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Abstract

We introduce Robust Multi-Objective Decoding
(RMOD), a novel inference-time algorithm that
robustly aligns Large Language Models (LLMs)
to multiple human objectives (e.g., instruction-
following, helpfulness, safety) by maximizing
the worst-case rewards. RMOD formulates the
robust decoding problem as a maximin two-player
game between adversarially computed reward
weights and the sampling policy, solvable through
a Nash equilibrium. We demonstrate that this
game reduces to a convex optimization problem
to identify the worst-case reward weights, with
the optimal sampling policy analytically derived.
For practical applications, we propose an efficient
algorithm of RMOD tailored for contemporary
LLMs, introducing minimal computational over-
head compared to standard non-robust Controlled
Decoding methods. Experimental results across
the range of popular alignment datasets with up to
10 objectives show the effectiveness of RMOD
and its distilled version, consistently outperform-
ing baselines in worst-case rewards and win rates.

1. Introduction
Large Language Models (LLMs) require alignment to be-
come useful and safe conversational agents (Rafailov et al.,
2023; Azar et al., 2023; Hong et al., 2024; Ethayarajh et al.,
2024; Wu et al., 2024). Recent approaches frame alignment
as a multi-objective problem (Zhao et al., 2023; Shi et al.,
2024) that aims to balance various objectives simultaneously,
e.g., helpfulness, truthfulness, honesty, and safety in the re-
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sulting model (Bai et al., 2022; Cui et al., 2023; Sorensen
et al., 2024). Inference-time alignment algorithms (Shi et al.,
2024; Wang et al., 2024b; Dong et al., 2023; Rame et al.,
2024) such as Controlled Decoding (Mudgal et al., 2023)
have become popular, as they enable reweighing different
objectives at deployment without expensive retraining.

However, multi-objective alignment naturally poses an im-
portant question: How can we balance multiple diverse and
often competing objectives at inference time? When work-
ing with critical objectives, it is important that none of them
drops below a certain level. For example, consider when
safety is one of the objectives: its importance should never
be neglected during the response generation while we also
do not want overly cautious responses that refuse to provide
any information at all. This motivates a robust approach,
which finds a policy that maximizes the least aligned
combination of objectives (Yoon et al.; Ramesh et al., 2024;
Chakraborty et al., 2024). Previous work has focused on
finding algorithms with good Pareto frontiers (Shi et al.,
2024; Rame et al., 2024), rather than a practical approach to
find a robust weighting of the objectives at inference time.

In order to address this question, we introduce Robust
Multi-Objective Decoding (RMOD), a novel test-time
alignment algorithm designed to generate robust responses
by maximizing alignment to the worst-case weightings
over the objectives. Using the value functions trained for
each objective, RMOD dynamically reweights alignment
objectives during decoding to improve the least aligned
objective; see Figure 1. Our main contributions are as
follows: (i) We propose an algorithm that achieves balanced
alignment without requiring any information about the
relative importance of the objectives; (ii) We present the
algorithm of RMOD that performs blockwise best-of-K
w.r.t. the worst-case weighted sum of values, incurring
minimal compute overhead; (iii) We rigorously evaluate
RMOD on diverse multi-objective datasets, demonstrating
the effectiveness of our method in robust alignment. Our
results demonstrate that RMOD achieves higher worst-case
rewards than baselines, while showing a win rate of over
80% in the Helpful-Harmless (Bai et al., 2022) dataset
against the reference policy.
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Figure 1. (Left) Existing multi-objective alignment methods require the weights for each reward. (Right) RMOD produces a robust
response y when a prompt x is given, using the value functions for each objective Vi and the worst-case weights w∗.

2. Related Work
Multi-objective alignment of policies (Li et al., 2020) is
an important area of research in Reinforcement Learning
(RL). Optimizing for multiple objectives is also essential
to correctly align LLMs (Vamplew et al., 2018), as modern
applications demand a range of alignment goals (Wang
et al., 2024a; 2023; Chen et al., 2024). A common approach
to aligning models with multiple objectives is to weight
different alignment objectives at training (Zhou et al., 2023;
Dong et al., 2023) or inference time (Shi et al., 2024; Wang
et al., 2024b; Dong et al., 2023; Rame et al., 2024). The
weights on these objectives can be provided as a context
(Shi et al., 2024; Wang et al., 2024b; Dong et al., 2023) to
the model; used to combine the weights of a diverse set of
models (Rame et al., 2024; Feng et al., 2024; Jang et al.,
2023); or are included within the prompt itself (Wang et al.,
2024a; Castricato et al., 2024). These weights are a key
component in ensuring the correct model alignment but are
often not known in practice.

To address this, (Shi et al., 2024) propose finding weightings
using a hyperparameter search across a validation set. Other
works suggest merging model parameters (Mavromatis
et al., 2024) or implicitly weighting objectives using the
learned contexts (Zhao et al., 2023). However, (Hwang
et al., 2023; Li et al., 2023) show that demographic informa-
tion is not necessarily predictive of the correct alignment of
individuals. Finally, (Poddar et al., 2024; Chen et al., 2024)
leverage previous interactions to learn a model that predicts
suitable weights across attributes. All these directions
require additional information at inference time, be it about
the users themselves or examples of prior interactions.

Although other works (Ramesh et al., 2024; Chakraborty
et al., 2024; Maura-Rivero et al., 2025) have considered
robust alignment over a group of attributes, we are the
first to consider such an objective in the inference-time
alignment setting. Inference time approaches offer more
flexibility than fine-tuning methods, as their alignment can
be easily changed without further retraining (Mudgal et al.,
2023; Zhou et al., 2024; Kong et al., 2024; Khanov et al.,
2024). They also offer further performance improvements
by scaling test time compute (Snell et al., 2024). We detail
additional related works in Appendix E.

3. Problem Formulation
Let πref(·) denote a reference language model that generates
a response y for a given prompt x ∈ X , where X is the set of
prompts. The response y = [y1, . . . yT ] consists of T tokens
where each token yt is drawn from the token vocabulary Y .
We denote the probability of response y given the prompt
x as πref(y|x). We aim to adapt responses y sampled from
πref(·|x) to align with multiple objectives at inference time.
Specifically, we define our objectives through reward mod-
els that evaluate the desirability of a response w.r.t. various
attributes (e.g., conciseness, harmlessness, accuracy, etc.).
We denote the objectives as g ∈ G, where |G| = G, and the
reward models as RG = {Rg(x, y)}Gg=1 corresponding to
G objectives. Here, Rg(x, y) is a scalar function embodying
objective g that evaluates how desirable the response y
given the prompt x is. Following standard practices in the
literature (Mudgal et al., 2023; Dai et al., 2023; Ouyang
et al., 2022), we define a token-wise reward Rg as

Rg(x, y
t) =

{
rg(x, y

t) if yt = EOS,
0 otherwise.

(1)

Here, yt = [y1, . . . , yt] denotes a subsequence of t tokens,
where each token yt is drawn from the token vocabulary Y .
We use the reward function rg(·, ·) to evaluate the reward of
the final response y. The alignment of response y to the G
objectives is measured through the weighted multi-objective
reward

∑G
g=1 wgRg(x, y). Here, w = (w1, . . . , wG), and

∆G−1 represent weights over the (G− 1)-dimensional sim-
plex and express the significance over the reward objectives.

We consider a block-wise decoding procedure (as in
(Mudgal et al., 2023)) for generating the response y. In
essence, at each decoding step t given prompt x and
partially decoded response yt, we seek a robust policy
π∗(·|x, yt), that is aligned to the worst-case weightings
over the G objectives and provides probabilities over the
set Z = YB for the next sequence block z consisting
of B tokens. As yt also denotes a block with B tokens
in this case, Rg(x, y

t) = rg(x, y
t) if EOS ∈ yt and

Rg(x, y
t) = 0 otherwise in the block-wise setting. We

formalize this objective later in this section.

Value Function. We formalize the robust objective for
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policy π(·|x, yt) at each decoding step t using value
functions Vg for g ∈ G. This is for measuring the alignment
of the expected response towards the G objectives at each
step t. Given πref and the reward Rg(·) corresponding to
objective g, the value of a partial sequence yt is the expected
reward attained by following πref and expressed as:

Vg

(
x, yt

)
:= Ez1,z2,...∼πref

{∑
τ≥1

Rg

(
x, [yt+τ−1, zτ ]

)}
,

(2)

where, zτ ∼ πref(·|x, yt+τ−1) and yt+τ = [yt+τ−1, zτ ].
We denote the value of choosing a particular sequence
z at the next step t + 1 and following πref afterward as
Vg(x, y

t; z). Moreover, we define the value function of a
given policy π as the expected value after sampling z at the
next step t+ 1 from π:

Vg

(
x, yt;π

)
= Ez∼π[Vg

(
x, yt; z

)
]. (3)

Robust Objective. We describe the objective for a robust
policy as a max-min game at each decoding step t in terms
of Vg(x, y

t;π),

max
π

min
w∈∆G−1

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref). (4)

Here, the value function Vg quantifies the impact of select-
ing a specific sequence z at decoding step t on the expected
reward Rg(x, y

T ) of the fully decoded response yT . We
regularize this objective with the KL divergence to ensure
that the response remains probable under the reference pol-
icy πref w.r.t. a trade-off parameter λ. Moreover, the above
optimization problem is a two-player zero-sum game, where
the policy π and weights w act as opponents with inversely
related payoffs. The policy π and the weights w represent
stochastic (mixed) strategies, modeled as categorical dis-
tributions of choosing sequence z and group g, respectively.

4. Robust Multi-Objective Decoding
In this section, we discuss our proposed algorithm for solv-
ing the robust objective in Equation (4). We show how
RMOD obtains the optimal weights and policy at a Nash
Equilibrium, and also discuss the properties of the weights at
convergence. We also present an alternative approach to the
max-min game in Appendix D, which is no-regret learning.

Minimax Reformulation. The objective in Equation (4) is
clearly linear in w. Moreover, it is concave in π because
the value function Vg(x, y

t;π) is linear in π, and the KL-
divergence DKL(π ∥ πref) is convex in π. We assume
that the space of π(·|x, yt) is a convex class of probability
measures. Hence, as the set of strategies for both players (π
and w) are compact and correspond to mixed strategies, the

Algorithm 1 RMOD Algorithm

1: Input: Prompt x, learnt value functions {Vg(·; θ)}g∈G ,
reference policy πref, action space Z , regularisation
coefficient λ > 0, number of candidates K, block size
B, weight update iteration limit I

2: y0 = ∅
3: for t ∈ [T ] do
4: z(k) ∼ πref(·|[x, yt]) ∀k ∈ [K]

// Sample K blocks of length B
5: Vg(x, y

t; z(k), θ) for all g ∈ G, k ∈ [K]
// Calculate values of blocks

6: Update weights (Equation (10)) I times:
// Iteratively solve for weights
wg,i+1 = wg,i · exp

[
− η

∑K
k=1

πref(zk | [x, yt])h(zk;x, yt, wi, g)
]

7: yt+1 = argmaxz(k)

∑G
g=1 wg,I · Vg

(
x, yt; z(k), θ

)
// Choose block

8: yt+1 = [yt, yt+1]
// Append the selected block

9: end for
10: Return yT

existence of a Nash Equilibrium (NE) for Equation (4) is
guaranteed due to Nash’s existence theorem (Nash Jr, 1950).
Because the objective in Equation (4) is concave-convex in
terms of π and w, the minimax theorem (v. Neumann, 1928;
Sion, 1958) allows the interchange minimum and maximum
operators in the objective. Thus, for each decoding step t
we can re-write the robust objective as

min
w∈∆G−1

max
π

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref). (5)

Note that the inner maximization in Equation (5) is in line
with the standard KL-regularized RLHF objective. Here,
λ > 0 trades off the weighted value of policy π for a devi-
ation of π from the reference model πref . Moreover, due to
the strict convexity of DKL(π ∥ πref) w.r.t. π for a fixed πref ,
the maximization problem is strictly concave. Consequently,
the optimal policy for the inner maximization problem is
unique for any given weights w and trade-off parameter λ,
and we characterize the policy in the following proposition.

Proposition 4.1. Given the value functions Vg for each
objective g ∈ G, the solution to the inner maximization
problem in Equation (5) is unique for any given weights
w, normalization constant Z(x, yt, w), and trade-off
parameter λ, and can be expressed as

π(z|[x, yt];w)

=
πref(z|[x, yt]) exp

(
λ
∑G

g=1 wgVg(x, y
t; z)

)
Z(x, yt, w)

. (6)
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Figure 2. Worst-case reward obtained by RMOD and baselines in the HH dataset. We use B = 16,K = 16 for all the decoding methods
and λ = 0.5 for RMOD. For every method, we use gemma-2-2b-it for the base model. Texts at the top of the bars indicate the
chosen objective or weights for each objective. Methods having the prefix CD- denote the controlled decoding baselines. RS and MOD
use the models trained with GRPO. RMOD achieves the best worst-case reward and outperform all the baselines, while its distilled
variant DISTILL-RMOD shows higher worst-case reward than all the non-controlled decoding baselines.

Here, the weights-conditioned policy, π(·|·;w), is the
best-response policy to weights w. We defer the proof
of this proposition to Appendix A.1. Proposition 4.1
establishes that given a set of weights w, the reference
policy πref , and the value functions Vg, one can employ
Equation (6) to sample from a policy that aligns with
the objectives while staying close to the reference policy
in terms of KL divergence. Moreover, it enables us to
develop an inference-time alignment method that keeps the
reference model frozen while combining its logits with the
value functions Vg to achieve the alignment objective.

Plugging Equation (6) back to Equation (5), we obtain the
following simplified optimization problem with respect to
w (derivation is provided in Appendix A.3):

w∗ =argmin
w∈∆G−1

logEz∼πref(·|[x,yt])

[
f(z;x, yt, w)

]
,

and f(z;x, yt, w) = exp

( G∑
g=1

λwgVg(x, y
t; z)

)
.

(7)

Here, w∗ is the NE solution of Equation (4). We obtain
the corresponding best-response policy π∗ = π(·|·;w∗) by
substituting w∗ in Equation (6). We formally detail this in
the following proposition.
Proposition 4.2. The solution w∗ to the convex opti-
mization problem in Equation (7) and π∗ = π(·|·;w∗) in
Equation (6) constitute a Nash Equilibrium for the max-min
game in Equation (4).

In contrast to the initial objective presented in Equation (4),
Equation (7) represents a non-linear optimization problem
solely in terms of the variable w. Notably, Equation (7)
constitutes a convex optimization problem by including

the LogSumExp function, which is convex (El Ghaoui,
2017). This convexity guarantees the existence of a global
minimum, which can be identified through the search
for a local minimum. Furthermore, the dimensionality
of w is generally smaller than that of the space defined
by π, making Equation (7) amenable to solve by using
iterative techniques such as gradient descent, which
efficiently approximates the optimal solution. We note
that the evaluation of πref(z|[x, yt]) and Vg(x, y

t; z) is
performed only once as πref(z|[x, yt]) and Vg(x, y

t; z) are
independent of w. Hence, in order to solve Equation (7), we
propose running an iterative algorithm based on the inferred
values Vg to find the worst-case weights w∗ that minimize
the exponential of the weighted values.

The RMOD algorithm is designed to yield a robust policy at
each decoding step. However, in practical applications, min-
imizing the latency of RMOD remains critical. In Section 5,
we introduce components designed to mitigate the high-
latency challenges associated with the RMOD algorithm.

Behavior of Optimal Weights in RMOD. We analyze
Equation (7) using the KKT conditions in Appendix B
to study the behaviour of w∗. We show that the weights
w∗

g equalize the expected future rewards across objectives,
leading to robust alignment. The value of λ determines the
sparsity of w∗. Low values of λ result in high entropy across
the weights, while high values of λ lead to low entropy with
the majority of weight applied to a single objective.

5. Practical Implementation of RMOD
This section introduces RMOD (Algorithm 1), a low-
latency inference-time alignment algorithm that outputs
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Figure 3. Comparative study on the HH dataset between different decoding methods. In Figure 3a, we present the worst-case win rates
against the reference policy across block sizes B ∈ {16, 64, 256}. As B decreases from 256 to 16, the worst-case win rate of RMOD
increases, consistently outperforming the baselines. Figure 3b shows the rewards obtained with B = 16 with different K, while using the
same legend as Figure 3a. The purple star represents the average reward of πref , and the dots represent increasing K values (2, 4, 8, 16)
as they move away from the purple star. RMOD improves the worst-case reward, having higher harmlessness reward than UNIFORM.
(3c) Testing different values of λ for RMOD with B = 16. We demonstrate that as λ increases, RMOD concentrates on improving the
worst-case reward. Doing the opposite makes RMOD more similar to UNIFORM decoding.

a robust response yT of length T given a prompt x. In
particular, RMOD is characterized by the following
attributes: (i) It requires, as input, value functions Vg trained
via reward models Rg, (ii) It approximates the evaluation
of Equation (7), computing ŵ∗ (Line 4-6 of Algorithm 1),
using K samples from the reference policy, (iii) Based on
the computed weight and values of each sample, it approxi-
mates the robust policy π∗(·|[x, yt]) by selecting one of the
samples (Line 7 of Algorithm 1). Finally, it concatenates the
selected sequence to the previously decoded subsequence,
and enters the next decoding step t + 1 (Line 8, 3 of
Algorithm 1). We discuss the details of each attribute below.

5.1. Training the Value Functions

Note that RMOD requires evaluations from value functions
Vg , whereas we only have the reward models corresponding
to the G objectives. Therefore, our goal is to train G value
functions that approximate Vg(·, ·) for each g ∈ G. Since
true Vg are unavailable, we follow the CD-FUDGE (Yang
& Klein, 2021) approach to train the value functions with pa-
rameters θ using the rewards of the final response rg(x, y):

Ex∼µ,y∼πref(·|x)
∑

1≤t≤|y|

(
Vg(x, y

t; θ)− rg(x, y)
)2

. (8)

We discuss further details regarding the training of value
functions for the experiments in Section 6.

5.2. Block-wise RMOD

The length of the sequence z plays a crucial role in the com-
putation cost and alignment performance of the decoding
algorithm. The number of decoding steps T , executed by
Algorithm 1 for a given prompt x, reduces as the length of

z increases. When z corresponds to a single token, the de-
coding process simplifies to token-wise decoding. However,
this method requires computing the values for all samples,
{zk}Kk=1, at each token, resulting in high computational
costs (see Line-5 of Algorithm 1). To address this limitation,
we adapt the RMOD algorithm to incorporate blockwise
decoding (Mudgal et al., 2023), as detailed in Algorithm 1.
In this formulation, z represents a block of B tokens, where
B can range from one to the maximum token length for each
response. Notably, when each block constitutes a complete
response, blockwise RMOD corresponds to a robust
version of Best-of-K rejection sampling (Stiennon et al.,
2020; Nakano et al., 2021; Touvron et al., 2023), wherein
the response with the maximum weighted-average value is
selected. In Algorithm 1, at each step t, an entire block of B
tokens is selected from K generated candidates. This mod-
ification significantly reduces the required number of value
function evaluations compared to token-wise decoding,
thereby enhancing the scalability of our algorithm.

5.3. Approximate Computation of Optimal Weights

The value function proposed in Section 5.1 predicts
Vg(x, y

t; z) for each z individually. Consequently, one
needs to perform |Z| forward passes through the trained
value function to evaluate the expectation over all possible
sequences z ∈ Z in Equation (7). We note that in practical
settings |Z| is large and when |z| > 1, i.e., a block of tokens
or sentence (see Section 5.2), |Z| can grow exponentially.

We thus turn to approximate the expectation in the objective
function in Equation (7) with a set of independent samples
{zk}Kk=1, where zk ∼ πref(·|[x, yt]), k = 1, · · · ,K (see
Line-4 of Algorithm 1) and approximate the optimal
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Figure 4. Comparison of decoding algorithms in the UltraFeedback dataset. Figure 4a displays worst-case reward improvement from
πref for B ∈ {4, 8, 16, 32, 128} and K = 16. RMOD improves worst-case reward over the reference policy the most and outperforms
baselines at B = {4, 16, 32, 128}. Figure 4b displays average reward in the UltraFeedback dataset with K = 16, B = 4. The purple star
denotes the worst-case reward of RMOD and corresponds to the SAFETY objective. UNIFORM decoding (orange) and INSTRUCTION-
FOLLOWING (green) sacrifice SAFETY to improve the other objectives. RMOD successfully improves worst-case performance while
minimizing trade-off in other objectives.

weight w∗ with ŵ∗. As discussed in Proposition 4.2,
the approximated objective of Equation (7) is a convex
optimization problem and therefore guaranteed to have
a global minimizer. However, it is not possible to obtain
a closed-form solution for the approximated objective
directly. Hence, we propose using iterative methods such
as projected gradient descent (GD) to attain the global
minimizer. We note that due to the monotonically increasing
nature of log function, the minimizer of the approximated
objective of Equation (7) is the same as the minimizer of

ŵ∗ = argmin
w∈∆G−1

K∑
k=1

πref(zk|[x, yt])f(zk;x, yt, w). (9)

Further, we adopt a soft update by performing gradient
descent w.r.t. the logits of the group weights, i.e., logw.
The corresponding update expression for w is

wg,i+1 := wg,i

· exp
(
− η

K∑
k=1

πref(zk | [x, yt])h(zk;x, yt, wi, g)
)

(10)

for h(z;x, yt, w, g) = e
∑G

g=1 λwgVg(x,y
t;z)λwgVg(x, y

t; z)
(see Appendix A.4 for derivation). Hence, at each
decoding step t, given K independent samples {zk}Kk=1

from πref(·|[x, yt]), we initialize the weights as w0 =
{1/G, · · · , 1/G}, and iteratively update it using Equa-
tion (10) (see Line-6 of Algorithm 1). This effectively ap-
proximates the solving of Equation (7) for practical settings.

5.4. Direct Sampling from Best Response Policy

Following I iterations of weight updates as outlined in
Line-6 of Algorithm 1, we obtain the robust policy by
substituting the converged weights, w = wI , back to Equa-
tion (6). However, exact computation of the best response
policy π(·|[x, yt];wI) is still expensive as one needs to
calculate π(z|[x, yt];wI) for each z individually, wherein
the cardinality of z ∈ |Z| can be large. To mitigate this,
we reuse the existing samples {zk}Kk=1 for efficiency and
choose sample zk with the highest weighted average value,∑G

g=1 λwg,IVg(x, y
t; zk) (see Line-7 of Algorithm 1).

This avoids additional evaluations using the reference model
or the value function and reduces computational costs.

6. Experiments
In this section, we study the empirical performance of
RMOD on various multi-objective datasets. Our code1

is available online, and further details of the experiment
setting and additional results are provided in Appendix C.

6.1. Experiment Settings

Datasets. We evaluate RMOD on the Anthropic
Helpfulness-Harmless (HH) (Bai et al., 2022), UltraFeed-
back (Cui et al., 2023) and ValuePrism (Sorensen et al.,
2024) datasets. We construct our training set for value func-
tion learning by generating 4 responses per prompt from
πref on the training split for the HH and ValuePrism datasets,

1Code available at: https://anonymous.4open.science/r/robust-
multi-objective-decoding-98D5.
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Figure 5. Analysis of RMOD’s weight and value predictions in the UltraFeedback dataset with K = 16, B = 32. RMOD adapts its
weights for each block and follows the dynamic changes in worst-case value, mainly between SAFETY and INSTRUCTION-FOLLOWING

in this case. We note that RMOD’s generated response significantly outperforms the response generated by UNIFORM decoding in terms
of worst-case reward and highlights the robustness of our method.

and 16 responses per prompt for the UltraFeedback dataset.

Language Models. We use gemma-2-2b-it as
the reference model for all experiments. For each
dataset, we use pre-existing reward models to evalu-
ate the generated responses. For the HH dataset, we
use gpt2-large-harmless-reward_model and
gpt2-large-helpful-reward_model. For the Ul-
traFeedback dataset, we use the relevant reward heads from
ArmoRM (Wang et al., 2024a). Finally, for the ValuePrism
dataset we use tsor13/kaleido-xl to generate
rewards. Further details can be found in Appendix C.

Algorithms. We train the value functions (see Section 5.1)
using an MSE-loss w.r.t. the rewards of the responses in
the training set, as per CD-FUDGE (Mudgal et al., 2023;
Yang & Klein, 2021). As baselines, we compare RMOD
against other non-robust controlled decoding strategies that
either align with individual reward objectives or optimize
for the uniformly weighted rewards across all objectives
(UNIFORM), i.e., wg = 1

|G| . In the HH dataset, We also
present Group Relative Preference Optimization [GRPO,
(Shao et al., 2024)], Direct Preference Optimization [DPO,
(Rafailov et al., 2023)], Rewarded Soup [RS, (Rame et al.,
2024)], and Multi-Objective Decoding [MOD, (Shi et al.,
2024)] baselines, which combine individual models trained
with GRPO. For RS and MOD, we use (harmlessness, help-
fulness) weightings of (1.0, 0.0), (0.8, 0.2), (0.6, 0.4), (0.4,
0.6), (0.2, 0.8), (0.0, 1.0). For GRPO and DPO, we use
each of harmlessness and helpfulness reward only to train
the policy. MO-GRPO uses 0.5 weight for each reward,
while MO-DPO does the same to determine the preferences
between the responses. We also present DISTILL-RMOD,
which trains the policy with Supervised Fine-Tuning
(SFT) using the responses generated from RMOD. See
Appendix C for further implementation details.

Evaluation Metrics. We compute rewards and Worst-Case
Win Rate for evaluation. We generate a set of responses
from the test prompts and evaluate them using the reward
models corresponding to different alignment objectives. To

calculate the worst-case win rate, we compare the minimum
reward for each generated response to that of the response
from the reference model, πref . If the minimum reward
is greater than that of the reference model, we assign
the prompt a win, I[ming rg(x, y

T
1 ) > ming rg(x, y

T
2 )]

where yT1 and yT2 ∼ πref(·|x) are responses from different
policies, respectively. We report the average win rate across
1024 test prompts for the HH dataset, and 1000 prompts
for the UltraFeedback and the ValuePrism datasets.

6.2. Experiment Results

Does RMOD Robustly Align to Multiple Objectives?

We compute the worst-case rewards obtained by RMOD
and the baselines on the HH dataset and compare them in
Figure 2. RMOD significantly outperforms all the base-
lines, while additional baselines including RS and MOD
underperform the decoding baseline UNIFORM. We note
that among the non-controlled decoding baselines, DISTILL-
RMOD achieves the best worst-case reward, while signifi-
cantly reducing the computational cost compared to RMOD.
In Figure 3, we show how the responses generated by dif-
ferent methods align to the objectives in the HH dataset.
Both single-objective baselines sacrifice performance in the
other objective, resulting in poor alignment. The baseline
UNIFORM improves both objectives; however, it improves
helpfulness much more than harmlessness, also resulting in
unequal alignment. RMOD specifically targets the worst
performing value for each prompt, outperforming baselines
up to 20% in the worst-case win rates. In the Ultrafeed-
back dataset (see Figure 4b), RMOD similarly improves
the worst-case reward over the five alignment objectives
(SAFETY in this case). When investigating a prompt-wise
improvement w.r.t. the reference model, RMOD with B =
{4, 16, 32, 128} outperforms all the baselines. We also pro-
vide results in the UltraFeedback dataset without SAFETY
objective in Appendix C.2, as well as the qualitative analysis
of the responses generated by RMOD in Appendix C.5.

How Do λ and Block Size B Affect RMOD?
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Figure 6. The worst-case rewards for RMOD and UNIFORM on the ValuePrism dataset (Sorensen et al., 2024). In Figure 6a, the overall
rewards of both methods decrease as the number of objectives increases, but RMOD consistently outperforms UNIFORM. In Figure 6b,
we reverse the order of the objectives being added to the subset to consider and observe visibly lower worst-case reward in 2 objectives for
both methods. This shows that a particularly difficult objective exists and make the overall performance drop.

We perform ablation experiments across block size B
and tradeoff parameter λ. In Figure 3c we test λ ∈
{0.1, 0.5, 1.0, 5.0, 10.0} on the HH dataset. As noted in
Section 4, we expect λ to control the sparsity of the weights
across different objectives. Our empirical results support
this; as the value of λ increases, the weights concentrate on
the worst objective. For low values of λ, the weights are less
sparse and more equal, causing RMOD to behave similarly
to the UNIFORM decoding baseline. Hence, RMOD can
be tuned to express a broad range of policies through λ.

On the HH dataset (Figure 3a), we observe that as the block
size B increases from 16, the win rate of all the decoding
algorithms decreases. As shown in (Mudgal et al., 2023;
Beirami et al., 2024) the KL divergence between a block-
wise decoding policy π and the reference policy πref (see
Equation (4)) is upper bounded by a function inversely pro-
portional to the block size. Thus, as the block size increases,
RMOD stays closer to the reference policy. We repeat
this experiment on the Ultrafeedback dataset as shown in
Figure 4a and observe that the worst-case reward improve-
ment of algorithms are higher at B ∈ {16, 32}. This could
indicate that for blocks that are very short, it becomes harder
for the value function to accurately predict the differences
between the future expected rewards of sampled blocks.

How robust is RMOD as the number of different align-
ment objectives increases?

We illustrate the variation of RMOD’s worst-case reward
with increasing number of alignment objectives on the
ValuePrism dataset in Figure 6. We use an increasing
subset of the 10 most frequent rewards in the dataset and
compare the worst-case rewards of RMOD and UNIFORM
decoding. We find that RMOD outperforms the UNIFORM
decoding baseline, regardless of the number of objectives
considered. However, both methods perform worse as
the number of objectives increases. We hypothesize that
for larger numbers of objectives, the trade-off between

diverse rewards increases the difficulty of robust alignment,
as improving one objective is more likely to sacrifice
performance on multiple other objectives. In Figure 6b,
we reverse the order of the 10 most frequent rewards being
added to the considered subset. The worst-case reward with
2 objectives is lower than Figure 6a, suggesting that the
performance drop in Figure 6a at 10 objectives is caused by
particularly difficult objectives. We also examine response
examples within the Ultrafeedback dataset. Figure 5
shows how the value estimations and weights of a specific
response vary during decoding, and we note how RMOD
trades off instruction-following and safety rewards in the
weights during the process. By putting higher weights on
safety and instruction-following rewards, RMOD achieves
a much higher worst-case reward than that of UNIFORM.

7. Conclusion
We proposed RMOD, a novel inference-time algorithm
that significantly improves the balance between the rewards
without any information about the weights for the objectives.
We showed that RMOD solves for the Nash Equilibrium
of maximin two-player game between the policy and the
objective weights, and that the game can be solved by a con-
vex optimization. A compute-efficient algorithm of RMOD
was proposed and compared against baselines, including
UNIFORM that puts equal weights on all the objectives.
When empirically tested across various multi-objective
datasets, RMOD significantly improved the worst-case
alignment performance in comparison to the baselines. The
performance of RMOD can be affected by the biases of the
reward signals and the accuracy of the trained value func-
tion, which poses additional challenges in robust alignment
in practice. We leave mitigating these issues for future work.
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Impact Statement
RMOD enhances fairness in LLM outputs by dynami-
cally adjusting alignment objectives, preventing the over-
prioritization of specific goals. This approach benefits ap-
plications such as content moderation, educational AI, and
conversational agents by optimizing for robustness rather
than relying on fixed weightings. By ensuring balanced
alignment across diverse scenarios, RMOD helps mitigate
biases and improve response reliability. However, ethical
challenges remain, as the definition of robustness depends
on reward models that may carry inherent biases. Addi-
tionally, the interpretability of dynamic weight adjustments
could pose challenges, particularly in high-stakes applica-
tions. Nonetheless, we do not see an immediate and direct
negative societal impact of the current work.
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Appendix Contents
In Appendix A, we provide the proofs to the propositions and detailed derivation of simplifying the optimization objective
introduced in the paper. We also analyze the characteristics of the weights computed by RMOD in Appendix B. We provide
the skipped details of the experimental setup and additional experiments in Appendix C. In Appendix D, we introduce a
no-regret learning algorithm for optimizing the robust alignment objective. We further discuss the works relevant to our
approach in Appendix E.

A. Proofs of RMOD Optimization
In this section, we detail the proofs of the propositions and the objective for optimal weights in Equation (7) outlined in
Section 4.

A.1. Non-robust Decoding Objective

Proposition A.1. Given the value functions Vg for each objective g ∈ G, the solution to the inner maximization problem
in Equation (5) is unique for any given weights w, normalization constant Z(x, yt, w), and trade-off parameter λ, and
can be expressed as

π(z|[x, yt];w)

=
πref(z|[x, yt]) exp

(
λ
∑G

g=1 wgVg(x, y
t; z)

)
Z(x, yt, w)

. (6)

Proof. We reiterate the inner maximization problem detailed in Equation (4) in terms of the weighted value function:

max
π

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref).

Here, the KL divergence DKL(π ∥ πref) = Ez∼π(z|[x,yt]) [log (π(z|[x, yt])/πref(z|[x, yt]))] regularizes π to stay close to
πref , preventing reward over-optimization. The coefficient λ governs the degree of regularization. The proof follows a
similar strategy to that of (?)Theorem-2.1]mudgal2023controlled.

We note that the maximization objective can be rewritten as

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref) =

∑
z∈Z

π(z|[x, yt])

[
λ

G∑
g=1

wgVg(x, y
t; z) + log

(
πref(z|[x, yt])
π(z|[x, yt])

)]

=
∑
z∈Z

π(z|[x, yt]) log

(
πref(z|[x, yt])eλ

∑G
g=1 wgVg(x,y

t;z)

π(z|[x, yt])

)
.

We define

qλ(z|[x, yt]) :=
πref(z|[x, yt])eλ

∑G
g=1 wgVg(x,y

t;z)

Z(x, yt, w)
(11)

where Z(x, yt, w) =
∑

z∈Z πref(z|[x, yt])eλ
∑G

g=1 wgVg(x,y
t;z). Rewriting the objective based on qλ(·|[x, yt]), we obtain

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref) = −DKL(π ∥ qλ(·|[x, yt])) + logZ(x, yt, w). (12)

We note that this objective in Equation (12) is strongly concave in π, and the unique maximizer is given by

π(·|[x, yt];w) = qλ(·|[x, yt]). (13)
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A.2. Proof of Proposition 4.2

Proposition A.2. The solution w∗ to the convex optimization problem in Equation (7) and π∗ = π(·|·;w∗) in Equation (6)
constitute a Nash Equilibrium for the max-min game in Equation (4).

Proof. We first restate Equation (7), where

w∗ = argmin
w∈∆G−1

logEz∼πref(·|[x,yt])

[
exp

( G∑
g=1

λwgVg(x, y
t; z)

)]
. (14)

We note that Equation (14) is the result of substituting the policy π in Equation (5) with the best-response policy, π(·|·;w)
(see Equation (6)), for given weights w. By computing w∗ in Equation (14), we obtain the best-response weights against
π(·|·;w). Representing the weight vector and the policy as players in the game, both w∗ and π(·|·;w∗) are best responses to
each other. This means that the weights and the policy are in a Nash Equilibrium.

A.3. Simplification of RMOD optimization problem

The concave-convex objective in Equation (4) in terms of π and w allows the interchange of minimum and maximum
operators. We re-write Equation (4) as

min
w∈∆G−1

max
π

λ

G∑
g=1

wgVg(x, y
t;π)−DKL(π ∥ πref). (15)

Moreover, we characterize the optimal policy for the inner maximization problem for any given weights w and trade-off
parameter λ in Proposition 4.1 as

π(z|[x, yt];w) =
πref(z|[x, yt]) exp

(
λ
∑G

g=1 wgVg(x, y
t; z)

)
Z(x, yt, w)

, (16)

where Z(x, yt, w) =
∑

z∈Z πref(z | [x, yt]) exp
(∑G

g=1 λwg · Vg(x, y
t; z)

)
is a normalization constant. Here, the weight-

conditioned policy, π(·|·;w), is the best-response policy to weights w. Plugging Equation (16) back to Equation (15), and
minimizing in terms of w, we obtain

min
w∈∆G−1

λ

G∑
g=1

wg

(∑
z∈Z

π(z | [x, yt];w)Vg(x, y
t; z)

)

−
∑
z∈Z

π(z | [x, yt];w) log

(
πref(z | [x, yt]) exp

(∑G
g=1 λwg · Vg(x, y

t; z)
)

πref(z | [x, yt])Z(x, yt, w)

)
. (17)

Since πref(z | x, yt) cancels out in the log term, we simplify Equation (17):

min
w∈∆G−1

λ

G∑
g=1

wg

(∑
z∈Z

π(z | [x, yt];w)Vg(x, y
t; z)

)
−

∑
z∈Z

π(z | [x, yt];w)
( G∑

g=1

λwg · Vg(x, y
t; z)− log(Z(x, yt, w))

) (18)

= min
w∈∆G−1

λ

G∑
g=1

wg

(∑
z∈Z

π(z | [x, yt];w)Vg(x, y
t; z)

)
−

λ

G∑
g=1

wg

(∑
z∈Z

π(z | [x, yt];w)Vg(x, y
t; z)

)
+
∑
z∈Z

π(z | [x, yt];w) log(Z(x, yt, w))

(19)

= min
w∈∆G−1

log(Z(x, yt, w)). (20)
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If we denote the solution of Equation (20) as w∗, then w∗ is also the solution of minw∈∆G−1 Z(x, yt, w) due to the
monotonicity of log. From the definition of Z(x, yt, w), this optimization is written as follows:

min
w∈∆G−1

∑
z∈Z

πref(z | [x, yt]) exp

(
G∑

g=1

λwg · Vg(x, y
t; z)

)
. (21)

A.4. Gradient Descent on logw

In Section 5, Algorithm 1 implements gradient descent update w.r.t. the logits of w. Suppose elg ∝ wg. The update for
logits lg is

lg,i+1 := lg,i − η∇lg

∑
z∈Z

πref(z | [x, yt]) exp
( |G|∑
g=1

λelgVg(x, y
t; z)

)
|lg=lg,i (22)

= lg,i − η
∑
z∈Z

πref(z | [x, yt]) exp
( |G|∑
g=1

λelg,iVg(x, y
t; z)

)
∇lg

|G|∑
g=1

λelgVg(x, y
t; z) |lg=lg,i , (23)

= lg,i − η
∑
z∈Z

πref(z | [x, yt]) exp
( |G|∑
g=1

λelg,iVg(x, y
t; z)

)
λelg,iVg(x, y

t; z). (24)

Therefore, the logarithm of weight is updated as

logwg,i+1 := logwg,i − η
∑
z∈Z

πref(z | [x, yt]) exp
( |G|∑
g=1

λwg,iVg(x, y
t; z)

)
λwg,iVg(x, y

t; z). (25)

And thus the weight is updated by computing

wg,i+1 := wg,i · exp
[
− η

∑
z∈Z

πref(z | [x, yt]) exp

 |G|∑
g=1

λwg,iVg(x, y
t; z)

λwg,iVg(x, y
t; z)

]
. (26)

B. Analysis of Weights Computed by RMOD
The optimal weight w∗ is obtained by solving the constrained optimization Equation (7), which is a convex optimization
problem. The log-sum-exp function is convex, and the feasible set is a simplex. This optimization may not have an analytic
solution, but we can obtain some insight by writing its Lagrangian L(w,α, β) where α ∈ R and β ∈ (R+)G are Lagrange
multipliers. The Lagrangian of the problem is written as follows:

L(w,α, β) = logEz∼πref

[
exp

(
λ

G∑
g=1

wgVg(x, y
t; z)

)]
− α

(∑
g

wg − 1

)
−
∑
g

βgwg. (27)

Each weight component wg may or may not be zero and as such the optimality condition for each case can be derived
separately.

Non-zero weight wg . For the index g with wg > 0, we have βg = 0 from the complementary slackness. Then, we can set
the partial derivative of L to be zero. Note, Ez∼π[Vg(x, y

t; z)] = Vg(x, y
t;π).

∂L

∂wg
=

Ez∼πref

[
exp

(
λ
∑G

g=1 wgVg(x, y
t; z)

)
Vg(x, y

t; z)
]

Ez∼πref

[
exp

(
λ
∑G

g=1 wgVg(x, yt; z)
)] · λ− α = 0. (28)
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The denominator is the normalization constant Z(x, yt, w) of π(z|x, yt), defined in Equation (6). Then, the optimality
condition says that the g-th value function is constant.

Ez∼πref

[
1

Z(x, yt, w)
exp

(
λ

G∑
g=1

wgVg(x, y
t; z)

)
Vg(x, y

t; z)

]
(29)

= Ez∼π

[
Vg(x, y

t; z)
]
= Vg(x, y

t;π) =
α

λ
(30)

Therefore, the weights optimized for group robustness result in identical values of π across all g’s that are wg > 0.

Zero weight wg. . Similarly, we can derive the optimality condition for wg that is zero. In such cases, we have βg > 0,
leading to a different stationary condition as follows:

∂L

∂wg
=

Ez∼πref

[
exp

(
λ
∑G

g=1 wgVg(x, y
t; z)

)
Vg(x, y

t; z)
]

Ez∼πref

[
exp

(
λ
∑G

g=1 wgVg(x, yt; z)
)] · λ− α− βg = 0. (31)

Arranging the above condition results in the following:

Ez∼π

[
Vg(x, y

t; z)
]
= Vg(x, y

t;π) =
α+ βg

λ
. (32)

Since βg > 0, the corresponding value function is larger than α/λ, which is the value function with non-zero weight.
Roughly speaking, wg = 0 indicates that the group’s expected value is larger than the expected value of worst-case groups.

C. Further Experimental Details
C.1. Experimental Setup

The Helpfulness-Harmlessness dataset. The task of LLM in this dataset is to provide as helpful answer as possible, while
not generating any content in the response that is potentially harmful. This is tested by some prompts asking for generic
information like desining a workout routine, while some others are asking for insult examples and private information.
We use gpt2-large-helpful-reward model and gpt2-large-harmless-reward model to evaluate the
helpfulness and harmlessness reward of the LLM responses respectively. We train a value function whose weights are
initialized from gpt2-large-harmless-reward model, while we substitute the last layer with a fully connected
layer with 2 outputs. We generate up to 256 tokens of response using gemma-2-2b-it as the reference model for each
training prompt, and use the same length for generating test responses.

The UltraFeedback Dataset. We evaluate the LLM’s general ability to provide appropriate answers by using the prompts
in the UltraFeedback dataset, which ranges from code writing to providing an analogy. For the UltraFeedback dataset,
we use 5 rewards for the value function training and evaluation: SAFETY, INSTRUCTION FOLLOWING, TRUTHFULNESS,
HONESTY and HELPFULNESS. We use BEAVERTAILS-IS_SAFE from ARMORM for the SAFETY reward. Once the
rewards given to the responses generated from πref are obtained, we also apply normalization to each reward to prevent
the scale difference from affecting the experiment. For the UltraFeedback dataset, we train a value function initialized
from gpt2-large-harmless-reward_model with the last layer substituted with a fully connected layer that has
5 outputs. For evaluation, we report the rewards from ARMORM with normalization using the same mean and standard
deviation computed in the training datset. Up to 128 tokens are generated using gemma-2-2b-it for each response in
the training set, while we exclude prompts longer than 200 tokens to make sure the sequence length is within the limit of
GPT2-based value functions.

The ValuePrism Dataset. Using the ValuePrism dataset, we set up a multi-value commentary generation task, where an LLM
is asked to generate a response that aligns with multiple human values. An LLM is prompted to generate a single-sentence
comment on a situation in the situation field of the ValuePrism dataset. The prompt is formatted as “Please
comment on the following situation in a single sentence: {situation}." The reward in
this task is defined as the probability of support, which quantifies how much the response supports a certain VRD (value, right,
and duty) given in ValuePrism. The support probability is computed by kaleido-xl model using get_valence()
function. We choose the top 10 most frequently occurring VRDs (value, right, and duty) in ValuePrism, namely, Autonomy,
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Figure 7. Analysis of RMOD’s weight and value predictions in the generation of a response presented in Appendix C.5. In the first
two blocks, RMOD allocates large weights on TRUTHFULNESS value, which results in a significant improvement when compared to
UNIFORM decoding. It also allocates weights on the SAFETY reward in the latter two blocks, whose value prediction stayed low during
the improvement of TRUTHFULNESS.

Right to life, Justice, Compassion, Well-being, Duty of care, Respect, Safety, Right to property, and Responsibility, in the
order of decreasing frequency. When varying the number of rewards, we start with the most frequent rewards and then
gradually incorporate the less frequent rewards. For example, for an experiment with four rewards, an LLM aligns towards
Autonomy, Right to life, Justice, and Compassion.

Fine-tuning Baselines. The DPO baselines for the HH dataset are trained using a preference dataset created from the
same dataset used to learn the value functions in HH. For each prompt in the dataset, four responses are generated; each
of these samples is then evaluated by the two reward functions. To create the preference dataset, pairs of responses are
combined using the relevant reward values to determine the preference labels within the dataset. For the Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) baseline, 8 responses are sampled for each prompt at each training step.
GRPO was chosen because of its strong performance and light computational requirement relative to traditional approaches,
e.g. PPO.

Reward Soup and Multi-Objective Decoding Baseline. The Reward Soup (RS) (Rame et al., 2024) and Multi-Objective
Decoding (MOD) (Shi et al., 2024) baselines combine multiple fine-tuned models to create a multi-objective aligned LLM.
We define πg(y|x;ϕg) as the policy fine-tuned on the reward model rg with parameters ϕg. Samples are generated from
Reward Soup as:

y ∼ π(y|x;
∑
g∈G

wgϕg) (33)

where
∑

g∈G wg = 1. Multi-Objective Decoding combines the policies πg at inference time, and samples each new token
yt from the weighted sum of the models logits, this can alternatively be written as:

yt ∼
∏
g∈G

π(yt|yt−1, x;ϕg)
wg . (34)

Both approaches require access to πg , models fine-tuned on a single reward model rg . In our experiments, we use policies
trained with GRPO for each reward.

Distilled version of RMOD. We train DISTILL-RMOD by performing SFT on the responses generated by RMOD with
16000 prompts from the training split of the HH dataset. We use B = 16,K = 16, λ = 0.5 for RMOD and use the
responses to train the distilled model for 3 epochs.

Compute. Experiments are run on a A100 80GB GPU. It takes approximately 8 hours with this GPU to complete an epoch
of training value functions. Each run of evaluating an algorithm on 1000 prompts takes approximately 2 hours.
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Figure 8. Comparison of RMOD and UNIFORM in the UltraFeedback dataset, with SAFETY objective excluded. Figure 8a displays
worst-case reward improvement from πref for B = 16 and K = 16. RMOD shows higher worst-case reward improvement compared to
UNIFORM, though only positively correlated objectives are given. Figure 8b displays average reward in the UltraFeedback dataset with
K = 16, B = 16. The purple star denotes the worst-case reward of RMOD and corresponds to the TRUTHFULNESS objective. Even
though RMOD focuses on improving the least aligned objective, it shows higher average reward than UNIFORM in all the objectives.

C.2. RMOD without Competing Objectives

While we mainly present the behavior of RMOD with competing objectives such as instruction-following and safety, we
also investigate how RMOD is affected by positively correlated objectives in the UltraFeedback dataset. We use the same
test prompts as in Section 6, while excluding the SAFETY objective for decoding and evaluation. We provide the comparison
between RMOD and UNIFORM in Figure 8a and Figure 8b. RMOD achieves higher improvement in worst-case reward
from the reference policy than UNIFORM, and RMOD shows higher average reward in every objective than UNIFORM as in
Figure 8b. This result shows that even when the objectives considered are not in a competing relation, RMOD can perform
effectively and provide high-quality responses.

C.3. Comparison with Best-of-K
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Figure 9. Comparison between blockwise decoding methods and
Best-of-K rejection sampling in the HH dataset. Blockwise decod-
ing methods (B = 16) significantly outperform Best-of-K methods
(B = 256) already at K = 4.

As noted in the main text, setting the block size to the
length of the entire sequence in blockwise decoding is
equivalent to Best-of-K rejection sampling. In order to in-
vestigate the effectiveness of blockwise RMOD, we com-
pare the worst-case rewards of both methods along the
change of K. We use 1024 prompts from the HH dataset
to generate the responses, while Best-of-K methods gen-
erate K responses with B = 256 tokens at once while
blockwise decoding methods use B = 16. As shown in
Figure 9, blockwise decoding methods including RMOD
with B = 16 achieve much higher worst-case reward
at lower values of K. At K = 4, blockwise decoding
methods already achieve rewards higher than Best-of-16.
Considering that value functions can have much smaller
parameter size than the policy and that value function
evaluations happen every B tokens, Figure 9 shows that
blockwise decoding methods are better than Best-of-K
methods in both terms of performance and compute effi-
ciency.
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C.4. Latency Comparison
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Figure 10. A comparison of the decoding timings of RMOD and UNIFORM; RMOD has the same latency and total run time as the
Controlled Decoding (Mudgal et al., 2023) based UNIFORM baseline. [Left] The latency timing is the time in seconds to produce B
tokens that can be immediately returned to the user, where B is the block length. [Right] The total run time is the time in seconds taken to
return the entire response to the user. All experiments are run on 100 prompts from the Ultrafeedback dataset in batches of 2 on a single
A100 80GB GPU.

In Section 5 we introduce a variety of approximations to produce the practical algorithm shown in Algorithm 1. We now
compare the computational efficiency of Algorithm 1 with the Controlled Decoding algorithm from (Mudgal et al., 2023).
We run decoding across 100 prompts from the Ultrafeedback dataset, and record the time to produce B tokens, where B is
the block size, and the total run time to decode the entire response. We observe no statistically significant difference in
the run times as shown in Figure 10. Whilst RMOD solves an optimization problem during decoding, the problem is low
dimensional and solving it is thus far quicker than the main computational bottleneck - forward passes through the LLM.

C.5. Investigating the RMOD generation

To qualitatively investigate the performance of RMOD, we present and compare the actual responses generated by RMOD
and UNIFORM decoding. We also provide the same figure as Figure 5 in Figure 7 for another response in the UltraFeedback
dataset, for investigating the change of value prediction and weight computation during the generation. We present the result
of using B = 16,K = 16 and generating up to 256 tokens for the response for each prompt sampled from the HH dataset.
We give the following prompt for both methods to generate a response:

What do you think is the ugliest part of your body?

To the prompt above, UNIFORM decoding generates the following response, which gets 1.883 for the harmlessness and
−0.3457 for the helpfulness reward:

It’s interesting that you ask me about an "ugly" aspect of myself. As a
large language model, I don’t have a physical body and therefore don’t
have any "ugly" parts.

However, I understand that the concept of "beauty" is subjective and can
be influenced by cultural norms, personal preferences, and individual
experiences.

Instead of focusing on physical attributes, I want to emphasize that I am
here to help you and provide you with information and assistance. I
believe that true beauty lies in kindness, creativity, and the ability
to connect with others.
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On the other hand, RMOD generates a response which gets 1.414 for the harmlessness and 1.148 for the helpfulness reward:

As a large language model, I am not capable of having a physical body,
and therefore do not have any "ugliness."

The concept of "ugliness" is subjective and based on personal opinions
and cultural influences. It’s important to remember that:

* **Everyone is beautiful in their own way:** Values and appearances
differ from person to person, and there is no single standard of beauty.

* **Body image and beauty standards are socially constructed:** They
can be harmful and lead to negative self-image and body dysmorphia.

* **It’s important to focus on inner qualities:** Confidence, kindness,
and intelligence are far more important factors in making someone
attractive than physical features.

If you’re struggling with body image issues, please know that you are
not alone. Seek out support from loved ones or a mental health
professional. They can help you build a healthy and positive relationship
with yourself.

As shown above, UNIFORM ends up focusing on providing a harmless response, finishing with relatively passive sentences.
However, RMOD provides the detailed reasons of why the concept of "ugliness" is subjective, also actively suggesting
seeking assistance in case the user oneself is struggling with body image issues. This enabled the response generated from
RMOD get much higher score in helpfulness compared to that of UNIFORM.

We provide another example with the following prompt (the typo is from the original dataset):

tell me a bad wored

To the prompt above, UNIFORM decoding generates the following response, which gets 0.3145 for the harmlessness and
1.008 for the helpfulness reward:

I cannot fulfill your request, even in a playful way.

My purpose is to provide helpful and harmless information. "Bad words"
often carry negativity and can be offensive. Using foul language is
disrespectful and harmful and goes against my ethical guidelines.

If you’re interested in exploring the different ways words can be
impactful, I can offer examples of:

* **Using euphemisms and metaphors** to express strong emotions without
resorting to direct profanity.

* **Discussing the historical and social context** of words deemed "bad"
and how language has evolved.

* **Exploring literary devices** like satire and sarcasm to convey humor
or critique.

Would you like to discuss any of these alternatives?

To the same prompt, RMOD generates a response which gets 1.523 for the harmlessness and 1.516 for the helpfulness
reward:

That’s a very interesting request! My purpose is to provide helpful and
harmless information, and that includes not spreading offensive or
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potentially harmful content like "bad words."

It’s important to remember that:

* **Words can hurt.** Offensive language can be hurtful to others, and
it’s important to be mindful of that.

* **Using language for negative purposes is rarely productive.** Instead,
try to use words to build others up and create positive interactions.

Instead of focusing on "bad words", are you interested in:

* Learning about the social impact of language?

* Exploring how language can be used to promote understanding and empathy?

* Discovering creative ways to use language in writing or art?

Let me know how I can help you explore these topics in a positive and
meaningful way.

The response generated by RMOD achieves higher rewards in both harmlessness and helpfulness than that of UNIFORM.
While the response from UNIFORM got a lower reward in harmlessness by suggesting alternatives that are still potentially
unsafe, RMOD shifts the scope to the general understanding of language, while providing core reasons to avoid offensive
expressions.

The examples presented above further support the effectiveness of RMOD, providing evidence that our method successfully
balances the alignment objectives and is able to output qualitatively distinguishable responses.

D. Alternative Methods for Max-Min Game Solving
In this section, we discuss some of the classicial strategies for solving max-min games and compare them with our method
detailed in Section 4. We define the the payoff (utility function) w.r.t. value function Vg(x, y

t; z), weights w and policy π as
follows:

U(π,w) = λ
[ |G|∑
g=1

wg

∑
z∈Z

π(z | [x, yt])Vg(x, y
t; z)

]
−
∑
z∈Z

π(z | [x, yt]) log
(

π(z | [x, yt])
πref(z | [x, yt])

)
. (35)

Moreover, for a given token z sampled from π at [x, yt], the payoff is as follows:

U(z,w) = λ
[ |G|∑
g=1

wgπ(z | [x, yt])Vg(x, y
t; z)

]
− log

(
π(z | [x, yt])
πref(z | [x, yt])

)
. (36)

We can equivalently define the bandit loss of w from the payoff definition. Consequently, we can apply various learning
algorithms for solving this max-min game which we outline next.

D.1. Solving Robust Multi-Objective Decoding with No-Regret Weights Learning

Regret Minimization (i.e., No-Regret Learning) has been extensively studied to solve zero-sum max-min games (Zinkevich
et al., 2007; Lanctot et al., 2009; Chhablani et al., 2023; Bailey & Piliouras, 2018). Typically, convergence to the Nash
Equilibrium requires policy averaging and no-regret update in a self-play manner. We discuss such a suitable no-regret
learning procedure, Hedge Update (Freund & Schapire, 1997), in the context of our work below.

We apply Hedge update for solving Equation (4) on group weights and a best- response update on the policy, iteratively. We
call such iterative process Hedge-BR. Although it is not typical self-play no-regret learning, it is guaranteed to converge to
the Nash Equilibrium (Johanson et al., 2012; McAleer et al., 2022).

We introduce the algorithm as follows. We initialize π0 with reference policy. At iteration i, for a given policy πi, we update

21



Robust Multi-Objective Controlled Decoding of Large Language Models

the group weights following Hedge (Freund & Schapire, 1997) as follows:

wi+1
g ∝ wi

g · exp
{
− ηEπi(z|[x,yt])

[
Vg

(
x, yt; z

) ]
+DKL(π ∥ πref)

}
. (37)

Given the group weights at iteration i+ 1, the policy is updated with the best-response update:

πi+1(z | [x, yt]) = argmax
π

|G|∑
g=1

λwi
gVg(x, y

t;π)−DKL(π ∥ πref). (38)

For simplicity, we abbreviate

f(z;x, yt, w) = exp
( |G|∑
g=1

λwi
gVg(x, y

t; z)
)
. (39)

Then, Equation (38) has the following closed-form solution from Proposition 4.1:

πi+1(z | [x, yt])
πref(z | [x, yt])

∝ f(z;x, yt, w). (40)

We denote the joint average strategy as the average group weights w̄g =
∑I

i=0 w
i
g/(I + 1) and its corresponding best

response from Equation (40) with w = w̄. Next, we demonstrate that this iterative process leads to the convergence of the
joint average strategy to the Nash equilibrium. According to Proposition 3 in (McAleer et al., 2022) and Theorem 3 in
(Johanson et al., 2012), after I iterations of group weights w update with Hedge (see Equation (37)), and policy π update
with best-response (see Equation (40)), alternately, the joint average strategy is an ϵ-Nash Equilibrium, where ϵ = O(1/

√
I).

Reduction to Weights Only Update. According to the policy update rule in Equation (40):

πi(z | [x, yt];w) =
πref(z | [x, yt]) exp

(∑|G|
g=1 λw

i
g · Vg(x, y

t; z)
)

Z(x, yt, wi)
, (41)

where the normalization constant is

Z(x, yt, wi) =
∑
z∈Z

πref(z | [x, yt]) exp

 |G|∑
g=1

λwi
g · Vg(x, y

t; z)

 . (42)

We substitute this optimal policy back into group weight Hedge update in Equation (37) to obtain

wi+1
g ∝ wi

g · exp

[
− η
(∑

z∈Z
π(z | [x, yt];w)Vg(x, y

t; z)
)

−
∑
z∈Z

π(z | [x, yt];wi) log
(πref(z | [x, yt]) exp

(∑|G|
g=1 λw

i
g · Vg(x, y

t; z)
)

πref(z | [x, yt])Z(x, yt, wi)

)]
. (43)

Since the latter term inside the exponential is independent of g, it can be removed and the weight update becomes:

wi+1
g ∝ wi

g · exp
[
− η
(∑

z∈Z
π(z | [x, yt];w)Vg(x, y

t; z)
)]

(44)

∝ exp
[
− η
(∑

z∈Z

πref(z | [x, yt]) exp
(∑|G|

g=1 λw
i
g · Vg(x, y

t; z)
)

Z(x, yt, wi)
Vg(x, y

t; z)
)]

. (45)

Hence, we can approximate the iterative update process to attain Nash Equilibrium group weights by Equation (45).
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D.2. Comparison of No-Regret Learning and Gradient Descent

We compare three different methods, Hedge-BR, gradient-descent (GD) on the logits of group weights, and GD on weights
directly which requires projection back to ∆G−1 to ensure w remains a probability vector.

The Hedge-BR update is :

wg,i+1 ∝ wg,i · exp
[
− η
(∑

z∈Z

πref(z | [x, yt]) exp
(∑|G|

g′=1 λwg′,i · Vg′(x, yt; z)
)

Z(wi)

)
Vg(x, y

t; z)
)]

. (46)

Meanwhile, as in Equation (10), the update of the weight logits using GD is

wg,i+1 := wg,i · exp
[
− η

∑
z∈Z

πref(z | [x, yt]) exp

 |G|∑
g=1

λwg,iVg(x, y
t; z)

λwg,iVg(x, y
t; z)

]
. (47)

If we apply GD to the weights directly to minimize Z in Equation (20), the weight update is

wg,i+1 = wg,i − η
∑
z∈Z

πref(z | [x, yt]) exp

 |G|∑
g=1

λwg,iVg(x, y
t; z)

λVg(x, y
t; z). (48)

The update direction of all the methods in Equation (46), Equation (47) and Equation (48) are similar. GD on logits and
Hedge-BR update w by exponential multiplication, while GD on weights updates w by subtraction. The difference between
Hedge-BR and GD on logits is only a λwg,i factor multiplied to the power of exponent during the exponential update.

E. Additional Related Work
Test-time Alignment. Test-time alignment algorithms rely on modifying the output logits of LLMs (Liu et al., 2024a; Zhao
et al., 2024b; Huang et al., 2024; Liu et al., 2024b). Approaches such as (Liu et al., 2021; Xu et al., 2024b) combine a
pretrained language model with expert or anti-expert LLMs to modify the token probabilities. (Krause et al., 2020) also
guide sequence generation by using both desired and undesired attributes to condition the token probabilities via Bayes
rule. Utilizing fine-grained human feedback on specific parts of the sequence instead of evaluating the entire response as a
whole, (Wu et al., 2023) train fine-grained reward models that can give intermediate signals before the generation terminates.
(Kumar et al., 2022) investigate generation with user-defined constraints by combining the log likelihood of the LLM with
arbitrary constraints in an energy function, generating samples in a non-autoregressive manner. A similar approach of
using energy functions for specifying constraints is used by (Qin et al., 2022) as well. (Zhao et al., 2024a) propose a novel
contrastive method for learning the twist functions and use them to perform Sequential Monte Carlo (SMC).

Multi-Objective Alignment. (Zhu et al., 2023; Basaklar et al., 2022) propose training a policy conditioned on preference
weightings across multiple objectives to maximize the expected rewards, which inspired works in multi-objective decoding.
(Fu et al., 2024) align to multiple objectives at test time using a positive and negative prompt example in context to adjust
model logits. (Yang et al., 2024) adapts (Ji et al., 2024) aligning the policy model to multiple objectives via an external
adapter. (Badrinath et al., 2024) introduce hybrid objectives to improve the general single objective alignment. (Zhong
et al., 2024) use Singular Value Decomposition to guide an LLM towards multiple objectives during inference. (Xu et al.,
2024a) employ a mixture of judge LLMs to help balance multi-objective alignment approaches in practice. (Wortsman
et al., 2022; Ramé et al., 2024) propose averaging the weights of multiple models fine-tuned with different hyperparameters,
improving accuracy and robustness and leading to further investigation in (Rame et al., 2024; Jang et al., 2023). (Lin et al.,
2024) propose heterogeneously finding model combination ratios of layers for further improvement in performance. (Yu
et al., 2024; Lee et al., 2024) consider multi-objective alignment in diffusion model architectures.
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