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ABSTRACT

Conditional generative adversarial networks (cGANs) play an important role
in multimodal image-to-image translation. We propose Diversity Augmented
conditional Generative Adversarial Network (DivAugGAN), a highly effective
solution to further resolve the mode collapse problem and enhance the diversity
for the generated images. DivAugGAN functions as a regularizer to maximize
the distinction of the generating samples when different noise vectors are injected.
We also exert extra constraint on the generator to ensure the relative variation
consistency in the translation process. This guarantees that the changing scale
of the generated images in the image space is coherent to the difference of the
injected noise vectors in the latent space. It also reduces the chances to bring
about unexpected mode override and mode fusion issues. Experimental results
on both two-domain and multi-domain multimodal image-to-image translation
tasks demonstrate its effectiveness. DivAugGAN leads to consistent diversity
augmentations and visual quality improvements for the developed models. We
also achieves state-of-the-art performances on multiple datasets in terms of widely
used quantitative evaluation metrics. DivAugGAN can be easily integrated into
any objectives in conditional generative models as a regularizer for diversity
augmentations and quality enhancements without any additional computation
overheads compromise. The source code and pre-trained models of our method will
be available at https://github.com/anomymous-gan/DivAugGAN ..

1 INTRODUCTION

Generative models, i.e., generative adversarial networks (GANs) Goodfellow et al. (2014);
Goodfellow (2016), variational autoencoders (VAEs) Kingma & Welling (2014); Doersch (2016);
van den Oord et al. (2017) and regressive models van den Oord et al. (2016a); Salimans et al. (2017);
van den Oord et al. (2016b), have been widely implemented to capture complex high-dimensional
data distribution. Its conditional variants, conditional generative models (CGMs) Mirza & Osindero
(2014), take additional contexts to learn the mapping function from input to output distributions.
Many conditional generation works are built up by CGMs. For example, the conditional variants of
GANs (cGANs) are widely applied in many image generation, synthesis and translation tasks Isola
et al. (2017); Zhu et al. (2017a), and video prediction, synthesis and translation tasks as well Mathieu
et al. (2016); Tulyakov et al. (2018); Villegas et al. (2017); Clark et al. (2019); Wang et al. (2018a;
2019); Hsieh et al. (2018). It also plays a vital role on boosting the development of image-to-image
translation, the aim of which is to learn the mapping between different visual domainsKamil & Shaikh
(2019); Lin et al. (2018). There many computer vision and graphics problem can be formulated as
image-to-image translation tasks, such as mapping grascale images to color images (colorization)
Zhang et al. (2016); Larsson et al. (2016), mapping low-resolution images to the high-resolution
images (super-resolution) Dong et al. (2015); Ledig et al. (2017); Zhang et al. (2019); Wang et al.
(2018c) , mapping the corrupted images of missing region into the complete image (image inpainting)
Iizuka et al. (2017); Yu et al. (2018), changing the attributes of a given image to another (attribute
editing) He et al. (2019); Liu et al. (2019); Lu et al. (2018); Wu et al. (2019), synthesizing the
photo-realistic image from the label or edge (photo-realistic image synthesis) Isola et al. (2017);
Wang et al. (2018b); Ledig et al. (2017); Wang et al. (2018c) and transferring the styles of one domain
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to another (style transfer) Gatys et al. (2016); Johnson et al. (2016); Huang & Belongie (2017); Luan
et al. (2017); Park & Lee (2019).

It is quite challenging to learn the mapping between different visual domains with superior visual
quality, scalability, and diversity, as aligned training image pairs are very difficult or even impossible
to collect Choi et al. (2020); Kim et al. (2017); Yi et al. (2017); Zhu et al. (2017a). Mapping is
usually not deterministic but inherently multimodal. Designing and learning such models is quite
complicated, especially in the case of a large number of attributes, domains, and styles existing.

To handle the scalability, previous studies proposed a unified framework to learn the multi-domains
mappings between all available domains by using a single generator. Among them, StarGANChoi
et al. (2018), AttGAN He et al. (2019), and RelGAN Wu et al. (2019) take a domain label as an extra
input to transform the conditional input image to the target domain. As a fixed, predetermined label
is given to the generator, it is still inevitably to produce the deterministic mapping result per each
output domain in such frameworks. Lin et al. explore domain supervision to explicitly identify the
domain of input conditional image by a pre-trained classification network to achieve multi-domain
image-to-image translation Lin et al. (2019).

Many works on image-to-image translation have been developed to diversify the styles Zhu et al.
(2017b); Lee et al. (2018); Huang et al. (2018); Na et al. (2019); Mao et al. (2019); Yang et al. (2019).
A straightforward approach is to inject noise vectors (introduce style variations), usually randomly
sampled the normal distribution, to the generator together with the input conditional images (maintain
main contents). For example, in SYNTHIA 
 Cityscape image-to-image translation task Huang et al.
(2018), the street scenes and contents, e.g., positions and decorates of the constructions, buildings,
trees and cars in the streets, are determined by the conditional input images, while the injected noise
vectors support to diversify the lighting, shadow, and road textures, etc. Such solutions may not work
well in cGANs based framework, as for the commonly appeared mode collapse problems. Generators
are likely to only produce images from several major modes in the distribution while ignore other
modes. Mode seeking GAN (MSGAN) Mao et al. (2019) and diversity-sensitive GAN (DSGAN)
Yang et al. (2019) propose a similar regularization term to maximize the ratio of the distance between
the generated samples with respect to the difference between the injected latent codes, which has
enforced the generator to produce the distinct mages. However, MSGAN and DSGAN only partially
resolve the mode collapse issue in cGANs and may also bring about unexpected mode fusion or mode
override problems, as they do not consider the relative variation constraint in the translation process.

In this work, we propose Diversity Augmented GAN (DivAugGAN) to further enhance the
multimodality of cGANs based framework and prevent the occurrence of mode fusion or mode
override problems for the image-to-image translation task. We use three different latent vectors,
which are constructed by a randomly sampled latent vector, and two relative offsets, to produce three
output images. We propose to not only maximize the distance between each image pair with respect
to the distance between the corresponding latent vectors pair, but also exert additional constraints on
the generator to minimize the relative variation of the difference between the produced images and
difference between the injected latent codes. Hence, the generators are encouraged to produce distinct
images and maintain the scale of relative variations as well. It also enhances the generator to gain
more chances to reach the minor modes and even nearby local maxima, and produce samples from
different modes to match well with the real data distribution. Dissimilar generated samples from the
nearby minor modes or local maxima that satisfied the relative variation coherence constraint, which
may be ignored in otherwise, provide gradients to the discriminators. In comparison to MSGAN and
DSGAN, our DivAugGAN can be readily embedded into all cGAN frameworks for image generation,
synthesis and translation with enhanced diversity without any additional computational overheads.

We validate the effectiveness of the proposed DivAugGAN regularizer through an extensive
application on multiple different cGANs based frameworks for both of two-domain and multi-domain
multimodal image-to-image translation tasks. We achieve state-of-the-art performance on multiple
datasets, e.g., cat
dog, summer
winter, alps seasonal transfer, image weather condition,
high-quality animal faces (AFHQ), and WikiArts datasets, in terms of both of the qualitative and
quantitative evaluation. We employ the following metrics: i) we employ Fréchet Inception Distance
(FID) Heusel et al. (2017) as a metric for visual quality evaluation; ii) we employ Learned Perceptual
Image Patch Similarity (LPIPS) Zhang et al. (2018) for diversity assessment; iii) we use the Number of
Statistically-Different Bins (NDB) to determine the relative proportions of samples fallen into clusters
that predetermined by the real data; and iv) we use Jensen-Shannon Divergence (JSD) distance
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Figure 1: The main motivation: (a) Real data distribution contains numerous modes. (b) Generator is
likely to focus on the major modes, while ignoring the minor modes, when mode collapse problem is
appeared. Consequently, samples are produced from a few modes. (c) MSGAN and DSGAN Mao
et al. (2019); Yang et al. (2019) simply maximize the distinction of the generating samples, when
different noise vectors are injected, to alleviate the mode collapse problem. However, they fail to
maintain relative variation, which may lead to mode override or mode fusion (e.g., nearby modes
M14 and M16 are merged) issues. (d) Our DivAugGAN exert extra constraint on the generator to
ensure the relative variation consistency in the translation process. This also guarantees that the
changing sale of the generated images in the image space is coherent to the difference of injected
noise vectors in the latent space. DivAugGAN is highly effectivesolution to further resolve the mode
collapse problem and enhance the diversity.

Richardson & Weiss (2018) to measure the similarity between bin distributions. Experimental results
show that the proposed DivAugGAN can function as a regularizer to facilitate the developed models
to achieve the enhanced diversity without image quality and computational overhead compromise in
both of the two-domain and multi-domain image-to-image translation.

In a nutshell, our main contributions in this work can be summarized as follows. 1) We propose
DivAugGAN, which works as a regularizer to further suppress the mode collapse problem and
reduce the possibility of bringing about unexpected mode fusion or mode override issues. It can
be readily applied to enhance the diversity and improve the quality of the generated samples.
2) Extensive experiments demonstrate the universal effectiveness of DivAugGAN. We achieve
state-of-the-art performance on multiple datasets with vastly different distributions in terms of
qualitative and quantitative metrics, including, FID, LPIPS, NDB, and JSD. 3) The proposed
DivAugGAN regularization scheme can be easily integrated into existing CGMs frameworks, with
broad classes of the loss function, network architecture, and data modality. Extensive empirical
results on image-to-image translation tasks demonstrate its effectiveness.

Figure 2: DivAugGAN functions as a regularizer in the CGMs framework. DivAugGAN encourages
the generator to explore the unseen distant image space. It also enforces the scale of the relative
variation for the generated images, which is consistent with the difference between the injected latent
codes. As a result, the discriminator not only pays attention to the generated images from the minor
modes, but also gain the possibility to differentiate little variation between the nearby local maxima.
This reduces the chances of bringing about mode override and mode fusion problems.
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2 DIVERSITY AUGMENTED CONDITIONAL IMAGE SYNTHESIS

2.1 PRELIMINARIES

In the task of image-to-image translation, cGANs are applied on learning the conditional mapping
function G to generate the output image y ∈ Y conditioned on an input image x ∈ X , where X
and Y represent the input and output image space, respectively Yang et al. (2019). In multimodal
image synthesis and translation tasks, an input image x is mapped to multiple distinct outputs with
different encoded latent codes z ∈ Z Zhu et al. (2017b). cGANs learn such multimodal mapping by
alternatively updating the generator G and discriminator D to solve the following mini-max problem
Goodfellow et al. (2014); Goodfellow (2016); Isola et al. (2017):

min
G

max
D
LcGANs(G,D) = Ex ,y [logD (x , y)] + Ex ,z [log (1−D(x ,G(x , z )))] . (1)

Theoretically, through adversarial training, the gradients from the discriminator D progressively
guide the generator G to produce samples with the distribution similar to the real data. However, in
practice, the major modes are much more likely to be favored than the minor modes in the training
process Mao et al. (2019), due to irregular data distribution in the mapped space. As a result, it
may be very difficult or even impossible to successfully generating samples from the ignored minor
modes, illustrated in 1 (b), which also leads to the well-known mode collapse problem Salimans
et al. (2016); Srivastava et al. (2017). Extensive studies have been presented to resolve such issue
in both of standard and conditional GANs, such as incorporating the mini-batch statistics into the
discriminator Salimans et al. (2016), employing the improved divergence metrics, objective functions,
and optimization processes to smooth the loss of the discriminator Arjovsky et al. (2017); Gulrajani
et al. (2017); Mao et al. (2017); Odena et al. (2018); Heusel et al. (2017); Srivastava et al. (2017);
Miyato et al. (2018), and introducing auxiliary networks, as multiple generators or discriminators with
weight-sharing mechanism Liu & Tuzel (2016); Ghosh et al. (2018); Hoang et al. (2018); Nguyen
et al. (2017); Che et al. (2016), extra encoders Dumoulin et al. (2017); Donahue et al. (2017); Larsen
et al. (2016) and additional classifier Odena et al. (2017); Lin et al. (2019), etc.

Figure 3: Qualitative comparisons of DivAugGAN with DRIT and MSGAN on dog → cat, and
summer → winter for two-domain multimodal image-to-image translation tasks. DivAugGAN
generates images with much more variation (diverse color, shape, light, and orientation) over DRIT
and MSGAN. Complete results in the supplementary.
In the image-to-image translation tasks, the generator may be prone to focus on the high-dimensional
structured conditional context, while ignore the low-dimensional stochastic latent codes z in some
extreme cases, and learn a deterministic mapping from x to y . When encounter the mode collapse
problem, the generator may map two different zs, zt latent codes into the same mode, as shown in
Fig.1 (b). Hybrid model of cGAN and VAE with random injected latent codes is the first work to
address mode collapse issue in cGANs based framework for multimodal image-to-image translation.
Specifically, Zhu et al. design an invertible generator in BiCycleGAN with an additional encoder
network for latent code reconstruction from the generated image Zhu et al. (2017b). Domain-specific
decoders are developed to interpret the latent codes for generating images with various styles in
multimodal image translation by Lee et al. Lee et al. (2018) and Huang et al. Huang et al. (2018),
respectively. Odena et al. propose a regularization method to clamp the generator Jacobian within a
certain range Odena et al. (2018). Sharing a similar idea as Odena et al. (2018), Yang et al. presented
DSGAN with an objective function to simply maximize the norm of the generator gradient with
an optional upper-bound Yang et al. (2019). Mao et al. proposed MSGAN with an additional
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mode seeking regularization term on the generator to maximize the ratio of the distance between
the produced images with respect to the distance between the injected latent vectors. All such
regularization methods only encourage the generator to explore the distant space to gain more chances
to hit the far-away minor modes, which enforces the generator to produce distinct outputs, illustrated
in Fig.1 (c). However, they fail to maintain the relative variation consistency. In other words, the
distance between the distinct generated images in the image space is not consistent with the difference
between the injected latent codes in the latent space. Such incoherence may lead to mode override or
mode fusion issues, as shown in Fig.1 (c).

2.2 DIVERSITY AUGMENTED CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

In this work, we propose DivAugGAN to further resolve the mode collapse issue, and keep away from
bringing about the unexpected mode override or mode fusion problems. We not only utilize stochastic
features of the injected latent codes to produce distinct samples, but also employ extra constraint to
maintain the relative variation of the generated images that is consistent with the difference between
the injected latent codes. Figure 2 presents the framework. Given the input conditional image x,
let latent vector, zr, from the latent space Z to generate image, G(x , zr) on learning the mapping
from conditional input X × Z to the output image space Y . By given another reference latent code,
i.e., α∆z, to reflect the change scale, we can define dz{zr, zr − α∆z} as the distance between two
latent codes zr and zr − α∆z, and dI{G (x , zr) , G (x , zr − α∆z)} as the distance between two
produced images, i.e., G(x , zs) and G(x , zr−α∆z), respectively. Here α is a scale factor and ∆z is
the reference quantity. For simplicity, we use δ(zr, zr −α∆z) and s(zr, zr −α∆z) to represent the
distance ratio dI{G(x ,zr),G(x ,zr−α∆z)}

dz{zr,zr−α∆z} , and image distance dI{G (x , zr) , G (x , zr − α∆z)}. Note
that relative variation coherence is ruled out in Mao et al. (2019); Yang et al. (2019), as their generators
are trained with a regularization term to simply maximize the distance ratio or the image distance.
Evidently, it encourages the generator to explore some distant major modes by with compromises
of identifying nearby local maxima and minor modes. To resolve their limitations, we propose
DivAugGAN regularization scheme on the generator to maximize the distinction of the generated
samples with different injected noise vectors and ensure the relative variation consistency of the
image space and latent space as well:
Lda = max

G
Ezr,∆z{λ1[δ(zr, zr − α∆z) + δ(zr + β∆z, zr) + δ(zr + β∆z, zr − α∆z)]

− λ2[s(zr + β∆z, zr, zr − β∆z) + s(zr + 2β∆z, zr + β∆z, zr)

+ s(zr, zr − α∆z, zr − 2α∆z)]}.
(2)

where α and β are two scale factors, zr, and ∆z are two latent codes randomly sampled from
normal distribution N (0, 1), function as a reference and control relative change, respectively, ‖ · ‖1
represents the L1 norm. The first three terms in Eq.(2) encourage the generator to explore the unseen
far-away image space to elevate chance of hitting the distant modes; the latter three terms in Eq.(2)
enforce additional constraints on the generated images to ensure the changing scale in the image space
is coherent to the variation of the injected latent codes in the latent space. The discriminator gain
possibility to differentiate tiny difference of the nearby local maxima and increase the opportunities
on using minor modes to generate images. It also minimizes the chance to bring about mode override
or mode fusion problems, illustrated in Fig.1 (d).

2.3 ANALYSIS OF THE DIVERSITY AUGMENTED REGULARIZATION

DivAugGAN introduces a novel regularization for cGANs to promote local sensitivity. It directly
augments the diversity of generated samples, i.e., G(x, zr) with the latent style code zr. A large
norm of the first-order derivative ensures the sensitive responses to style codes, and a moderate norm
of the second-order derivative encourages weak decay of the sensitivity. Motivated from this point,
we formulate the DivAugGAN regularizer as:

Lda = max
G

Ezr

{
λ1

∥∥∥∥∂G(x, zr)

∂z

∥∥∥∥− λ2 ∥∥∥∥∂2G(x, zr)

∂z2

∥∥∥∥} . (3)

We employ finite difference methods to approximate above norms with the average norms of the
corresponding directional derivatives from the data pairs (G(x, zr),x, zr,∆z) along any random
direction v ∼ N (0, σ2Ik). For a multivariate function g(x) : R` → R and a directional vector
v ∈ R`, its first-order and second-order directional derivatives are closely related to the corresponding
derivatives, i.e., ‖v‖2 dg(x)

dv = vT dg(x)
dx , ‖v‖22

d2g(x)
dv2 = vT d2g(x)

dx2 v. Hence, we have the transformed
regularization as:
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Table 1: Quantitative comparisons of DRIT, MSGAN, and DivAugGAN in the Cat 
 Dog and
Yosemite Summer 
 Winter datasets.

Cat→ Dog Dog→ Cat

DRIT MSGAN DivAugGAN DRIT MSGAN DivAugGAN
FID ↓ 33.17±0.63 17.76±0.15 16.36±0.53 22.98±0.34 25.72±0.82 20.91±0.37
LPIPS ↑ 0.2142±0.0017 0.5080±0.0014 0.5485±0.0014 0.3984±0.0023 0.4330±0.0028 0.4444±0.0010
NDB ↓ 31.67±1.33 21.67±4.67 30.00±1.00 21.00±1.00 20.67±1.67 25.33±1.67
JSD ↓ 0.138±0.007 0.078±0.001 0.108±0.008 0.081±0.006 0.074±0.006 0.105±0.008

Summer→Winter Winter→ Summer

DRIT MSGAN DivAugGAN DRIT MSGAN DivAugGAN
FID ↓ 47.85±0.23 47.77±0.05 46.56±0.12 42.97±0.15 40.58±0.14 40.27±0.15
LPIPS ↑ 0.2216±0.0039 0.2756±0.0035 0.2800±0.0002 0.1817±0.0011 0.2257±0.0011 0.2358±0.0011
NDB ↓ 26.33±1.67 23.33±2.33 23.00±2.00 22.33±1.67 20.33±0.67 18.67±0.33
JSD ↓ 0.052±0.003 0.046±0.001 0.041±0.003 0.052±0.002 0.038±0.001 0.038±0.001

Lda = max
G

Ezr

{
λ1Ev

[∥∥∥∥∂G(x, zr)

∂v

∥∥∥∥]− λ2Ev

[∥∥∥∥∂2G(x, zr)

∂v2

∥∥∥∥]} , (4)

where ∂G(x,zr)
∂v and ∂2G(x,zr)

∂v2 refer to the first-order and the second-order partial directional derivative
of G(x, z) to z, respectively. When `1 or `2 norm is employed, we can prove that the following
proportional expression holds between the first-order norms1:

Ev∼N (0,σ2Ik)

[∥∥∥∥∂G(x, z)

∂v

∥∥∥∥] ∝ ∥∥∥∥∂G(x, z)

∂z

∥∥∥∥ . (5)

It implies that average norms of directional derivatives can function as a surrogate for norms of
derivatives, especially in formulating the regularization losses.

Figure 4: Qualitative comparisons of DivAugGAN (M) with MDMM and MSGAN integratd MDMM
on image weather condition dataset for multi-domain translation. Our model generate images with
enhanced diversity and superior visual quality. Only sunny → foggy translation result is shown;
complete results in the supplementary.

3 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed DivAugGAN through extensive
quantitative and qualitative evaluation on a variety of conditional image-to-image translation
tasks. Both the two-domain and multi-domain are included. We apply the proposed DivAugGAN
regularization objectives in the baseline models directly. Note that we simply modify the original
objective functions to the proposed DivAugGAN regularization objectives, without changing the
network architectures and hyper-parameters for fair comparison. All experiments are conducted using
unseen images during the training phase.

3.1 QUANTITATIVE AND QUALITATIVE RESULTS

To demonstrate the scalability and universal effectiveness of the proposed DivAugGAN, we evaluate
it on a variety of datasets, listed as the following, i) Yosemite Summer
Winter dataset Zhu et al.
(2017a), ii) Dog
Cat Lee et al. (2018), iii) Alps seasonal transfer Anoosheh et al. (2018), iv) image
weather conditions Chu et al. (2017), v) AFHQ Choi et al. (2020) and vi) WikiArts Zhu et al. (2017a),
with the widely used evaluation metrics, such as FID, LPIPS, NDB, and JSD, and compare it with the
reference models for both of two-domain and multi-domain multimodal image-to-image translation
tasks, including DRIT Lee et al. (2018), MSGAN Mao et al. (2019), MDMM Lee et al. (2020), and
StarGANv2 Choi et al. (2020).

Two-domain multimodal image-to-image translation. We employ the network architectures of
generator and discriminator from DRIT and MSGAN without modifications. We conduct experiments
on i) dog 
 cat, and ii) Yosemite summer 
 winter datasets using the same hyperparameter settings

1The proof detail are presented in Appendix A.
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Table 2: Quantitative comparisons of MDMM, MDMM with MSGAN regularizer, StarGANv2,
MDMM with DivAugGAN regularizer, and StarGANv2 with DivAugGAN regularizer with alps
seasonal transfer, image weather conditions, AFHQ, and WiKiArts datasets. ∗DSGAN regularizer is
already intergrated into the StarGANv2 framework for diversification enhancement.

MDMM MDMM+MSGAN DivAugGAN(M) StarGANv2∗ DivAugGAN(S)

Alps
seasonal
transfer

FID ↓ 76.65±0.09 70.36±0.24 66.83±0.02 50.60±0.01 44.09±0.16
LPIPS ↑ 0.0863±0.00020.1397±0.0012 0.1731±0.0017 0.3043±0.0020 0.4233±0.0005
NDB ↓ 20.89±0.11 19.58±0.67 18.11±0.39 15.42±0.66 13.97±0.72
JSD ↓ 0.074±0.001 0.063±0.001 0.059±0.001 0.047±0.002 0.041±0.001

Image
weather

conditions

FID ↓ 154.69±0.27 151.55±0.12 142.06±0.24 104.06±0.48 97.23±0.31
LPIPS ↑ 0.0669±0.00140.1109±0.0004 0.1658±0.0016 0.3962±0.0016 0.4668±0.0005
NDB ↓ 21.44±0.28 21.14±0.56 19.94±0.52 14.33±0.67 11.58±0.16
JSD ↓ 0.172±0.001 0.179±0.004 0.166±0.003 0.097±0.001 0.081±0.001

AFHQ

FID ↓ 49.69±0.17 21.34±0.09 29.82±0.21 19.45±0.11 18.69±0.10
LPIPS ↑ 0.3098±0.00120.4520±0.0003 0.4630±0.0005 0.5007±0.0001 0.5102±0.0005
NDB ↓ 37.17±0.67 40.17±0.67 38.50±0.17 29.50±0.50 39.39±0.73
JSD ↓ 0.076±0.001 0.114±0.001 0.111±0.001 0.051±0.001 0.119±0.002

WikiArts

FID ↓ 163.49±0.27 155.68±0.05 116.25±0.08 133.10±0.22 101.52±0.10
LPIPS ↑ 0.1256±0.00060.1796±0.0001 0.6165±0.0007 0.5261±0.0008 0.6840±0.0006
NDB ↓ 31.88±0.08 32.42±0.17 35.97±0.38 29.28±0.12 27.13±0.18
JSD ↓ 0.166±0.001 0.123±0.002 0.184±0.002 0.085±0.001 0.081±0.001

Table 3: Ablation study to investigate the effects of the proposed DivAugGAN regularizer for
two-domain and multi-domain multimodal image-to-image translation.

Cat→ Dog{DivAugGAN} Dog→ Cat{DivAugGAN}

DR RVC FID ↓ LPIPS ↑ NDB ↓ JSD ↓ FID ↓ LPIPS ↑ NDB ↓ JSD ↓
% % 33.17±0.63 0.2142±0.0017 31.67±1.33 0.138±0.007 22.98±0.34 0.3984±0.0023 21.00±1.00 0.081±0.006
" % 17.76±0.15 0.5080±0.0014 21.67±4.67 0.078±0.001 25.72±0.82 0.4330±0.0028 20.67±1.67 0.074±0.0006
% " 26.67±0.33 0.4256±0.0016 31.00±1.00 0.113±0.006 22.67±0.67 0.4233±0.0019 21.00±1.00 0.114±0.0007
" " 16.36±0.53 0.5485±0.0014 30.00±1.00 0.108±0.008 20.91±0.37 0.4444±0.0010 25.33±1.67 0.105±0.008

Alps seasonal transfer {DivAugGAN(M)} Image weather condition {DivAugGAN(S)}

% % 76.65±0.09 0.0863±0.0002 20.89±0.11 0.074±0.001 120.59±0.52 0.2432±0.0021 19.37±0.82 0.121±0.001
" % 70.36±0.24 0.1397±0.0012 19.58±0.67 0.063±0.001 104.06±0.48 0.3962±0.0016 14.33±0.67 0.097±0.001
% " 72.43±0.14 0.1235±0.0013 19.97±0.53 0.067±0.001 114.67±0.51 0.3138±0.0019 15.71±0.71 0.109±0.001
" " 66.83±0.02 0.1731±0.0017 18.11±0.39 0.059±0.001 97.23±0.31 0.4668±0.0005 15.16±0.16 0.081±0.16

as such two baseline modals for a fair comparison. Table 1 summarizes the quantitative experimental
results on Yosemite dog 
 cat and summer 
 winter datasets, respectively. DivAugGAN achieves
consistent improvements on the diversity metric (higher LPIPS score) over DRIT and MSGAN.
Qualitative comparison results in Figure 3 also confirm that DivAugGAN generates samples with
superior diversity and visual quality over DRIT and MSGAN. Lower FID also indicates DivAugGAN
consistently guides the distributions of the generated samples to match the real data.

Figure 5: Qualitative comparisons of DivAugGAN (S) with StarGANv2 on AFHQ dataset for
multi-domain multimodal translation. Our model can generate images with superior diversity. Only
wild→ cat, and wild→ dog translation results are shown; complete results in the supplementary.
Multi-domain image-to-image translation. We employ the network architectures of generator and
discriminator from MDMM Lee et al. (2020) and StarGANv2 Choi et al. (2020) without modifications.
We conduct experiments on i) alps seasonal transfer, ii) image weather conditions, iii) AFHQ, and
iv) WikiArts datasets using the same hyperparameter settings as such baseline models for a fair
comparison. Note that the DSGAN regularizer has already been embedded into StarGANv2 for
diversity enhancement. We integrate MSGAN regularization method into MDMM to obtain another
model, named MDMM+MSGAN, for performance comparison. We build our DivAugGAN(M) and
DivAugGAN(S) models, by simply replacing the MSGAN regularizer and DSGAN regularizer to our
DivAugGAN regularizer in the MDMM+MSGAN, and StarGANv2 architectures, respectively. As
quantitative experimental results exhibited in Table 2, both of the proposed DivAugGAN(M) and
DivAugGAN(S) perform favorably against MDMM, MDMM+MSGAN, and StarGANv2 in almost
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all quantitative evaluation metrics in all of the four tasks. They consistently achieve higher LPIPS,
lower FID, and JSD scores. Qualitative comparison results in Fig.4 and Fig.5 on image weather
condition, and AFHQ datasets also demonstrate that the performance of DivAugGAN(M) is superior
to MDMM and MDMM+MSGAN, and DivAugGAN(S) is superior to StarGANv2 as well. This
is because the output samples from both of DivAugGAN(M) DivAugGAN(S) present much more
diverse features and satisfying visual quality.

3.2 ABLATION STUDY

We run an ablation study to investigate the effects of each component in the proposed DivAugGAN
regularizer in Eq. 2 for multimodal image-to-image translation. By progressively add DR terms
(first three terms in Eq. 2), and RVC terms (latter three terms in Eq. 2) to the baseline architecture
of DivAugGAN (DRIT for two-domain task and MDMM/StarGANv2 for multi-domain task), we
verify that our superior results are benefited from both of them. The ablation study details on the
Dog
Cat Lee et al. (2018), Alps seasonal transfer Anoosheh et al. (2018) and image weather
condition Chu et al. (2017) datasets for two-domain and multi-domain multimodal image-to-image
translation are presented in Table 3. When we add DR terms, the key quantitative metrics, i.e., FID
(Cat→Dog: 33.17→ 17.76; Alps:76.65→ 70.36; weather:120.59→ 104.06), LPIPS (Cat→Dog:
0.2142 → 0.5080; Alps: 0.0863 → 0.1397; weather: 0.2432 → 0.3962), of the generated images
are consistently improved. Similarly, the visual quality and diversity of the generated images are
also benefited from adding RVC terms, i.e., FID (Cat→Dog: 33.17→ 26.67; Alps: 76.65→ 72.43;
weather: 120.59→ 14.67), LPIPS (0.2142→ 0.4256, Alps:0.0863→ 0.1235; weather:0.2432→
0.3138). When both of the DR terms and RVC terms are employed together, the quantitative results are
further improved and the lowest FID (Cat→Dog/Dog→Cat: 16.36/20.91; Alps:66.83; weather:97.23)
and highest LPIPS (Cat→Dog/Dog→Cat: 0.5485/0.4444; Alps:0.5485; weather:0.4668) are achieved.
Such results justify that both of DR terms and RVC terms contribute to enhance the visual quality
and diversity in the proposed DivAugGAN regularizer.

Figure 6: Qualitative comparison results on alps seasonal transfer dataset for multi-domain translation.
Our model DivAugGAN(M) and DivAugGAN(S) consistently produce more diverse images over
DRIT, MSGAN, and StarGANv2 with superior visual quality. Only summer→ autumn translation
result is shown; complete results in the supplementary.

4 CONCLUSIONS

We present DivAugGAN to further resolve the mode collapse problem. We exert diversity augmented
regularization term on the generator to maximize the distinction of the producing samples and maintain
the relative variation consistency in the translation process as well. This also helps to suppress
modes override and mode fusion issues. The proposed regularization is simple, general, and can be
readily integrated into the existing cGANs based framework without any additional computation
overhead or network structures modification cost. The proposed regularization method has achieved
state-of-the-art performance on multiple datasets with different distribution for both two-domain and
multi-domain multimodal image-to-image translation tasks. Quantitative and qualitative experimental
results also demonstrate the universal effectiveness of the proposed DivAugGAN, which is superior to
previous MSGAN and DSGAN. Additionally, DivAugGAN can generate much more diverse images
with higher visual quality. Appropriately selecting the distance metric for the produced images in the
image space and carefully learning the ratio between α and β may further enhance the realism and
diversity. It would be an interesting future work to explore the proper metrics to measure the mutual
difference quantitatively between the generated images in image space.
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