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Abstract

Algorithmic decision-making in high-stakes
domains often involves assigning decisions to
agents with incentives to strategically modify
their input to the algorithm. In addition to dealing
with incentives, in many domains of interest
(e.g. lending and hiring) the decision-maker
only observes feedback regarding their policy for
rounds in which they assign a positive decision to
the agent; this type of feedback is often referred to
as apple tasting (or one-sided) feedback. We for-
malize this setting as an online learning problem
with apple-tasting feedback where a principal
makes decisions about a sequence of 1" agents,
each of which is represented by a context that may
be strategically modified. Our goal is to achieve
sublinear strategic regret, which compares the
performance of the principal to that of the best
fixed policy in hindsight, if the agents were truth-
ful when revealing their contexts. Our main result
is a learning algorithm which incurs O(v/T)
strategic regret when the sequence of agents is
chosen stochastically. We also give an algorithm
capable of handling adversarially-chosen agents,
albeit at the cost of O(T(4+1D/(@+2)y strategic
regret (where d is the dimension of the context).
Our algorithms can be easily adapted to the
setting where the principal receives bandit
feedback—this setting generalizes both the linear
contextual bandit problem (by considering agents
with incentives) and the strategic classification
problem (by allowing for partial feedback).

1. Introduction

Algorithmic systems have recently been used to aid in
or automate decision-making in high-stakes domains
(including lending and hiring) in order to, e.g., improve
efficiency or reduce human bias (Berman, 2021; mon).

“Equal contribution 'School of Computer Science, Carnegie
Mellon University, Pittsburgh, USA 2Sloan School of Manage-
ment, Massachusetts Institute of Technology, Cambridge, USA.
Correspondence to: Keegan Harris <keeganh@cs.cmu.edu>.

ICML (International Conference on Machine Learning) Workshop
on The Many Facets of Preference-based Learning, Honolulu,
Hawaii, USA. Copyright 2023 by the author(s).

When subjugated to algorithmic decision-making in high-
stakes settings, individuals have an incentive to strategically
modify their observable attributes to appear more qualified.
Such behavior is often observed in practice. For example,
credit scores are often used to predict the likelihood an
individual will pay back a loan on time if given one. Online
articles with titles like “9 Ways to Build and Improve Your
Credit Fast” are ubiquitous and offer advice such as “pay
credit card balances strategically” in order to improve one’s
credit score with minimal effort (O’Shea, 2022). In hiring,
common advice ranges from curating a list of keywords
to add to one’s resume, to using white font in order to
“trick” automated resume scanning software (Eilers, 2023;
the). If left unaccounted for, such strategic manipulations
could result in individuals being awarded opportunities for
which they are not qualified for, possibly at the expense of
more deserving candidates. As a result, it is critical to keep
individuals’ incentives in mind when designing algorithms
for learning and decision-making in high-stakes settings.

In addition to dealing with incentives, another challenge of
designing learning algorithms for high-stakes settings is the
possible selection bias introduced by the way decisions are
made. In particular, decision-makers often only have access
to feedback about the deployed policy from individuals that
have received positive decisions (e.g., the applicant is given
the loan, the candidate is hired to the job and then we can
evaluate how good our decision was). In the language of
online learning, this type of feedback is known as apple
tasting (or one-sided) feedback. When combined, these two
complications (incentives & one-sided feedback) have the
potential to amplify one other, as algorithms can learn only
when a positive decision is made, but individuals have an
incentive to strategically modify their attributes in order to
receive such positive decisions, which may interfere with
the learning process.

1.1. Contributions

We formalize our setting as a game between a principal and
a sequence of T strategic agents, each with an associated
context x; which describes the agent. At every time
t € {1,...,T}, the principal deploys a policy 7, a
mapping from contexts to binary decisions (e.g., whether to
accept/reject a loan applicant). Given policy 7, agent ¢ then
presents a (possibly modified) context x; to the algorithm,
and receives a decision a; = m¢(x}). If a; = 1, the principal
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observes reward ri(a;) = r¢(1); if a; = 0 they receive
no feedback. (r;(0) is assumed to be known and constant
across rounds.) Our metric of interest is strategic regret,
i.e., regret with respect to the best fixed policy in hindsight,
if agents were truthful when reporting their contexts.

Our main result is an algorithm which achieves O(v/T)
strategic regret (with polynomial per-round runtime) when
there is sufficient randomness in the distribution over agents
(Algorithm 1). At a high level, our algorithm deploys a
linear policy at every round which is appropriately shifted
to account for the agents’ strategic behavior. We identify
a sufficient condition under which the data received by the
algorithm at a given round is “clean”, i.e. has not been strate-
gically modified. Algorithm 1 then online-learns the rela-
tionship between contexts and rewards by only using data for
which it is sure is clean.The regret of Algorithm 1 depends
on an exponentially-large constant c(d, d) ~ (1 — &§)~¢ due
to the one-sided feedback available for learning, where d is
the context dimension and § € (0, 1) is a parameter which
represents the agents’ ability to manipulate. While this
dependence on ¢(d, ¢) is insignificant when the number of
agents T' — oo (i.e. is very large), it may be problematic
for the principal whenever T is either small or unknown.
To mitigate this issue, we show how to obtain O(d - T%/3)
strategic regret by playing a modified version of the
well-known explore-then-commit algorithm (Algorithm 3).
At a high level, Algorithm 3 “explores” by always assigning
action 1 for a fixed number of rounds (during which agents
do not have an incentive to strategize) in order to collect
sufficient information about the data-generating process.
It then “exploits” by using this data learn a strategy-aware
linear policy. Finally, we show how to combine Algorithm 1
and Algorithm 3 to achieve O(min{c(d, §) - VT, d - T?/3})
strategic regret whenever 7' is unknown.

While the assumption of stochastically-chosen agents is
well-motivated in general, it may be overly restrictive in
some specific settings. Our next result is an algorithm which
obtains O(T(4+1)/(d+2)) strategic regret when agents are
chosen adversarially (Algorithm 4). Algorithm 4 uses a
variant of the popular Exp3 algorithm to trade off between
a carefully constructed set of (exponentially-many) poli-
cies (Auer et al., 2002a). As a result, it achieves sublinear
strategic regret when agents are chosen adversarially, but
requires an exponentially-large amount of computation at ev-
ery round. Finally, we note that while our primary setting of
interest is that of one-sided feedback, all of our algorithms
can be easily extended to the more general setting in which
the principal receives bandit feedback at each round, i.e.
r+(0) is not constant and must be learned from data. To the
best of our knowledge, we are the first to consider strategic
learning in the contextual bandit setting. See Appendix A
for a detailed comparison with related work.

2. Setting and background

We consider a game between a principal and a sequence
of T agents. Each agent is associated with a context
x; € X C R? which characterizes their attributes (e.g.,
a loan applicant’s credit history/report). At time ¢, the
principal commits to a policy my : X — {1,0}, which
maps from contexts to binary decisions (e.g., whether to
accept/reject the loan application). We use a; = 1 to denote
the the principal’s positive decision at round ¢ (e.g., agent
t’s loan application is approved), and a; = 0 to denote a
negative decision (e.g., the loan application is rejected).
Given 7, agent ¢ best-responds by strategically modifying
their context within their effort budget as follows:

Definition 2.1 (Agent best response; lazy tiebreaking).
Agent t best-responds to policy m; by modifying their context
according to the following optimization program.

X} Earg)r(rllggg 1{m(x') =1}
st ||x —xll2 <6

Furthermore, we assume that if an agent is indifferent be-
tween two (modified) contexts, they choose the one which
requires the least amount of effort to obtain (i.e., agents are
lazy when tiebreaking).

In other words, every agent wants to receive a positive
decision, but has only a limited ability to modify their
(initial) context (represented by ¢o budget §). Such
an effort budget may be induced by time or monetary
constraints and is a ubiquitous model of agent behavior
in the strategic learning literature (e.g., (Kleinberg and
Raghavan, 2020; Harris et al., 2021b; Chen et al., 2020;
Bechavod et al., 2021)). We focus on linear thresholding
policies where the principal assigns action w(x’) = 1, if
and only if (3,x’) > ~ for some 3 € R?, v € R. We
refer to (3, x}) = ~ as the decision boundary. For linear
thresholding policies, the agent’s best-response according
to Definition 2.1 is to modify their context in the direction
of 3/]|3]|2 until the decision-boundary is reached (if it can
indeed be reached). While we present our results for lazy
tiebreaking for ease of exposition, all of our results can be
readily extended to the setting in which agents best-respond
with a “trembling hand”, i.e. trembling hand tiebreaking.
Under this setting, we allow agents who strategically
modify their contexts to “overshoot” the decision boundary
by some bounded amount, which can be either stochastic
or adversarially-chosen. See Appendix E for more details.

The principal observes x; and plays action a; = m(X})
according to policy 7. If a; = 0, the principal receives
some known, constant reward r.(0) := 7o € R. On the
other hand, if the principal assigns action a; = 1, we assume
that the reward the principal receives is linear in the agent’s
unmodified context, i.e.,

re(1) = (0", %) + & (1)
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Classification under agent incentives with apple tast-
ing feedback

Fort=1,...,T:

1. Principal publicly commits to a mapping 7y : X' —
{1,0}.

2. Agent t arrives with context x; € X (hidden from
the principal).

3. Agent t strategically modifies context from x; to
x; according to Definition 2.1.

4. Principal observes (modified) context x; and plays
action a; = m(x}).

5. Principal observes 7¢(1) := (8Y, x,) + ¢, if and
only ifa; = 1.

Figure 1: Summary of our model.

for some unknown 89 € R4, where ¢, is i.i.d. zero-mean
sub-Gaussian random noise with (known) variance 2. Note
that (1) is observed only when the principal assigns action
at+ = 1, and not when a; = 0. Following Helmbold et al.
(2000), we refer to such feedback as apple tasting (or one-
sided) feedback. Mapping to our lending example, the re-
ward a bank receives for rejecting a particular loan applicant
is the same across all applicants, whereas their reward for a
positive decision could be anywhere between a large, nega-
tive reward (e.g., if a loan is never repaid) to a large, positive
reward (e.g., if the loan is repaid on time, with interest).

The most natural measure of performance in our setting is
that of Stackelberg regret, which compares the principal’s
reward over T' rounds with that of the optimal policy given
that agents strategize.

Definition 2.2 (Stackelberg regret). The Stackelberg regret
of a sequence of policies {7} (1) on agents {X; }epr is

Regseaeer (T) 1= ) 1e(@ (%) = D me(me(x)))

te(T) te[T]

where X; is the best-response from agent t to policy 7*
and T* is the optimal-in-hindsight policy, given that agents
best-respond according to Definition 2.1.

A stronger measure of performance is that of strategic regret,
which compares the principal’s reward over 7' rounds with
that of the optimal policy had agents reported their contexts
truthfully.

Definition 2.3 (Strategic regret). The strategic regret of a
sequence of policies {T; }c[r) on agents {X; }ve|1) is

Reg,....(T) = Y ru(r*(x0)) = > ri(mi(xt))

te[T) te[T)

where 7 (x;) = 1if (0, x,) > 79 and 7 (%) = 0 o.w.

Proposition 2.4. Strategic regret is a stronger per-
formance notion compared to Stackelberg regret, i.e.,

Regstackel (T) S Regstrat (T)

Proof. The proof follows from the corresponding regret def-
initions and the fact that the principal’s reward is determined
by the original (unmodified) agent contexts.

Rstackel(T) = Z Tt(ﬁ-* (it)) - Z Tt(ﬂ-t(X;))

te(T) te[T]

=) (@ Fe)) = Y et (xe))
te(T) te([T]

+ Z re(m (%)) — Z 7 (e (x1))
te[T] te([T]

S 0 + Rstrat (T)

O

Because of Proposition 2.4, we focus on strategic regret,
and use the shorthand Reg,, .. (T)) = Reg(T) for the re-
mainder of the paper. Strategic regret is a strong notion of
optimality, as we are comparing the principal’s performance
with that of the optimal policy for an easier setting, in which
agents do not strategize. Moreover, the apple tasting feed-
back introduces additional challenges which require new
algorithmic ideas to solve, since the principal needs to as-
sign actions to both (1) learn about o) (which can only be
done when action 1 is assigned) and (2) maximize rewards
in order to achieve sublinear strategic regret. See Figure 1
for a summary of the setting we consider.

We conclude this section by pointing out that our results
also apply to the more challenging setting of bandit
feedback, in which r4(1) is defined as in Equation (1),
r+(0) := (0(0), x:) + € and only 7 (a;) is observed at each
time-step. We choose to highlight our results for apple
tasting feedback since this is the type of feedback received
by the principal in our motivating examples. Finally, we
note that O(-) hides polylogarithmic factors, and that all
proofs can be found in the Appendix.

3. Strategic classification with apple tasting
feedback

‘We now present our main results: provable guarantees for
online classification of strategic agents under apple tasting
feedback. Our results rely on the following assumption.

Assumption 3.1 (Bounded density ratio). Let fra : X —
R denote the density function of the uniform distribu-
tion over the d-dimensional unit sphere. We assume that
agent contexts {X }c[r) are drawn i.i.d. from a distribution
over the d-dimensional unit sphere with density function

X — R such that 2% > ¢y > 0, ¥x € X.
= a(x

Fya(x)
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Algorithm 1 Strategy-Aware OLS with Apple Tastig Feed-
back (SA-OLS)

Assign action 1 for the first d rounds.

Set Dyyq = { (x5, 7M7)},

Fort=d+1,...,T:

~(1
Estimate 8(1) as OE : using OLS and data D;.

~(1 ~(1
Assign action a; = 1 if <0£ ),x;> >4 ||0£ )||2 + 7o.

~(1) ~(1)
1t 8, x;) > 618, o + o :

Conclude that x; = x;.
Dit1 =Dy U {(Xn?ﬁgl))}
Else:

Dyt1 =Dy

Assumption 3.1 is a condition on the initial agent contexts
{Xt }te[r. before they are strategically modified. Indeed,
one would expect the distribution over modified agent con-
texts to be highly discontinuous in a way that depends on
the sequence of policies deployed by the principal. Further-
more, none of our algorithms need to know the value of
co- As we will see in the sequel, this assumption allows us
to handle apple tasting feedback by relying on the inherent
diversity in the agent population for exploration; a growing
area of interest in the online learning literature (see refer-
ences in Appendix A). Moreover, such assumptions often
hold in practice. For example, in the related problem of
(non-strategic) contextual bandits (we will later show how
our results extend to the strategic version of this problem),
Bietti et al. (2021) find that a greedy algorithm with no
explicit exploration achieved the second-best empirical per-
formance across a large number of datasets when compared
to many popular contextual bandit algorithms. In our set-
tings of interest (e.g. lending, hiring), such an assumption
is reasonable if there is sufficient diversity in the applicant
pool. In Section 4 we show how to remove this assump-
tion, albeit at the cost of worse regret rates and exponential
computational complexity.

At a high level, our algorithm (formally stated in Algo-
rithm 1) relies on three key ingredients:

1. A running estimate of 6" is used to compute a linear
policy, which separates agents who receive action 1
from those who receive action 0. Before deploying,
we shift the decision boundary by the effort budget §
to account for the agents strategizing.

~(1
2. We maintain an estimate of 8" (denoted by 9( )) and
only updating it when a; = 1 and we can ensure that
X) = Xy.

3. We assign actions “greedily” (i.e. using no explicit
exploration) w.r.t. the shifted linear policy.

Shifted linear policy If agents were not strategic, assigning

~

action 1 if (0§ )7 x¢) > ro and action 0 otherwise would

~(1
be a reasonable strategy to deploy, given that HE ) is our
“best estimate” of @) so far. Recall that the strategically
modified context x; is s.t., ||x} — x:|| < é. Hence, in Al-

~(1
gorithm 1, we shift the linear policy by § ||0( )||2 to account
for strategically modified contexts. Now, action 1 is only

~(1 ~(1
assigned if <0i ),xt> > (5||0( )||2 + ro. This serves two
purposes: (1) It makes it so that any agent with unmodified

o~

( . .
context x such that (6, ", x) < ry cannot receive action

1, no matter how they strategize. (2) It forces some agents
~(1 ~(1
with contexts in the band ry < (015 ),x> < 6\\0( )HQ + 79

to strategize in order to receive action 1. This is the type of
strategizing we want to incentivize. Estimating 0 After
playing action 1 for the first d rounds, Algorithm 1 forms
an initial estimate of 8V via ordinary least squares (OLS).
Note that since the first d agents will receive action 1 regard-
less of their context, they have no incentive to modify and
thus x; = x; for ¢ < d. In future rounds, the algorithm’s
estimate of 8 is only updated whenever x; lies strictly
on the positive side of the linear decision boundary. We call
these contexts clean, and can infer that x; = x; due to the
lazy tiebreaking assumption in Definition 2.1.

Condition 3.2 (Sufficient condition for x’ = x). Given a
shifted linear policy parameterized by ﬁ(l) € R4, we say
that a context X' is clean if (B, x') > §]|8Y|2 + ro.

Greedy action assignment By assigning actions greedily
according to the current (shifted) linear policy, we are
relying on the diversity in the agent population for implicit
exploration (i.e., to collect more datapoints to update
our estimate of 0(1)). As we will shgw, this implicit
exploration is sufficient to achieve O(v/T) strategic
regret under Assumption 3.1, albeit at the cost of an
exponentially-large (in d) constant which depends on the
agents’ ability to manipulate (0).

We are now ready to present our main result: strategic regret
guarantees for Algorithm 1 under apple tasting feedback.

Theorem 3.3 (Informal; detailed version in Theorem C.1).
With probability 1 — ~, Algorithm I achieves the following
performance guarantee:

Reg(T) < O ( dJQTlOg(‘ldT/’Y))

1
Co - C1 (d7 5) . Cz(d, 5)
where ¢1(d,d) := Py ya(x[1] > 6) > O ((l_j#) for
sufficiently large d and c3(d,§) = By pa[x[2)?|x[1] >
8> (2-16—- iéz)s, where x[i] denotes the i-th coordi-

1732
nate of a vector X.

Proof sketch. Our analysis begins by using properties of
the strategic agents and shifted linear decision boundary
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to upper-bound the per-round strategic regret for rounds

. ~(1) .
t > d by a term proportional to |6, = — 81|, i.e., our
instantaneous estimation error for 8"). Next we show that

|2ty x4z
2
Amin (X _y xexT 1{ZM))

18" — oWy, <

where Apin (M) is the minimum eigenvalue of (symmetric)

matrix M, and Z." {( , Xs) > (5\\521)\\24—7"0}15 the
event that Algorlthm 1 ass1gns action as = 1 and can verify
that x, = x;. We upper-bound the numerator using a vari-
ant of Azuma’s inequality for martingales with subgaussian
tails. Next, we use properties of Hermitian matrices to show
that Apin (320, x,x 7 1{Z{"}) is lower-bounded by two
terms: one which may be bounded w.h.p. by using the exten-
sion of Azuma’s inequality for matrices, and one of the form
S Amin (a1 [xax] 1{Z{}]), where E,_; denotes
the expected value conditioned on the filtration up to time
s. Note that up until this point, we have only used the fact
that contexts are drawn i.i.d. from a bounded distribution.

Using Assumption 3.1 on the bounded density ratio,
we can lower bound \ip (Es_l[xsxj]l{Igl)}])

)\mm(IEUd7S_1[xsle{lgl)}]), where the expectation is
taken with respect to the uniform distribution over the
d-dimensional ball. We then use properties of the uniform
distribution to show that Apyin (Egra o [Xsx, 11{19) ) >
O(co - ¢(d,d)). Putting everything together, we get that

~(1
|\9§ " _0W|l, < (co- e(d, §) - VD)~ with high probability.
Via a union bound and the fact that ZtE[T] % < 2T,

we get that Reg(T) < (9( C(d 5 VT). Finally, we use
tools from high-dimenswnal geometry to lower bound the
volume of a spherical cap and we show that for sufficiently

large d, ¢1(d, 6) > © (%) . O

3.1. High-dimensional contexts

While we typically think of the number of agents 7' as
growing and the context dimension d as constant in our
applications of interest, there may be situations in which
T is either unknown or small. Under such settings, the
1/e(d,6) dependence in the regret bound (where ¢(d,d) =
c1(d,d) - ca(d, §)) may become problematic if § is close to
1. This begs the question: “Why restrict the OLS estima-
tor in Algorithm 1 to use only clean contexts (as defined
in Condition 3.2)?” Perhaps unsurprisingly, we show in Ap-

pendix C that the estimate 5(1) given by OLS will be in-
consistent if even a constant fraction of agents strategically
modify their contexts. Given the above, it seems reason-
able to restrict ourselves to learning procedures which only
use data from agents for which the principal can be sure
that x’ = x. Under such a restriction, it is natural to ask
whether there exists some sequence of linear polices which

Algorithm 2 Strategy-aware online classification with un-
known time horizon

Compute switching time 7* = g(d, 9)

Letp =1

Fori=1,2,3,...

Let Ty = 2. Ti—1

If>°._, 7; < 7": Run Algorithm 3 with time horizon 7;
and failure probability 1/77

Else: Break and run Algorithm 1 for the remaining rounds

maximizes the number of points of the form (x}, (1)) for
which the principal can be sure that x; = x;. Again, the
answer is no:

Proposition 3.4. For any sequence of linear policies {3, }+,
the expected number of clean points is:

D U, By) > 8|82} | = er(d,6)- T

te[T)

when (initial) contexts are drawn uniformly from the d-
dimensional unit sphere.

The proof follows from the rotational invariance of the uni-
form distribution over the unit sphere. Intuitively, Proposi-
tion 3.4 implies that any algorithm which wishes to learn
6" using clean samples will only have ¢;(d, ) - T dat-
apoints in expectation. Observe that this dependence on
c1(d, 9) arises as a direct result of the agents’ ability to strate-
gize. We remark that a similar constant often appears in the
regret analysis of BIC bandit algorithms (see Appendix A).
Much like our work, (Mansour et al., 2015) find that their
regret rates depend on a constant which may be arbitrarily
large, depending on how hard it is to persuade agents to take
the principal’s desired action in their setting. The authors
conjecture that this dependence is an inevitable “price of
incentive-compatibility”. While our results do not rule out
better strategic regret rates in d for more complicated algo-
rithms (e.g., those which deploy non-linear policies), it is
often unclear how strategic agents would behave in such set-
tings, both in theory (Definition 2.1 would require agents to
solve a non-convex optimization with potentially no closed-
form solution) and in practice, making the analysis of such
nonlinear policies difficult in strategic settings.We conclude
this section by showing that polynomial dependence on d is
possible, at the cost of (’)(TQ/ 3) strategic regret. Specifically,
we provide an algorithm (Algorithm 2) which obtains the
following regret guarantee whenever 7" is small or unknown,
which uses Algorithm 1 and a variant of the explore-then-
commit algorithm (Algorithm 3) as subroutines:

Theorem 3.5 (Informal; details in Theorem C.13). Algo-
rithm 2 incurs expected strategic regret

d5/2

E[Reg(I")] = 0 (mm{W VT,d- T2/3})
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where the expectation is taken with respect to the sequence
of contexts {X; }4c|1) and random noise {¢; },c|1)-

5

The algorithm proceeds by playing a “strategy-aware’
variant of explore-then-commit (Algorithm 3) with a
doubling trick until the switching time 7* = ¢(d,d) is
reached. Note that g(d, ¢) is a function of both d and ¢, not
co. If round 7* is indeed reached, the algorithm switches
over to Algorithm 1 for the remaining rounds.

Extension to bandit feedback Algorithm 1 can be extended
to handle bandit feedback by explicitly keeping track of an
~(0

estimate 0( ) of 8©) via OLS, assigning action a; = 1 if

~(1 ~(0 ~(1 ~(0
andonlyif (8. —8'" x)) > 5.8 —8"”

~(0

ing the OLS estimate of & ~ whenever a; = 0 (since agents
will not strategize to receive action 0). Algorithm 2 may be
extended to bandit feedback by “exploring” for twice as long
in Algorithm 3, in addition to using the above modifications.
In both cases, the strategic regret rates are withing a constant
factor of the rates obtained in Theorem 3.3 and Theorem 3.5.

2, and updat-

4. Beyond stochastic contexts

In this section, we allow the sequence of initial agent con-
texts to be chosen by an (oblivious) adversary. This requires
new algorithmic ideas, as the regression-based algorithms
of Section 3 suffer linear strategic regret under this adver-
sarial setting. Our algorithm (Algorithm 4) is based on the
popular EXP3 algorithm (Auer et al., 2002b). At a high
level, Algorithm 4 maintains a probability distribution over
“experts”, i.e., a discretized grid £ over carefully-selected
policies. In particular, each grid point e € £ C R repre-
sents an “estimate” of 81, and corresponds to a slope vec-
tor which parameterizes a (shifted) linear threshold thresh-
old policy, like the ones considered in Section 3. We use a; ¢
to refer to the action played by the principal at time ¢, had
they used the linear threshold policy parameterized by expert
e. At every time-step, (1) the adversary chooses an agent x;,
(2) a slope vector e; € £ is selected according to the current
distribution, (3) the principal commits to assigning action 1
if and only if (e, x}) > d]/e,||2, (4) the agent strategically
modifies their context x; — x}, and (5) the principal as-
signs an action a; according to the policy and receives the
associated reward r;(a;) (under apple tasting feedback).

Algorithm EXP4, which maintains a distribution over ex-
perts and updates the loss of all experts based on the current
action taken, is not directly applicable in our setting as the
strategic behavior of the agents prevents us from inferring
the loss of each expert at every time-step (Auer et al., 2002a).
This is because if x; # x; under the thresholding policy
associated with expert e), it is generally not possible to
“back out” x; given x}, which prevents us from predicting
the counterfactual context the agent would have modified to
had the principal been using expert €’ instead. As a result,

we use a modification of the standard importance-weighted
loss estimator to update the loss of only the policy played by
the algorithm (and therefore the distribution over policies).
Our regret guarantees for Algorithm 4 are as follows:

Theorem 4.1 (Informal; detailed version in Theorem D.1).
Algorithm 4 incurs expected strategic regret E[Reg(T')] =
(5(T(d+1)/(d+2)).

Proof sketch. The analysis is broken down into two parts. In
the first part, we bound the regret w.r.t. the best policy on the
grid. In the second, we bound the error incurred for playing
policies on the grid, rather than the continuous space of
policies. We refer to this error as the Strategic Discretization
Error (SDE(T)). The analysis of the regret on the grid
mostly follows similar steps to the analysis of EXP3 / EXP4.
The important difference is that we shift the reward obtained
by a;, by a factor of 1 4 A, where A is a (tunable) parameter
of the algorithm. This shifting (which does not affect the
regret, since all the losses are shifted by the same fixed
amount) guarantees that the losses at each round are non-
negative and bounded with high probability. Technically,
this requires bounding the tails of the subgaussian of the
noise parameters ¢;.

We now shift our attention to bounding SDE(T'). The stan-
dard analysis of the discretization error in the non-strategic
setting does not go through for our setting, since an agent
may strategize very differently with respect to two policies
which are “close together” in {5 distance, depending on the
agent’s initial context. Our analysis proceeds with a case-
by-case basis. Consider the best expert e in the grid. If
aier = m*(x¢) (i.e., the action of the best expert matches
that of the optimal policy), there is no discretization error in
round ¢. Otherwise, if a; e+ 7 7*(x;), we show that the per-
round SDE is upper-bounded by a term which looks like
twice the discretization upper-bound for the non-strategic
setting, plus an additional term. We show that this additional
term must always be non-positive by considering two sub-
cases (arer = 1, 7 (x¢) = 0and ayer = 0, 7*(x¢) = 1)
and using properties about how agents strategize against the
deployed algorithmic policies. O

Computational complexity While both Algorithm 1 and Al-
gorithm 2 have O(d?) per-iteration computational complex-
ity, Algorithm 4 must maintain and update a probability
distribution over a grid of size exponential in d at every
time-step, making it hard to use in practice if d is large. We
view the design of computationally efficient algorithms for
adversarially-chosen contexts as an important direction for
future research.

Extension to bandit feedback Algorithm 4 may be ex-
tended to the bandit feedback setting by maintaining a grid
over estimates of ) — §(©) (instead of over 0(1)).
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A. Related work

Strategic responses to algorithmic decision-making There is a growing line of work at the intersection of economics
and computation on algorithmic decision-making with incentives, under the umbrella of strategic classification or strategic
learning (Hardt et al., 2016; Dong et al., 2018; Chen et al., 2020; Kleinberg and Raghavan, 2020; Shavit et al., 2020;
Ahmadi et al., 2021; Bechavod et al., 2019; 2022; Harris et al., 2021b; 2022b; 2021a; Ghalme et al., 2021; Jagadeesan
et al., 2021; Levanon and Rosenfeld, 2021; 2022; Harris et al., 2022a; Eilat et al., 2022; Horowitz and Rosenfeld, 2023).
In its most basic form, a principal makes either a binary or real-valued prediction about a strategic agent, and receives
full feedback (e.g., the agent’s label) after the decision is made. While this setting is similar to ours, it crucially ignores the
one-sided feedback structure present in many strategic settings of interest. In our running example of hiring, full feedback
would correspond to a company not offering an applicant a job, and yet still getting to observe whether they would have been
a good employee! As a result, such methods are not applicable in our setting. Concurrent work (Chen et al., 2023) studies
the effects of bandit feedback in the related problem of performative prediction (Perdomo et al., 2020), which considers
data distribution shifts at the population level in response to the deployment of a machine learning model. In contrast, our
focus is on strategic responses to machine learning models at the individual level under apple tasting and bandit feedback.

Apple tasting and online learning Helmbold et al. (2000) introduce the notion of apple-tasting feedback for online learning.
In particular, they study a binary prediction task over “instances” (e.g., fresh/rotten apples), in which a positive prediction
is interpreted as accepting the instance (i.e. “tasting the apple”) and a negative prediction is interpreted as rejecting the
instance (i.e., not tasting the apple). The learner only gets feedback when the instance is accepted (i.e., the apple is tasted).
While we are the first to consider classification under incentives with apple tasting feedback, similar feedback models have
been studied in the context of algorithmic fairness (Bechavod et al., 2019), partial-monitoring games (Antos et al., 2013),
and recidivism prediction (Ensign et al., 2018). A related model of feedback is that of contaminated controls (Lancaster
and Imbens, 1996), which considers learning from (1) a treated group which contains only treated members of the agent
population and (2) a “contaminated” control group with samples from the entire agent population (not just those under
control). Technically, our results are also related to a line of work in contextual bandits which shows that greedy algorithms
without explicit exploration can achieve sublinear regret as long as the underlying context distribution is sufficiently diverse
(Raghavan et al., 2023; Bastani et al., 2021; Kannan et al., 2018; Sivakumar et al., 2020; Raghavan et al., 2018).

Bandits and agents Finally, a complementary line of work to ours is that of Bayesian incentive-compatible (BIC)
exploration in multi-armed bandit problems (Mansour et al., 2015; Hu et al., 2022; Sellke and Slivkins, 2021; Immorlica
et al., 2019; Ngo et al., 2021). Under such settings, the goal of the principal is to persuade a sequence of 1" agents with
incentives to explore across several different actions with bandit feedback. In contrast, in our setting it is the principal,
not the agents, who is the one taking actions with partial feedback. As a result there is no need for persuasion, but the
agents now have an incentive to strategically modify their behavior in order to receive a more desirable decision/action.

B. Useful concentration inequalities

Theorem B.1 (Matrix Azuma, Tropp (2012)). Consider a self-adjoint matrix martingale {Ys : s = 1,...,t} in dimension d,
and let { X s} sy be the associated difference sequence satisfying Es_1 X = 0qxq and X2 < A? for some fixed sequence
{As}sepy of self-adjoint matrices. Then for all o > 0,

P (Anaa(Y: —EY;) > o) < d - exp(—a?/80?),

2. t 2
where 0* := stzl Az

,
Theorem B.2 (A variant of Azuma’s inequality for martingales with subgaussian tails, Shamir (2011)). Let Z1, Zo, ... Z;

be a martingale difference sequence with respect to a sequence Wy, W, ..., Wy, and suppose there are constants b > 1,
¢ > 0 such that for any s and any o > 0, it holds that

max{P(Zs; > a|X1,...,Xs-1),P(Zs < —| X1, ..., Xs—1)} < b- exp(fca2).

Then for any v > 0, it holds with probability 1 — ~ that

¢
Z 7. < 28blog(1/7).
pot cr
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C. Proofs for Section 3
C.1. Proof of Theorem 3.3

Theorem C.1. Let fya : X — R denote the density function of the uniform distribution over the d-dimensional
unit sphere. If agent contexts are drawn from a distribution over the d-dimensional unit sphere with density function
f 1+ X = R such that ! (’E)) > co > 0, Vx € &, then Algorithm 1 achieves the following performance guarantee:

Reg(T) < 4d + \/14do?T log(4dT /)

8
Co - C1 (5, d) . 62(67 d)

with probability 1 — ~, where 0 < ¢1(3,d) 1= Py _ya(x[1] > 6) and 0 < c2(6,d) := Eyupa[x[2)2|x[1] > 6]
Proof. We start from the definition of strategic regret. Note that under apple tasting feedback, 6 =o.

Reg(T) :=

M=

<9<a:) _ g(at),xt>

o~
Il
—

<9§“”_@§“” )+ (8 0\ >,xt>+<é§“f>_e<at>,xt>

Il
M=

“
I
-

‘<0(1) — 9£1),Xt>‘ + ‘<9(0) — éEO),Xt>‘

M=

1

H
Il

(

o4 -9

(0)
| Il

M=

-
Il
—

<as 3 o -0+ o -0,

t=2d+1

where the first inequality follows from Lemma C.2, the second inequality follows from the Cauchy-Schwarz, and the third
inequality follows from the fact that the instantaneous regret at each time-step is at most 2 and we use the first d rounds to

bootstrap our OLS. The result follows by Lemma C.3, a union bound, and the fact that ZdT i1 \/; < 2V/T. O

Lemma C.2.

~(ay) A(at)

@, -8," %) <0

~(1) (0 ~ ~(0
Proof. If a; = aj, the condition is satisfied trivially. If a; # a, then either (1) <0£ ) 0,5 ),x2> - 6||0,§1) - BE )||2 >0
~(1) (0 (1) (0
and (60 — 0<°>> <0or@ (08" — 0", x) — 68" — 8"l < 0and (8D — 0 > 0.

1 0
Case 1: (0. — 0" x) — 58" — 8"l > 0 and (81 — 0y < 0. (a? = 0, a; = 1)
By Definition 2.1, we can rewrite

~(1)  ~(0) ~(1)  ~(0)
0, -0, ﬂX;>_5H6t -0, [2>0

as

~(1)  ~(0) A (0)
<0t -0, ,x)+ (0" =96, 2>0

for some §’ < 4. Since (¢’ )||0 (O)||2 <0, (0(1) - IH\EO),XQ > 0 must hold.

Case2: (0. — 0., x) — 518" — 8|, < 0 and (6D — 0©) > 0. (a? = 1, a; = 0)

~(1)  ~(0
Since modification did not help agent ¢ receive action a; = 1, we can conclude that <01(t ' 65 ), x¢) < 0. O
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Lemma C.3. Let fya : X — R>q denote the density function of the uniform distribution over the d-dimensional unit
sphere. If T' > d and agent contexts are drawn from a distribution over the d-dimensional unit sphere with density function
f: X = Rsg such that ff i’&) > co € Ry, Vx € X, then the following guarantee holds under apple tasting feedback.

- U

5 2 14do?log(2d /)
o0 — o |, < \/
| reillz < co - c1(8,d) - c2(6, d) t

with probability 1 — ;.

1)

Proof. Let 7 = {0, %) > 6\\@21) l2 + 70}. Then, from the definition of OS_)l we have:

SA = (Z x,x, 1{ZV }) Zxam I{ZMY (closed form solution of OLS)
) (Z sz;rl{l.él)}> Z XS(XZB(D + GS)R{IS)} (plug in 75(1))
s=1 s=1

t -1
= 0(1) + (Z szg—ﬂ{zgl)}> szes]l{zél)}
s=1

s=1
Re-arranging the above and taking the /5 norm on both sides we get:

t t
(zxsxzn{zgw}) S w1z}
s=1 s=1

o -2,
2

IN

(Cauchy-Schwarz)

" —1
(szxh{1§1>}>
s=1
2:1 Xsﬁsﬂ{zs(l)}HQ
Omin (X xx] LT} )
1
[t st

Amin (X %X T

where for a matrix M, o,y is the smallest singular value o yin (M) := min =y || Mx|| and Ay is the smallest eigenvalue.

t
szes]l{fs(l)}
s=1 2

2

Note that the two are equal since the matrix Zizl XX, ]l{Is(l)} is PSD as the sum of PSD matrices (outer products induce
PSD matrices). The final bound is obtained by applying Lemma C.4, Lemma C.5, and a union bound. O

Lemma C.4. The following bound holds on the {3-norm of Zi:l xses]l{Iél)} with probability 1 — ~;:

1z 14do?tlog(d/~,)

2

Proof. Let x[i] denote the i-th coordinate of a vector x. Observe that 3\ _, €.X, [i]]l{Lgl)} is a sum of martingale
differences with Z, := e,x,[i{] I{Z"}, X, 1= %, _, ewxo [i]1{Z\"}, and

max{P(Z, > a|X1,..., X;1),P(Z, < —a|X1,..., X, 1)} < exp(—a?/20?).
By Theorem B.2,

Zes x[i]1{ZV} < 24/1402t1og(1/7:)

with probability 1 — ~;. The desired result follows via a union bound and algebraic manipulation. O
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Lemma C.5. The following bound holds on the minimum eigenvalue of Zi:l xsx;r]l{l's(l)} with probability 1 — ~,:

t
t
; T1{zMy ] > 4:/2t 1
Amin (; xsx, I | = co - c1(0,d) - ca(d,d) - tlog(d/7)
Proof.
t
)\min (Z Xbx;r]l{Is(l)}>
s=1

t t
Z Amin <Z xox, HIV} -~ Es—l[xsxzﬂ{fél)}o + Amin (Z ]Es—l[XsXsT]l{Iﬁ”}O

s=1 s=1
t t
> Amin <Z xx,] 1{ZM} — ]Esl[xsxjn{IS)}]) +) " Amin (]Es,l[xsx;r]l{Igl)}]) )
s=1 s=1

where the inequalities follow from the fact that A, (A + B) > Apin(A) + Amin(B) for two Hermitian matrices A,
B. Note that the outer products form Hermitian matrices. Let V; := >._, xsxsT]l{Is(l)} —Es1 [xsxsT]l{Igl)}]. Note
that by the tower rule, EY; = EY = 0. Let —X, := E,_;[x,x] 1{Z{"}], then E,_1[~X,] = 0, and (—X,)? < 4I,.
By Theorem B.1,

P(Amae(=Y:) > a) <d- exp(fa2/32t).

Since _)\maz(_Yrt) = )\mzn(Yz-S)’
P(Apaz(Y:) < @) < d-exp(—a?/32t).

Therefore, Apin(Y:) > 44/2tlog(d/y:) with probability 1 — ;. We now turn our attention to lower bounding
)\min(Esfl[szIl{Igl)}])'

Amin(Bs_1[xex] T{ZM}]) := min w B, [xex] 1{ZM}w
wesd—1

= min w' (/XSXIH{Iél)}f(XS)dXS) w

wegd-1
> ¢ - wérg£1 w' B,y paxsx] H{ZM Hw
=co_min By pa(w, %) (B %) 2 0118, [12] - Pucr.va (B x5) > 6B, 12)
c1(6,d)
=co-ei(d.d) min Eo o pal(w,x,)’(B,, %) = 6]1B,a] 3)

weSd-1

Throughout the remainder of the proof, we surpress the dependence on U“ and note that unless stated otherwise, all
expectations are taken with respect to U<. Let B, € R?*4 be the orthonormal matrix such that the first column is 3, /|3, ||2-
Note that B,e; = 3,/|8,/|2 and Byx ~ U,

IES—l[XsX;r ‘<//6\53XS> > 5||B3|H = ES—l[(BsXS)(BsXS)TKstBsX5> > 4]
= B.E._1[x,x/ [x] B] [|B,]l2Bse1 > 5 - ||B,]2]B,
= BSES_l[XSXST|XS[1] > (5]BST
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Observe that for j # 1, i # 7, E[xs[j]xs[i]|xs[1] > ] = 0. Therefore,

Eo-1[x:x] (B, %5) 2 8B,] = By(Efxs[2]*x,[1] = 8]1
[

+
=
»
-
=
s
=
W%
=
|
=
><
w
S
_~
&
=
v
=
b
@
_
Sy
=

2 2 //6\5 I/és !
Elx,[1]°|xs[1] > §] — E[x4[2]*|xs[1] > 6])—= =
+ (Efxs[1)7[xs[1] > 0] — E[x[2]|x,[1] > ])Ilﬂs|2<llﬁsllz>
and

Amin (Bs—1 [xsx] H{ZMY) = o - ¢1(6,d) min - (B[xs[2][xs[1] > ]|l
wesd—1

~ 2
+ (B [1)2x[1] > 0] — E[x,[2]*[x,[1] > 4]) <w7 o > )

Z Co - 61(5, d) . 62(67 d)

Lemma C.6. For sufficiently large values of d,

20 (UZ07).

Proof. Lemma C.6 is obtained via a similar argument to Theorem 2.7 in Blum et al. (2020). As in Blum et al. (2020), we
are interested in the volume of a hyperspherical cap. However, we are interested in a lower-bound, not an upper-bound (as
is the case in (Blum et al., 2020)). Let A denote the portion of the d-dimensional hypersphere with x[1] > d‘ﬁ and let H
denote the upper hemisphere.

vol(A)

vol(H)

In order to lower-bound ¢ (9, d), it suffices to lower bound vol(A) and upper-bound vol(H). In what follows, let V' (d)
denote the volume of the d-dimensional hypersphere with radius 1.

c1(0,d) := Pga(x[1] 2 6) =

Lower-bounding vol(A): As in (Blum et al., 2020), to calculate the volume of A, we integrate an incremental volume that
is a disk of width dx[1] and whose face is a ball of dimension d — 1 and radius /1 — x[1]2. The surface area of the disk is

(1 — x[1]2)“2" V(d — 1) and the volume above the slice x[1] > § is
1
vol(A) = / (1 —x[1]2) T V(d — 1)dx[1]
5

To get a lower bound on the integral, we use the fact that 1 — 22 > 1 —  for € [0, 1]. The integral now takes the form

V(d-1) d+1

1
uol(A)z/6(1—x[1])%V(d—1)dx[1]: IR (R

Upper-bounding vol(H): We can obtain an exact expression for vol(H) in terms of V' (d — 1) using the recursive
relationship between V' (d) and V(d — 1):

4 1
vol(H) = %V(d) _ \f?(éii))wd —1)

Plugging in our bounds for vol(A), vol(H ) and simplifying, we see that

1-O)F g+ [(a-6%
cl(é’d)zﬁ(d+1)r(g+§)_@< d+1 )

where the equality follows from Stirling’s approximation. O
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Algorithm 3 Explore-Then-Commit

Input: Time horizon 7', failure probability v
Set T}y according to Theorem C.9

Assign action 1 for the first 7 rounds
Estimate 8" as é(Tlo) via OLS
Fort=Ty+1,...,T:

~(1 ~ (1
Assign action a; = 1 if (0;0),xt> >0 - ||0§10) |l2 and action a; = 0 otherwise

Lemma C.7. The following bound holds on c3(6,d):

1 3 2 8
> —-—==0— - .
62(5,d) 3 ( (5 5)

Proof. We begin by computing E[x[2]2|x[1] = ¢], for &' € (0,1). If x[1] = &', then x[2]2 + ... + x[d]? < 1 — (&)
Using this fact, we see that

Ex[27 (1] = 5] = ~E,vmsion o1l = 5501~ (%)

Since E[x[2]?|x[1] > 6] > E[x[2]*[x[1] = § + 152,

C.2. Proof of Proposition 3.4

Proposition C.8. For any sequence of linear threshold policies B+, . . ., Br,

— T Pyra (x[1] 2 0)
t=1

T
IExl,...,xTNUC" [Z ]l{<xt’/6t> > 6Hﬁt‘|2}

Proof. Let B; € R4*? be the orthonormal matrix such that the first column is 3, /||3,|2. Note that B;x ~ U% if x ~ U?
and Brer = B,/||B |2

T T
Exy,...xp~u Z (x0,81) 2 6[1Bull2Y] = D P, ra (2, B,) = 818, I2)
t=1 t=1

T
= Z]th~Ud(<BtXt’ﬂt> > 6[|B¢ll2)

]waUd(Xt BTHﬂtH2Bt€1 > 08¢ ll2)

I
M- 1

~
Il
-

Py, ~vra(x{ Tger > 6]|2)

I
M-

|
~

Pypa(x[1] = 4]]2)



Strategic Apple Tasting

C.3. Explore-Then-Commit Analysis

Theorem C.9. Let fya : X — Rs denote the density function of the uniform distribution over the d-dimensional
unit sphere. If agent contexts are drawn from a distribution over the d-dimensional unit sphere with density function
f X = Rxq such that f’; (32) > co > 0, Vx € X, then Algorithm 3 achieves the following performance guarantee

8-63/3 1/3
Regpre(T) < ———do®/ T2/ 1og"/? (4d /)
Co

with probability 1 — vy if Ty := 4 - 631/302/3dT2/3 10g/3(4d /7).
Proof.

T
Reggro(T) == Y ( 0\ — ') x,)

t=1

T
<To+ ) (01 -0 x,)
t=

1
Lo @) e - (a}) (ae)
=To+ Z (01,2 — 02, %) + (0“) — by, Yo Xt) + (01, /2~ 0 x,)

t=To+1

T
(1) +(0)
<To+ Z (0" — 01,2, %0)| + (6 — O7,/2:%t)]
t=To+1

T
~ (1) ~(0)
<To+ Z ||9(1) = 07,2 ll2llx¢ll2 + ||9(0) = 01,2 ll2l1x¢]2
t=To+1
- (1) ~(0)
STo+T- (0% =0, pollz +T- 107 = b1, 512

24d [7do?log(4d/7)

<To+T-
0 Co Ty

with probability 1 — v, where the last inequality follows from Lemma C.10 and a union bound. The result follows from
picking Ty = 4 - 631/3do/3T2/3 1og/3(4d /). O

Lemma C.10. Let fya : X — R>q denote the density function of the uniform distribution over the d-dimensional unit
sphere. If T > 2d and agent contexts are drawn from a distribution over the d-dimensional unit sphere with density function

f+ X = Rxq such that 10 > co > 0, Vx € X, then the following guarantee holds for a € {0, 1}.

fu(x)
- (a) 12d [7do?log(2d /i)
0 —6 < = == e
I erll2 < ==y T,

with probability 1 — ;.

Proof. Observe that

To/2 -1 To/2
o\ . T (a)
T0/2 - Z X5+kxs+k Z X5+krs+k
-1
To/2 To/2

= | 2o wewxlin ] D0 w0 i)

To/2 -1 To/2
— @ T
- + Xs+kXs itk Xs+k€s+k

s=1
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where k = 0if a = 0 and k = Tj if a = 1. Therefore,

@ To/2 -1 To/2
a A\ T
”0( ) — 0T0/2||2 = E Xs+kXst § Xs+k€s+k

s=1 s=1

2
-1
To/2 To/2
T
< E Xst+kXgtk E Xs+k€s+k
s=1 s=1
2 2

T0/2
Zs:l Xs+k€s+k 9

Omin (252/12 XS+/€X5T+IC)

To/2
Es:l Xs+k€s+k

;
To/2
Amin(zsi/l X5+kx;r+k)

The desired result is obtained by applying Lemma C.11, Lemma C.12, and a union bound. O

Lemma C.11. The following bound holds on the {2-norm onZilz Xs+kEs+k With probability 1 — ~:

T()/2
Z Xs+k€s+k <2 7d0’2T0 log(d/v)
s=1
2
Proof. Observe that Zzi/lz €k+sXk+s[f] is a sum of martingale differences with Z1, = €ppsXptsli], Xiys =

Zi’:l €kts/ Xk+s'[1], and
max{P(Zpys > | Xpt1,- - Xors— 1), P(Zpps < —a|Xpi1,. o, Xprso1)} < -exp(—a?/20?).

By Theorem B.2,

Ty/2
> enraXigsli] < 2¢/70°Tylog(1/7:)
s=1
with probability 1 — ~;. The desired result follows via a union bound and algebraic manipulation. O

Lemma C.12. The following bound holds on the minimum eigenvalue of Z",Ti/f xs+kx;_k with probability 1 — ~:

To/2

T
T 0
Amin ézzl Xs+kXspk > @ + 4+/Tp log(d/’y)
Proof.
To/2 To/2 To/2
/\mm(z Xs+kx;r+k) > )‘mm(z Xs+kxz+k - E[Xs+kx;r+k]) + )‘min(z E[Xs+kx;r+k])
s=1 s=1 s=1
TO/2 T0/2
> Amin (Y Xowx o = BB lia]) + D Amin (o 14%] 1))
s=1 s=1

where the inequalities follow from the fact that A,,;, (A + B) > A\pin(A) + Apin(B) for two Hermitian matrices A, B.
Let Yy, /2 i= o002 xgpux,p — E[xgi4X], ). Note that Yy, jo = EYy = 0, — X pp = E[xg 4%/, ], B[~ Xy 5] = 0,
and (—X,4y)? < 41,. By Theorem B.1,

P(Amaz(—Y7,/2) > @) < d - exp(—a®/16T).
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Since *)\max(*YTO/Q) = Amin(YTo/Q)v
]P)(/\maw(YTg/Q) < Oé) <d- exp(—a2/16T0).

Therefore, A\pin(Y1,/2) > 41/Tolog(d/~) with probability 1 —~. We now turn our attention to lower bounding
)\min(E[XerkX;:—k])‘

)\mm(E[xs_,_ka_k]) = min w E[xg+kxg+k]
wesd 1

1
-
= min w —Ijw
wesd—1 . 3d°
1

3d

C.4. Proof of Theorem 3.5

Theorem C.13. Let Regqyo(T) be the strategic regret of Algorithm 1 and Reggrc(T) be the strategic regret of Algorithm 3.
The expected strategic regret of Algorithm 2 is

E[Reg(T)] < 4 - min{E[Regqy,s(T)], E[Regprc(T)]}

Proof. Case 1: T' < 7* From Theorem C.9, we know that

. 631/3
RegETC (Tz) < &(102/37'?/3 10g1/3 (4d7_12)
€o
with probability 1 — 1/77. Therefore,
8-63L/3
E[Reggro(Ti)] < Cida2/37—i2/3 log'/3(4d72) +
0 -

Observe that Z;;ll E[Reggrc(7j)] < E[Reggrc(7:)]. Suppose 7,1 < T' < 7; for some ¢. Under such a scenario,

E[Reg(T)] < 2E[Reggrc(7:)]
< 2E[Regrrc(27)]
< 4E[Regprc(T)]

Case 2: T' > 7* Let t* denote the actual switching time of Algorithm 2.

+ T
Reg(T 0@ — 9l x,) 4 Z (01@) —glav) x,)
t=1 t=t*+1
E[Reg(T)] < 2-E[Reggrc(t*)] + E[Regors (T — )]
<2-E[Regors(t")] + E[Regors(T))]
<2-E[Regors(77)] + E[Regors(T)]
< 3-E[Regors(T)]

where the first line follows from case 1, the second line follows from the fact that ¢t* < 7* (and so E[Regppc(t*)] <
E[Regors(t*)]), the third line follows from the fact that ¢* < 7*, and the fourth line follows from the fact that 7" > 7*. [
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Algorithm 4 EXP3 with strategy-aware experts (EXP3-SAE)

Create set of discretized policies e € € = [(1/¢)?], where ¢ = (do log(T)/T)"/(4+2),
Set parameters 7 = 4/ 1;%\(2‘%) ;v =2n\€],and X\ = 0/21og T.

Initialize probability distribution p;(e) = 1/|€|, Ve € .

Fort¢ € [T]:

Choose policy e; from probability distribution g¢(e) = (1 — ) - pi(e) + &
Observe x;.

Play action a; e, = 1if (€4, x}) > 0]|€¢||2. Otherwise play action a; e, = 0.

Observe reward r;(ay e, ).

Update loss estimator for each policy e € &: l?t(e) =1+ X—ri(are,))  L{e=e}/q(e).

Update probability distribution Ve € £: p;11(e) x pi(e) - exp <fn£7t(e)).

C.5. Inconsistency of OLS when using all data

Theorem C.14. lim; ., égl = 0W if and only if lim,_, oo S xx T 1{a, = 1} = limy 00 30, Xix] 1{a, = 1}.

Proof.
" t -1
. 0 BT 1T _ 7,.(1) _
thm 0,/ = thm < g x.X, 1{as = 1}) E x.ry 1{as = 1}

> xl(x) 00 + €)1 {a, = 1}

s=1

X;X;T]l{as = 1}) (Z x'x] 1{a, = 1}) 09)
s=1

D. Proofs for Section 4
D.1. Proof of Theorem 4.1

: : Tog(|€]) dologT ) /(412 .
Theorem D.1. Algorithm 4 withn = / T%\2|£\ , v =2n\E|, and e = (%) incurs expected strategic regret:

E[Reg(T)] < 670+ (@ (45 log T/ (@42 = O (T(d+1)/ <d+2>> .

Proof. Let a; . correspond to the action chosen by a grid point e € £. We simplify notation to a; = a; ., to be the action
chosen by the sampled grid point e, at round ¢. For the purposes of the analysis, we also define £;,(e) = 1 + X — ry(age, ).
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We first analyze the difference between the loss of the algorithm and the best-fixed point on the grid e*, i.e

E[Reg®(T)] = maxE Z ri(age)| —E Z ri(ag)

e*e&

te[T] te([T]
=E — mi
D ble)| —minE | > be
te[T) te[T]

where the equivalence between working with ¢;(-) as opposed to r;(-) holds because ¢;(-) are just a common shift from r(-)
across all rounds and experts. For the regret of the algorithm, we show that:

E[Reg*(T)] = O <T d- (i)zd -log (i)) )

We define the “good” event as the event that the reward is in [0, 1] for every round ¢: C = {r, € [0, 1], V¢ € [T]}. Note that
this depends on the noise of the round ;. We will call the complement of the “good” event, the “bad” event —C. The regret
of the algorithm depends on both C and —C as follows:

E[Reg™(T)] = E[Reg"(T)|C] - Pr[C] + E[Reg®(T)[~C] - Pr[=C] < E[Reg™(T)|C] + T - Pr[~C] ®)

where the inequality is due to the fact that Pr[C] < 1 and that in the worst case, the algorithm must pick up a loss of 1 at
each round.

We now upper bound the probability with which the bad event happens.

Pr[=C] =Pr[3t: 7, ¢ [0,1]] < > Pr[r ¢ [0,1]] (union bound)
te[T)
2 N
< Z Prlle:| > A\ < 2exp(—)\2/02) T < T (substituting \)

te[T]
Plugging Pr[—C] to Equation (5) we get:
E[Reg®(T)] < E[Reg™(T)|C] + 2 (6)

So for the remainder of the proof we will condition on the clean event C and compute E[Reg®(7")|C]. Conditioning on C
means that 1 + A — r;(a) € [0, A], where A = o/log T

We first compute the first and the second moments of estimator Zt (+). For the first moment:

)-I{e=¢}
E[f0)] = 3 ate)- LG =000 v
For the second moment: ) 2 2
Nie)-1{e=¢ i(e A
i [E(e)} - e/;g%(e) ( )qf({e) : - %E@; = qt(e) ®

where for the first inequality, we have used the fact that ¢;(e) < A (since we conditioned on C) and the last one is due to the
fact that ¢;(e) > ~v/|&|.

We define the weight assigned to grid point e € £ at round ¢ as: wy(e) = wy_1(e) - exp(fnzt(e)) and wp(e) = 1,Ve € &.
Let Wi = > ¢ wi(e) be the potential function. Then,

W():Zwo(e): ‘5| (9)

ecé
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Using e* to denote the best-fixed policy in hindsight, we have:

Wr = ZwT ) > wr(e*) =exp [ — Z Li(e (10)

ecf te[T)

We next analyze how much the potential changes per-round:

log (ngl) = log Deee wt(e):;tp (_Uﬁt(ff)) =log <Zpt(e) exp (—MZ(@)))

t

ee&
< log (Zpt(e) . (1 — n@(e) +n2z?(e)>> e*<1—z+z%x>0)
eef
= log (1 =0y pi(e)li(e) + 1 pre)e?(e)) (Cecepi(e) =1)
ecé ecé
< -0y pile)lle) +n* > pile)li(e)
ee& ee&
@ =Bl N ae) =€l
=Xy W@ Ty )
B a(e) —v/I€]; 2 a:(e) 2
< neezgiﬂ ) )+ ; it (11)

where the second inequality is due to the fact that logz < x — 1 for z > 0. In order for this inequality to hold we need to

verify that:
L=nY pi(e)lu(e) +n° Y pi(e)li(e) > 0
ee& eef

or equivalently, that:

1= pile)li(e) > 0 (12)

e€ef
We do so after we explain how to tune 7 and ~.

We return to Equation (11); summing up for all rounds ¢ € [T'] in Equation (11) we get:

log (sz) Z Z Qt 7/|5\ n? Z Z qi(e ? (13)

te[T) ee€ te[T] eES

Using Equation (9) and Equation (10) we have that: log(Wr/Wo) > —n 3, cq 0;(e*) — log |€|. Combining this with the
upper bound on log(Wr7 /W) from Equation (13) and multiplying both sides by (1 — ) /n we get:

log(|€
50 3)1- 000 T <0 T Tt 1o/
te[T] e€€ \5\ te[T] te[T] e K
We can slightly relax the right hand side using the fact that v < 1 and get:
y log &
5 3 (o)~ ) 7~ 0= X ) <0 3 S +
te[T) ee€ te[T) te[T]) ee€ U

Taking expectations (wrt the draw of the algorithm) on both sides of the above expression and using our derivations for the
first and second moment (Equation (7) and Equation (8) respectively) we get:

ZZ(% |g|) N ue)<n Y S ale) A? | log(lE)

te[T] ec€ te[T] te[T) ec€ K
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Using the fact that ¢,(-) € [0, A] the above becomes:

log(|€
EReg*(T)C] = 3 Y a@)te) — 3 ter) < mraefe] + 280D | o
te[T] e€€ te[T] n
Tuning n = §(|‘ |‘) and v = , we get that:

E [Reg®(T)|C] < 3\/T|E[N21og(|€]) = 3y/T|E|o log(T) log(|€]) (14)

Before we proceed to bounding the discretization error that we incur by playing policies only on the grid, we verify that
Equation (12) holds for the chosen 7 and « parameters. Note that when ¢;(e) = 0, then Equation (12) holds. So we focus on
the case where £;(e) = 4 (e)/q:(e).

1Y pile) Z <n> pile) <772pt Al nM=%

ec& ec& ec& v

where the first inequality is due to the fact that ¢, (e) > v/|£], Ve € £, the second is because ¢;(e) < A, the first equality is
because ) | .. p:(e) = 1, and the last equality is because of the values that we chose for parameters 7 and .

The final step in proving the theorem is to bound the strategic discretization error that we incur because our algorithm only
chooses policies on the grid, while 0(1), 6% (and hence, the actual optimal policy) may not correspond to any grid point.
Let a} correspond to the action chosen by the optimal policy.

SDE(T Z E [ri(a;)] Z E[ri(age)] = Z <0(a:) — G(Gt'e*),xt>
te[T) te[T] te[T]

We separate the 7" rounds into 3 groups: in group G, we have rounds ¢ € [T such that a} = a; .~. In group G2, we have
rounds ¢ € [T'] such that aj = 0 but a; .~ = 1. In group G5, we have rounds ¢ € [T, such that a} = 1 but a; .~ = 0. With
these groups in mind, one can rewrite the above equation as:

SDE(T) = Y <9(a:> _glaves), Xt> +y <9<a:> _glaer), Xt> +3 <9<a:> _ 9<at,e*>,xt>
teG1 teGy teGs
For all the rounds in (51, the strategic discretization error is equal to 0. Hence the strategic discretization error becomes:

SDE(T) = Y <9<“2‘> - 0<“tve*>,xt> +3 <e<“?> - 9<“tve*),xt> (15)

teGa teGs

SDE(G2) SDE(G3)
We first analyze SDE(G2):
SDE(Gs) = Y <9<o> _ 9<1>’Xt>
teGa

~(1) ~(0) . . a1 ~(0)
Let us denote by 8 ~ and @ ~ the points such thate* =6 "~ — 0

SDE(Gs) = Z (<9(o> —5(0),xt> N <5(1> _0<1)7xt> n <5<o> _§<1>7Xt>>

. Adding and subtracting (e*, x;) in the above, we get:

teGy
< Z (‘<9(0 0 O),Xt>‘ + ’<§(1) — 9(1),Xt>‘ + <§(0) — 5(1),Xt>) (x < |z|)
teGa
< 2T + Z < (0) A(l) xt> (Cauchy-Schwarz)
teGo

Q¢
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Finally, we show that ), < 0. For the rounds where a; .- = 1 but a; = 0, it can be the case that x; # x; (as the agents
only strategize in order to get assigned action 1. But since a; .« = 1, then from the algorithm:

<§(1) B 5(0)7x;> > 5o o <§(0) _5(1),X2> < —§le*|| (16)

Adding and subtracting x from quantity @, we have:

0, = <’0\(0) B 5(1),Xt B X;> " <’0\(0) B 5(1),x2>

~(0)  ~(1) ’ " .
<(0 =0 "xt—x;)— e (Equation (16))
~(0) (1
< He( ' _9 )’ e = % = Sl (Cauchy-Schwarz)
< ]l -6 —dlle”|.
As aresult:
SDE(G3) < 2T 17)

Moving on to the analysis of SDE(G3):

SDE(G3) = Z <9<o> _ 9<1>’Xt>
teGs
_ 5(1) _ 5(0)

~(1 ~(0
Again, we use 9( ) and 9( ) the points that e* . Adding and subtracting (e*, x;) and following the same

derivations as in SDFE(G3), we have that:

SDE(Gs) < 2:T+ 3 <§(1) - 5(0),xt> (18)
teGs
Qt

Since a; e+ = 0, then it must have been the case that X} = x;; this is because the agent would not spend effort to strategize
if they would still be assigned action 0. For this reason, it must be that Q; < 0.

Combining the upper bounds for SDE(G2) and SDE(G3) in Equation (15), we have that SDE(T) < 4eT.

Putting everything together, we have that the regret is comprised by the regret incurred on the discretized grid and the
strategic discretization error, i.e.,

d
E[Reg(T)] < 3v/T|E|o log(T) log(|€]) + 4T = 3\/Td (i) olog(T)log(1/e) + 4eT

do log T) 1/(d+2)

Tuning € = ( T we get that the regret is:

E[Reg(T)] < 67D/ (42 (4o 10g Y/ (@+2) = & (T(d+1)/(d+2)> '

E. Extension to trembling hand best-response
Observe that when lazy tiebreaking (Definition 2.1), if agent ¢ modifies their context they modify it by an amount ¢, such

that
O0r+ = min
Lt ogngén
st m(x)) =1

et = xtll2 = 7.
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We define y-trembling hand tiebreaking as o7 = 1,4 + oy, where oy € [0, min{é — dr, +,y}] may be chosen arbitrarily.
Our results in Section 3 may be extended to trembling hand tiebreaking by considering the following redefinition of a clean
point:

Condition E.1 (Sufficient condition for x’ = x). Given a shifted linear policy parameterized by ﬂ(l) € R4, we say that a
context X' is clean if (B, x') > (6 +7)||BY |2 + ro.

No further changes are required. This will result in a slightly worse constant in Theorem 3.3 (i.e. all instances of § will be
replaced by 6 + ). Our algorithms and results in Section 4 do not change.



	Introduction
	Contributions

	Setting and background
	Strategic classification with apple tasting feedback
	High-dimensional contexts

	Beyond stochastic contexts
	Related work
	Useful concentration inequalities
	Proofs for sec:stochastic
	Proof of thm:stochastic-main
	Proof of cor:c1
	Explore-Then-Commit Analysis
	Proof of thm:best-both-main
	Inconsistency of OLS when using all data

	Proofs for sec:adversarial
	Proof of thm:upd-one

	Extension to trembling hand best-response

