InterLCM in restoring HQ images, especially in real-world
scenarios with unpredictable degradations.

2 RELATED WORK

2.1 BLIND FACE RESTORATION.

In real-world scenarios, face images may suffer from various types of degradation, such as noise,
blur, down-sampling, JPEG compression artifacts, and etc. Blind face restoration (BFR) aims to
restore high-quality face images from low-quality ones that suffer from unknown degradation. The
BFR approaches are mainly focused on exploring better face priors, including geometric priors, ref-
erence priors, and generative priors. Diffusion prior, which is more explored in recent years, belongs
to a broader stream of generative priors. For the geometric-prior methods, they explore the highly
structured information in face images. The structural information, such as facial landmarks (Chen
et al., 2018), face parsing maps (Shen et al., 2018; Chen et al., 2021) and 3D shapes (Hu et al., 2020;
Zhu et al., 2022; Lu et al., 2024), can be used as a guidance to facilitate the restoration. However,
since the geometric face priors estimated from degraded inputs can be unreliable, they may lead
to the suboptimal performance of the subsequent BFR task. Some existing methods (Dogan et al.,
2019; Li et al., 2018) guide the restoration with an additional HQ reference image that owns the
same identity as the degraded input, which is referred to as the reference-priro BFR approaches.
The main limitations of these methods stem from their dependence on the HQ reference images,
which are inaccessible in some scenarios. More recent approaches directly exploit the rich priors
encapsulated in generative models for BFR, which are denoted as generative priors.

GAN-prior. By applying the GAN inversion (Xia et al., 2022), the earlier generative-prior explo-
rations (Gu et al., 2020; Menon et al., 2020) iteratively optimize the latent code of a pretrained GAN
for the desirable HQ target. To circumvent the time-consuming optimization, some studies (Yang
et al., 2021; Chan et al., 2021) directly embed the decoder of the pre-trained StyleGAN (Gal et al.,
2021) into the BFR network and evidently improve the restoration performance. The success of
VQ-GAN (Crowson et al., 2022) in image generation also inspires several BFR methods to design
various strategies (Wang et al., 2022; Zhou et al., 2022) to improve the matching between the code-
book elements of the degraded input and the underlying HQ image.

Diffusion-prior. Recently, the diffusion model has been proven to be more stable than GAN (Dhari-
wal & Nichol, 2021), and the generating images are more diverse. This has also received attention in
the blind face restoration task. IDM (Zhao et al., 2023) introduces an extrinsic pre-cleaning process
to further improve the BFR performance on the basis of SR3 (Saharia et al., 2022). To acceler-
ate the inference speed, LDM (Rombach et al., 2022) proposed to train the diffusion model in the
latent space. In a bid to circumvent the laborious and time-consuming retraining process, several
investigations (Lin et al., 2023; Wang et al., 2023) have explored the utilization of a pre-trained dif-
fusion model as a generative prior to facilitate the restoration task. More specifically, DiffBIR (Lin
et al., 2023) and SUPIR (Yu et al., 2024) leverage the pretrained Stable Diffusion (Rombach et al.,
2022) as the generative prior, which can provide more prior knowledge than other existing meth-
ods. DR2 (Wang et al., 2023) and CCDF (Chung et al., 2022) diffuse input images to a noisy state
where various types of degradation have weaker scales than the added Gaussian noises, following by
capturing the semantic information during denoising steps. Moreover, this restoration using noisy
states (Wang et al., 2023; Chung et al., 2022) or diffusion bridges (Liu et al., 2023) can accelerate the
inference. The common idea underlying these approaches is to modify the reverse sampling process
of the pre-trained diffusion model by introducing a well-defined or manually assumed degradation
model as an additional constraint. Even though these methods perform well in certain ideal scenar-
ios, they can not deal with the BFR task since its degradation model is unknown and complicated.
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However, these diffusion-prior based approaches still suffer from time-consuming inferences since
the diffusion models have to pass through multiple steps. Furthermore, they mostly can only be
trained with the reconstruction loss succeeded from the latent diffusion training. The common used
perceptual loss in image restoration tasks cannot be well integrated in their frameworks, which may
lead to suboptimal perceptual generation with these methods.

2.2 TEXT-TO-IMAGE GENERATIVE MODELS

Diffusion models (Shonenkov et al., 2023; Ho et al., 2022; Chen et al., 2023) have emerged as the
new state-of-the-art models for text-to-image generation. They commonly involve encoding text
prompts utilizing a pre-train language encoder, such as CLIP (Radford et al., 2021) and T5 (Raffel
et al., 2020). The output is subsequently inserted into the diffusion model through the cross-attention
mechanism. For base architectures, UNet (Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023)
are widely adopted. In this paper, we mainly build our method on the Stable Diffusion (Rombach
et al., 2022) model as a powerful representative generative model of T2I generation models.

Distillation of T2I models. The diffusion models are bottlenecked by their slow generation speed.
Recently, the distillation-based technique (Hinton et al., 2014) has been widely used in the acceler-
ation of diffusion models. The student model distilled from a pretrained teacher (Luo et al., 2023a;
Sauer et al., 2023) generally has faster inference speeds. Earlier studies (Salimans & Ho, 2022;
Meng et al., 2023) utilize progressive distillation to gradually reduce the sampling steps of student
diffusion models. Also, The sampling time of the pretrained teacher models are hampering training
efficiency. To address this limitation, several works (Gu et al., 2023; Nguyen & Tran, 2023) pro-
pose using various bootstrapping techniques. For instance, Boot (Gu et al., 2023) is trained using
bootstrapping based on two consecutive sampling steps, achieving image-free distillation. SDXL-
Turbo (Sauer et al., 2023) introduces a discriminator and combines it with score distillation loss.

Additional image control of T2I models. Text descriptions guide the diffusion model in generat-
ing images but are insufficient in fine-grained control over the generated results. The fine-grained
control signals are diverse in modality, including layouts, segmentations, depth maps, etc. Consider-
ing the powerful generation ability of the T2I model, there have been a variety of methods (Li et al.,
2024a; Zavadski et al., 2023; Lin et al., 2024) dedicated to adding image controls to the T2I genera-
tive models. As a representative, ControlNet (Zhang et al., 2023) proposes using the trainable copy
of the UNet encoder in the T2I diffusion model to encode additional condition signals into latent rep-
resentations and then applying zero convolution to inject into the backbone of the UNet in diffusion
modal. The simple but effective design shows generalized and stable performance in spatial control
and thus is widely adopted in various downstream applications. Similarly, the T2I-Adapter (Mou
et al., 2024) trains an additional controlling encoder that adds an intermediate representation to the
intermediate feature maps of the pre-trained encoder of Stable Diffusion.

Nonetheless, the T2I models with additional image conditions are still generating images from Gaus-
sian noises. How to explore their possibilities in solving image restoration tasks is still not explored.
In this paper, we successfully make them start the generation from degraded low-quality images to
restore the high-quality images and merged them together with the acceleration T2I models.

3 METHOD

BFR aims to restore a HQ image from its LQ counterpart while preserving semantic consistency
with the LQ image under unknown and complex degradation. In this section, we first introduce the
preliminaries on latent diffusion models and latent consistency models in Sec. 3.1. Then we detail
our method, InterLCM, in Sec. 3.2. In InterLCM, following the LCM noise addition process, we
begin by investigating the intermediate state of the LCM to which the LQ image should be regard
as. We then introduce Visual Module and Spatial Encoder to preserve the semantic information and
structure in the reconstructed HQ image. The illustration of InterLCM is shown in Fig. 3 and Algo-
rithm 1 in Appendix B.

3.1 PRELIMINARIES

Latent Diffusion Models. To enable diffusion model (DM) trained over limited computing re-
sources while retaining the generation quality, Latent Diffusion Models (LDMs) (Rombach et al.,
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Figure 2: (Left) The 4-step LCM map its origin at each sampling step: Noise
1st step−−−−→Sampling

data add noise−−−−−→Noisy data
2nd step−−−−→Sampling data add noise−−−−−→Noisy data

3rd step−−−−→Sampling data add noise−−−−−→Noisy

data
4th step−−−−→Sampling data. In the first step, the origin image is predicted from random noise. In each

remaining step, noise is added to the origin image produced in the previous step. (Right) The pre-
dicted origin images are shown for each step (the first row). The random noise and noisy data from
the first to third steps (the second row). For example, given one prompt case “blond woman with
red glasses and a black shirt”, the generated image at each step shows semantic consistency in the
subject identity, structural information and color constancy (the first row).
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Figure 3: Overview of the proposed InterLCM framework. The Visual Module takes LQ images
to output the visual embeddings. A Spatial Encoder is used to provide structure information. We
consider the LQ image as the intermediate state of LCM. Through standard LCM conditioned with
both the visual embedding and spatial features, the LQ input can be reconstructed as a HQ image.

2022) encode an image x into a latent representation z0 using an encoder E and reconstruct it using
a decoder D. The LDMs aims to train a noise prediction network ϵθ with diffusion loss:

L = Ex0,t,ϵ∼N (0,I)∥ϵ− ϵθ(xt, c, t)∥22 (1)

In the diffusion inference phase, a LDM predicts noise using the pretrained denoising network
ϵθ(zt, c, t) with the text condition c, resulting in a latent zt−1 following the DDPM scheduler (Ho
et al., 2020) (see Fig. 2 (left), the green arrow line). The final latent z0 is obtained sequentially.

Latent Consistency Models. Consistency Models (CMs) (Song et al., 2023) adopt consistency
mapping to directly map any point in ODE trajectory back to its origin, facilitating semantic con-
sistency generation compared to LDMs. A LCM fθ(zτn , c, τn) can be distilled from a pretrained
LDM (e.g., Stable Diffusion (Rombach et al., 2022)) using the consistency distillation loss (Song
et al., 2023) for few-step inference, where c is the given text condition. LCM directly predicts the
origin z0 of augmented PF-ODE trajectory (Luo et al., 2023a), generating samples in a single step.
The LCM enhances sample quality while maintaining semantic consistency by alternating between
denoising and noise addition steps (see Fig. 2 (left), the various red arrow lines). Specifically, in
the n-th iteration, the LCM first applies a noise addition forward process to the previously predicted
sample z0 = fθ(zτn+1 , c, τn+1), resulting in zτn . Here, τn represents a decreasing sequence of time
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steps, where n ∈ {1, · · · , N−1}, τ1 > τ2 > · · · > τN−1, and N (N = 4) is the number of steps in
the LCM. Then, the prediction for the next z0 = fθ(zτn , c, τn) is carried out again.

3.2 InterLCM: LOW-QUALITY IMAGES AS INTERMEDIATE STATES OF LCM

Our proposed InterLCM is built on the LCM model. As shown in Fig. 3, the random noise is added
to LQ image xl, which already contains complex and unknown degradation. The Visual Module
takes LQ image as input and returns the visual embedding, which replaces the text embedding used
in the standard LCM to supply the face-specific semantic information. To preserve the structure
of LQ image, we utilize a Spatial Encoder to provide LCM with structure information. Through
standard LCM processing with both visual embedding and spatial features, the LQ input can be
reconstructed into an HQ output. In this subsection, following the LCM noise addition process,
we begin by investigating which intermediate state of the LCM to insert LQ image. We then detail
Visual Module and Spatial Encoder.

2nd-step noise addition1st step

Figure 4: t-SNE visualizations of feature distri-
butions show the first step sampling similarity
of LCM and the LQ image (FID=103.70), and
their noisy intermediate states after LCM 2nd-step
noise diffusion (FID=2.83).

2nd-step intermediate state. To leverage
the content consistency inherent in LCM (Luo
et al., 2023a), we retain the pretrained model
and follow its sampling process. As shown
in Fig. 2 (right, the first row), the 4-step LCM
sampling process generates semantic consis-
tency images. In the first step, LCM directly
predicts an image from random noise. In each
remaining step, LCM first adds noise to the pre-
vious image and then predicts a finer output.
Based on the three noise addition processes in
each of the 4-step LCM, we first move the LQ
image to each intermediate state of LCM. As
shown in Fig. 4, we empirically find that the
distribution of the LQ image is closer to that of
the generated image after the first noise addi-
tion (second step noise addition) than other intermediate states (see Appendix C.1 for more detail).
Therefore, we use the LQ image as the intermediate state after the first noise addition in LCM.
Subsequently, the LCM is applied starting from the second step.

LQ null-text prompt text prompt HQ

Figure 5: Naive LCM alters the original semantics
of the LQ image (e.g., hair).

Visual Encoder. Ideally, the model should re-
construct image quality and align semantic in-
formation with the LQ image. However, noise
diffusion introduces randomness, altering the
original semantics of the LQ image, regard-
less of whether the prompt is a null-text or text
prompt. For example, as shown in Fig. 5, when
given a LQ image and a null-text prompt (i.e.,
∅ =“”), the hair color changes to white in the generated image (Fig. 5 (the second column)). Even
given a text prompt (that is, “a woman with blonde hair and a smile” 2) obtained from the HQ image,
the straight hair changes to curly in the generated image (Fig. 5 (the third column)).

To provide LCM with face-specific prior to produce semantic consistent content, we propose to use
a Visual Module (Fig. 3). The Visual Module provides face-specific semantic information to the
pretrained LCM, similar to how text prompts are used in standard text conditioned image gener-
ation (Luo et al., 2023a). We employ visual embedding, first extracting general CLIP visual fea-
tures (Radford et al., 2021) from LQ image xl, which are then distilled by the Visual Encoder (VE)
to yield face-specific semantic information, defined as cv = V E(CLIP (xl)). This approach aligns
cv with the text embedding the LCM typically uses for its text condition sampling. Furthermore,
using visual embedding avoids the need for applying a complex text prompt that can describe LQ
image in detail and accurately (Liao et al., 2024; Li et al., 2024b).

2We use the BLIP (Li et al., 2022) caption model to generate descriptions for HQ images as text prompts.
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Spatial Encoder. However, the face-specific visual embedding cv , while essential for capturing
global semantic attributes, is insufficient for preserving global structure. To address this issue, we
introduce the Spatial Encoder (SE) to effectively extract and enhance spatial structure preservation
(Fig. 3). We use the pretrained UNet encoder from stable diffusion to capture the full content of
the LQ image, including structural information. When combined with the visual embedding, the
SE then extracts the spatial features, denoted as fv = SE(xl, cv). The ResNet and Attn blocks
represent the standard ResNet and Cross-Attention transformer blocks in LCM. The output from
the ResNet block is used as the Query features, while the visual embedding cv serves as both Key
and Value features in the Attn block. Then the spatial features is combined with the output of Attn
block. After three iterations of LCM sampling, we finally generate the reconstructed HQ image
xrec = fθ(zτn , cv, τn, fv).

Training Objectives. To train the Visual Encoder and Spatial Encoder, we adopt three image-level
losses: reconstruction loss L1, a perceptual loss (Johnson et al., 2016; Zhang et al., 2018) Lper, and
an adversarial loss (Goodfellow et al., 2014; Esser et al., 2021) Ladv:

L1 = ∥xh − xrec∥1; Lper = ∥Φ(xh)− Φ(xrec)∥22; Ladv = [logD(xh) + log(1−D(xrec))],

where xh represents the HQ image, and Φ denotes the feature extractor of VGG19 (Simonyan &
Zisserman, 2014). The complete objective function of our model is:

L = L1 + Lper + λLadv, (2)

where λ is the trade-off parameter and set to 0.8 by default in the following experiments.

4 EXPERIMENTS

4.1 EVALUATION ON SYNTHETIC AND REAL-WORLD DATA

We evaluate our method on one synthetic dataset and three real-world datasets, which are com-
monly used for evaluation in blind face restoration tasks (Wang et al., 2021a; Zhou et al., 2022;
Yue & Loy, 2024; Yang et al., 2024). We compare our method with recent baselines, including
(CNN/Transformer-based methods) PULSE (Menon et al., 2020), DFDNet (Li et al., 2020), PS-
FRGAN (Chen et al., 2021), GFPGAN (Wang et al., 2021a), GPEN (Yang et al., 2021), Restor-
Former (Zamir et al., 2022), VQFR (Gu et al., 2022), CodeFormer (Zhou et al., 2022), (Diffusion-
based methods) DR2 (Wang et al., 2023), DifFace (Yue & Loy, 2024), PGDiff (Yang et al., 2024),
and WaveFace (Miao et al., 2024). See Appendix A for more details.

For the evaluation on the synthetic dataset (i.e., CelebA-Test (Karras et al., 2017)), we use five
quantitative metrics: LPIPS (Zhang et al., 2018), FID (Heusel et al., 2017), MUSIQ, PSNR, and
SSIM (Wang et al., 2004), similar to metrics used in CodeFormer (Zhou et al., 2022) and IDS used
in VQFR (Gu et al., 2022) (also referred to as Deg). The results of the methods are summarized
in Tab. 1 (the second to seventh columns). In terms of image quality metrics LPIPS and MUSIQ
(MUS.), our InterLCM achieves superior scores compared to existing methods. Furthermore, it
faithfully preserves identity and structure, as evidenced by the best IDS and SSIM scores. Addi-
tionally, Fig. 6 demonstrates that our method significantly outperforms others, while the compared
methods fail to yield satisfactory restoration results. For instance, DFDNet, PSFRGAN, GFPGAN,
GPEN, DifFace, and PGDiff introduce noticeable artifacts, while PULSE and DR2 produce overly
smoothed results that lack essential facial details. Moreover, while RestoreFormer, VQFR, and
CodeFormer can generate high-quality texture details (e.g., hair), they still exhibit minor artifacts.
In contrast, our method is slightly inferior to theirs (see the zoomed-in area in Fig. 6).

For the evaluation on the real-world datasets (i.e., LFW-Test (Huang et al., 2008), WebPhoto-
Test (Wang et al., 2021a), and WIDER-Test (Yang et al., 2016)), we adopt two quantitative metrics
following the setting of CodeFormer (Zhou et al., 2022), namely FID and MUSIQ. The comparative
results are summarized in Tab. 1 (the eight to thirteenth columns). We observe that our method
achieves the best performance on WebPhoto-Test and WIDER-Test with medium and heavy degra-
dation. In addition, it obtains the highest score in MUSIQ on the LFW-Test with mild degradation.
For the qualitative comparison in Fig. 7, we observe that our method demonstrates excellent ro-
bustness to real-world degradation, producing the most visually satisfactory results. Even in images
with heavy degradation, our method generates rich texture details, whereas the compared methods
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Table 1: Quantitative comparison on the synthetic and real-world dataset. The best results are in
bold, and the second best results are underlined.

Dataset
Synthetic dataset Real-world datasets

Celeba-Test LFW-Test WebPhoto-Test WIDER-Test
Time
(Sec)

Method
Metrics

LPIPS↓ FID↓ MUSIQ↑ IDS↓ PSNR↑ SSIM↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑

Input 0.574 145.22 72.81 47.94 22.72 0.706 138.87 26.87 171.63 18.63 201.31 14.22 –

C
N

N
/T

ra
ns

fo
rm

er
-b

as
ed

PULSE 0.356 68.33 66.46 43.98 22.10 0.592 67.01 65.00 85.69 63.88 70.65 63.01 3.509
DFDNet 0.332 54.21 72.08 40.44 24.27 0.628 60.28 73.06 92.71 68.50 59.56 62.02 0.438
PSFRGAN 0.294 54.21 73.32 39.63 24.66 0.661 49.89 73.60 85.42 71.67 85.42 71.50 0.041
GFPGAN 0.230 49.84 73.90 34.56 24.64 0.688 50.36 73.57 87.47 72.08 39.45 72.79 0.059
GPEN 0.290 63.44 67.52 36.17 25.48 0.708 61.04 68.96 99.09 61.10 46.25 62.64 0.109
RestoreFormer 0.241 50.04 73.85 36.16 24.61 0.660 48.77 73.70 78.85 69.83 50.04 67.83 0.066
VQFR 0.245 41.84 75.18 35.74 24.06 0.660 51.33 71.74 75.77 72.02 44.09 74.01 0.177
CodeFormer 0.227 52.94 75.55 37.27 25.15 0.685 52.84 75.48 83.95 74.00 39.22 73.41 0.085

D
iff

us
io

n
-b

as
ed

DR2 0.264 54.48 67.99 44.00 25.03 0.617 45.71 71.50 109.24 62.37 48.20 60.28 1.775
DifFace 0.272 39.23 68.87 45.80 24.80 0.684 46.31 69.76 80.86 65.37 37.74 65.02 3.248
PGDiff 0.300 47.26 71.81 55.90 22.72 0.659 44.65 71.74 101.68 67.92 38.38 68.26 14.768
WaveFace – – – – – – 53.88 73.54 78.01 70.45 37.23 72.89 19.370
Ours 0.223 45.38 76.58 33.64 25.19 0.718 51.32 76.16 75.48 75.88 35.43 76.29 0.050

PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

DR2 DifFace PGDiffCodeFormer Ours Ground Truth

Input

VQFR

Figure 6: Qualitative comparisons of baselines on the synthetic of CelebA-Test for BFR (Zoom in
for a better view and see Appendix F for additional results).

exhibit noticeable artifacts. For example, as shown in Fig. 7 (the fifth and sixth rows), under heavy
degradation in LQ image, all the compared methods produce face images with noticeable artifacts,
whereas our method generates high-quality face images with rich hair details.

4.2 ABLATION STUDIES

Effectiveness of Visual Encoder and Spatial Encoder. Our proposed method starts from second
step combining with both visual embedding from Visual Encoder (VE) and spatial features from
Spatial Encoder (SE). We first evaluate the efficacy of visual embedding and spatial features, start-
ing from second step, by exploring various ablated designs and comparing their performances. The
ablated designs include: 1 VE+2nd: The SE is removed, focusing only on VE training. 2 Null-
Text+SE+2nd: Only SE is trained, and VE is replaced by NullText. 3 Text+SE+2nd: Only SE
is trained, and VE is replaced by Text. Performance results and comparion are presented in Fig. 8
(the first row, the second to fourth columns) and Tab. 2 (the first to third rows). We observe that
1 VE+2nd captures the face-specific semantic information of the LQ image with high-quality de-
tail, but is insufficient for preserving the global structure because visual embedding only provides
semantically consistent content. 2 NullText+SE+2nd and 3 Text+SD+2nd (e.g., “A photo of a
human face” as shown in Fig. 8) receive spatial features that effectively capture the global facial
structure of the LQ image; however, they compromise on detailed content (e.g., eyes and wrinkles).

We also experimentally confirm the starting step and present the results in Fig. 8 (the second row)
and Tab. 2 (fourth to seventh rows). It can be observed that starting from the initial step (i.e., noise),
as shown in 4 VE+SE+1st, generates detailed textures (e.g., wrinkles) but introduces randomness
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Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Figure 7: Qualitative comparisons of baselines on the real-world images from LFW-Test, WebPhoto-
Test, and WIDER-Test (see Appendix F for additional results). (Zoom in for a better view)

Table 2: Ablation study of Visual Encoder (VE) and Spatial
Encoder (SE), as well as starting intermediate steps.

Text
embedding

Starting
steps

LFW-
Test

WebPhoto-
Test

WIDER-
Test

Exp. VE Null Text SE 1st 2nd 3rd 4th FID↓ MUS.↑ FID↓ MUS.↑ FID↓ MUS.↑

1 ✓ ✓ 69.99 76.11 93.40 75.58 57.66 76.14

2 ✓ ✓ ✓ 55.56 76.02 76.06 75.15 37.28 75.68
3 ✓ ✓ ✓ 55.07 75.75 77.76 75.30 36.15 75.98

4 ✓ ✓ ✓ 54.94 71.50 92.33 72.92 40.72 71.00
5 ✓ ✓ ✓ 50.48 75.06 86.53 73.66 38.71 73.18
6 ✓ ✓ ✓ 50.59 71.36 77.25 72.01 50.70 70.41

7 ‡ ✓ ✓ ✓ 51.32 76.16 75.48 75.88 35.43 76.29

Input ① VE+2nd ② NullText+SE+2nd ③ Text+SE+2nd

④ VE+SE+1st ⑤ VE+SE+3rd ⑦‡ VE+SE+2nd⑥ VE+SE+4th

Figure 8: Visualization of the ablation study for
various design variants. ‡ indicates our results.

(e.g., eyes). Starting from a later step, 5 VE+SE+3rd and 6 VE+SE+4th result in blurred outputs
(the second row, the second column in Fig. 8) and preserving the textures of the LQ image (the
second row, the third column in Fig. 8) but fail to generate fine details, due to the limitations imposed
by the number of denoising iterations. Thus, we incorporate both the visual embedding and spatial
features into the LCM, starting from the second step, which facilitates the capture of face-specific
information and the generation of fine details ( 7 in Fig. 8 and the last row in Tab. 2).

Inference time. Tab. 1 (the last column) shows the inference time of different methods. All meth-
ods are evaluated on input images using a Quadro RTX 3090 GPU (24GB VRAM) with resolution
of 512 × 512. The sampling time of our method has a similar running time as CNN/Transformer-
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Input (2)(1) (3) Naive ControNet Spatial Encoder

Figure 9: (Left) visualization of the ablation study for both the perceptual and adversarial losses.
(Right) visualization of the ablation study comparing the naive ControlNet and our Spatial Encode.

Table 3: Ablation study of both the perceptual and ad-
versarial losses.

LFW-Test WebPhoto-Test WIDER-Test
Exp. L1 Lper Ladv FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑
(a) ✓ 87.12 43.14 141.86 39.37 93.61 33.71

(b) ✓ ✓ 57.57 67.99 95.02 66.24 44.83 63.94

(c) Ours ✓ ✓ ✓ 51.32 76.16 75.48 75.88 35.43 76.29

Table 4: Ablation study of the naive ControlNet
and our proposed Spatial Encoder.

LFW-Test WebPhoto-Test WiDER-Test
Exp. Loss FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑
Naive

ControlNet Eq. (1) 35.43 75.03 81.91 73.63 49.58 74.20

Spatial
Encoder Eq. (2) 55.07 75.75 77.76 75.30 36.15 75.98

based methods, such as PSFRGAN (Chen et al., 2021), GFPGAN (Wang et al., 2021a) and Restore-
Former (Wang et al., 2022). Meanwhile, the inference time of our method significant surpass that
of other diffusion-based methods, such as PGDiff (Yang et al., 2024) and WaveFace (Miao et al.,
2024), which remain constrained by the iterative sampling processes inherent to diffusion models.

Effectiveness of perceptual and adversarial losses. We consider that the superior restoration
performance of our InterLCM is mainly due to the integrating with both perceptual loss (Johnson
et al., 2016) and adversarial loss (Goodfellow et al., 2014) in the image domain, which are commonly
used in restoration model training leading to a high-quality and high-fidelity face restoration output.
To highlight the effectiveness of these two losses, we perform the ablation experiments in Fig. 9
(Left) and Tab. 3. We can see that without perceptual and adversarial losses, the quantitative metrics
are significantly degraded (Tab. 3 (the first row)), as it is challenging to achieve good visual quality
using only reconstruction loss (Fig. 9 (the second column)). Adding perceptual loss and adversarial
loss in the image domain can effectively restore realistic details. In addition, we also conduct an
ablation study on Spatial Encoder in InterLCM and Naive ControlNet (Fig. 9 (Right) and Tab. 4).
The primary difference between the two lies in the loss function utilized during training. Although
Naive ControlNet can generate high-quality image while maintaining structure, it loses fidelity due
to the denoising loss focuses on the semantic information but fidelity (Zhang et al., 2023).

Input CodeFormer WaveFace Ours Input CodeFormer WaveFace Ours

Figure 10: Input LQ images with hands may experience failing restorations.

5 CONCLUSION

In this paper, we proposed InterLCM, a novel framework for blind face restoration (BFR) that lever-
ages the latent consistency model (LCM) to improve semantic consistency and restore high-quality
images from low-quality inputs. By treating the low-quality image as an intermediate step in the
LCM, InterLCM achieves more accurate restorations with fewer sampling steps compared to tradi-
tional diffusion-based methods. Additionally, we integrated a CLIP-based image encoder and visual
encoder to capture face-specific semantic information and a spatial encoder based on ControlNet
to ensure structural consistency. Extensive experiments on both synthetic and real-world datasets
demonstrated that InterLCM outperforms existing approaches, delivering superior image quality and
faster inference, particularly in challenging real-world scenarios with unpredictable degradations.

Limitation. Although our method excels in the existing methods in blind face restoration, it does
not depart from limitations. When InterLCM deals with images that include hands, it excels at
generating more facial details but does not produce realistic hands (Fig. 10). That probably results
from the fact that the FFHQ training dataset contains a very limited number of such images. One
potential solution is to enhance the training data by adding more diverse face images with hands.
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A APPENDIX: IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

We mainly use the pre-trained LCM, distilled from StableDiffusion 1.5. The Spatial Encoder is
partially initialized using UNet encoder from the pre-trained Stable Diffusion 1.5, following the
approach in (Zhang et al., 2023). The decoder from CodeFormer (Zhou et al., 2022) serves as the
Visual Encoder, with adjustments made to the input and output dimensions to align with our settings.
The proposed method is implemented in Pytorch (Paszke et al., 2017). We use Adam (Kingma &
Ba, 2015) with a batch size 8, using a learning rate of 2 × 10−5. The models are trained for 15K
iterations using eight A40 GPUs (48GB VRAM).

A.2 TRAINING DATA

We train our models on the FFHQ dataset (Karras et al., 2019), which consists of 70,000 HQ face
images with a resolution of 1024× 1024. First, we resize the HQ images to 512× 512. The resized
images are then degraded to generate LQ images following the typical degradation process described
in (Zhou et al., 2022):

xl = {[(xh ∗ kσ)↓s + nδ]JPEGq
}↑s, (3)

where xh and xl represent the HQ and LQ images, respectively, kσ is the Gaussian kernel with
σ ∈ {1 : 15}, ↓s represents the downsampling operation with a scale factor s ∈ {1 : 30}, and nδ

denotes Gaussian noise with a standard deviation of δ ∈ {0 : 20}. The convolution operation is
denoted by ∗, followed by JPEG compression with a quality factor of q ∈ {30 : 90}. Finally, an
upsampling operation ↑s with scale s is applied to restore the original resolution of 512× 512.

A.3 TEST DATA.

We evaluate our method on one synthetic dataset and three real-world datasets, which are commonly
used for evaluation in blind face restoration tasks (Wang et al., 2021a; Zhou et al., 2022; Yue & Loy,
2024; Yang et al., 2024). The synthetic dataset, CelebA-Test (Karras et al., 2017), contains 4,000
high-quality (HQ) images. The corresponding low-quality (LQ) images are synthesized using the
same degradation process as described in Eq. (3), which is consistent with our training setting. The
three real-world datasets encompass varying degrees of degradation: LFW-Test (Huang et al., 2008)
with mild, WebPhoto-Test (Wang et al., 2021a) with medium, and WIDER-Test (Yang et al., 2016)
with heavy degradation. They contain 1,711, 407, and 970 LQ images, respectively.

A.4 BASELINE IMPLEMENTATIONS.

We compare our method with recent baselines, including (CNN/Transformer-based methods)
PULSE (Menon et al., 2020) 3, DFDNet (Li et al., 2020) 4, PSFRGAN (Chen et al., 2021) 5,
GFPGAN (Wang et al., 2021a) 6, GPEN (Yang et al., 2021) 7, RestorFormer (Zamir et al.,
2022) 8, VQFR (Gu et al., 2022) 9, CodeFormer (Zhou et al., 2022) 10, (Diffusion-based meth-
ods) DR2 (Wang et al., 2023) 11, DifFace (Yue & Loy, 2024) 12, PGDiff (Yang et al., 2024) 13, and
WaveFace (Miao et al., 2024) 14. The evaluation of all methods was conducted on images with a
resolution of 512× 512, utilizing their publicly available official code and default settings.

3https://github.com/krantirk/Self-Supervised-photo
4https://github.com/csxmli2016/DFDNet
5https://github.com/chaofengc/PSFRGAN
6https://github.com/TencentARC/GFPGAN
7https://github.com/yangxy/GPEN
8https://github.com/swz30/Restormer
9https://github.com/TencentARC/VQFR

10https://github.com/sczhou/CodeFormer
11https://github.com/Kaldwin0106/DR2_Drgradation_Remover
12https://github.com/zsyOAOA/DifFace
13https://github.com/pq-yang/PGDiff
14https://github.com/yoqim/waveface
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2nd-step noise addition

1st step 2nd step 3rd step

3rd-step noise addition 4th-step noise addition

Figure 11: t-SNE (Hinton & Roweis, 2002) visualizations of feature distributions show (Left) the
first step sampling result of LCM and the LQ image (FID=103.70) with their noise-added versions
(FID=2.83); (Middle) the second step result and the LQ image (FID=157.80) with their noise-added
versions (FID=31.83); (Right) the third step result and the LQ image (FID=172.66) with their noise-
added versions (FID=214.40).

B APPENDIX: ALGORITHM DETAIL OF InterLCM

Algorithm 1 The sampling of InterLCM

Input: The LQ image xl, Pretrained Latent Consistency Model combining with visual embedding
from Visual Module and spatial features from Spatial Encoder (SE): fθ(zτn , cv, τn, fv). Sequence
of timesteps τ1 > τ2 > · · · > τN−1, N = 4. Noise schedule α(t), σ(t), Encoder E , and Decoder
D.
Initial latent code z0 ← E(xl)
for n = 1 to N − 1 do
zτn ∼ N (α(τn)z0;σ

2(τn)I)
z0 ← fθ(zτn , cv, τn, fv)

end for
xrec ← D(z0)
Output: xrec

C APPENDIX: ABLATION ANALYSIS

C.1 SHOULD WE START FROM THE 2ND, 3RD, OR 4TH STEP IN THE LCM?

To leverage the content consistency inherent in LCM (Luo et al., 2023a), we retain the pretrained
model and follow its sampling process. As shown in Fig. 2 (right, the first row), the 4-step LCM
sampling process generates semantic consistency images. In the first step, LCM directly predicts
an image from random noise. In subsequent steps, LCM first adds noise to the previous image
and then predicts a finer output. In Fig. 11 (the first row), we visualize the feature distributions
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Input Random noise addition

Figure 12: Two restoration examples of our InterLCM on the real-world dataset WebPhoto-Test,
achieved through random noise addition in the three noise addition step of 4-step LCM.

Table 5: Quantitative comparison using the LCM model with different inference steps. The best
results are shown in bold.

Dataset Synthetic dataset Real-world datasets
Celeba-Test LFW-Test WebPhoto-Test WIDER-Test

Method
Metrics

LPIPS↓ FID↓ MUSIQ↑ IDS↓ PSNR↑ SSIM↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑

Input 0.574 145.22 72.81 47.94 22.72 0.706 138.87 26.87 171.63 18.63 201.31 14.22

Ours (2-step LCM) 0.248 49.19 74.31 34.92 23.91 0.662 56.21 76.24 75.84 76.11 38.23 76.00

Ours (4-step LCM) 0.223 45.38 76.58 33.64 25.19 0.718 51.32 76.16 75.48 75.88 35.43 76.29

for the LQ image and the results of the first three sampling steps using t-SNE (Hinton & Roweis,
2002). We can observe that the clusters are well-separable (Fig. 11 (the first row)). Based on the
three addition processes in each of the 4-step LCM, we move the LQ image to each intermediate
state of LCM (Fig. 11 (the second row)). We find that the distribution of the LQ image is closest
to that of the generated image after the first noise addition (second step noise addition) than other
intermediate states (Fig. 11 (the second row, the first column)). Therefore, we use the LQ image
as the intermediate state after the first noise addition in LCM. Subsequently, the LCM is applied
starting from the second step.

C.2 ROBUSTNESS TO RANDOM NOISE ADDITION

As shown in Fig. 12, we showcase our robustness to random noise addition in the three noise addition
step of 4-step LCM. Our InterLCM effectively restores the face-specific detail using random noise
addition.

D APPENDIX: ABLATION ANALYSIS

D.1 OUR METHOD USING LCM IN DIFFERENT NUMBERS OF STEPS

LCM employs a 4-step inference process to balance image quality and inference time, as recom-
mended by the original paper. In this paper, we use the recommended 4-step LCM model, while we
also offer an ablation study with a 2-step LCM model. As observed from the Tab. 5, the 4-step LCM
only works slightly worse than the 2-step LCM on two metrics, which is utilized as the backbone
for our InterLCM.

D.2 THE ANALYSIS OF OUR METHOD USING LCM OR SD TURBO

We test the SD Turbo (Sauer et al., 2023) as the backbone to develop our method for the BFR
problem. By the quantitative comparison in Tab. 6, we show that consistency model, which directly
predict the x0 in each step, better suits the BFR problem.
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Table 6: Quantitative comparison with SD Turbo or LCM as the backbones for the blind face restora-
tion (BFR) model. The best results are in bold.

Dataset Synthetic dataset Real-world datasets
Celeba-Test LFW-Test WebPhoto-Test WIDER-Test

Method
Metrics

LPIPS↓ FID↓ MUSIQ↑ IDS↓ PSNR↑ SSIM↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑

Input 0.574 145.22 72.81 47.94 22.72 0.706 138.87 26.87 171.63 18.63 201.31 14.22

Ours (SD Turbo) 0.257 48.51 74.15 37.02 23.30 0.660 56.44 74.24 84.66 74.41 43.53 72.35

Ours (LCM) 0.223 45.38 76.58 33.64 25.19 0.718 51.32 76.16 75.48 75.88 35.43 76.29

Table 7: Quantitative comparison with LCM-LoRA or LCM as the backbones for the blind face
restoration (BFR) model. The best results are in bold.

.
Dataset Synthetic dataset Real-world datasets

Celeba-Test LFW-Test WebPhoto-Test WIDER-Test

Method
Metrics

LPIPS↓ FID↓ MUSIQ↑ IDS↓ PSNR↑ SSIM↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑

Input 0.574 145.22 72.81 47.94 22.72 0.706 138.87 26.87 171.63 18.63 201.31 14.22

Ours (LCM-LoRA) 0.240 53.26 76.58 35.48 24.14 0.661 54.70 76.26 82.08 76.59 39.62 75.81

Ours (LCM) 0.223 45.38 76.58 33.64 25.19 0.718 51.32 76.16 75.48 75.88 35.43 76.29

D.3 OUR METHOD USING LCM-LORA

We test the LCM-LoRA (Luo et al., 2023b) as the backbone to develop our method for the BFR
problem. Tab. 7 and Fig. 13 show the qualitative and quantitative, respectively, comparison of
using LCM-LoRA and our method. As shown in Tab. 7, LCM-LoRA does not perform as well
as our method in terms of LPIPS and FID metrics, while it achieves better results on the MUSIQ
metric for image quality evaluation on real datasets, such as LFW-Test and WebPhoto-Test. The
qualitative results in Fig. 13 demonstrate that both LCM-LoRA and our method can achieve high-
quality reconstructed images.

D.4 OUR METHOD USING ONE-STEP MODELS (x0-PREDICTION-BASED DIFFUSION MODELS)

We use one-step models (x0-prediction-based diffusion models) as the backbone to develop our
method for the BFR task. We first move the LQ image to the noise space of the one-step models. We
make some comparisons in Tab. 8 and Fig. 14. As shown in Table Tab. 8, our metrics significantly
outperform one-step diffusion models in the BFR task, except for the FID metric on the Synthetic
dataset. As shown in the qualitative comparison in Fig. 14, results of our method using one-step
models (as shown in the second and third rows) indicate that these models face challenges with
artifacts and blur when reconstructing high-quality images, while our method can reconstruct high-
quality images with detailed textures (the fourth row).

E APPENDIX: ADDITIONAL ANALYSIS

E.1 CAN WE REGARD THE LQ IMAGE AS AN INTERMEDIATE RESULT IN SD SAMPLING?

When we perform SD sampling, the Gaussian noise zT is gradually denoised into a clear image z0
(see Fig. 15). We use the DDIM schedule with T = 50. The intermediate result of SD sampling
lacks a lot of image detail, while the LQ image mainly loses texture detail compared to the HQ
image. Intuitively, we regard the LQ image as an intermediate result of SD sampling, especially
at small noise levels (see Fig. 15 (red box)). As shown in Fig. 16, we regard the LQ image as
the intermediate result at timesteps t = 10, 20, and 30 (the second column to fourth columns)
and perform the remaining steps of the SD sampling, both for real-world LQ image (the first row)
and synthetic LQ image (the second row). When we regard the LQ image as the intermediate
result with small noise levels, the remaining SD denoise process tends to remove the potential noise
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Figure 13: Results using LCM-LoRA and LCM backbone for our method.

Table 8: Our method using one-step models (x0-prediction-based diffusion models), The best results
are in bold.

Dataset Synthetic dataset Real-world datasets
Celeba-Test LFW-Test WebPhoto-Test WIDER-Test

Method
Metrics

LPIPS↓ FID↓ MUSIQ↑ IDS↓ PSNR↑ SSIM↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑ FID↓ MUSIQ↑

Input 0.574 145.22 72.81 47.94 22.72 0.706 138.87 26.87 171.63 18.63 201.31 14.22

Ours (1-step SD Turbo) 0.273 36.87 74.00 37.82 24.89 0.658 61.21 70.24 87.77 70.47 54.45 71.51

Ours (1-step LCM) 0.240 46.66 74.06 37.45 24.66 0.697 55.72 73.45 89.90 72.41 37.16 70.45

Ours (4-LCM) 0.223 45.38 76.58 33.64 25.19 0.718 51.32 76.16 75.48 75.88 35.43 76.29

in the LQ image. However, this process does not aid in image restoration but instead makes the
image smoother (Fig. 16 (the second column)). Moreover, when we perform the SD denoise process
starting with a high noise level using the LQ image, more edge information, such as details of
glasses, can be lost (Fig. 16 (the third to fourth columns)). In conclusion, the degradation of the LQ
image is different from that of the noised image at the intermediate step of SD sampling, even at
small noise levels.

E.2 CAN WE USE SUPER-RESOLUTION METHODS FOR FACE RESTORATION?

The purpose of image super-resolution is to increase the resolution of an image while preserving
its content and details as much as possible. In contrast, face restoration does not aim to increase
image resolution but focuses on recovering image details from the same LQ resolution. As shown in
Fig. 17, we naively attempt to use state-of-the-art super-resolution methods (Rombach et al., 2022;
Wang et al., 2024; 2021b) to perform face restoration (the second to fourth columns). We first
downsample an LQ image from a resolution of 512 to 128, then use it as the input for the super-
resolution method to generate an image with a resolution of 512 (the second to fourth columns). The
downsampled image at 128 resolution is upsampled to 512 resolution using bicubic interpolation
(Fig. 17 (the first column)), and this upsampled image is then used as input for our method to
produce the restored image (Fig. 17 (the last column)).
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Figure 14: Results of our method using one-step models (as shown in the second and third rows)
indicate that these models face challenges with artifacts and blur when reconstructing high-quality
images, while our method can reconstruct high-quality images with detailed textures (the fourth
row).

As shown in Fig. 17, the super-resolution methods struggle to recover facial details, whether applied
to real-world or synthetic LQ images (the second to fourth columns). Although StableSR (Wang
et al., 2024) adds an additional 5,000 face images from the FFHQ dataset (Karras et al., 2019), it
still struggles to recover facial details, such as hair and facial texture (the third column).

E.3 ADDITIONAL RESULTS WITH TATTOOS OR FESTIVAL-STYLE FACE PAINT

As shown in Fig. 18 (the third and fourth rows), our method, InterLCM, demonstrates the ability
to reconstruct high-quality details even in challenging cases, such as images featuring tattoos or
festival-style face paint. However, when tattoos contain intricate details, such as text (e.g., the last
column), accurately recovering these ambiguous elements during high-quality face reconstruction
becomes challenging. This limitation may stem from the scarcity of such textures in the training
dataset. An illustration of the complex textures in our training dataset FFHQ (Karras et al., 2019) is
also shown in Fig. 18 (the first and second rows), where the festival-style face paints and rich-color
hair appear multiple times during training.

E.4 LQ SEMANTIC INFORMATION SUFFICES FOR HQ RECONSTRUCTION

In our method (Fig. 19, top(a)), InterLCM, we utilize a Visual Module to extract semantic informa-
tion from LQ images for HQ reconstruction. To demonstrate that the LQ image suffices to provide
a prior for HQ reconstruction, we provide our model with LQ images exhibiting varying levels of
degradation, decreasing from left to right (Fig. 19, middle(the first row)). The reconstruction results
(Fig. 19, middle(the second row)) show that the semantic information from the LQ image suffices

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

12

t=10 t=9 t=8 t=7 t=6

Figure 15: The generated results at each timestep of the diffusion sampling process from T to 1. For
example, given one prompt case “A man with a beard wearing glasses in blue shirt”, the noise in the
image is gradually reduced from timestep T to 1, and the image is eventually generated with clarity
(from left to right, top to bottom).

LQ t=10 t=20 t=30 Ours
Figure 16: The generated results are obtained when we regard the LQ image as the intermediate
result and perform the remaining steps of the SD sampling. For more detail, we regard the LQ
image as the intermediate result at timesteps t = 10, 20, and 30 (the second column to fourth
column), both for real-world LQ image (the first row) and synthetic LQ image (the second row). In
these two examples, We use the prompts “A man with black hair wearing glasses in a black shirt”
and “A woman with curly yellow hair”, respectively

as a prior for HQ reconstruction when the degradation level is below a specific threshold (Fig. 19,
middle(the third to fifth columns)).

Meanwhile, we observe that when the HQ image is used as the input to both the Visual Module
and Spatial Encoder (Fig. 19, top(b)), the reconstructed image displays similar semantic informa-
tion to that obtained using the LQ image (Fig. 19, bottom(the first column)). This result further
indicates that the LQ image provides semantic information similar to that of the HQ image (Fig. 19,
middle(the last column) vs., bottom(the first column)).
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Figure 17: The super-resolution methods struggle to recover facial details (the second to fourth
columns).
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Figure 18: (top) In our training dataset FFHQ, there exist images containing festival-style face paint,
as well as rich colors in the hair and head accessories. (bottom) Our method InterLCM can restore
high-quality details for complex images with tattoos or festival-style face paint.

Than, we verify the provision of paired LQ and HQ images, which are provided to the Visual Mod-
ule and Spatial Encoder (Fig. 19(c)). We also obverse that the reconstructed result shows similar
semantic information to the HQ image (Fig. 19, bottom(the second column)).

To further assess the importance of facial semantic information from the LQ image for HQ recon-
struction, we supplied the Visual Module with non-facial semantic images (Fig. 19, top(d)), such
as non-facial semantic images (e.g., a image featuring a tree or a solid color) and unrelated facial
images (Fig. 19, bottom(third and fifth columns)). Using non-facial semantic images resulted in
reconstructed outputs with artifacts (Fig. 19, bottom(third and fourth columns)), whereas unrelated
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Figure 19: (top) Our method with variety inputs. (middle) We find that the semantic information
from the LQ image suffices as a prior for HQ reconstruction when the degradation level is below
a specific threshold (e.g., the third to fifth columns). (bottom) Using non-facial semantic images
resulted in reconstructed outputs with artifacts (the third and fourth columns), whereas unrelated
facial images provided sufficient semantic priors for generating HQ reconstructions with facial fea-
tures (the fifth column).

facial images provided sufficient semantic priors for generating HQ reconstructions with facial fea-
tures (Fig. 19, bottom(fifth columns)).

E.5 APPLYING THE THE PROPOSED METHOD TO NATURAL IMAGE DATASETS

For the blind face restoration problem, our method InterLCM can efficiently extract facial infor-
mation through the Visual Encoder, as human faces are with less complex semantic information
compared with real images from diverse scenarios. We show several real-image restoration results
in Fig. 20. The results are satisfactory for simple textures, but less effective for complex textures. To
improve the performance of our method InterLCM on real image, we plan to use a more powerful
VQGAN-LC (Zhu et al., 2024) with 100,000 codebooks to act as the visual encoder for our model
in future work.

E.6 APPLYING PERCEPTUAL LOSS IN DIFFUSION-BASED MODELS
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Figure 20: Results on natural image datasets.

Several existing works (Chung et al., 2023; Laroche et al., 2024) have integrated the perceptual
loss in to diffusion-based models. The forward process of diffusion-based models is a process that
iteratively adds Gaussian noise to the representation using:

xt =
√
αtxt−1 +

√
1− αtϵ, (4)

where αt is the predefined variance, and ϵ ∼ N (0, I). Recursively, let ᾱt =
∏i=t

i=1 αi, we have:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (5)

When applying perceptual loss in diffusion-based models, the primary difference between our
method and existing works (Chung et al., 2023; Laroche et al., 2024) lies in how the noise-free
real image x0 is obtained. Our approach uses x0 at the final of the inference steps of the latent
consistency model. In contrast, existing works (Chung et al., 2023; Laroche et al., 2024) derive x0

from xt at an intermediate step t by directly applying the inversion of forward process using Eq. (5):

x̂0 =
1√
ᾱt

(xt −
√
1− ᾱtϵ). (6)

As shown in Fig. Fig. 21, we can observe that the x̂0 obtained from the SD intermediate steps (the
first to fifth columns) has an appearance gap compared to the x0 obtained using the full sampling
process (the last column).

F ADDITIONAL RESULTS

As shown in Fig. 22, our method shows better hair quality than other methods and better aligns with
the Ground Truth. Tab. 9 shows the quantitative comparison on the synthetic image of Fig. 22. Our
method surpasses the baselines in two image quality metrics: MUSIQ and IDS. The Ground Truth
has the best perceptual quality with the best MUSIQ metric 77.64. Actually, since the low-quality
images are losing high-frequency information, the restoration is a random process to complement
the high-frequency details (by varying seeds when adding noise).

We present additional qualitative comparisons of the baselines on real-world images from the LFW-
Test, WebPhoto-Test, and WIDER-Test datasets in Fig. 23. As shown in Fig. 23, our method can
reconstruct more realistic details in forehead wrinkles (first and second rows), eyes and eyebrows
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from     in the intermediate inference step (SD2.1)

Figure 21: The x̂0 obtained from the intermediate step (the first to fifth columns) has an appearance
gap compared to the x0 (the last column).

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer Ours Ground Truth

Figure 22: Qualitative comparisons of baselines on the synthetic of CelebA-Test for BFR.

(third and fourth rows), and hair (fifth and sixth rows). These results demonstrate that our method
outperforms the baselines in real-world scenarios.

In Figs. 24 to 27, we show additional reconstructed results on the synthetic dataset (i.e., CelebA-
Test (Karras et al., 2017)) and the real-world dataset (i.e., LFW-Test (Huang et al., 2008), WebPhoto-
Test (Wang et al., 2021a), and WIDER-Test (Yang et al., 2016)). We compare our InterLCM
with several recent baselines, including (CNN/Transformer-based methods) PSFRGAN (Chen et al.,
2021), GFPGAN (Wang et al., 2021a), GPEN (Yang et al., 2021), RestorFormer (Zamir et al., 2022),
VQFR (Gu et al., 2022), CodeFormer (Zhou et al., 2022), (Diffusion-based methods) DR2 (Wang
et al., 2023), DifFace (Yue & Loy, 2024), PGDiff (Yang et al., 2024), and WaveFace (Miao et al.,
2024). We do not include PULSE (Menon et al., 2020) and DFDNet (Li et al., 2020) in our com-
parisons because the best and second best results presented in Tab. 1 do not feature PULSE or
DFDNet. Additionally, PULSE has been noted for significant identity inconsistencies in various
studies (Wang et al., 2021a; Zhou et al., 2022; Yue & Loy, 2024). Our InterLCM produces high-
quality facial components and more realistic details compared to previous methods. We can generate
high-quality images even under heavy degradation, while previous methods fail to do so (see Fig. 26
and Fig. 27).
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Table 9: Quantitative comparison on the synthetic image of Fig. 22. The best results are in bold, and
the second best results are underlined.

Dataset
Synthetic dataset

Celeba-Test

Method
Metrics

MUSIQ↑ IDS↓ PSNR↑ SSIM↑

Input 17.44 37.44 24.24 0.624

C
N

N
/T

ra
ns

fo
rm

er
-b

as
ed

PULSE 71.97 69.90 21.22 0.561
DFDNet 75.96 27.42 25.03 0.620
PSFRGAN 69.85 36.50 23.05 0.594
GFPGAN 74.84 26.10 24.11 0.621
GPEN 71.06 30.71 24.53 0.628
RestoreFormer 75.57 26.52 23.69 0.595
VQFR 74.23 32.97 23.70 0.598
CodeFormer 76.19 28.55 24.25 0.612

D
iff

us
io

n
-b

as
ed

DR2 66.03 44.32 22.65 0.582
DifFace 67.57 35.14 23.91 0.609
PGDiff 69.44 54.98 22.35 0.586
Ours 76.36 25.91 23.65 0.606

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Input PULSE DFDNet PSFRGAN GFPGAN GPEN RestoreFormer

VQFR DR2 DifFace PGDiffCodeFormer OursWaveFace

Figure 23: Qualitative comparisons of baselines on the real-world images from LFW-Test,
WebPhoto-Test, and WIDER-Test. (Zoom in for a better view)
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Figure 24: Qualitative comparison on the synthetic dataset Celeba-Test shows that our InterICM can
restore more realistic facial details (e.g., skins and hair) than previous methods.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

PSFRGANInput GFPGAN

GPEN RestoreFormer VQFR

CodeFormer DR2 DifFace

PGDiff WaveFace Ours

Figure 25: Qualitative comparison on the real-world dataset LFW-Test under mild degradation
shows that our InterICM can restore more realistic facial details (e.g., skins and hair) than previ-
ous methods.
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Figure 26: Qualitative comparison on the real-world dataset WebPhoto-Test under medium degra-
dation shows that our InterICM can restore more realistic facial details than previous methods.
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Figure 27: Qualitative comparison on the real-world dataset WIDER-Test under heavy degradation
shows that our InterICM can restore more realistic facial details than previous methods.
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