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Abstract
The challenge of systematically modifying and optimizing regulatory elements for precise gene expression
control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the
way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We
leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant
potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our
framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on
chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics
to ensure they retain properties of endogenous sequences: transcription factor binding site composition,
potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion
to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results
demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion
paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology
and precision gene therapy.

Introduction
The systematic modification and optimization of regulatory elements to control gene expression is one of the key
challenges in modern genomics and synthetic biology. This process offers the potential to correct disease-related
misregulation and to direct cells to specific functional states. Large consortia such as ENCODE1–3, Roadmap
Epigenomics4, Blueprint5, FANTOM6, and others have uncovered the complexity of gene regulation and provide rich data
sources for learning about regulatory element features. The field of generative Artificial Intelligence (AI) has advanced
tremendously over the last few years, yielding approaches that enable researchers to discover, represent and generate
patterns in biological data unlike ever before. Such approaches have great potential for designing synthetic sequences
and identifying genomic locations to integrate them with the goal of safely and precisely modulating gene expression.

Results
In this study, we propose to use diffusion probabilistic models to design context-specific DNA regulatory sequences that
have the potential to modify gene expression and be employed in new therapeutic applications that require precise
perturbation of gene regulation. Diffusion models have shown remarkable performance in generating audio, pictures
(Stable Diffusion7), 3D objects (DreamFusion8), and proteins (RFdiffusion9) (Fig. 1a,b). Our framework utilizes the DHS
index dataset curated by Meuleman et al.10, which includes 733 biosamples from 438 cell and tissue types, to derive cell
type-specific sequences for GM12878, K562, and HepG2. These cell types were chosen for their distinct biological
contexts, diverse tissue origins and encompassing different germ layer lineages: GM12878 (a B lymphocyte cell line) for
the immune system, K562 (a leukemia cell line) for blood cancer research, and HepG2 (a hepatocellular carcinoma cell
line) for liver biology and disease studies. A stratified chromosome sampling strategy proposed by Meuleman et al.11 was
utilized to partition the dataset into mutually exclusive subsets for testing (chr1), validation (chr2), and training (remaining
chromosomes). Training of the model consisted of transforming endogenous DHS sequences into a hot-encoded format
and introducing a fixed amount of standard normal noise. By learning to predict the introduced noise, the model, whose
backbone is based on the U-Net12 architecture, can then create new cell type-specific sequences from randomly initialized
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noise. Utilizing the trained model a total of 100,000 DNA-Diffusion sequences per cell type were generated for
downstream validation.

In this work, we used a spectrum of metrics
to ensure our sequences are diverse while
retaining key properties of endogenous
sequences with respect to potential binding
specificity, composition, accessibility, and
regulatory potential.

First, we assessed transcription factor (TFs)
binding site composition by comparing cell
type-specific DNA-Diffusion sequences with
endogenous sequences using the
Jensen-Shannon divergence between their
TFs binding probability vectors in three cell
types (Fig. 2a). Comparison of TF motif
composition reveals significant differences
between DNA-Diffusion and endogenous
sequences, yielding an average JS
divergence of 0.101 across the three cell
types when compared to the average mean
distance between endogenous train and test
of 0.048. This shift, driven by modulated
motif density and inclusion of known cell
type-specific motifs, demonstrates the
model's ability to enhance cell type
specificity during sequence generation.

Second, we evaluated the cell type-specific
chromatin accessibility potential of these
sequences by using ChromBPnet13, a
state-of-the-art model to predict chromatin
accessibility from DNA sequences. As
before, we considered three classes of cell
type-specific sequences generated by the
DNA-Diffusion model and assessed their
chromatin accessibility patterns using three
different ChromBPnet models. Similar to the
motif composition evaluation, sequences
generated within a specific cell type context
scored higher than those generated across
cell type contexts, according to the three ChromBPnet models. Focusing on the GATA1 locus, known for its cell
type-specific chromatin accessibility in K562, the endogenous DHS sites from the training set had a mean log-normalized
predicted ATAC value of 1.88 in the K562 ChromBPNet model, compared to 1.65 for the HepG2 model and 1.66 for the
GM12878 model. Notably, the predicted accessibility values of the K562-specific DNA-Diffusion sequences showed a
value of 1.91 for the K562 model, suggesting a slightly higher but significant activity (p < 0.01, one-sided t-test) when
compared to the endogenous baseline values and slightly lower but significant activity (p < 0.01, one sided t-test) for the
other two cell type models, both showing predicted values of 1.64. Similar to the observations in K562 cells, the
DNA-Diffusion sequences for HepG2 and GM12878 showed stronger signals in their respective ChromBPNet models
compared to predictions in other cell types. These results indicate that our generated sequences are detected as
accessible regions in a cell context-specific manner and present the same range of in-silico accessibility as endogenous
sequences.

Finally, to evaluate the capacity of our DNA-Diffusion sequences to activate gene expression in different cell contexts, we
use the Enformer14 model, a transformer-based deep learning model for predicting properties of DNA sequences including
chromatin histone modification and CAGE information in a cell type-specific manner using genomic sequence as the sole
input. To investigate the effects of cell type-specific DNA-Diffusion sequences on chromatin accessibility and gene
expression, we replaced endogenous sequences at accessible DHS sites specific to each cell type with our generated
DNA-Diffusion sequences. In the GATA1 locus, Enformer DNase prediction analysis showed that DNA-Diffusion
sequences specific for K562 maintained or enhanced the predicted accessibility in the GATA1 enhancer compared to the
native sequence, while showing no activity for GM12878 and HepG2, consistent with the ChromBPNet analysis (Fig. 2c).
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Similarly when introducing cell type-specific HepG2 and GM12878 DNA-Diffusion sequences (Fig. 2c), we observe a
statistically significant (p-value < 0.001, single-sided t-test) increase in accessibility within previously non-activated GATA1
DHS regulatory regions in those cell
lines. To assess the impact of these
sequences on cell type-specific
expression of GATA1, we analyzed
Enformer predictions of CAGE within
the 1kb region proximal to the TSS.
GM12878 DNA-Diffusion sequences
replacing the GATA1 regulatory region
showed a mean CAGE signal of 8.83
in GM12878, a statistically significant
increase in activity compared to the
best endogenous GM12878 DHS
training sequence (8.77, t-test p <
0.001) in the same cell type. A similar
reactivation was observed for HepG2
DNA-Diffusion sequences (8.33) in
HepG2, while K562 DNA-Diffusion
sequences maintained or slightly
increased expression of GATA1 in
K562 (8.71). Fig. 2b shows the impact
of the insertion of a HepG2
DNA-Diffusion sequence in a GATA1
enhancer region. The Enformer
prediction demonstrates that the
nearby gene, in this case GATA1,
increases expression as shown by the
CAGE HepG2 track.

As a way to define genomic regions
susceptible to synthetic element
insertion, we mapped the changes in
GATA1 expression mediated by a
HepG2 DNA-Diffusion sequence for all
the possible insertion locations within
the GATA1 locus (Fig. 2d). This tiling
approach was able to detect a
DNase-accessible region ~1kb apart
from the GATA1 promoter that
demonstrates the potential to regulate
GATA1 expression. In addition to this
DHS region, some GATA1 intronic
regions demonstrated differential
impact on GATA1 expression. The
tiling approach effectively identified both optimal sites for element insertion and previously unrecognized regulatory
regions, thereby providing a versatile approach for precise genomic modifications, considering the broader genomic
context for any gene of interest.

Discussion
DNA-Diffusion presents the first end-to-end solution to sequence design that requires no external model guidance nor
orchestration of different models to generate cell type-specific sequences. While it presents promising in silico results it
will be paramount to have robust experimental techniques that can replace endogenous sequences with generated ones
to elucidate the true functional potential of synthetically designed sequences.

Further exploration into scalable DNA diffusion models presents the potential to revolutionize synthetic biology, enabling
precise perturbation of cell type-specific gene regulation and advancing precision gene therapies. This could facilitate
highly efficient, targeted treatments for disorders while improving our understanding of the relationship between sequence
content, context, and their impact on gene expression.
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