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Abstract

Privacy estimation techniques for differentially private (DP) algorithms are useful1

for comparing against analytical bounds, or to empirically measure privacy loss in2

settings where known analytical bounds are not tight. However, existing privacy3

auditing techniques usually make strong assumptions on the adversary (e.g., knowl-4

edge of intermediate model iterates or the training data distribution), are tailored to5

specific tasks, model architectures, or DP algorithm, and/or require retraining the6

model many times (typically on the order of thousands). These shortcomings make7

deploying such techniques at scale difficult in practice, especially in federated8

settings where model training can take days or weeks. In this work, we present a9

novel “one-shot” approach that can systematically address these challenges, allow-10

ing efficient auditing or estimation of the privacy loss of a model during the same,11

single training run used to fit model parameters, and without requiring any a priori12

knowledge about the model architecture, task, or DP training algorithm. We show13

that our method provides provably correct estimates for the privacy loss under the14

Gaussian mechanism, and we demonstrate its performance on well-established FL15

benchmark datasets under several adversarial threat models.16

1 Introduction17

Federated learning (FL) [McMahan et al., 2017, Kairouz et al., 2021b] is a paradigm for training18

machine learning models on decentralized data. At each round, selected clients contribute model19

updates to be aggregated by a server, without ever communicating their raw data. FL incorporates20

data minimization principles to reduce the risk of compromising anyone’s data: each user’s data21

never leaves their device, the update that is transmitted contains only information necessary to update22

the model, the update is encrypted in transit, and the update exists only ephemerally before being23

combined with other clients’ updates and then incorporated into the model [Bonawitz et al., 2022].24

Technologies such as secure aggregation [Bonawitz et al., 2017, Bell et al., 2020] can be applied to25

ensure that even the central server cannot inspect individual updates, but only their aggregate.26

However, these data minimization approaches cannot rule out the possibility that an attacker might27

learn some private information from the training data by directly interrogating the final model [Carlini28

et al., 2021, Balle et al., 2022, Haim et al., 2022]. To protect against this, data anonymization for the29

model is required. FL can be augmented to satisfy user-level differential privacy [Dwork and Roth,30

2014, Abadi et al., 2016, McMahan et al., 2018], the gold-standard for data anonymization. DP can31

guarantee each user that a powerful attacker – one who knows all other users’ data, all details about32

the algorithm (other than the values of the noise added for DP), and every intermediate model update33

– still cannot confidently infer the presence of that user in the population, or anything about their data.34

This guarantee is typically quantified by the parameter ε, with lower values corresponding to higher35

privacy (less confidence for the attacker).36
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DP is often complemented by empirical privacy estimation techniques, such as membership inference37

attacks [Shokri et al., 2017, Yeom et al., 2018, Carlini et al., 2022], which measure the success of an38

adversary at distinguishing whether a particular record was part of training or not.1 Such methods39

have been used to audit the implementations of DP mechanisms or claims about models trained with40

DP [Jagielski et al., 2020, Nasr et al., 2021, Zanella-Béguelin et al., 2022, Lu et al., 2022]. They41

are also useful for estimating the privacy loss in cases where a tight analytical upper bound on ε is42

unknown, for example when clients are constrained to participate in at most some number of rounds,43

or when the adversary does not see the full trace of model iterates. However, existing privacy auditing44

techniques suffer from several major shortcomings. First, they require retraining the model many45

times (typically in the thousands) to provide reliable estimates of DP’s ε [Jagielski et al., 2020, Nasr46

et al., 2021]. Second, they often rely on knowledge of the model architecture and/or the underlying47

dataset (or at least a similar, proxy dataset) for mounting the attack. For example, a common approach48

is to craft a “canary” training example on which the membership is being tested, which typically49

requires an adversary to have access to the underlying dataset and knowledge of the domain and50

model architecture. Finally, such techniques typically grant the adversary unrealistic power, for51

example (and in particular) the ability to inspect all model iterates during training [Maddock et al.,52

2022], something which may or may not be reasonable depending on the system release model.53

Such assumptions are particularly difficult to satisfy in FL due to the following considerations:54

• Minimal access to the dataset, or even to proxy data. A primary motivating feature of FL is is55

that it can make use of on-device data without (any) centralized data collection. In many tasks,56

on-device data is more representative of real-world user behavior than any available proxy data.57

• Infeasibility of training many times, or even more than one time. FL training can take days or58

weeks, and expends resources on client devices. To minimize auditing time and client resource59

usage, an ideal auditing technique should produce an estimate of privacy during the same, single60

training run used to optimize model parameters, and without significant overhead from crafting61

examples or computing additional “fake” training rounds.62

• Lack of task, domain, and model architecture knowledge. A scalable production FL platform63

is expected to cater to the needs of many diverse ML applications, from speech to image to64

language modeling tasks. Therefore, using techniques that require specific knowledge of the task65

and/or model architecture makes it hard to deploy those techniques at scale in production settings.66

In this paper, we design an auditing technique tailored for FL usage with those considerations in mind.67

We empirically estimate ε efficiently under user-level DP federated learning by measuring the training68

algorithm’s tendency to memorize arbitrary clients’ updates. Our main insight is to insert multiple69

canary clients in the federated learning protocol with independent random model updates, and design70

a test statistic based on cosine angles of each canary update with the final model to test participation71

of a certain user in the protocol. The intuition behind the approach comes from the elementary72

result that in a high-dimensional space, isotropically sampled vectors are nearly orthogonal with high73

probability. So we can think of each canary as estimating the algorithm’s tendency to memorize along74

a dimension of variance that is independent of the true model updates, and of the other canaries.75

Our method has several favorable properties. It can be applied during the same, single training76

run which is used to train the federated model parameters, and therefore does not incur additional77

performance overhead. Although it does inject some extra noise into the training process, the effect on78

model quality is negligible, provided model dimensionality and number of clients are reasonably sized.79

We show that in the tractable case of a single application of the Gaussian mechanism, our method80

provably recovers the true, analytical ε in the limit of high dimensionality. We evaluate privacy loss81

for several adversarial models of interest, for which existing analytical bounds are not tight. In the82

case when all intermediate updates are observed and the noise is low, our method produces high values83

of ε, indicating that an attacker could successfully mount a membership inference attack. However,84

in the common and important case that only the final trained model is released, our ε estimate is far85

lower, suggesting that adding a modest amount of noise is sufficient to prevent leakage, as has been86

observed by practitioners. Our method can also be used to explore how leakage changes as aspects of87

the training protocol change, for which no tight theoretical analysis is known, for example if we limit88

client participation. The method we propose is model and dataset agnostic, so it can be easily applied89

without change to any federated learning task.90

1Some prior work only applies to example-level DP, in which records correspond to examples, as opposed to
user-level, in which records are users. We will describe our approach in terms of user-level DP, but it can be
trivially modified to provide example-level DP.
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2 Background and related work91

Differential privacy. Differential privacy (DP) [Dwork et al., 2006, Dwork and Roth, 2014] is92

a rigorous notion of privacy that an algorithm can satisfy. DP algorithms for training ML models93

include DP-SGD [Abadi et al., 2016], DP-FTRL [Kairouz et al., 2021a], and DP matrix factoriza-94

tion [Denissov et al., 2022, Choquette-Choo et al., 2022]. Informally, DP guarantees that a powerful95

attacker observing the output of the algorithm A trained on one of two adjacent datasets (differing by96

addition or removal of one record), D or D′, cannot confidently distinguish the two cases, which is97

quantified by the privacy parameter ε.98

Definition 2.1. User-level differential privacy. The training algorithm A : D → R is user-level
(ε, δ) differentially private if for all pairs of datasets D and D′ from D that differ only by addition or
removal of the data of one user and all output regions R ⊆ R:

Pr[A(D) ∈ R] ≤ eε Pr[A(D′) ∈ R] + δ.

DP can be interpreted as a hypothesis test with the null hypothesis that A was trained on D and the99

alternative hypothesis that A was trained on D′. False positives (type-I errors) occur when the null100

hypothesis is true, but is rejected, while false negatives (type-II errors) occur when the alternative101

hypothesis is true, but is rejected. Kairouz et al. [2015] characterized (ε, δ)-DP in terms of the102

false positive rate (FPR) and false negative rate (FNR) achievable by an acceptance region. This103

characterization enables estimating the privacy parameter as:104

ε̂ = max{log
1− δ − FPR

FNR
, log

1− δ − FNR
FPR

}. (1)

We review and compare with related work in Appendix F.105

3 One-shot privacy estimation for the Gaussian mechanism106

As a warm-up, we start by considering the problem of estimating the privacy of the Gaussian107

mechanism, the fundamental building block of DP-SGD and DP-FedAvg. To be precise, given108

D = (x1, · · · , xn), with ‖xi‖ ≤ 1 for all i ∈ [n], the output of the Gaussian vector sum query is109

A(D) = x̄+ σZ, where x̄ =
∑
i xi and Z ∼ N (0, I). Without loss of generality, we can consider110

a neighboring dataset D′ with an additional vector x with ‖x‖ ≤ 1. Thus, A(D) ∼ N (x̄, σ2I)111

and A(D′) ∼ N (x̄+ x, σ2I). For the purpose of computing the DP guarantees, this mechanism is112

equivalent to analyzing A(D) ∼ N (0, σ2) and A(D′) ∼ N (1, σ2) due to spherical symmetry.113

The naive approach for estimating the ε of an implementation of the Gaussian mechanism would114

run it many times (say 1000 times), with half of the runs on D and the other half on D′. Then the115

outputs of these runs are shuffled and given to an “attacker” who attempts to determine for each116

output whether it was computed from D or D′. Finally, the performance of the attacker is quantified117

and Eq. (1) is used to obtain an estimate of the mechanism’s ε at a target δ.118

We now present an approach for estimating ε by running the mechanism only once. The basic idea119

behind our approach is to augment the original dataset with k canary vectors c1, . . . , ck, sampled i.i.d120

uniformly at random from the unit sphere, obtaining D = (x1, · · · , xn, c1, · · · , ck). We consider121

k neighboring datasets, each excluding one of the canaries, i.e., D′i = D \ {ci} for i ∈ [k]. We122

run the Gaussian mechanism once on D and use its output to compute k test statistics {gi}i∈[k], the123

cosine of the angles between the output and each one of the k canary vectors. We use these k cosines124

to estimate the distribution of test statistic on D by computing the sample mean µ̂ = 1
k

∑k
j=1 gj125

and sample variance σ̂2 = 1
k

∑k
j=1

(
gj − µ̂

)2
and fitting a Gaussian N (µ̂, σ̂2). To estimate the126

distribution of the test statistic on D′, we need to run the mechanism on each D′i and compute the127

cosine of the angle between the output vector and ci. This is where our choice of (i) independent128

isotropically distributed canaries and (ii) cosine angles as our test statistic are particularly useful.129

The distribution of the cosine of the angle between an isotropically distributed unobserved canary130

and the mechanism output (or any independent vector) can be described in a closed form; there is no131

need to approximate this distribution with samples. We will show in Theorems 3.1 and 3.2 that this132

distribution can be well approximated by N (0, 1/d). Now that we have the distribution of the test133

statistic on D and D′, we estimate the ε of the mechanism using the method given in Appendix B134
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which allows us to compute the ε when the null and alternate hypotheses are two arbitrary Gaussians.135

Our approach is summarized in Algorithm 1.136

Algorithm 1 One-shot privacy estimation for Gaussian mechanism.

1: Input: Vectors x1, · · · , xn with ‖xi‖ ≤ 1,
DP noise variance σ2, and target δ

2: ρ←
∑
i∈[n] xi

3: for j ∈ [k] do
4: Draw random cj ∈ Sd−1 unit sphere
5: ρ← ρ+ cj

6: Release ρ← ρ+N (0, σ2I)
7: for j ∈ [k] do
8: gj ← 〈cj , ρ〉/||ρ||
9: µ̂, σ̂ ←mean({gj}), std({gj})

10: ε̂← ε(N (0, 1/d) || N (µ̂, σ̂2); δ)

We argue that the approach given in Algorithm 1 gives an estimate of ε that approaches the exact137

value when d is high. To do so, we will prove (Theorems 3.1 and 3.2) that distribution of the test138

statistic on D′ is indeed well approximated byN (0, 1/d), and (Theorem 3.3) that
√
dµ̂

p−→ 1/σ and139

dσ̂2 p−→ 1 as d→∞, i.e., the distribution of test statistic on D is N ( 1
σ
√
d
, 1
d ), asymptotically. Since140

these two distributions are just a scaling of A(D) ∼ N (0, σ2) and A(D′) ∼ N (1, σ2) by a factor of141
1

σ
√
d

, the ε is the same, which proves our claim.2 (All proofs in Appendix A.)142

Theorem 3.1. Let S be sampled uniformly from the unit sphere in Rd, and let τ = 〈S, v〉/‖v‖ ∈143

[−1, 1] be the cosine similarity between S and some arbitrary independent nonzero vector v. Then,144

the probability density function of τ is145

fd(τ) =
Γ(d2 )

Γ(d−1
2 )
√
π

(1− τ2)
d−3
2 .

Theorem 3.2. In the setting of Theorem 3.1, we have that τ
√
d converges in distribution to N (0, 1)146

as d→∞, i.e., limd→∞ P(τ ≤ λ/
√
d) = PZ∼N (0,1)(Z ≤ λ).147

Theorem 3.3. For d ∈ N, let k = o(d), but k = ω(1). For i = 1 . . . k, let ci sampled i.i.d.148

from the unit sphere in d dimensions. Let Z ∼ N (0; Id). Let σ > 0, and define the mechanism149

result ρ =
∑k
j=1 cj + σZ, and the cosine values gj =

〈cj ,ρ〉
‖ρ‖ . Write the empirical mean of the150

cosines µ̂ = 1
k

∑k
j=1 gj , and the empirical variance σ̂2 = 1

k

∑k
j=1

(
gj − µ̂

)2
. Then as d → ∞,151

√
dµ̂

p−→ 1/σ and dσ̂2 p−→ 1.152

We note that running the algorithm with moderate values of d and k already yields a close approxi-153

mation. We simulated the case where d = 106, k = 103, and the results are shown in Table 1. The154

estimated εest is very close to the true value of ε, with small standard deviation, which demonstrates155

that the random canary method provides tight estimates for the Gaussian mechanism.156

σ analytical ε εest
4.22 1.0 0.972± 0.148
1.54 3.0 3.04± 0.137
0.541 10.0 9.98± 0.190

Table 1: One-shot auditing of the Gaussian mechanism with d = 106, k = 103, and δ = 10−6. For
each value of ε, we set σ using the optimal calibration of Balle and Wang [2018], and then use the
random canary method to output the estimate εest. Shown is the mean and std εest over 50 simulations.

4 One-shot privacy estimation for FL with random canaries157

We now extend this idea to DP Federated Averaging to estimate the privacy of releasing the final158

model parameters in one shot, during model training. We propose adding k canary clients to the159

2Our Theorem 3.3 as written does not include the data vectors xi in the sum ρ. It can be extended to do so if
we also assume that n = o(d).
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training population who participate exactly as real users do. Each canary client generates a random160

model update sampled from the unit sphere, which it returns at every round in which it participates,161

scaled to have norm equal to the clipping norm for the round. After training, we collect the set162

of canary/final-model cosines, fit them to a Gaussian, and compare them to the null hypothesis163

distribution N (0, 1/d) just as we did for the basic Gaussian mechanism. The procedure is described164

in Algorithm 2. (Algorithms 2 and 3 can be found in Appendix C.)165

FL is an optimization procedure in which each model iterate is a linear combination of all updates166

received thus far, plus Gaussian noise. Our threat model allows the attacker to control the updates of167

a client, and the ability to inspect the final model. We argue that it is a powerful (perhaps optimal,168

under some assumptions) strategy to return a very large update that is essentially orthogonal to all169

other updates, and then measure the dot product (or cosine) to the final model. Here we use the fact170

that randomly sampled canary updates are nearly orthogonal to all the true client updates and also171

to each other. Unlike many works that only produce correct estimates when clients are sampled172

uniformly and independently at each round, our method makes no assumptions on the pattern of client173

participation. Clients may be sampled uniformly at each round, shuffled and processed in batches,174

or even participate according to the difficult-to-characterize de facto pattern of participation of real175

users in a production system. Our only assumption is that canaries can be inserted according to the176

same distribution that real clients are. In production settings, a simple and effective strategy would177

be to designate a small fraction of real clients to have their model updates replaced with the canary178

update whenever they participate. If the participation pattern is such that memorization is easier, for179

whatever reason, the distribution of canary/final-model cosines will have a higher mean, leading to180

higher ε estimates.181

We stress that our empirical εest estimate should not be construed as a formal bound on the worst-case182

privacy leakage. Rather, a low value of εest can be taken as evidence that an adversary implementing183

this particular, powerful attack will have a hard time inferring the presence of any given user upon184

observing the final model. If we suppose that the attack is strong, or even optimal, then we can infer185

that any attacker will not be able to perform MI successfully, and therefore our εest is a justifiable186

metric of the true privacy when the final model is released. Investigating conditions under which this187

could be proven would be a valuable direction for future work.188

Aside from quantifying the privacy of releasing only the final model, our method allows us to explore189

how privacy properties are affected by varying aspects of training for which we have no tight formal190

analysis. As an important example (which we explore in experiments) we consider how the estimate191

changes if clients are constrained to participate a fixed number of times.192

We also propose a simple extension to our method that allows us to estimate ε under the threat model193

where all model updates are observed. We use as the test statistic the maximum over rounds of the194

angle between the canary and the model delta at that round. Unfortunately in this case we can no195

longer express in closed form the distribution of max-over-rounds cosine of an canary that did not196

participate in training, because it depends on the trajectory of partially trained models, which is task197

and model specific. Our solution is to sample a set of unobserved canaries that are never included in198

model updates, but we still keep track of their cosines with each model delta and finally take the max.199

We approximate both the distributions of observed and unobserved maximum canary/model-delta200

cosines using Gaussian distributions and compute the optimal ε. The pseudocode for this modified201

procedure is provided in Algorithm 3. We will see that this method provides estimates of ε close to202

the analytical bounds under moderate amounts of noise, providing evidence that our attack is strong.203

5 Experiments204

In this section we present the results of experiments estimating the privacy leakage while training205

a model on a large-scale public federated learning dataset: the stackoverflow word prediction206

data/model of Reddi et al. [2020]. The model is a word-based LSTM with 4.1M parameters. We train207

the model for 2048 rounds with 167 clients per round, where each of the m=341k clients participates208

in exactly one round, amounting to a single epoch over the data. We use the adaptive clipping method209

of Andrew et al. [2021]. With preliminary manual tuning, we selected a client learning rate of 1.0210

and server learning rate of 0.56 for all experiments because the choice gives good performance over a211

range of levels of DP noise. We always use 1k canaries for each set of cosines; experiments with212

intermediate iterates use 1k observed and 1k unobserved canaries. We fix δ = m−1.1. We consider213
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Noise analytical ε εlo-all εest-all εlo-final εest-final
0 ∞ 6.240 45800 2.88 4.60
0.0496 300 6.238 382 1.11 1.97
0.0986 100 5.05 89.4 0.688 1.18
0.2317 30 0.407 2.693 0.311 0.569

Table 2: Comparing ε estimates using all model deltas vs. using the final model only. εlo is the
empirical 95% lower bound from our modified Jagielski et al. [2020] method. For moderate noise,
εest-all is in the ballpark of the analytical ε, providing evidence that the attack is strong and therefore
the ε estimates are reliable. On the other hand, εest-final is far lower, indicating that when the final
model is observed, privacy is better.

noise multipliers3 in the range 0.0496 to 0.2317, corresponding to analytical ε estimates from 300214

down to 30.4 We also include experiments with clipping only (noise multiplier is 0). We note that215

across the range of noise multipliers, the participation of 1k canaries had no significant impact on216

model accuracy – at most causing a 0.1% relative decrease.217

We also report a high-probability lower bound on ε that comes from applying a modified version of218

the method of Jagielski et al. [2020] to the set of cosines. That work uses Clopper-Pearson upper219

bounds on the achievable FPR and FNR of a thresholding classifier to derive a bound on ε. We make220

two changes: following Zanella-Béguelin et al. [2022], we use the tighter and more centered Jeffreys221

confidence interval for the upper bound on FNR at some threshold a, and we use the exact CDF of222

the null distribution for the FPR as described in Section 4. We refer to this lower bound as εlo. We223

set α = 0.05 to get a 95%-confidence bound.224

We first consider the case where the intermediate updates are released as described in Algorithm 3.225

The middle columns of Table 2 shows the results of these experiments over a range of noise multipliers.226

For the lower noise multipliers, our method easily separates the cosines of observed vs. unobserved227

canaries, producing very high estimates εest-all, which are much higher than lower bounds εlo-all228

estimated by previous work. This confirms our intuition that intermediate model updates give the229

adversary significant power to detect the presence of individuals in the data. It also provides evidence230

that the canary cosine attack is strong, increasing our confidence that the ε estimates assuming a231

weakened adversary that observes only the final model is not a severe underestimate.232

The rightmost columns of Table 2 show the results of restricting the adversary to observe only the final233

model, as described in Algorithm 2. Now εest is significantly smaller than when the adversary has234

access to all intermediary updates. With clipping only, our estimate is 4.60, which is still essentially235

vacuous from a rigorous privacy perspective.5 But with even a small amount of noise, we approach236

the high-privacy regime of ε ∼ 1, confirming observations of practitioners that a small amount of237

noise is sufficient to prevent most memorization.238

In Appendix D we provide analogous experiments on the federated EMNIST dataset, with similar239

results. In Appendix E we present further experiments to highlight the ability of our method to240

estimate privacy when we vary aspects of the training algorithm that may reasonably be expected to241

change privacy properties, but for which no tight analysis has been obtained.242

6 Conclusion243

We have introduced a novel method for empirically estimating the privacy loss during training of a244

model with DP-FedAvg. For natural production-sized problems (millions of parameters, hundreds of245

thousands of clients), it produces reasonable privacy estimates during the same single training run246

used to estimate model parameters, without degrading the utility of the model, and does not require247

any prior knowledge of the task, data or model.248

3The noise multiplier is the ratio of the noise to the clip norm. When adaptive clipping is used, the clip norm
varies across rounds, and the noise scales proportionally.

4Since each user participates once, we bound ε as the unamplified Gaussian mechanism applied once with no
composition.

5An ε of 5 means that an attacker can go from a small suspicion that a user participated (say, 10%) to a very
high degree of certainty (94%) [Desfontaines, 2018].
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Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.341

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine342

learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.343

T. Steinke. Composition of differential privacy privacy amplification by subsampling, 2022.344

8

https://openreview.net/forum?id=Sxk8Bse3RKO
https://openreview.net/forum?id=Sxk8Bse3RKO
https://openreview.net/forum?id=Sxk8Bse3RKO
https://proceedings.mlr.press/v37/kairouz15.html
https://openreview.net/forum?id=AKM3C3tsSx3
https://arxiv.org/abs/2210.02912
https://proceedings.mlr.press/v54/mcmahan17a.html


T. Steinke, M. Nasr, and M. Jagielski. Privacy auditing with one (1) training run. arXiv preprint345

arXiv:2305.08846, 2023.346

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the347

connection to overfitting. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),348

pages 268–282. IEEE, 2018.349

S. Zanella-Beguelin, L. Wutschitz, S. Tople, A. Salem, V. Rühle, A. Paverd, M. Naseri, B. Köpf, and350
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A Proofs of theorems from the main text357

Theorem 3.1. Let S be sampled uniformly from the unit sphere in Rd, and let τ = 〈S, v〉/‖v‖ ∈358

[−1, 1] be the cosine similarity between S and some arbitrary independent nonzero vector v. Then,359

the probability density function of τ is360

fd(τ) =
Γ(d2 )

Γ(d−1
2 )
√
π

(1− τ2)
d−3
2 .

Proof. Due to the rotational symmetry of the distribution of S, without loss of generality, we can361

take v to be constant. First we describe the distribution of the angle θ ∈ [0, π] between s and v, then362

change variables to get the distribution of its cosine τ . Consider the spherical cap of points on the363

d-sphere with angle to v less or equal to θ, having (d−1)-measure Ad(θ). The boundary of Ad(θ) is a364

(d−1)-sphere with radius sin θ and (d−2)-measure Md(θ) = Sd−1 sind−2 θ, where Sd = 2π
d
2 /Γ(d2 )365

is the surface area of the unit d-sphere. (For example, the boundary of the 3-d spherical cap with366

maximum angle θ is a circle (2-sphere) with radius sin θ and circumference 2π sin(θ).) Normalizing367

by the total area of the sphere Sd, the density of the angle is368

φd(θ) = S−1
d

d

dθ
Ad(θ)

=

(
2π

d
2

Γ(d2 )

)−1(
2π

d−1
2

Γ(d−1
2 )

)
sind−2 θ

=
Γ(d2 )

Γ(d−1
2 )
√
π

sind−2 θ.

Now change variables to express it in terms of the angle cosine τ = cos(θ) ∈ [−1, 1]:369

fd(τ) = φd(arccos τ) ·
∣∣∣∣ ddτ arccos(τ)

∣∣∣∣
=

Γ(d2 )

Γ(d−1
2 )
√
π

[
sin(arccos τ)

]d−2
∣∣∣∣− 1√

1− τ2

∣∣∣∣
=

Γ(d2 )

Γ(d−1
2 )
√
π

(√
1− τ2

)d−2

√
1− τ2

=
Γ(d2 )

Γ(d−1
2 )
√
π

(1− τ2)
d−3
2 .

370

Theorem 3.2. In the setting of Theorem 3.1, we have that τ
√
d converges in distribution to N (0, 1)371

as d→∞, i.e., limd→∞ P(τ ≤ λ/
√
d) = PZ∼N (0,1)(Z ≤ λ).372
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Proof. The distribution function of t ∈ [−
√
d,
√
d] is373

f̂d(t) =
1√
d

Γ(d2 )

Γ(d−1
2 )
√
π

(
1− (t/

√
d)2
) d−3

2

=
Γ(d2 )

Γ(d−1
2 )
√
πd

(
1− t2/d

) d−3
2 .

Taking the limit:374

lim
d→∞

f̂d(t) =

(
lim
d→∞

Γ(d2 )

Γ(d−1
2 )
√
πd

)
·
(

lim
d→∞

(
1− t2/d

) d
2

)
·
(

lim
d→∞

(
1− t2/d

)− 3
2

)
=

1√
2π
· e−t

2/2 · 1,

where we have used the fact that Γ( d
2 )

Γ( d−1
2 )
∼
√
d/2.375

376

Lemma A.1. If τ is distributed according to the cosine angle distribution described in Theorem 3.1,377

then Var[τ ] = 1/d.378

Proof. Let x = (x1, . . . , xd) be uniform on the unit d-sphere. Then x1 = 〈x, e1〉 has the required379

distribution, where e1 is the first standard basis vector. E[x1] is zero, so we are interested in380

Var[x1] = E
[
x2

1

]
. Since

∑
i x

2
i = 1, we have that E

[∑
i x

2
i

]
=
∑
i E
[
x2
i

]
= 1. But all of the xi381

have the same distribution, so E
[
x2

1

]
= 1/d.382

Theorem 3.3. For d ∈ N, let k = o(d), but k = ω(1). For i = 1 . . . k, let ci sampled i.i.d.383

from the unit sphere in d dimensions. Let Z ∼ N (0; Id). Let σ > 0, and define the mechanism384

result ρ =
∑k
j=1 cj + σZ, and the cosine values gj =

〈cj ,ρ〉
‖ρ‖ . Write the empirical mean of the385

cosines µ̂ = 1
k

∑k
j=1 gj , and the empirical variance σ̂2 = 1

k

∑k
j=1

(
gj − µ̂

)2
. Then as d → ∞,386

√
dµ̂

p−→ 1/σ and dσ̂2 p−→ 1.387

Proof. Rewrite388

√
dµ̂ =

√
d

(
1

k

∑
i

〈ci, ρ〉
||ρ||

)

=

(
||ρ||√
d

)−1
(

1

k

∑
i

〈ci, ρ〉

)
.

We will show that ||ρ||
2

d

p−→ σ2, while 1
k

∑
i〈ci, ρ〉

p−→ 1.389

Note that ||Z||2 is Chi-squared distributed with mean d and variance 2d. Also, for all i 6= j, 〈ci, cj〉390

is distributed according to the cosine distribution discussed in Theorem 3.1 and Lemma A.1 with391

mean 0 and variance 1/d. Therefore,392

E
[
||ρ||2

d

]
=

1

d

〈∑
i

ci + σZ,
∑
i

ci + σZ

〉

=
1

d

∑
i,j

E[〈ci, cj〉] + 2σ
∑
i

E[〈Z, ci〉] + σ2E
[
||Z||2

]
=

1

d

(
k + σ2d

)
= σ2 + o(1).
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Next, note that all of the following dot products are pairwise uncorrelated: 〈Z,Z〉, 〈Z, ci〉 (for all i),393

and 〈ci, cj〉 (for all i, j). Therefore the variance decomposes:394

Var
[
||ρ||2

d

]
=

1

d2

∑
i,j

Var[〈ci, cj〉] + 2σ2
∑
i

Var[〈Z, ci〉] + σ4Var
[
||Z||2

]
=

1

d2

(
k(k − 1)

d
+ 2kσ2 + 2σ4d

)
,

= O(d−1).

Taken together, these imply that ||ρ||√
d

p−→ σ.395

Now reusing many of the same calculations,396

E

[
1

k

∑
i

〈ci, ρ〉

]
=

1

k

k +
∑
i6=j

E[〈ci, cj〉] + σ
∑
i

E[〈Z, ci〉]

 = 1,

and397

Var

[
1

k

∑
i

〈ci, ρ〉

]
=

1

k2

∑
i 6=j

Var[〈ci, cj〉] + σ2
∑
i

Var[〈Z, ci〉]


=

1

k2

(
k(k − 1)

d
+ kσ2

)
= o(1),

which together imply that 1
k

∑
i〈ci, ρ〉

p−→ 1.398

Now consider399

dσ̂2 = d

(
1

k

∑
i

g2
i −

(
1

k

∑
i

gi

)2
)

=
d

||ρ||2

1

k

∑
i

〈ci, ρ〉2 −

(
1

k

∑
i

〈ci, ρ〉

)2
 .

We already have that d
||ρ||2

p−→ 1
σ2 and 1

k

∑
i〈ci, ρ〉

p−→ 1, so it will be sufficient to show400

1
k

∑
i〈ci, ρ〉2

p−→ 1 + σ2. Again using the uncorrelatedness of all pairs of dot products under401

consideration,402

E

[
1

k

∑
i

〈ci, ρ〉2
]

=
1

k

∑
i

E


∑

j

〈ci, cj〉+ 〈ci, σZ〉

2


=
1

k

∑
i

∑
j,`

E[〈ci, cj〉〈ci, c`〉] + 2
∑
j

E[〈ci, cj〉〈ci, σZ〉] + E
[
〈ci, σZ〉2

]
=

1

k

∑
i

∑
j,`

I{j = i, ` = i}+ 0 + σ2


= 1 + σ2.

Also,403

Var

[
1

k

∑
i

〈ci, ρ〉2
]

=
1

k2

∑
i

∑
j,`

Var[〈ci, cj〉〈ci, c`〉] + 2
∑
j

Var[〈ci, cj〉〈ci, σZ〉] + Var
[
〈ci, σZ〉2

] .
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We’ll bound each of these terms to show the sum is o(1).404

First, look at Var[〈ci, cj〉〈ci, c`〉]. If i = j = `, it is 0. If j 6= `,405

Var[〈ci, cj〉〈ci, c`〉] = E
[
〈ci, cj〉2〈ci, c`〉2

]
− E[〈ci, cj〉〈ci, c`〉]2

= E
[
E
[
〈ci, cj〉2〈ci, c`〉2 | ci

]]
= E

[
E
[
〈ci, cj〉2 | ci

]
E
[
〈ci, c`〉2 | ci

]]
=

{
1/d j = i or ` = i,
1/d2 j 6= i and ` 6= i,

and if j = ` 6= i,406

Var[〈ci, cj〉〈ci, c`〉] = Var
[
〈ci, cj〉2

]
= E

[
〈ci, cj〉4

]
− E

[
〈ci, cj〉2

]2
≤ E

[
〈ci, cj〉4

]
≤ E

[
〈ci, cj〉2

]
= 1/d.

Together we have407

1

k2

∑
i,j,`

Var[〈ci, cj〉〈ci, c`〉] ≤
1

k2

(
2k(k − 1)

d
+
k(k − 1)(k − 2)

d2
+
k(k − 1)

d

)
= O(d−1).

Now for Var[〈ci, cj〉〈ci, σZ〉]. If i = j, then it is σ2. If i 6= j,408

Var[〈ci, cj〉〈ci, σZ〉] = E
[
〈ci, cj〉2〈ci, σZ〉2

]
− E[〈ci, cj〉〈ci, σZ〉]2

= E
[
E
[
〈ci, cj〉2|ci

]
E
[
〈ci, σZ〉2|ci

]]
= σ2/d.

So,409

2

k2

∑
i,j

Var[〈ci, cj〉〈ci, σZ〉] =
2

k2

(
kσ2 +

k(k − 1)σ2

d

)
= o(1).

Finally, 〈ci, Z〉2 is Chi-squared distributed with one degree of freedom, so Var
[
〈ci, σZ〉2

]
= 2σ4,410

and411

1

k2

∑
i

Var
[
〈ci, σZ〉2

]
=

2σ4

k
= o(1).

412

B Algorithm for exact computation of ε comparing two Gaussian413

distributions414

In this section we give the details of the computation for estimating ε when A(D) and A(D′) are415

both Gaussian-distributed with different variances.416

Let distribution under A(D) be P1 = N (µ1, σ
2
1) and the distribution under A(D′) be P2 =417

N (µ2, σ
2
2) with densities p1 and p2 respectively. Define fP1||P2

(x) = log p1(x)
p2(x) . Now Z1 =418

fP1||P2
(X1) with X1 ∼ P1 is the privacy loss random variable. Symmetrically define Z2 =419

fP2||P1
(X2) with X2 ∼ P2.420

From Steinke [2022] Prop. 7 we have that (ε, δ)-DP implies421

Pr [Z1 > ε]− eε Pr [−Z2 > ε] ≤ δ and Pr [Z2 > ε]− eε Pr [−Z1 > ε] ≤ δ.
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Now we can compute422

fP1||P2
(x) = log

p1(x)

p2(x)

= log

(
σ2

σ1
exp

(
−1

2

[
(x− µ1)2

σ2
1

− (x− µ2)2

σ2
2

]))
= log σ2 − log σ1 +

(x− µ2)2

2σ2
2

− (x− µ1)2

2σ2
1

= ax2 + bx+ c

where423

a =
1

2

(
1

σ2
2

− 1

σ2
1

)
,

b =
µ1

σ2
1

− µ2

σ2
2

,

and c =
1

2

((
µ2

σ2

)2

−
(
µ1

σ1

)2
)

+ log σ2 − log σ1.

To compute Pr [Z1 > ε], we need Pr
[
aX2

1 + bX1 + (c− ε) > 0
]

with X1 ∼ P1. To do so, divide424

the range of X1 into intervals according to the zeros of R(x) = ax2 + bx+ (c− ε). For example, if425

R has roots r1 < r2 and a is positive, we can compute Pr [Z1 > ε] = Pr [X1 < r1] + Pr [X1 > r2],426

using the CDF of the Normal distribution. This requires considering a few cases, depending on the427

sign of a and the sign of the determinant b2 − 4a(c− ε).428

Now note that fP2||P1
= −fP1||P2

, so429

Pr [−Z2 > ε] = Pr
[
−fP2||P1

(X2) > ε
]

= Pr[aX2
2 + bX2 + (c− ε) > 0].

So the two events we are interested in (Z1 > ε and −Z2 > ε) are the same, only when we compute430

their probabilities according to P1 vs. P2 we use different values for µ and σ.431

For numerical stability, the probabilities should be computed in the log domain. So we get432

log δ ≥ log (Pr[Z1 > ε]− eε Pr[−Z2 > ε])

= log Pr[Z1 > ε] + log (1− exp(ε+ log Pr[−Z2 > ε]− log Pr[Z1 > ε])) .

Note it can happen that Pr[Z1 > ε] < eε Pr[−Z2 > ε] in which case the corresponding bound is433

invalid. A final trick we suggest for numerical stability is if X ∼ N (µ, σ2) to use Pr(X < µ; t, σ2)434

in place of Pr(X > t;µ, σ2).435

Now to determine ε at a given target δ, one can perform a line search over ε to find the value that436

matches.437

C Algorithms438

Algorithms 1-3 illustrate the methods described in the main text.439

D Supplementary experimental results on EMNIST dataset440

In the main paper we presented results on the Stackoverflow federated word prediction task. Here441

we present similar results on the EMNIST character recognition dataset. It contains 814k characters442

written by 3383 users. The model is a CNN with 1.2M parameters. The users are shuffled and we443

train for five epochs with 34 clients per round. The optimizers on client and server are both SGD,444

with learning rates 0.031 and 1.0 respectively, and momentum of 0.9 on the server. The client batch445

size is 16.446

Table 3 shows the empirical epsilon estimates using either all model iterates or only the final model.447

As with Stackoverflow next word prediction, using all iterates and a low amount of noise gives us448
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Algorithm 2 Privacy estimation via random canaries

1: Input: Client selection function clients,
client training functions τi, canary selection
function canaries, set of canary updates cj ,
number of rounds T , initial parameters θ0,
noise generator Z, `2 clip norm function S,
privacy parameter δ, server learning rate η

2: for t = 1, . . . , T do
3: ρ = ~0
4: for i ∈ clients(t) do
5: ρ← ρ+ CLIP(τi(θt−1);S(t))

6: for j ∈ canaries(t) do
7: ρ← ρ+ PROJ(cj ;S(t))

8: m = |clients(t)|+ |canaries(t)|
9: θt ← θt−1 + η(ρ+ Z(t))/m

10: for all canaries j do
11: gj ← 〈cj , θT 〉/(||cj || · ||θT ||)
12: µ, σ ←mean({gj}), std({gj})
13: ε← ε(N (0, 1/d) || N (µ, σ2); δ)

14: function CLIP(x;κ)
15: return x ·min(1, κ/||x||)

16: function PROJ(x;κ)
17: return x · κ/||x||

Algorithm 3 Privacy estimation via random canaries using all iterates

1: Input: As in Algorithm 2, but with unob-
served canary updates c0j and observed ca-
nary updates c1j .

2: for t = 1, . . . , T do
3: ρ = ~0
4: for i ∈ clients(t) do
5: ρ← ρ+ CLIP(τi(θt−1);S(t))

6: for j ∈ canaries(t) do
7: ρ← ρ+ PROJ(c1j ;S(t))

8: m = |clients(t)|+ |canaries(t)|
9: ρ̄← (ρ+ Z(t))/m

10: for all canaries j do
11: g0

t,j = 〈c0j , ρ̄〉/(||c0j || · ||ρ̄||)
12: g1

t,j = 〈c1j , ρ̄〉/(||c1j || · ||ρ̄||)
13: θt ← θt−1 + ηρ̄

14: for all canaries j do
15: g0

j ← maxt g
0
t,j

16: g1
j ← maxt g

1
t,j

17: µ0, σ0 ←mean({g0
j }), std({g0

j })
18: µ1, σ1 ←mean({g1

j }), std({g1
j })

19: ε← ε(N (µ0, σ
2
0) || N (µ1, σ

2
1); δ)

Figure 1: Density plots of cosine values with four values of noise corresponding to analytical epsilons
(∞, 300, 100, 30) and four values of canary repetitions (1, 2, 4, 8). The black curve in each plot is the
pdf of the null distribution N (0, 1/d). With no noise (ε =∞), the distributions are easily separable,
with increasing separation for more canary repetitions. At higher levels of noise, distributions are less
separable, even with several repetitions.
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Noise analytical ε εlo-all εest-all εlo-final εest-final
0.0 ∞ 6.25 48300 3.86 5.72
0.16 33.8 2.87 17.9 1.01 1.20
0.18 28.1 2.32 12.0 0.788 1.15
0.195 24.8 2.02 8.88 0.723 1.08
0.25 16.9 0.896 3.86 0.550 0.818
0.315 12.0 0.315 1.50 0.216 0.737

Table 3: Comparing ε estimates using all model deltas vs. using the final model only. εlo is the
empirical 95% lower bound from our modified Jagielski et al. [2020] method. The high values of
εest-all indicate that membership inference is easy when the attacker has access to all iterates. On the
other hand, when only the final model is observed, εest-final is far lower.

Figure 2: Blue bars are our εest and red ticks are the εlo 95%-confidence lower bound for three
noise multipliers (0.16, 0.18, 0.195) and four numbers of canary repetitions. Our estimate of epsilon
increases sharply with the number of canary repetitions, confirming that limiting client participation
improves privacy.

estimates close to the analytical upper bound, while using only the final model gives a much smaller449

estimate.450

Figure 2 demonstrates the effect of increasing the number of canary repetitions for EMNIST. The451

results are qualitatively similar to the case of Stackoverflow.452

E Experiments with multiple canary presentations453

Here we highlight the ability of our method to estimate privacy when we vary not only the threat454

model, but also aspects of the training algorithm that may reasonably be expected to change privacy455

properties, but for which no tight analysis has been obtained. We consider presenting each canary a456

fixed multiple number of times, modeling the scenario in which clients are only allowed to check in457

for training every so often. In practice, a client need not participate in every period, but to obtain458

worst-case estimates, we present the canary in every period.459

In Figure 1 we show kernel density estimation plots of the canary cosine sets. As the number of460

presentations increases in each plot, the distributions become more and more clearly separated.461

On the other hand as the amount of noise increases across the three plots, they converge to the462

null distribution. Also visible on this figure is that the distributions are roughly Gaussian-shaped,463

justifying the Gaussian approximation that is used in our estimation method. In Appendix G we464

give quantitative evidence for this observation. Finally we compare εlo to our εest with multiple465

canary presentations in Figure 3. For each noise level, εest increases dramatically with increasing466

presentations, confirming our intuition that seeing examples multiple times dramatically reduces467

privacy.468
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Figure 3: Blue bars are our εest and red ticks are the εlo 95%-confidence lower bound for four values
of noise corresponding to analytical epsilons (∞, 300, 100, 30) and four values of canary repetitions
(1, 2, 4, 8). Note the difference of y-axis scales in each plot. Our estimate of epsilon increases sharply
with the number of canary repetitions, confirming that limiting client participation improves privacy.

F Related Work469

Private federated fearning. DP Federated Averaging (DP-FedAvg) [McMahan et al., 2018] is a470

user-level DP version of the well-known Federated Averaging (FedAvg) algorithm [McMahan et al.,471

2017] for training ML models in a distributed fashion. In FedAvg, a central server interacts with472

a set of clients to train a global model iteratively over multiple rounds. In each round, the server473

sends the current global model to a subset of clients, who train local models using their training474

data, and send the model updates back to the server. The server aggregates the model updates via475

the Gaussian mechanism, in which each update is clipped to bound its `2 norm before averaging and476

adding Gaussian noise proportional to the clipping norm sufficient to mask the influence of individual477

users, and incorporates the aggregate update into the global model. DP-FedAvg can rely on privacy478

amplification from the sampling of clients at each round, but more sophisticated methods can handle479

arbitrary participation patterns [Kairouz et al., 2021a, Choquette-Choo et al., 2022].480

Privacy auditing. Privacy auditing [Ding et al., 2018, Liu and Oh, 2019, Gilbert and McMillan,481

2018, Jagielski et al., 2020] provides techniques for empirically auditing the privacy leakage of482

an algorithm. The main technique used for privacy auditing is mounting a membership inference483

attack [Shokri et al., 2017, Yeom et al., 2018, Carlini et al., 2022], and translating the success of the484

adversary into an ε estimate using Eq. (1) directly.485

Most privacy auditing techniques [Jagielski et al., 2020, Nasr et al., 2021, Lu et al., 2022, Zanella-486

Béguelin et al., 2022] have been designed for centralized settings, with the exception of CAN-487

IFE [Maddock et al., 2022], suitable for privacy auditing of federated learning deployments. CANIFE488

operates under a strong adversarial model, assuming knowledge of all intermediary model updates, as489

well as local model updates sent by a subset of clients in each round of training. CANIFE crafts data490

poisoning canaries adaptively, with the goal of generating model updates orthogonal to updates sent491

by other clients in each round. We argue that when the model dimensionality is sufficiently high, such492

crafting is unnecessary, since a randomly chosen canary update will already be essentially orthogonal493

to the true updates with high probability. CANIFE also computes a per-round privacy measure which494

it extrapolates into a measure for the entire training run by estimating an equivalent per-round noise495

σ̂r and then composing the RDP of the repeated Poisson subsampled Gaussian mechanism. However496

in practice FL systems do not use Poisson subsampling due to the infeasiblity of sampling clients i.i.d.497

at each round. Our method flexibly estimates the privacy loss in the context of arbitrary participation498

patterns, for example passing over the data in epochs, or the difficult-to-characterize de facto pattern499

of participation in a deployed system, which may include techniques intended to amplify privacy500

such as limits on client participation within temporal periods such as one day.501

We empirically compare our approach with CANIFE in Appendix H and discuss the assumptions on502

the auditor’s knowledge and capabilities for all recent approaches (including ours) in Appendix I.503

G Gaussianity of cosine statistics504

To our knowledge, there is no way of confidently inferring that a set of samples comes from a given505

distribution, or even that they come from a distribution that is close to the given distribution in some506

metric. To quantify the error of our approximation of the cosine statistics with a Gaussian distribution,507
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Noise 1 rep 2 reps 3 reps 5 reps 10 reps
0 0.464 0.590 0.396 0.407 0.196
0.1023 0.976 0.422 0.340 0.432 0.116
0.2344 0.326 0.157 0.347 0.951 0.401

Table 4: Anderson statistics for each set of canary-cosine samples whose densities are shown in
Figure 1. The Anderson test rejects at a 1% significance level if the statistic is greater than 1.088, and
rejects at 15% significance if the statistic is greater than 0.574. Under the null hypothesis that all 15
(independent) distributions are Gaussian, we can compute that the probability of observing three or
more values with Anderson test statistic greater than 0.574 is 68%.

we apply the Anderson test to each set of cosines in Table 4. It gives us some confidence to see508

that a strong goodness-of-fit test cannot rule out that the distributions are Gaussian. This is a more509

quantitative claim than visually comparing a histogram or empirical CDF, as is commonly done.510

H Empirical comparison with CANIFE511

As discussed in the main text, our method is significantly more general than the CANIFE method of512

Maddock et al. [2022]. CANIFE periodically audits individual rounds to get a per-round ε̂r, estimates513

the noise for the round σ̂r by inverting the computation of ε for the Gaussian mechanism, and uses514

standard composition theorems to determine a final cumulative epsilon. Therefore if the assumptions515

of those composition theorems do not strictly hold (for example, if clients are not sampled uniformly516

and independently at each round), the estimate will be inaccurate. Also the step of crafting canaries517

is model/dataset specific, and computationally expensive.518

It is still interesting to see how the methods compare in the limited setting where CANIFE’s assump-519

tions do hold. We trained a two-layer feedforward network on the fashion MNIST dataset. Following520

experiments in Maddock et al. [2022], we used a canary design pool size of 512, took 2500 canary521

optimization steps to find a canary example optimizing pixels and soft label, ran auditing every 100522

rounds with 100 attack scores on each auditing round. We trained with a clip norm of 1.0 and noise523

multiplier of 0.2 for one epoch with a batch size of 128, which corresponds to an analytical ε of 34.5.524

CANIFE output a ε of mean 0.879 and standard deviation 0.124. Our method (using 1000 seen and525

1000 unseen model canaries) estimated ε with a mean of 6.76 and std of 1.06, much closer to the526

analytical bound.527

I Comparison of assumptions and requirements of empirical privacy528

estimation methods529

As discussed in Section F, related work in privacy auditing/estimation rely on various assumptions on530

the auditor’s knowledge and capability. Here we summarize the major differences.531

auditor controls auditor receives

C
en

tr
al

Jagielski et al. [2020] train data final model
Zanella-Beguelin et al. [2023] train data final model
Pillutla et al. [2023] train data final model
Steinke et al. [2023] train data final model
Jagielski et al. [2023] train data intermediate models
Nasr et al. [2023] train data, privacy noise, minibatch intermediate models

FL

Algorithm 2 client model update final model
Algorithm 3 client model update intermediate models
CANIFE [Maddock et al., 2022] client sample, privacy noise, minibatch intermediate models

Table 5: Examples of different assumptions in the literature. For each paper, we state the most relaxed
condition the technique can be applied to, since they can be generalized in straightforward manner to
scenarios with more strict assumptions on the auditor’s control and observation. Within each category
of {central training, federated learning}, the lists are ordered from least to most strict assumptions.
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Noise runs/canaries 0.1 0.3 0.5 0.7 0.9
0.0496 1/1000 1.59 1.75 1.97 2.15 2.46
0.0496 10/100 1.65 1.80 1.92 2.16 2.32
0.0986 1/1000 0.81 1.06 1.18 1.33 1.54
0.0986 10/100 0.87 1.03 1.16 1.36 1.78

Table 6: Quantiles of ε̂ over fifty experiments using either one run with 1000 canaries or ten runs
with 100 canaries each. For both noise multipliers, the distributions are very close.

Standard assumption in auditing centralized private training algorithm is a black-box setting where532

the auditor only get to control the training data and observes the final model output. In practice, many533

private training algorithms guarantee privacy under releasing all the intermediate model checkpoints.534

One can hope to improve the estimate of privacy by using those check points as in [Jagielski et al.,535

2023]. If the auditor can use information about how the minibatch sequence is drawn and the536

distribution of the privacy noise, which is equivalent to assuming that the auditor controls the privacy537

noise and the minibatch, one can further improve the estimates.538

In the federated learning scenario, we assume canary client can return any model update. Note539

that while CANIFE only controls the sample of the canary client and not the model update directly,540

CANIFE utilises the Renyi-DP accountant with Poisson subsampling implemented via the Opacus541

library, which is equivalent to the auditor fully controlling the sequence of minibatches (cohorts in542

FL terminology). Further, the privacy noise is assumed to be independent spherical Gaussian, which543

is equivalent to the auditor fully controlling the noise.544

J Experiments comparing when multiple runs are used545

In the limit of high model dimensionality, canaries are essentially mutually orthogonal, and therefore546

they will interfere minimally with each other’s cosines to the model. In this section we give evidence547

that even in the range of model dimensionalities explored in our experiments, including many canaries548

in one run does not significantly perturb the estimated epsilon values. Ideally we would train 1000549

models each with one canary to collect a set of truly independent statistics. However this is infeasible,550

particularly if we want to perform the entire process multiple times to obtain confidence intervals.551

Instead, we reduce the number of canaries per run by a factor of ten and train ten independent models552

to collect a total of 1000 canary cosine statistics from which to estimate ε. We repeated the experiment553

50 times for two different noise multipliers, which still amounts to training a total of 1000 models.554

(Ten runs, two settings, fifty repetitions.)555

The results on the stackoverflow dataset with the same setup as in Section 5 are shown in table 6.556

We report the 0.1, 0.3, 0.5, 0.7 and 0.9 quantile of the distribution of ε̂ over 50 experiments. For557

both noise multipliers, the distributions are quite close. Our epsilon estimates do not seem to vary558

significantly even as the number of canaries per run varies by an order of magnitude.559
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