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ABSTRACT

Diffusion based vocoders have been criticised for being slow due to the many steps
required during sampling. Moreover, the model’s loss function that is popularly
implemented is designed such that the target is the original input x0 or error ϵ0.
For early time steps of the reverse process, this results in large prediction errors,
which can lead to speech distortions and increase the learning time. We propose
a setup where the targets are the different outputs of forward process time steps
with a goal to reduce the magnitude of prediction errors and reduce the training
time. We use the different layers of a neural network (NN) to perform denoising
by training them to learn to generate representations similar to the noised out-
puts in the forward process of the diffusion. The NN layers learn to progressively
denoise the input in the reverse process until finally the final layer estimates the
clean speech. To avoid 1:1 mapping between layers of the neural network and the
forward process steps, we define a skip parameter τ > 1 such that an NN layer
is trained to cumulatively remove the noise injected in the τ steps in the forward
process. This significantly reduces the number of data distribution recovery steps
and, consequently, the time to generate speech. We show through extensive eval-
uation that the proposed technique generates high-fidelity speech in competitive
time that outperforms current state-of-the-art tools. The proposed technique is
also able to generalize well to unseen speech.

1 INTRODUCTION

The use of deep generative models is prevalent in speech synthesis Lam et al. (2022) Chen et al.
(2020) Kong et al. (2020b) Prenger et al. (2018) Kumar et al. (2019) Kong et al. (2020a). These
models use generative adversarial network (GAN) Goodfellow (2016) or likelihood-based tech-
niques. GAN-based models such as Kong et al. (2020a) and Kumar et al. (2019) exploit the training
objective to make the model generate data that are indistinguishable from the training data. While
GAN based models can generate high quality speech, they are difficult to train due to instability
during the training process Mescheder et al. (2018). Likelihood speech synthesis-based techniques
are composed of autoregressive models such as Oord et al. (2016) Kalchbrenner et al. (2018) Mehri
et al. (2016) Valin & Skoglund (2019), flow-based models Prenger et al. (2019) Kim et al. (2020)
Hsu & Lee (2020) and variational auto-encoders (VAE) based models Liu et al. (2022). Autoregres-
sive speech synthesis models generate speech in a sequential nature, where the current sample to
be generated is conditioned on the previously generated samples. Due to the sequential nature of
speech generation, these models require many computations to generate a sample. This limits their
ability to be deployed in application where faster real time generation is required. Flow based model
utilises specialised architectures to model a normalised probability model. These architectures re-
quire optimisation of many parameters during training, and hence can be computationally expensive.
VAE based models on the other hand do not work well with high dimensional data Bond-Taylor et al.
(2021). Another type of likelihood-based generative model that is becoming popular for speech syn-
thesis is the diffusion probability model (DPM) Sohl-Dickstein et al. (2015). It has been explored in
speech synthesis in Lam et al. (2022) Chen et al. (2020) Kong et al. (2020b). DPMs are composed
of two main processes i.e., the forward and reverse process. The forward process involves sequen-
tially adding Gaussian noise to a given distribution until eventually it becomes identical to white
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noise, i.e., pure Gaussian noise. The reverse process starts with white noise and recovers the data
distribution by sampling. To learn a given target distribution, DPMs require a significant number
of diffusion steps during training, resulting in many reverse steps to recover the data distribution
during sampling time. Due to this, speech synthesis tools using diffusion generative model are slow,
a property that prohibits their real-world deployment. Recognizing this limitation, speech synthesis
tools that employ diffusion generative models employ a number of techniques to reduce sampling
steps. WaveGrad Chen et al. (2020) uses a grid search algorithm (GS) to reduce the sampling noise
schedule. The use of grid search to shorten the noise schedule has been criticised for being com-
putationally prohibitive when many noising steps N are used Lam et al. (2022). BDDM Lam et al.
(2022) reduces the sampling schedule by first training a generative model for speech synthesis using
T steps, then uses the optimised score network to train a scheduling network to learn a shorter noise
schedule N << T to be used during sampling. In this work, we explore the idea of using content
transfer to speed up speech synthesis in DPM. Content transfer which was first used in Gatys et al.
(2016) as part of style transfer, involves training layers of a neural network to minimize the distance
between representations of a desired style (or content) and a white noise and iteratively transform
white noise to the desired style or content. Motivated by this, we also use neural network layers to
learn to generate representations of a given audio generated by a given time-step t of the forward
process. Since the forward process can have many steps T , we restrict the layers of the neural net-
work used in the reverse process to N = T

τ where τ > 1. Intuitively, we use the layers of the neural
network to reduce the noise schedule of the forward process by training a neural network such that
its single layer can remove cumulative noise injected in τ steps during the forward process. Un-
like Lam et al. (2022) which optimises two sets of parameters, we train the model to optimise only
a single parameter set θ therefore hypothesise that the proposed method will significantly reduce
sampling time and, consequently, audio generation time.

2 DENOISING DIFFUSION PROBABILISTIC MODEL

Given an observed sample x of unknown distribution, the diffusion probabilistic model (DPM) aims
to model the true distribution of the data p(x). The modelled distribution p(x) can then be used to
generate new samples at will. DPM defines a forward process as

q(x1:T | x0) =

T∏
i=1

q(xt | xt−1) (1)

Here, latent variables and true data are represented as xt with t = 0 being the true data. The
encoder q(xt | xt−1) seeks to convert the data distribution into a simple tractable distribution after
the T diffusion steps. q(xt | xt−1) models the hidden variables as linear Gaussian models with
mean and standard deviation modelled as hyperparameters Ho et al. (2020) or as learnt variables
Nichol & Dhariwal (2021) Kingma et al. (2021). The Gaussian encoder is parameterized with mean
ut(xt) =

√
αtxt−1 and variance Σt(xt) = (1− αt)I hence

q(xt | xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (2)

αt evolves with time t based on a fixed or learnable schedule such that the final distribution p(xT )
is a standard Gaussian. The reverse process which seeks to recover the data distribution from the
white noise is modelled as

pθ(x0:T ) = p(xT )

T∏
i=1

pθ(xt−1 | xt) (3)

where
p(xT ) = N (xT ; 0, I) (4)

The encoder essentially describes a steady noisification of an input over time by adding Gaussian
noise until eventually it becomes identical to pure noise. It is completely modelled as a Gaussian
with a defined mean and variance parameters at each timestep hence it is not learned. The goal of
DPM is therefore to model the reverse process pθ(xt−1 | xt) so that it can be exploited to generate
new data samples. After the DPM has been optimized, a sampling procedure entails sampling Gaus-
sian noise from p(xT ) and iteratively running the denoising transitions pθ(xt−1 | xt) for T steps to
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generate x0. The DPM can be optimised through the evidence lower bound (ELBO).

log p(x) = Eq(x1 | x0)[log pθ(x0 | x1)]−DKL(q(xT | x0)||p(xT ))−
T∑

t=2

Eq(xt | x0)[DKL(q(xt−1 | xt, x0)||pθ(xt−1 | xt))]
(5)

Using the property of isotropic Gaussians, Ho et al. (2020) shows that xt can be conditioned directly
on x0 as:

xt =
√
ᾱx0 +

√
(1− ᾱt)ϵ0 (6)

hence
q(xt | x0) = N (xt;

√
ᾱx0, (1− ᾱt)I) (7)

In equation 5, the third term on the right is the denoising term that seeks to model pθ(xt−1 | xt) to
match the ground truth q(xt−1 | xt, x0). In Ho et al. (2020), q(xt−1 | xt, x0) is derived as:

q(xt−1 | xt, x0) ∝ N (

√
α(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

(1− ᾱ)
,
(1− αt)(1− ᾱt−1)

(1− ᾱ)
I) (8)

In order to match pθ(xt−1 | xt) to q(xt−1 | xt, x0) in the reverse process, the mean of pθ(xt−1 | xt)
should be made to match that of q(xt−1 | xt, x0) hence the mean of pθ(xt−1 | xt) is parameterized
as

uθ(xt, t) :=

√
α(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x̂θ(xt, t)

(1− ᾱ)
(9)

Here, the score network x̂θ(xt, t) is parameterized by a neural network and it seeks to predict x0

from a noisy input xt and time index t. The optimization problem can therefore be simplified as:

L = Et,ϵ[||x̂θ(
√
ᾱx0 +

√
(1− ᾱtϵ, t)− x0||22] (10)

The loss function is composed of the neural network x̂θ(xt, t) that is conditioned on the discrete
time t and noisy input xt to predict the original ground truth input x0. By expressing

x0 =
xt −

√
1− ᾱtϵ0√
ᾱ

(11)

an equivalent optimization of modelling a neural network ϵ̂θ(xt, t) to predict the source noise can
be derived Ho et al. (2020).

L = Et,ϵ[||ϵ̂θ(
√
ᾱx0 +

√
(1− ᾱtϵ, t)− ϵ0||22] (12)

3 RELATED WORK

Deep neural network generative techniques for speech synthesis (vocoders) are either implemented
using likelihood technique or generative adversarial network Goodfellow (2016). Likelihood meth-
ods are composed of autoregressive, VAE, flow, and diffusion-based vocoders. Autoregressive mod-
els such as Oord et al. (2016) Kalchbrenner et al. (2018) Mehri et al. (2016) and Valin & Skoglund
(2019) are models that generate speech sequentially. The models learn the joint probability over
speech data by factorizing the distribution into a product of conditional probabilities over each sam-
ple. Due to their sequential nature of speech generation, autoregressive models require a large
number of computations to generate a sample. This limits their ability to be deployed in applica-
tion where faster real time generation is required. However, there are models such as Paine et al.
(2016), Hsu & Lee (2020) and Mehri et al. (2016) which propose techniques to speed up speech
generation in autoregressive models. Another likelihood-based speech synthesis technique is the
flow-based models Rezende & Mohamed (2015) used in Prenger et al. (2019) Kim et al. (2020) Hsu
& Lee (2020). These models use a sequence of invertible mappings to transform a given probability
density. During sampling, flow-based models generate data from a probability distribution through
the inverse of these transforms. Flow based models implement specialized models that are is com-
plicated to train Tan et al. (2021). Denoising diffusion probabilistic models (DDPM) have recently
been exploited in speech synthesis using tools such as PriorGrad Lee et al. (2021), WaveGrad Chen
et al. (2020), BDDM Lam et al. (2022) and DiffWave Kong et al. (2020b). These models exploit
a neural network that learns to predict the source noise that was used in the noisification process
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during the forward process. Diffusion-based vocoders can generate speech with very high voice
quality but are slow due to the high number of sampling steps. Tools such as BDDM Lam et al.
(2022) propose techniques to speed up speech generation while using diffusion models. Our pro-
posed work also looks at how to speed up speech synthesis in diffusion models. Finally, GAN based
models such as Kong et al. (2020a) and Kumar et al. (2019) exploit the training objective to make the
model generate data that is indistinguishable from the training data. While GAN based models can
generate high quality speech, they are difficult to train due to instability during the training process
Mescheder et al. (2018). A complete review of the vocoders can be found in Tan et al. (2021).

4 GUIDED SPEECH TO SPEECH TRANSLATION

Here we base our work on the concept of multilingual speech embedding where audio chunks with
similar meanings in the same or different language generate embeddings that are close in the em-
bedding space. The same concept has been used extensively in text . Our goal is to use closeness
score of embeddings between two audio segments from different languages to act as classifier that
guides a diffusion model in the translation process. The idea of guided diffusion has been used in
image generation based on input text . In , they use multimodal data of text and image to train two
encoders f(x) and g(c) such that the embeddings between paired text(caption) and image are mini-
mized. They essentially minimize the dot product f(x).g(c) between paired text and image. These
dot product score is the used to guide the diffusion model to learn image generation based on text.
The idea of learning multi-modal representations was popularized by CLIP . In our case our data is
multilingual speech that is unpaired. We therefore

4.1 SPEECH SEGMENTATION

This is a crucial part of the proposed technique. We seek to use silences that exist in a given audio
file to segment it into coherent sentences. Silence based segmentation using voice activity detection
(VAD) has been explored in previous work such as Gaido et al. (2021) Potapczyk & Przybysz (2020)
Duquenne et al. (2021). While popular, VAD based speech segmentation is always riddled with
incomplete sentences which may not be coherent sentences and spill over sentences( i.e more that
one sentence is chunked as a single sentence). Incomplete sentences are as a result of multiple pauses
that occur within a sentence while spill over sentences are as result of no pause within two or more
subsequent sentences. To mitigate the effects of these two deficiencies of VAD, work in Potapczyk
& Przybysz (2020) and Duquenne et al. (2021) propose over-segmentation based on pauses present
in a given audio. In Potapczyk & Przybysz (2020), small audio fragments are then merged together
up to a certain defined length. This technique however does not handle spill over sentences and has
a potential of dropping small length audio sentences . In our case we generate, segments based on
the following steps:

1. Segment an audio file based on silences present in it.
2. Compute an average length l of an audio segment.
3. Segment into two an audio segment k which is more than two times the average length l

while retaining the original k.
4. Merge audio segment i that is half the length of l to either the subsequent s or preceding p

audio segment depending on which one is shorter. Retain both i and s or p.
5. If step 4 generates a longer audio segment that is more than twice the average length l apply

step 3.

The proposed technique seeks to increase recall at expense of extra computations Barrault et al.
(2023).

4.2 MULTI-LINGUAL SPEECH ENCODER

To enable faster sampling and potentially avoid sampling with hundreds and thousands of steps, we
propose a reduced noise scheduling network which sequentially learns to recover data distribution
in much more fewer steps that the steps used to inject the noise during the forward process. Given
the forward process of diffusion parameterized by noise schedule α ∈ RT where 0 < αt < 1 with
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1 ≤ t ≤ T , we seek to establish a shortened noise scheduling α̂ ∈ RN where 0 < α̂t < 1 with
1 ≤ t ≤ N . The reduced noise schedule α̂ is to be established when only the forward diffusion
noise schedule α given. Equation 10 and 12 are designed such that the the targets are the original
input x0 and error ϵ0 respectively. We hypothesise that for early time steps of the reverse process,
this will result in large prediction errors which can lead to speech distortions Zhou et al. (2022) and
increase the learning time. We propose a setup where the targets are the different outputs of the
forward process time steps with the goal of reducing the magnitude of prediction errors. Through
this, we hope to generate high fidelity speech and achieve faster convergence during training.

5 PROPOSED METHOD

Our proposed method is based on content transfer between audio in the forward process and audio
generated by the layers of neural network in the reverse process. The number of steps N used to
recover the data distribution is fixed by selecting a skip parameter 1 ≤ τ < T such that N = T

τ .
If τ = 1, then each time step t in the forward process is mapped to a neural network layer in the
reverse process. However, the goal is to fast track the reverse of the diffusion process, and hence
we aim to select τ > 1 that significantly reduces the sampling time. By doing this, a layer n that is
mapped to a time step t of the forward process can eliminate noise injected from t = t− τ to t = t
in the diffusion process.

Figure 1: An overview of the unconditioned audio generation. An audio file is first processed by the
forward process (10 steps in this case including input). An audio generated at a selected time step t
is processed by a pre-trained model and its representation stored. In the reverse process, white noise
XN is accepted by the first layer of the neural network and processed through the layers. For each
layer we store its generated representation. A layer is mapped to a given time step t. If a layer l is
mapped to time step t, we minimize the mean squared error between their respective embeddings.

5.1 REPRESENTATION GENERATION

The representations discussed in this paper are generated by Wav2Vec 2.0 Baevski et al. (2020).
Wav2Vec 2.0 is a speech pre-trained model that is composed of two main blocks. The first block,
feature extractor is made of seven 1D convolution layers and a normalization layer. It accepts raw au-
dio waveform and generates a representation Z = {z1, · · · , zn} with 20 ms stride between samples
where each sample has a receptive field of 25ms. The second block is composed of a transformer
with 24 layers that establish a contextual representation C = {c1, · · · cn} of a given audio. We
do not use the quantisation module part of Wav2Vec 2.0 that is employed during self-supervised
pre-training. For the forward process of the diffusion process, we use Wav2Vec to generate repre-
sentations of an audio resulting from time step t (see figure 1). For the reverse process, the Wav2Vec
layer-wise representations are used. We describe the details in the next section.
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5.2 UNCONDITIONAL SPEECH GENERATION

The forward process proceeds similarly to Equation 1. Recall that in equation 5, the third term on
the right is the denoising term with the goal to learn a transition step pθ(xt−1 | xt) that estimates
the tractable ground truth q(xt−1 | xt, x0). When the KL divergence of the two denoising steps is
minimised, denoising is achieved. In our case, we reparametize the third term of equation 5 as:

T∑
t=2

Eq(xn | xn−1)[DKL(q(xn−1 | xn)||pθ(x̂n−1 | x̂n))] =

T∑
t=2

Eq(xt+τ | xt)[DKL(q(xt | xt+τ )||pθ(x̂t | x̂t+τ ))]

(13)

The fundamental change is that we condition xn on xn−1 rather than x0 and the model pθ(x̂n−1 |
x̂n) is parametized by estimates x̂n−1 and x̂n rather than actual xn−1 and xn. Using Bayes theorem

q(xn−1 | xn) =
q(xn | xn−1)q(xn−1)

q(xn)
(14)

Using Markov property equation 14 becomes:

q(xn−1 | xn) =
q(xn | xn−1)q(xn−1 | xn−2)

q(xn | xn−1)
= q(xn−1 | xn−2) (15)

Where
q(xn−1 | xn−2) ∝ N (xn−1;

√
αn−1xn−2, (1− αn−1)I) (16)

Equation 13 can now be rewritten as:

T∑
t=2

Eq(xn | xn−1)[DKL(q(xn−1 | xn−2)||pθ(x̂n−1 | x̂n))] (17)

The goal is to model pθ(x̂n−1 | x̂n) to estimate q(xn−1 | xn−2) established during the forward
process. Due to this, we formulate the loss function as follows:

L = argmin
θ

DKL(q(xn−1 | xn−2)||pθ(x̂n−1|x̂n)) (18)

L = argmin
θ

DKL(N (xn−1;µq,Σq(n))||N (x̂n−1; µ̂θ,Σq(n))) (19)

where µq =
√
αn−1xn−2, and Σq(n) = 1 − αn−1. pθ(x̂n−1|x̂n) is supposed to be modelled to

have a similar distribution to that of q(xn−1 | xn−2) as much as possible Ho et al. (2020). Hence,
the distribution of pθ(x̂n−1|x̂n) is modelled as a Gaussian with mean µ̂θ =

√
αn−1x̂θ(x̂n−1, n− 2)

and variance Σq(n). With x̂θ(x̂n−1, n − 2) being parameterized by a neural network that seeks to
predict xn−2 from the estimate x̂n−1 and the time step n − 2. Based on this, equation 19 can be
expressed as:

L = argmin
θ

1

2
√
αn−1

[||√αn−1x̂θ(x̂n−1, n− 2)−√
αn−1xn−2||22] (20)

L = argmin
θ

1

2

√
αn−1[||x̂θ(x̂n−1, n− 2)− xn−2||22] (21)

Equation 22 can be generalized as

L = argmin
θ

1

2

√
αn+1[||x̂θ(x̂n+1, n)− xn||22] (22)

Therefore, optimizing the loss function boils down to learning a neural network x̂θ to predict xn

established during the forward process. The neural network should be conditioned on an estimate
x̂n+1 and time step n to predict xn. Unlike the loss in equation 10 where the neural network x̂θ(xt, t)
conditioned on a random noisy input xt predicts the original noiseless input x0, the loss in equation
23, conditions the neural network on an estimate x̂n+1 of the previous step n + 1 of the reverse
process to predict the noisy output generated at a time step n in the forward process. Using the loss
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function in equation 22, to recover the original input x0, we will need to design a neural network
conditioned on estimate x̂1 and minimise the loss:

L = argmin
θ

1

2

√
αn+1[||x̂θ(x̂1, 0)− x0||22] (23)

Ideally, to recover the original input x0, we will need to design N neural networks each for each
time step. To avoid this, we exploit N layers x̂l

θ(.) of NN to perform the time step predictions of the
reverse process. Hence, equation 23 is implemented as:

L = argmin
θ

1

2

√
αn+1[||x̂l

θ(x̂n+1)− xn||22] (24)

where x̂n+1 is the prediction of the previous neural network layer, i.e., x̂l−1
θ (x̂n+2). We no longer

condition the neural network layer on the discrete time n since the layers encode time (i.e., the time
steps are encoded by the neural network layers which are implemented sequentially). Intuitively,
since n = t + τ , the network layer pθ(x̂n−1 | x̂n) is supposed to remove the cumulative noise
injected in multiple steps τ during the forward process. Based on this, in the unconditioned imple-
mentation, the reverse process starts with white noise xN ∼ N(0, I) and takes N = T

τ steps (layers)
to recover the data distribution. During implementation, the white noise xN is passed through the
first layer of the Wav2Vec and each of the representation x̂n ∈ Rk×h encoded by the 24 layers of
Wav2Vec is stored. Here, k represents the number of samples generated by the feature extractor of
the Wav2Vec. We then minimize the loss between the L2 normalized embeddings x̂n ∈ Rk×h and
the embeddings xn ∈ Rk×h ( established by fine-tuned Wav2Vec) of the audio generated by time
step n during the forward process using mean squared error.

Ln = ||x̂l
θ(x̂n+1)− xn||22 =

k∑
i=1

2− 2
< x̂ni , xni >

||x̂ni
||2.||xni

||2
(25)

The gradients of loss with respect to the layer’s activations are then computed using standard error
back-propagation.

5.3 CONDITIONAL SPEECH GENERATION

To enable the model to generate speech that follow a given acoustic features, we condition the loss
in equation 24 on acoustic features y as:

L = ||x̂l
θ(x̂n+1, y)− xn||22 (26)

Therefore, we design the score network x̂l
θ(., .) such that it can process both noisy estimate x̂n+1 and

acoustic features y. To achieve this, we exploit feature-wise linear modulation (FiLM) Perez et al.
(2018) which has also been used in Chen et al. (2020). Through FiLM, we adaptively influence
neural network layer estimates by applying affine transformation to layer activation based on the
input Mel spectrogram y (see Figure 2).

FiLM(x̂n−1) = γ ⊙ x̂n−1 + β (27)

where γ and β ∈ Rk×h modulates x̂n+1 based on a certain Mel-spectrogram y and ⊙ is the
hadamard product.

6 EVALUATION

This section discusses how we developed and evaluated the proposed technique which we refer as
DiCon (Dinoising by Content transfer).
Dataset: In keeping with the trend in the speech synthesis domain and to allow for comparison with
other existing tools, we used the most popular datasets i.e., LJSpeech dataset for single speaker eval-
uation and VCTK dataset for multi-speaker evaluation. LJSpeech dataset consists of 13,100 audio
clips sampled at 22KHz. The audio clips are from a female speaker that vary in length from 1 to 10
seconds with a total of about 24hrs. For multispeaker, we used the VCTK dataset, which is sampled
at 48KHz and consists of 109 English speakers with various accents. VCTK was downsampled
to 22KHz. Similar to Chen et al. (2020), for LJSpeech, we used 12,764 utterance subset which is
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Figure 2: An overview of the conditioned audio generation. Compared to unconditioned audio
generation in figure 1, the conditioned audio generation includes upsampling blocks that accepts
Mel-spectrogram y that contains acoustic features of the audio to be generated. The upsampling
blocks process the Mel-spectrogram to generate β = f(y) and γ = f(y). Both β and γ are used to
modulate the activation of the neural network layer according to equation 27.

approximately 23 hours for training the model and evaluated it on test set of 130 utterances subset.
For multi-speaker evaluation, we used the data split used in Lam et al. (2022) of 100 speakers for
training and 9 were used for evaluation. From each audio we extracted a 128-dimensional Mel spec-
trogram features. Similar to Chen et al. (2020) we used a 50-ms Hanning window, 12.5-ms frame
shift, and a 2048-point FFT with upper and lower frequencies of 20 Hz and 12 kHz lower.
Training parameters: The model was trained using a single NVDIA V100 GPU. We used Adam
Optimiser and the cyclical learning rate Smith (2017) with a minimum learning rate of 1e − 4 and
a maximum of 1e − 1. We used a batch size of 32 and trained for 1M steps. Similar to Chen et al.
(2020), for conditioned audio generation we used Mel-spectrogram extracted from ground truth au-
dio as conditioning audio features during training while during testing we used Mel-spectrogram
generated by Tacotron 2 model Shen et al. (2018). To generate the FiLM parameters β and γ, we
use the upsampling blocks proposed in Chen et al. (2020) and use the parameters to modulate the
activations of a given layer as described in equation 27.
Baseline models: We compared the proposed method with other state-of-the-art vocoders. We used
models that have publicly available implementations where we can generate a sample for human
evaluation. The baseline models used include WaveNet Oord et al. (2016)1, WaveGlow Prenger
et al. (2018) 2, MelGAN Kumar et al. (2019) 3, HiFi-GAN Kong et al. (2020a) 4, WaveGrad Chen
et al. (2020) 5, DiffWave Kong et al. (2020b) 6, BDDM Lam et al. (2022) 7 and FastDiff Huang et al.
(2022) 8.
Metrics: For subjective evaluation, we used the Mean Opinion Score (MOS) metric to evaluate the
performance of the proposed model compared to the baseline tools. For each model we collected
samples generated by the model. We also randomly selected samples from original audio samples.
Each of the samples was presented to human evaluators one at time for them to rate the quality of
speech on its naturalness on a 5-point Mean Opinion Score (MOS) scale. The scores used were

1https://github.com/r9y9/wavenet vocoder
2https:// github.com/NVIDIA/waveglow
3https://github.com/descriptinc/melgan-neurips
4https://github.com/jik876/hifi-gan
5https://github.com/tencent-ailab/bddm
6https://github.com/tencent-ailab/bddm
7https://github.com/tencent-ailab/bddm
8https://FastDiff.github.io/
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Bad: 1, Poor: 2, Fair: 3, Good: 4, Excellent: 5 with a rating increment of 0.5. A single evaluator
was required to rate 10 samples. Human evaluators were contracted via Amazon Mechanical Turk
where they were required to wear headphones and be English speakers. For objective evaluation,
we use Short-time objective intelligibility (STOI) Taal et al. (2011), perceptual evaluation of speech
quality (PESQ) algorithm Rix et al. (2001), Deep Noise Suppression MOS (DNSMOS) which is a
reference-free metric that evaluates perceptual speech quality Reddy et al. (2021). It is a DNN based
model trained on human ratings obtained by using an online framework for listening experiments
based on ITU-T P.808. We also use SIG, BAK, and OVRL: The non-intrusive speech quality as-
sessment model DNSMOS P.835 Reddy et al. (2022)is based on a listening experiment according to
ITU-T P.835 and evaluates speech based on three MOS scores: speech quality (SIG), background
noise quality (BAK), and the overall quality (OVRL) of speech. To evaluate the speed of speech
generation we used real-time factor (RTF).
Model Configurations: To train the model, we experimented with different number of steps in the
forwards process while the reverse steps were kept constant at 24. We experimented with forward
step (fsteps) of 1200, 960, 720 and 240 while the reverse steps (rsteps) were kept constant at 24
hence we selected a skip parameter τ = {50, 40, 30, 10} respectively. The model accepts a 0.3
second input of audio. For the forward process αi increases linearly from α1 to αN defined as
Linear(α1, αN , N) such as Linear(1× 10−4, 0.005, 1200).

6.1 RESULTS

6.1.1 SINGLE SPEAKER

For conditional speech generation on a single speech dataset, the subjective MOS and objective
STOI, PESQ, DNSMOS, SIG, BAK and OVRL results are shown in table 1. Table 1 also shows the
speech generation time RTF. For MOS, the best performing configuration of the proposed technique
DiCon(1200,24) differs from the best performing tool DiffWave(200 steps) by a margin of 0.03.
The MOS value of DiCon(1200,24) has 0.30 difference with that of ground truth. DiCon(1200,24)
registers the best results in all the objective metrics of STOI, PESQ, DNSMOS, SIG, BAK and
OVRL. With regards to speed of speech generation, all the configuration of the proposed model are
competitive with the observation that as the step size τ becomes smaller the speed of generation
increases. We hypothesize that this is because a neural network layer has a reduced load of the
amount of noise it is supposed to remove. We also note that the more forward steps, the better
quality of audio the model can generate. However, more forward steps make the audio generation
slower.

Table 1: Evaluation results of the conditioned version of the proposed method and how it compares
to other state of the art tools on the evaluation metrics when single-speaker dataset is used.

LJSpeech test-dataset
Model MOS(↑) STOI(↑) PESQ (↑) RTF (↓) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)

Ground truth 4.68±0.15 - - - 4.77 4.67 4.82 4.70
BDDM(12 steps) 4.37±0.15 0.967 3.68 0.543 4.45 4.24 4.44 4.34
DiffWave(200 steps) 4.41± 0.13 0.966 3.62 5.9 4.38 4.32 4.43 4.40
WaveGrad(1000 steps) 4.34± 0.15 0.909 3.41 38.2 4.41 4.29 4.34 4.32
HIFI-GAN 4.29± 0.14 0.957 3.27 0.0134 4.14 4.09 4.17 4.15
MelGAN 3.52± 0.12 0.946 2.67 0.00396 3.62 3.39 3.78 3.33
WaveGlow 3.11± 0.14 0.961 3.17 0.0198 3.67 3.34 3.01 3.06
WaveNet 3.51 ± 0.15 0.921 2.93 318.6 3.71 3.66 3.83 2.45
DiCon(fsteps:1200 rsteps 24 ) 4.38 ± 0.12 0.977 3.74 0.0042 4.49 4.43 4.52 4.41
DiCon(fsteps:960 rsteps 24 ) 4.31 ± 0.15 0.9573 3.70 0.00371 4.45 4.39 4.40 4.38
DiCon(fsteps:720 rsteps 24 ) 4.13 ± 0.15 0.948 3.68 0.002912 4.21 4.18 4.25 4.20
DiCon(fsteps:240 rsteps 24 ) 3.77± 0.13 0.8932 3.13 0.00182 3.87 3.78 3.86 3.83

6.1.2 MULTI-SPEAKER

The results of the performance of the proposed technique on the multi-speaker dataset are shown
in table 2. For this dataset, the proposed technique can generalize to unseen speakers and Di-
Con(1200,24) configuration has the best MOS score of 4.39 which has a gap of 0.17 from the ground
truth. It also registers the best performance on all the objective metrics.
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Table 2: Evaluation results of the conditioned version of the proposed method and how it compares
to other state of the art tools on the evaluation metrics when multi-speaker dataset is used.

VCTK test-dataset
Model MOS(↑) STOI(↑) PESQ (↑) RTF (↓) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)

Ground Truth 4.56±0.05 - - - 4.78 4.73 4.80 4.77
BDDM(12 steps) 4.33±0.05 0.9610 3.61 0.438 4.47 4.38 4.43 4.32
DiffWave(200 steps) 4.37± 0.04 0.9678 3.68 5.9 4.44 4.28 4.36 4.36
WaveGrad(1000 steps) 4.31± 0.05 0.9630 3.43 38.2 4.38 4.21 4.44 4.26
HIFI-GAN 4.12± 0.05 0.943 3.51 0.0134 4.21 4.19 4.33 4.19
MelGAN 3.42± 0.05 0.8965 2.65 0.00396 3.67 3.48 3.52 3.37
WaveGlow 3.38± 0.04 0.8702 2.56 0.0198 3.79 3.61 3.88 3.48
WaveNet 3.73 ± 0.05 0.8989 2.98 318.6 3.91 3.74 3.90 3.85
DiCon(fsteps:1200 rsteps 24 ) 4.39 ± 0.05 0.981 3.81 0.0042 4.53 4.41 4.56 4.47
DiCon(fsteps:960 rsteps 24 ) 4.26 ± 0.05 0.9500 3.67 0.00371 4.49 4.39 4.58 4.41
DiCon(fsteps:720 rsteps 24 ) 4.09 ± 0.03 0.9430 3.61 0.002912 4.11 4.33 4.40 4.14
DiCon(fsteps:240 rsteps 24 ) 3.08 ± 0.05 0.8709 2.78 0.00182 3.35 3.38 3.65 3.19

6.1.3 UNCONDITIONAL SPEECH GENERATION

Here, the model was trained using multi-speaker dataset. To generate a speech sample, we sample
white noise at random and process it through the trained model without conditioning it on any
acoustic features. The results for unconditional speech generation are shown in table 3. For short
clips of 0.3s DiCon(fsteps:1200 rsteps 24 ) attains the MOS score of 3.08. Listening to the audio
clips, we noticed a phenomenon where the clips begin by generating coherent sounding sentences,
but the coherence drops with time. We will investigate the reason for this phenomenon in our
future work. However, the model can generate clean sounding speeches, i.e., almost free of noise or
artefacts. This is captured by the high BAK score that measures the background noise.

Table 3: Results of the unconditioned proposed method on multi-speaker dataset.
VCTK test-dataset

Model MOS(↑) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)
DiCon(fsteps:1200 rsteps 24 ) 3.08 ± 0.05 3.14 3.06 4.51 3.06
DiCon(fsteps:960 rsteps 24 ) 3.04 ± 0.05 3.09 2.99 4.42 3.03
DiCon(fsteps:720 rsteps 24 ) 3.01 ± 0.03 3.06 2.97 4.25 2.99
DiCon(fsteps:240 rsteps 24 ) 2.93 ± 0.05 2.95 2.87 3.86 2.88

7 CONCLUSION

This paper presents DiCon, a technique for speeding up speech generation in diffusion models using
neural network layers. We exploit the layers of the neural network to progressively recover the data
distribution from white noise. Using content transfer, we demonstrate how an NN network layer can
be exploited to implicitly perform denoising. We use a skip parameter τ to guide the mapping of
NN layers to the forward process, and hence reduce the number of distribution recovery steps. In
conditional speech generation, we use FiLM to infuse the acoustic features of a given speech into
the denoising process. Based on evaluation, we demonstrate that the proposed technique generates
superior quality speech samples at a competitive speed.
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